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We calculate the deflection angle of light from a distant source by a galaxy cluster in Weyl’s conformal
gravity. The general method of calculation is first applied to calculate the deflection angle in Schwarzs-
child–de Sitter (Kottler) spacetime. The deflection angle calculated in Kottler spacetime includes the
contribution of the cosmological constant, which quantitatively agrees with one work and disagrees with
many works in the literature. We then calculate the deflection angle in Mannheim-Kazanas spacetime in
two conformally related coordinate systems and find that the result includes contributions from both
the cosmological constant and the Mannheim-Kazanas parameter. There are conflicting results on the
deflection angle for light in Weyl gravity in the literature. We point out a possible reason for the discrepancy
between our work and the others.
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I. INTRODUCTION

Bending of light by gravitational field was first predicted
in Newtonian physics a long time ago [1,2]. However, the
amount of bending due to the Sun, calculated within
general relativity to be twice the Newtonian value, was
the one that agreed with the observation in 1919 [3] and
made Einstein the most famous physicist overnight. One
important consequence of the gravitational bending of
light is the gravitational lensing phenomenon [4–6], in
which light from a distant object is bent by an intermediate
massive object, that is, a gravitational lens, to create
multiple images of the source. Gravitational lensing is a
successful astronomical tool to obtain a great deal of
information about the distance of the source, its brightness,
and perhaps most importantly the mass distribution of
the lensing object. If that object is a galaxy cluster, then
gravitational lensing, together with x-ray observations, is
an indispensable tool to measure the amount of mass
in galactic constituents and the intergalactic gas. Those
observations gave support to the dark matter paradigm that
galaxy halos contain dark matter with much higher mass
compared to the luminous baryonic mass making up the
stars as well as galactic and intergalactic gas. Existence of
dark matter in galactic halos has also been the standard
explanation of the phenomenon of flat galactic rotation
curves.
Recent years have seen much activity testing the viability

of alternative theories of gravity on astrophysical and
cosmological phenomena without involving dark sectors.

The dark matter paradigm, although very successful in
explaining diverse astrophysical and cosmological phe-
nomena, has compatibility issues with particle physics.
Dark matter particles should belong to some theory beyond
Standard Model; alas, there exists no model which is free
of theoretical problems, and most importantly there are no
observations reported by direct or indirect particle physics
experiments (for the latest observational status, see
Refs. [7,8]). The phenomenological success of Milgrom’s
modied newtonian dynamics approach [9,10] together with
the current (non)observational situation of dark matter
particles make it imperative to search for an explanation
of various astrophysical and cosmological phenomena in an
alternative theory of gravity.
In a previous work [11], we determined the geometry in

the outer region of galaxies in which stars move with
almost the same rotational velocity irrespective of their
distance from the galactic center. Constancy of the rota-
tional velocity might be seen due to the existence of scale
symmetry. Therefore, we found this geometry as a solution
of Weyl gravity theory, which is the unique local scale
symmetric metric theory of gravity. In Ref. [11], we also
claimed that our solution for the outer region of galaxies
should also hold for low-density regions up to the scale of
galaxy clusters. To check the validity of that claim, in this
paper, we analyze the gravitational lensing in Weyl gravity
by calculating the deflection angle of light from a distant
source by a galaxy cluster.
There is some resistance in the scientific literature to

accept the possibility of an alternative explanation of dark
matter phenomena through the modification of the theory
of gravitation. There exists an unfortunate widespread point
of view that the dark matter paradigm was “proven” a long
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time ago [12] and alternative explanations are futile,
even though there are numerous observational and theo-
retical works challenging the so called “proof” [13–18].
Phenomenological successes of modied newtonian dynam-
ics and some other alternative theories of gravity have
proven very difficult to carry on to the cosmological
phenomena. Thus, even though Ref. [11] has no error in
its mathematical approach and soundness of its result, it
was expected to explain much more than the mere
phenomenon of flat rotation curves of galaxies. It was
outside the scope of Ref. [11] to resolve all the astrophysi-
cal and cosmological phenomena related to dark matter,
which we intend to do in time as far as it is possible. It is
unjust to expect a single paper to bring explanations to
countless diverse observations. Thus, the present paper and
also Ref. [11] should be thought of as part of ongoing
research to understand the relevance of Weyl gravity to
natural phenomena, which has a history almost as long as
one of general relativity [19–22].
This paper is organized as follows. In the next section,

we summarize the previous works on the effect of the
cosmological constant on gravitational lensing and the
works on gravitational lensing in Weyl gravity. Then, in
Sec. III, we are going to describe the general formalism in
two conformally related coordinate systems with two
different methods of calculation. We will apply the general
formalism first to Schwarzschild–de Sitter (Kottler) space-
time in Sec. IV, and then in Sec. V, we will obtain the main
result of this paper for the deflection angle of light in Weyl
gravity.

II. SUMMARY OF PREVIOUS WORKS

There are unfinished discussions in the literature on the
contribution of the cosmological constant (Λ) and the
Mannheim-Kazanas (MK) parameter (γ) of the MK sol-
ution [22,23] of Weyl gravity to the strong lensing formula.
That Λ contributes to the bending of light in the Kottler
background was first proposed in Ref. [24]. Then, through
a series of papers [25–31], the contribution of Λ to strong
lensing is made more precise both conceptually and
computationally. It is observed that the null geodesics
being independent of Λ [32] does not imply that lensing
phenomena are independent ofΛ. Related to this discussion
in a study involving dark matter [33], it is concluded that
cold dark matter mass profiles contain information aboutΛ.
There have also been some works [34–37] questioning

the validity of these results. In these papers, objections to
the contribution of Λ to the strong lensing formula can be
grouped into three categories:
(1) The Rindler-Ishak result [24] is for a static observer,

and if the observer’s motion or the cosmological
Hubble flow is taken into account, the Λ-dependent
terms would simply cancel in the final result [34,35].

(2) As it was pointed out a long time ago in Ref. [32] Λ
does not influence the null orbit equation, it can

further be shown that Λ can be absorbed into the
definition ofmeasurable quantities andhence does not
influence the measurable quantities either [34–36].

(3) Any influence coming from Λ should be in higher-
order terms, and lower-order influence observed in
other works is due to the observer’s motion [37].
These objections are well answered in Refs. [38–41],
on which we are going to comment at the end of
Sec. V B 1.

There is also disagreement on the contribution of the MK
parameter (γ) to the strong lensing formula. If one uses the
MK solution of Weyl gravity to describe the galactic
rotation curves, then the parameter γ that multiplies the
linear term in the gravitational potential turns out to be very
small, but positive [42,43]. Early works on strong lensing
by galaxy clusters in the MK metric reported literally
negative results that value of γ should be negative for it to
have positive contribution to the bending angle [44–47].
Pireaux claimed [48] that the MK choice of the conformal
factor gives an incorrect value for γ. In a later work [49],
Sultana and Kazanas again found a formula which requires
γ to be negative, but their result suggested that the
contribution of γ is rather insignificant compared to the
general relativistic contribution. Then, in the late works
[50–54], people used different ideas in the definition of the
bending angle and found that γ should be positive, getting
rid of an apparent paradox.
In this work, we are going to contribute to both of these

discussions. First, it will be observed that our Weyl gravity
solution [11] is conformally equivalent to the MK solution,
as any solution to Weyl gravity field equations should be
[23]. So, we have a different conformal factor compared to
the MK solution, which makes a difference only in the case
of massive particle trajectories. Light trajectories do not
distinguish conformally equivalent metrics; thus, our result
for strong lensing are relevant for the discussion on the sign
and the value of the MK parameter γ. Our result for the
deflection angle calculated in the Kottler spacetime also
includes a contribution from the cosmological constant Λ.
This contribution, however, comes out rather differently
than the works mentioned above. We believe that how Λ
and also γ contribute depends strongly on how and at what
point in the calculation of the deection angle, the pertur-
bative expansions in various quantities are performed.
These quantities are mass m of the gravitational lens, the
cosmological constant Λ, and the MK parameter γ. In
which order the perturbative expansions are made is very
important. We find out that expansions first in m, then in γ,
and finally in Λ are the mathematically correct ones
because otherwise one gets higher-order terms larger than
the lower-order terms in perturbation expansions. This type
of behavior is physically incorrect. Our result without the
MK parameter for the deflection angle (in Kottler space-
time) agrees with the analysis done in Ref. [55], which has
different result compared to Refs. [25–31,47]. With the MK
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parameter, our result also differs from the results in the
literature, partially agreeing only with the result presented
in Ref. [54].

III. GENERAL FORMALISM

In this section, we describe the general formalism on a
spherically symmetric static spacetime, first in the
Schwarzschild-like polar-areal coordinates [56] and then
in conformally equivalent coordinates that we call “Weyl
gravity vacuum coordinates.” For the null geodesics, the
conformal transformation of the metric would not have any
effect on the geodesic nor, thus, the deflection angle. By
doing the calculation in two conformally related coordinate
systems with two different methods and obtaining the same
result, we seek to have some confidence in our result and the
method used [57].We are aware that to claim full coordinate
independence a fully covariant calculation is needed.

A. Polar-areal coordinates

A general Schwarzschild-like spherically symmetric
metric in polar-areal coordinates is given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ r2 sin θdϕ2; ð1Þ

where fðrÞ is a general function of the radial coordinate r.
In a spherical symmetric static background, the geodesic
equation for a null particle can be found using Killing
symmetries. Since the metric functions depend only on
coordinates r and θ, there are two Killing vectors in this
background: K ¼ ∂t and L ¼ ∂ϕ. These vectors describe
the symmetry directions, and thus there are constants of
motion associated with them. Those two constants of
motion are the total energy, E ¼ fðrÞ_t, and the angular
momentum, L ¼ r2 _ϕ. From these definitions, we can easily
write

r2
dϕ
dt

¼ fðrÞb with b≡ L
E
: ð2Þ

Now, on the metric (1), we put the null geodesic
condition ds2 ¼ 0, and for a null geodesic on the equatorial
plane (θ ¼ π=2), we obtain

du
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b2
− u2fðuÞ

r
; ð3Þ

where u≡ 1
r. This equation shows us that the null geodesics

depend on b, which is called the impact parameter for flat
spacetimes. This is a equation for the null geodesic on the
equatorial plane that contains only the first derivative of the
function uðϕÞ. If this equation can be solved for a specific
fðrÞ and uðϕÞ is determined, one can then evaluate the
deflection angle by inverting the function uðϕÞ.

If there exists a cosmological horizon in these coordinate
systems, then we are interested in finding the coordinate
angle difference for the motion of light from the cosmologi-
cal horizon, uh, at most to the closest approach distance, u0.
Otherwise, we would be calculating the coordinate angle
difference for the motion between causally unconnected
regions, which would be physically incorrect.
The closest point is defined by du

dϕ ju¼u0
¼ 0, and the

cosmological horizon is defined by fðrhÞ ¼ 0 with
uh ¼ 1=rh. Thus, the coordinate angle difference is given by

▵ϕ≡ ϕðrhÞ − ϕðr0Þ ¼
Z

u0

uh

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
b2 − u2fðuÞ

q : ð4Þ

From this, one finds the deflection angle as it travels from the
source to the observer as

▵α ¼ 2▵ϕ − π; ð5Þ

which should be coordinate independent.
For Schwarzschild spacetime, fðuÞ ¼ 1–2mu, and there-

fore the deflection angle is

▵α ¼ 2

Z
u0

uh

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
b2 − u2 þ 2mu3

q − π; ð6Þ

the exact solution in terms of an incomplete elliptic integral
of the first kind of which was first given in Ref. [58]
and much more recently in Ref. [55]. In Ref. [55], the
weak field limit (Eq. (33) of Ref. [55]), which agrees with
Ref. [59] and generalizes results of Refs. [60,61], and
strong field limit (Eq. (40) of Ref. [55]), which generalizes
results of Refs. [58,62–64], of the deflection angle are also
obtained by performing appropriate expansions of the first
incomplete elliptic integral.
The square root in the null geodesic equation (3) is the

reason for the complicated integral. We can get rid of the
square root by writing the null geodesic equation in the form
of a second-order ordinary differential equation (ODE) as

d2u
dϕ2

¼ −
1

2
u2

df
du

− ufðuÞ: ð7Þ

The solution of any second-order ODE requires the speci-
fication of two boundary conditions. The boundary con-
ditions that we choose define the point of closest approach of
light to the lens: uð0Þ ¼ u0 and u0ð0Þ ¼ 0. Note that these
conditions define the closest point to the lens as thepointwith
coordinates ϕ ¼ 0 and r ¼ r0 ¼ b.
In the case in which the spacetime is nonflat, one has to

apply perturbation methods to the flat spacetime solution,
taking into account the cosmological horizon uh. Then, the
angle of deflection will be calculated for a special case of
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the intersection of the null geodesic and the cosmological
horizon.

B. Weyl gravity vacuum coordinates

Now, we find expression for the same deflection angle in
a conformally related coordinate system. Using the radial
coordinate transformation

ρ ¼ rffiffiffiffiffiffiffiffiffi
fðrÞp �

ρ

ρc

�
w
; ð8Þ

we obtain a new coordinate system from (1) via a
conformal transformation:

ds2 ¼ ρ2

r2

�
−fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ r2 sin θdϕ2

�
:

ð9Þ

Therefore, we have a new conformal equivalent metric
given by

ds2 ¼ −
�
ρ

ρc

�
2w
dt2 þ 1

BðρÞ dρ
2 þ ρ2dθ2 þ ρ2 sin θdϕ2;

ð10Þ

with

dρ2

ρ2BðρÞ ¼
dr2

r2fðrÞ : ð11Þ

This is a kind of metric that can be written for the outer
region of galaxies [11] where the flat rotation curve
phenomenon is observed. In that case,

ffiffiffiffi
w

p
is the rotating

speed of a star moving on a circular orbit in the outer region
of a galaxy. Thus, it is a very small number compared to
speed of light, on the order of 10−3. Therefore, light sees
the background described by this metric as if w ¼ 0. Hence,
we take this parameter vanishing in the forthcoming
calculations, and we use the new metric given by

ds2 ¼ −dt2 þ 1

BðρÞ dρ
2 þ ρ2dθ2 þ ρ2 sin θdϕ2: ð12Þ

This time from the Killing vector analysis, we find

ρ2
dϕ
dt

¼ b with b≡ L
E
; ð13Þ

and after applying the null geodesic condition ds2 ¼ 0 on
the metric (12), we obtain a first-order ODE for a null
geodesic on the equatorial plane as

dv
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2ÞBðvÞ

q
; ð14Þ

where v≡ b
ρ. Here, again, b is the impact parameter for flat

spacetimes.
For the metric of interest in this paper, we will observe

that there are no cosmological horizons in this new
coordinate system. Therefore, the angle of deflection will
be given by

Δα ¼ 2

Z
1

0

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2ÞBðvÞ

p − π; ð15Þ

where 1 in the upper bound of the integral corresponds to
the turning point ρ ¼ b and 0 corresponds to the point at
infinity.
We can get rid of the square root in the null geodesic

equation by writing it in the form of a second-order ODE as

d2v
dθ2

¼ 1

2
ð1 − v2Þ dB

dv
− vBðvÞ: ð16Þ

The boundary conditions that we choose for the function
vðθÞ define the point of closest approach of light to the lens:
vð0Þ ¼ v0 ¼ 1 and v0ð0Þ ¼ 0. Note that these conditions
define the closest point to the lens as the point with
coordinates θ ¼ 0 and ρ ¼ ρ0 ¼ b.

IV. SCHWARZSCHILD–DE SITTER (KOTTLER)
SPACETIME

A. Polar-areal coordinates

The metric in polar-areal coordinates is as given in (1)
with

fðrÞ≡ 1 −
2m
r

−
Λ
3
r2: ð17Þ

Then, the null geodesic equation as a second-order OPE
becomes

�
du
dϕ

�
2

¼ 1

b2
þ Λ

3
− u2 þ 2mu3; ð18Þ

where u≡ 1
r. Before solving this equation, we analyze

turning points and horizons [65].
Turning points are the points at which du

dϕ ¼ 0. From this
relation, one finds that

az3 − zþ 1 ¼ 0; ð19Þ

where z ¼ r=2m and a ¼ 4m2ð1=b2 þ Λ=3Þ. There are
just three cases to consider. In the following, we are going
to write just the turning points and ignore negative and
complex roots:
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(1) 0 < a < 4=27: there are two turning points given by

z0 ¼
2ffiffiffiffiffiffi
3a

p cos

�
π − Ψ
3

�
; ð20Þ

and z− ¼ 2ffiffiffiffiffiffi
3a

p cos

�
π þΨ
3

�
; ð21Þ

where cos2Ψ ¼ 27a=4.
(2) a ¼ 4=27: there is only one turning point given as

z0 ¼ z− ¼ zγ ¼
3

2
: ð22Þ

Two turning points in the previous case approach
together to coalesce at the photon sphere, located at zγ .

(3) a > 4=27: there are no turning points.
Cosmological horizons are located at points where

fðrÞ ¼ 0. This condition in the present case is equivalent to

yz3 − zþ 1 ¼ 0; ð23Þ

where y ¼ 4m2Λ=3. Note that parameters a and y appear
in Eqs. (19) and (23), respectively, in the same way. Thus,
for the same range of values, a cosmological horizon or
horizons exist:
(1) For 0 < y < 4=27, there are two horizons given by

zc ¼
2ffiffiffiffiffi
3y

p cos

�
π − β

3

�
; ð24Þ

and zh ¼
2ffiffiffiffiffi
3y

p cos

�
π þ β

3

�
; ð25Þ

where cos2 β ¼ 27y=4, and we note that zc > zh.
(2) For y ¼ 4=27, there is only one horizon, but since it

coincides with the photon sphere, it is useless for
lensing calculations.

Thus, we calculate the deflection angle for the first case
by using the variables and parameters v ¼ r0=r, Λ0 ¼ Λr20
and m0 ¼ m=r20. In integral form, the deflection angle is

▵α ¼ 2

Z
1

vc

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2 þ 2m0v3 þ Λ0=3

p − π; ð26Þ

where vc ¼
ffiffiffiffi
Λ0

p
2

= cosðπ−β
3
Þ. Here, the integral can be

evaluated after series expansion of the integrand to second
order in m0 and first order in Λ0. The result (as previously
found in Ref. [55]) is

▵α¼−2
ffiffiffiffiffiffi
Λ0

3

r
þm0

�
4−2

ffiffiffiffiffiffi
Λ0

3

r
−2

Λ0

3

�
þm2

0

�
15

4
π−4

�

−m2
0

�
3

ffiffiffiffiffiffi
Λ0

3

r
þ2

Λ0

3

�
þ��� ð27Þ

V. MANNHEIM-KAZANAS SPACETIME

A. Polar-areal coordinates

The Weyl gravity solution in polar-areal coordinates was
given a long time ago by MK in Ref. [23] with

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð28Þ

where

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
−
2m
r

þ γr − kr2: ð29Þ

Here,m is the mass, γ is the MK parameter, and k is related
to the cosmological constant by k ¼ Λ

3
.

The null geodesic equation for this spacetime is given by�
dr
dϕ

�
2

¼ r4
�
1

b2
þ Λ

3
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
r2

þ 2m
r3

−
γ

r

�
: ð30Þ

Before solving this equation, we analyze turning points and
horizons as in the Kottler spacetime case.
Turning points are the points at which dr

dϕ ¼ 0. From this
relation, one finds that�

Λ
3
þ 1

b2

�
r3 − γr2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
rþ 2m ¼ 0: ð31Þ

There are again just three cases to consider. In the
following, we write only the physically meaningful ones:

(i) 0 < m2ðΛþ 3
b2Þ ϵ

2

η3
< 1=9: there are three turning

points given by

r0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η

Λþ 3
b2

s
cos

π −Ψ
3

þ γ

Λþ 3
b2
; ð32Þ

rþ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η

Λþ 3
b2

s
cos

π þΨ
3

þ γ

Λþ 3
b2
; ð33Þ

and r− ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

η

Λþ 3
b2

s
cos

Ψ
3
þ γ

Λþ 3
b2
; ð34Þ

where cos2Ψ¼9m2ðΛþ 3
b2Þϵ

2

η3
with ϵ¼1− γ3

3mðΛþ 3

b2
Þ2−

γ
4m

ffiffiffiffiffiffiffiffiffiffi
1−6mγ

p
Λþ 3

b2
and η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6mγ
p þ γ2

Λþ 3

b2
.

(ii) When Ψ ¼ 0, the limit point of these turning points
is the radius of the photon sphere (rγ) given by

r0 ¼ rþ ¼ rγ ¼
1

γ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p �
: ð35Þ

This result can be found easily using circular null geodesic
conditions [66].
To find locations of cosmological horizons, we set

fðrÞ ¼ 0, which is equivalent to
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Λ
3
r3 − γr2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
rþ 2m ¼ 0: ð36Þ

The physically meaningful solutions are found for
0 < m2Λ ε2

ξ3
< 1=9. For this case, there are two turning

points given by

rc ¼ 2

ffiffiffiffi
ξ

Λ

r
cos

π − δ

3
þ γ

Λ
; ð37Þ

and rh ¼ 2

ffiffiffiffi
ξ

Λ

r
cos

π þ δ

3
þ γ

Λ
; ð38Þ

where cos2 δ ¼ 9m2Λ ε2

ξ3
with ε ¼ 1 − γ3

3mΛ2 − γ
4m

ffiffiffiffiffiffiffiffiffiffi
1−6mγ

p
Λ

and ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p þ γ2

Λ.
The geodesic equation can be written in terms of the

turning point r0 as

�
dv
dϕ

�
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−6m0γ0

p
ð1−v2Þþ γ0ð1−vÞþ2m0ðv3−1Þ

¼ 2m0ð1−vÞðvþ−vÞðv−v−Þ; ð39Þ

where v ¼ r0
r and v� ¼ 1

4m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6m0γ0

p
− 2m0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m0γ0 þ 4m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6m0γ0

p
− 12m2

0

p
. The deflection

angle is then given by

▵α ¼ 2

Z
1

vc

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0ð1 − vÞðvþ − vÞðv − v−Þ

p − π

¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0ðvþ − v−Þ

p Fðp; qÞ − π; ð40Þ

where vc ¼ r0
rc
and Fðp; qÞ is the elliptic integral of the first

kind with sinp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvþ−v−Þð1−vcÞ
ð1−v−Þðvþ−vcÞ

q
and q ¼

ffiffiffiffiffiffiffiffiffiffi
1−v−
vþ−v−

q
. Using

the expansion of q in
ffiffiffiffi
m

p
as

q ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ þ 4

p ffiffiffiffi
m

p
−
3ð ffiffiffi

2
p

γ þ ffiffiffi
2

p Þm3=2ffiffiffiffiffiffiffiffiffiffiffi
γ þ 2

p þ � � � ð41Þ

and the asymptotic expansion of Fðp; qÞ in q given by

Fðp; qÞ ≈ pþ q2
�
p
4
−
1

8
sinð2pÞ

�

þ 3

256
q4ð12p − 8 sinð2pÞ þ sinð4pÞÞ þ � � � ;

ð42Þ

we find the deflection angle as

Δα¼m0

 
4− 2

ffiffiffiffiffiffi
Λ0

3

r
− 2

Λ0

3

!
− 2

ffiffiffiffiffiffi
Λ0

3

r
þ γ0

ffiffiffiffiffiffi
Λ0

3

r

þm2
0

 
15π

4
− 4− 3

ffiffiffiffiffiffi
Λ0

3

r
− 2

Λ0

3

!

þm0γ0

�
2þΛ0

3

�
þm2

0γ0

 
15π

4
− 4−

3

2

ffiffiffiffiffiffi
Λ0

3

r !
þ � � �

ð43Þ

B. Weyl gravity vacuum coordinates

Any solution of Weyl gravity should be conformally
equivalent to the MK solution [23]. To show that the metric

ds2 ¼ −
�
ρ

ρc

�
2w
dt2 þ 1

BðρÞ dρ
2 þ ρ2ðdθ2 þ sin2 θdϕ2Þ

ð44Þ

is conformally equivalent to the MK metric (28), we write
conformal equivalence condition as

ρ2

r2

�
−fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

�

¼ −
�
ρ

ρc

�
2w
dt2 þ 1

BðρÞ dρ
2 þ ρ2dΩ2; ð45Þ

from which we obtain two equations:

ρ2

r2
fðrÞ ¼

�
ρ

ρc

�
2w

ð46Þ

ρ2

r2
1

fðrÞ
�
dr
dρ

�
2

¼ 1

BðρÞ : ð47Þ

From these equations, one finds

BðρÞ ¼ ρ2w−4

ρ2wc

1

ðdu=dρÞ2 ð48Þ

and

2mu3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
u2 − γuþ Λ

3
þ ρ2w−2

ρ2wc
¼ 0; ð49Þ

where u≡ 1
r. Solutions of the cubic algebraic equation (49)

are given by

u1 ¼
1

6m

�
hþ h−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p �
; ð50Þ
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u2 ¼
1

6m

�
ei4π=3hþ ei2π=3h−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p �
; ð51Þ

u3 ¼
1

6m

�
ei2π=3hþ ei4π=3h−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p �
; ð52Þ

where

hðρÞ ¼
h
Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 1

p i
1=3

; QðρÞ ¼
�
−

Δ1

ρ2ð1−wÞ
þΔ2

�
;

ð53Þ

with

Δ1 ≡ 54m2

ρ2wc
and Δ2 ≡ ð1þ 3mγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 6mγ

p
− 54m2

Λ
3
:

ð54Þ

Now, we can find the metric component BðρÞ from
Eq. (48). After some algebra, we find

B1ðρÞ ¼
3ρ2ð1−wÞ

8ð1 − wÞ2Δ1

ð1þ h2 þ h−2Þ2; ð55Þ

B2ðρÞ ¼
3ρ2ð1−wÞ

8ð1 − wÞ2Δ1

ð1þ ei2π=3h2 þ ei4π=3h−2Þ2; ð56Þ

B3ðρÞ ¼
3ρ2ð1−wÞ

8ð1 − wÞ2Δ1

ð1þ ei4π=3h2 þ ei2π=3h−2Þ2: ð57Þ

These are the solutions found in Ref. [11] [Eq. (45) of that
paper] by solving the field equations of Weyl gravity for
a spherically symmetric metric. Thus, we reached these
solutions from an alternative route, and this connects the
present work with Ref. [11]. Note that Δ1;2 (54) corre-
sponds to the integration constants in the solutions of the
field equations, C1;2 in Ref. [11], respectively. We take the
parameter w vanishing in the forthcoming calculations as
explained in Sec. III B.
We now need to evaluate the deflection angle integral

given by

Δα ¼ 2

Z
1

0

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðvÞð1 − v2Þ

p − π; ð58Þ

where v ¼ ρ0
ρ ¼ b

ρ. To evaluate this complicated integral, we
make the further redefinition that cos ζ ¼ QðρÞ, and after
some algebra, we obtain

BiðvÞ ¼
1

144m2
0v

2

�
1þ 2 cos

�
2ζ

3
þ ði − 1Þ 2π

3

��
2

; ð59Þ

where m0 ≡ m
ρ0
.

To evaluate the integral (58), we use B2ðvÞ. We first
expand the integrand of (58) perturbatively in terms of m0,
and then evaluating the integral, we obtain

Δα ¼ 4m0 − π þ 1

ð1þ ν2Þν
�
45m2

0γ
4
0

16
−
m0γ

3
0

2

�

þm2
0γ

6
0

16

1þ 3ν2

ν3ð1þ ν2Þ2 þ 2sin−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν2
p

þ 15m2
0

�
ν

2
þ 1þ ν2

2
sin−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p
�
þ � � � ; ð60Þ

where γ0 ≡ γρ0 and ν2 ¼ Λ0

3
þ γ2

0

4
with Λ0 ≡ Λρ20.

Expanding this expression first in γ and then in Λ, we
obtain

Δα ¼ 4m0 þ
15π

4
m2

0 − 2

ffiffiffiffiffiffi
Λ0

3

r
þ 15π

4
m2

0

Λ0

3
þ � � � ð61Þ

Note that this result is coordinate independent because
r0 ¼ b, where b is the impact parameter for flat spacetimes.
After coordinate transformation,

ρ0 ¼
r0ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ; ð62Þ

the deflection angle in Mannheim-Kazanas coordinates is
found to be

Δα ¼ m0

 
4 − 2

ffiffiffiffiffiffi
Λ0

3

r
− 2

Λ0

3

!
− 2

ffiffiffiffiffiffi
Λ0

3

r
þ γ0

ffiffiffiffiffiffi
Λ0

3

r

þm2
0

 
15π

4
− 4 − 3

ffiffiffiffiffiffi
Λ0

3

r
− 2

Λ0

3

!

þm0γ0

�
2þ Λ0

3

�
þm2

0γ0

 
15π

4
− 4 −

3

2

ffiffiffiffiffiffi
Λ0

3

r !

þ � � � ; ð63Þ
where

m0 ≡ m
r0
; γ0 ≡ γr0; and Λ0 ≡ Λr20: ð64Þ

Equation (63) for the deflection angle, which is equiv-
alent to Eq. (43) of the previous section, is our main result.
We now look at two special cases: 1) the γ ¼ 0 case to
compare our result to a previous one [55] obtained for the
Kottler spacetime, which is equivalent to the MK spacetime
for γ ¼ 0, and 2) the Λ ¼ 0 case to see the contribution of
Weyl gravity to the bending of light in the Schwarzschild
geometry.

1. γ = 0 case

To find the Kottler metric in Weyl gravity vacuum
coordinates, we take γ ¼ 0 in (49), and then the metric
function BðρÞ becomes
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BðvÞ ¼ 1

144m2
0v

2

�
1þ 2 cos

�
2ζ

3
þ 2π

3

��
2

; ð65Þ

where cos ζ ¼ 1–54m2
0ðΛ0=3þ v2Þ and v ¼ ρ0=ρ. In these

coordinates, we also defined m0 ¼ m=ρ0 and Λ0 ¼ ρ20Λ.
Since the distance of closest approach is ρ0 ¼ b, the result
will be coordinate independent.
The deflection angle (15), after series expansion of the

integrant to second order in m0 and first order in Λ0, is
found to be

▵α ¼ −2
ffiffiffiffiffiffi
Λ0

3

r
þ 4m0 þ

15π

4
m2

0 þ
15π

4
m2

0

Λ0

3
þ � � � ð66Þ

Using the coordinate transformation

ρ0 ¼
r0ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ; ð67Þ

we obtain the same result (27) as in the Kottler polar-areal
coordinates.
This result agrees with Eq. (55) of Ref. [55] for γ0 ¼ 0.

When comparing their result for the Kottler case with the
prior literature, Batic et al. [55] first noted that it depends
on the cosmological constant explicitly as first proclaimed
in Ref. [24]. Next, they required that the weak field result
for the gravitational deflection angle in Kottler spacetime
should reproduce theweak field result for the Schwarzschild
case in the limit ofΛ → 0. They noted that the latest result of
Ishak and Rindler [30] does not agree with the weak field
lensing limit of the Schwarzschild formula (Eq. (33) of
Ref. [55]), which itself agrees with Ref. [59] and generalizes
the results of Refs. [60,61]. Agreement with the
Schwarzschild case in the vanishing cosmological constant
limit might be seen as an improvement over the previous
literature, e.g., Refs. [25–31,47].
We would also like to comment on disagreements over

the contribution of the cosmological constant Λ to the
deflection angle as argued in Refs. [34–37]. In the Kottler
spacetime, the physical impact parameter for light is given
by 1

B2 ¼ 1
b2 þ Λ

3
[36,38,39]. Thus, when the orbit equation

for light (3) is written in terms of B, it is observed that the
null orbits are not influenced by Λ [32]. There is, of course,
no disagreement on this fact in the literature. The main
question is whether the finally calculated deflection angle or
the lens equation depends on Λ or not. As it is thoroughly
analyzed in Ref. [38] and concluded in Ref. [39], Λ appears
in the final lens equation when it is expressed in terms of
measurable quantities (see discussion after Eq. (38) of
Ref. [39]). The negative results of Refs. [34,35] are due to
mixed usage of coordinate and measurable quantities in the
final lens equation [38], whereas the main problem of
Ref. [36] is not properly taking into account the finite radius
of the cosmological horizon of the Kottler spacetime [40].
Simpson et al.’s conclusion inRef. [37] is similarly influenced

by the incorrect characterization of the vacuole radius as
pointed out in Refs. [29,30,41].

2. Λ= 0 case

In the case in which Λ ¼ 0, our main result (63) for the
deflection angle becomes

Δα ¼ 4m0 þ 2m0γ0 þm2
0ð1þ γ0Þ

�
15π

4
− 4

�
; ð68Þ

up to m2
0 and γ0 order.

This result shows that the MK parameter contributes
positively to the deflection angle. Comparing our result to
the existing ones in the literature, we note that we agree, up
to this order, with the result of Ref. [54] [Eq. (35) of that
paper].
If we also compare the first-order correction in γ to the

general relativistic result, we note that it has a piece
independent of the impact parameter and a piece inversely
proportional to the impact parameter, which is similar to the
Schwarzschild contribution. Hence, these contributions
increase the lensing effect of a galaxy cluster as expected
from a theory alternative to dark matter phenomenology.

3. Comparison with other works

There are three kinds of first-order corrections in γ to the
general relativistic result [52,54] in the literature:
(1) γ0 ¼ γρ0 with negative sign in Refs. [44–47] and

with positive sign in Ref. [53]. This is clearly a
wrong result because for a gravitational lens the
deflection angle diminishes with the impact param-
eter, contrary to what this result suggests [49]. It is
possible to regain this result in our approach via a
“wrong” order of expansion: expanding (60) first in
Λ and then in γ, we obtain

Δα ¼ 4m0 − γ0 þm0γ0 þm2
0

�
15π

4
− 4

�

þm2
0γ0

�
15π

4
−
11

2

�
; ð69Þ

after performing coordinate transformation (62) and
setting Λ ¼ 0.
We note that many works [46,47,49–54] use the

Rindler-Ishak bending formula (Eq. (16) in Ref. [24])
to determine the deflection of light. This formula
contains Λ, which is contributed only by the metric
function fðrÞ. The equation for the null geodesic is
independent of Λ and thus does not contribute the
bending angle formula any further terms that include
Λ. Since Λ appears only in linear order in the
bending formula of Rindler and Ishak [24], the
formula does not allow the choice of the “correct”
order of expansion, i.e., first in γ and then in Λ.
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We believe this is the reason for the unacceptable
negative contribution of γ0 to the bending angle in
Refs. [46,47]. In Refs. [44,45],Λwas dropped out of
the calculation too early, and thus there was again
no choice of expansion in Λ. The reason that
Refs. [49–53] obtain a different contribution of γ
compared to Refs. [46,47] is that the authors either
keep (note the form of the metric function in
Refs. [49–52]) or ignore (note the difference between
Eqs. (47) and (48), and Eqs. (52) and (53) in Ref. [53])
γ-dependent terms during the computation.

(2) m2
0γ0 of Refs. [50–52] exists in our formula (68), but

it is in second order in mass. The reason for this
correction is explained in the above item.

(3) m0γ0 of Ref. [54] also exists in our formula (68). It is
interesting to note that the definition of the deflec-
tion angle in Ref. [54] is different than our definition
(3). The effect of different definitions is not observed
in the contribution of the MK parameter γ but in the
full deflection angle formula [compare Eq. (37) of
Ref. [54] with our main result (63)]. Even though the
authors also use the Rindler-Ishak bending angle
formula, the final result of Ref. [54] for the bending
angle is drastically different than the results of
Refs. [46–53]. This is due to the fact that the
location of the cosmological horizon, the radius of
which is strongly dependent on the cosmological
constant Λ, plays a very important role in their
approach. This brings not just linear but complicated
dependence on Λ, which, due to correlation with γ,
causes a very different expression for the bending
angle to be found when a series expansion in γ is
performed.

VI. CONCLUSIONS

We utilized our solution of the Weyl gravity [11] to
calculate the deflection angle of light from a distant source
by a galaxy cluster. We first observed that our Weyl gravity
solution is conformally equivalent to the MK solution,
as any solution to Weyl gravity field equations should be.

So, we have a different conformal factor compared to the
MK solution, which makes difference only in the case of
massive particle trajectories. Light trajectories do not
distinguish conformally equivalent metrics; thus, our result
is relevant for the discussion on the sign and the value of the
MK parameter γ. Our calculation of the deflection angle in
the Kottler spacetime included also the contribution of
the cosmological constant Λ. This contribution, however,
came out rather differently than the previous works in the
literature. The reason of this difference comes from
realization that how Λ and also γ contribute depends
strongly on how and at what point in the calculation the
perturbative expansions in various quantities are per-
formed. These quantities are the massm of the gravitational
lens, the cosmological constant Λ, and the MK parameter γ.
In which order the perturbative expansions are made is very
important. We found out that expansions first in m, then in
γ, and finally in Λ are the mathematically correct process
because otherwise one gets higher-order terms larger than
the lower-order terms in the expansions. This is against the
whole idea of perturbation expansion. We found that our
result without the MK parameter for the deflection angle
agrees with the analysis done in Ref. [55]. Our result with
the MK parameter also differs from the ones in the
literature, partially agreeing only with the result presented
in Ref. [54]. We still have to check these formulas by using
different methods such as Refs. [67,68] and then try to
analyze observational data to see if our formula agrees at all
with the observations without invoking dark matter. These
are two ideas for future research and are beyond the scope
of this paper.
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