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Can the observation of the “shadow” allow us to distinguish a black hole from a more exotic compact
object? We study the motion of photons in a class of vacuum static axially symmetric space-times that is
continuously linked to the Schwarzschild metric through the value of one parameter that can be interpreted
as a measure of the deformation of the source. We investigate the lensing effect and shadow produced
by the source with the aim of comparing the expected image with the shadow of a Schwarzschild black
hole. In the context of astrophysical black holes, we found that it may not be possible to distinguish an
exotic source with small deformation parameter from a black hole. However, as the deformation increases,
noticeable effects arise. Therefore, the future more precise measurement of the shadow of astrophysical
black hole candidates would in principle allow one to put constraints on the deviation of the object from
spherical symmetry.
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I. INTRODUCTION

It is generally believed that astrophysical black holes are
well described by the Schwarzschild and Kerr space-times.
However, this idea, often referred to as the Kerr hypothesis,
has not yet been substantially supported by sufficient
experimental evidence [1–10].
Such a conviction will become robust only after well-

constrained observations of the gravitational field outside
black hole candidates are put to the test of predictions
derived from space-times that differ from the Kerr and
Schwarzschild black holes.
Until now, all experimental tests of gravity (even in the

“vicinity” of black hole candidates such as in Ref. [11])
have not allowed one to “measure” the metric coefficients
to accurately test the Kerr hypothesis. However, the state of
the art of black hole measurements is changing rapidly.
Recently, the first image of the “shadow” of the super-
massive black hole candidate in the galaxy M87 was
released by the Event Horizon Telescope Collaboration
[12,13]. The image shows the distinctive features of a black
hole, showing an inner edge for the accretion disk and
suggesting the existence of an infinitely redshifted surface.
On the other hand, it is indeed possible that, when other

more exotic solutions are considered, some degeneracy
occurs for some specific value of the parameters involved,

in such a way that the exotic solution can mimic the black
hole in astrophysical observations [14].
To this aim, it is important to consider physically viable

solutions that exhibit small deviations from black hole
solutions. For example, investigations of the observational
features of a space-time metric which slightly deviates from
theKerr solution have beenmostly considered in the context
of modified theories of gravity (see, e.g., Refs. [15–31]) or
perturbations of the Kerr metric [32–34]. The observables of
the compact objects, particularly the shadow of the compact
objects in modified or alternative theories of gravity, have
been studied in Refs. [35–54].
As of now, there is no experimental evidence in support

of the need for modifications of Einstein’s theory [1–4].
Also, the relativistic space-times that are generally consid-
ered as perturbations of the Kerr black hole are not exact
solutions of Einstein’s vacuum field equations nor solutions
in the presence of reasonable, physically realistic, matter
fields. Therefore, the interpretation of the parameters that
define the departure from the black hole case is not
straightforward.
Indeed, it would be preferable to study black hole

mimickers obtained within General Relativity from exact
solutions of Einstein’s equations which have a clear
physical interpretation. For example, in Ref. [55], two of
us considered the observational features of solutions in the
presence of matter fields and found that light emitted from
accretion disks in such space-times could mimic the*bambi@fudan.edu.cn
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expected behavior of light from accretion disks
around a Kerr black hole. Similarly, in Ref. [56], two of
us considered the features of accretion disks around a Kerr
black hole as compared with accretion disks immersed in a
nonvacuum rotating massive source.
In the present article, we consider the optical properties

for distant observers of a well-known vacuum solution of
Einstein’s equations which is of particular interest because
it describes the gravitational field outside a static deformed
body. The solution, which depends on two parameters m
and γ, describing the mass and deformation of the source,
respectively, was originally found by Zipoy and Vorhees
[57,58], and it is often referred to as the γ metric. In the
context of static axially symmetric space-times, there are
two solutions that play an important role because of their
connection with spherical symmetry: the γ metric and
the Erez-Rosen metric [59]. Motion in the Erez-Rosen
space-time has been studied in Ref. [60], while modifica-
tions of both solutions in the presence of a scalar field were
studied in Ref. [61]. The Erez-Rosen solution is charac-
terized by having only two nonvanishing multipole
moments, namely, the monopole M and quadrupole Q,
and it reduces to Schwarzschild forQ ¼ 0, while in the case
of the γmetric, all evenmultipolemoments are nonvanishing
and depend only on m and γ. The main interest for this
solution comes from the fact that the parameter γ can take
any positive value and the line-element reduces to the
Schwarzschild line element in Schwarzschild coordinates
for γ ¼ 1. One peculiar feature of the metric is that for γ ≠ 1
it possesses a curvature singularity at the surface r ¼ 2m
where in the Schwarzschild metric the event horizon is
located.
We can understand the singularity of the γ metric in the

context of the regime where quantum modifications to
General Relativity can be expected to become important.
For black holes, it is generally believed that such effects
should become non-negligible only at the Planck scale and
thus must remain confined within the horizon. However,
there is no strong justification for such belief. The “Planck
scale” (be it energy, length, or density) arises only from
geometric arguments involving fundamental constants, and
there is no physical guarantee that quantum-gravity effects
must not appear at other scales [62]. In fact, it has become
clear in recent times, studying dynamical solutions leading
to the formation of black holes, that one cannot affect the
behavior of collapse close to the Planck regime (i.e., close
to the classical singularity) without affecting the structure
of the horizon as well [63]. For example, in Ref. [64], it was
shown that the resolution of the singularity within the
simple Oppenheimer-Snyder-Datt model leads to a modi-
fication of the trapped surface which must affect the
exterior space-time. In this sense, it is reasonable to
consider the possibility that quantum effects may become
important close to the surface r ¼ 2m for all values of γ,
and consequently close to the horizon for γ ¼ 1, with the
classical solutions being valid for r > 2m.

The properties of the γ metric were studied in Refs. [65–
67], while the peculiar structure of the singular surface was
investigated in Ref. [68]. The geodesics for test particles
were considered in Refs. [66,69], while the properties of
accretion disks were first investigated in Ref. [70]. Interior
solutions for the γ metric have been studied in Refs. [71–
73]. And more recently, the motion of charged particles in
the γ space-time immersed in an external magnetic field
was considered in our preceding paper [74].
In the present article, we investigate the lensing and

shadow properties of the γ metric and show that large
departures from spherical symmetry would lead to
differences from the Schwarzschild and Kerr cases that
would be measurable, at least in principle, from distant
observers. On the other hand, small departures from
spherical symmetry may be indistinguishable unless one
is able to precisely measure the metric coefficients in the
vicinity of r ¼ 2m, which is at present beyond our
experimental capabilities.
The paper is organized as follows. Section II is devoted

to briefly reviewing the motion of massive and massless
particles in the γ space-time and the construction of the ray-
tracing algorithm necessary to investigate the shadow.
Section III describes the ray-tracing code used to construct
the shadow of the γ metric. In Sec. IV, we consider the
shadow cast by the γ space-time for the observer at infinity,
while in Sec. IVA, we study strong lensing effects. Finally,
in Sec. V, we summarize the obtained results and discuss
the possibility of distinguishing such a source from a
Schwarzschild black hole via astrophysical observations.
Throughout the paper, we use a space-=like signature
ð−;þ;þ;þÞ, a system of units in which G ¼ c ¼ 1, and
we restore them when we need to compare our results with
observational data. Greek indices run from 0 to 3, and latin
indices run from 1 to 3.

II. PHOTON MOTION

The γ metric is a static axially symmetric vacuum
solution of Einstein’s equations belonging to Weyl’s class,
which can be written in Erez-Rosen [59] coordinates as

ds2¼−Fdt2þF−1½Gdr2þHdθ2þðr2−2mrÞsin2 θdϕ2�;
ð1Þ

with

FðrÞ ¼
�
1 −

2m
r

�
γ

; ð2Þ

Gðr; θÞ ¼
�

r2 − 2mr
r2 − 2mrþm2 sin2 θ

�
γ2−1

; ð3Þ

Hðr; θÞ ¼ ðr2 − 2mrÞγ2
ðr2 − 2mrþm2 sin2 θÞγ2−1 ; ð4Þ
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where γ is the dimensionless mass-density parameter,
which describes the departure from spherical symmetry.
The total mass of the source is given byM ¼ γm. The main
interest in this space-time resides in the fact that for γ ¼ 1
the metric reduces to the Schwarzschild solution in
Schwarzschild coordinates. However, one needs to keep
in mind that for γ ≠ 1 the coordinates are not spherical, as
can be seen by evaluating the surfaces of revolution at
r ¼ const. The most striking feature of this space-time,
however, is the fact that for γ ≠ 1 the surface r ¼ 2m
becomes a true curvature singularity, as can be seen from
the investigation of the Kretschmann scalar [68]. However,
the singular surface r ¼ 2m still behaves as an infinitely
redshifted surface, much in the same was as in the
Schwarzschild case, as could be seen by the study of
radial null geodesics. For example, a stationary observer
located at infinity in the γ space-time would measure a
frequency ν∞ for photons emitted at a fixed radius r with
frequency ν according to ν∞ ¼ ν

ffiffiffiffiffiffiffiffiffiffi
FðrÞp

. Therefore, as
r → 2m, we see that ν∞ → 0. The surface r ¼ 2m is indeed
infinitely redshifted and can thus exhibit observational
properties analogous to the event horizon of a black hole
for observers at infinity.
The γ space-time has a timelike and an azimuthal Killing

vector, meaning the existence of two conserved quantities:
the specific energy E and the z-component of the specific
angular momentum Lz. The corresponding components of
the 4-momentum are pt ¼ −E and pϕ ¼ Lz, which can be
used to find the two corresponding geodesic equations,

_t ¼ −
E
gtt

; ð5Þ

_ϕ ¼ Lz

gϕϕ
; ð6Þ

where a derivative with respect to the affine parameter
(proper time for a massive particle) is represented by the
overhead dot. We can write the equation of motion of test
particles with these constants of motion. By substituting
Eqs. (5) and (6) into the normalization condition uαuα ¼
−1 for a massive particle, where uα ¼ ð_t; _r; _θ; _ϕÞ is the
4-velocity, we find

grr _r2 þ gθθ _θ
2 ¼ Veffðr; θ;E; LzÞ; ð7Þ

where the effective potential is

Veff ≡ −
E2gϕϕ þ L2

zgtt
gttgϕϕ

− 1: ð8Þ

If we restrict the attention to equatorial, i.e., θ ¼ π=2,
circular orbits for massive test particles, we can then solve
Veff ¼ 0 and ∂Veff=∂r ¼ 0 for E and Lz to find

E ¼ −
gttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðgtt þ gϕϕΩ2Þ
q ; ð9Þ

Lz ¼
gϕϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðgtt þ gϕϕΩ2Þ
q ; ð10Þ

where

Ω ¼ dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

gtt;r
gϕϕ;r

r
ð11Þ

is the angular velocity of equatorial circular geodesics,
i.e., the angular velocity of zero angular-momentum
observers. The radius of the innermost stable circular
orbit (ISCO) is then found by substituting Eqs. (9) and
(10) into Eq. (8) and then solving V 0

eff ¼ V00
eff ¼ 0 for r,

where with 0 we denote derivatives with respect to r. In
terms of the total gravitational mass M ¼ mγ, the ISCO
as a function of γ is given by

risco ¼
M
γ
þ 3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5M2 −

M2

γ2

s
: ð12Þ

Similarly, we can consider the orbits of photons. In the
case of circular motion at a fixed value of θ ¼ θ0 > 0, we
find the effective potential to be

Veff ¼
L2

r2 sin2 θ0

�
1 −

2m
r

�
2γ−1

: ð13Þ

One can obtain the photon capture surface rps requiring
that E and Lz in Eqs. (9) and (10) diverge in the limit
r → rps,

rps ¼ ð2γ þ 1Þm ¼ 2M þM
γ
: ð14Þ

The first thing to notice is that, since for γ ≠ 1 the
coordinates are not spherical, the photon capture
surface is not a sphere. The other important thing to
notice is that it would seem that there is a photon
capture surface also in the limit of γ → 0, which
corresponds to Minkowski space-time. However, this
is easily explained by remembering that, by construc-
tion, the limit of vanishing γ implies that also m must
vanish.
Figure 1 shows the ISCO, the photon capture radius, and

the singularity in the equatorial plane as functions of γ.
Notice that Eq. (12) has no real solutions for γ < 1=

ffiffiffi
5

p
.

Therefore, for γ < 1=
ffiffiffi
5

p
, there can be no stable circular

orbits. The other important value is γ ¼ 1=2, where photon
capture radius intersects the singularity. As can be seen
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from Fig. 1, there can be no photon capture orbit for
γ < 1=2. This already shows that a prolate source with γ <
1=2 would be distinguishable from a black hole. Figure 2
shows the curves of zero velocity for different values of γ in
the fr sinðθÞ=M; r cosðθÞ=Mg plane. These curves are
where Veff ¼ 0 in Eq. (8) with E ¼ 0.96, Lz ¼ 3.75M.
Bound orbits are allowed only if Veff ≥ 0 since the left-
hand side of Eq. (8) is always positive.

III. RAY-TRACING CODE FOR PHOTONS

In order to investigate the image that the source of the γ
space-time would produce for distant observers, we need to
study the motion of light rays. Our ray-tracing code
computes the trajectories of photons in the space-time
described by the γ metric in the vicinity of the surface
r ¼ 2m. The code is the modified version of the one used in
Refs. [75,76], which follows the method developed in
Ref. [77] to compute the trajectories of photons near
black hole.
The two first-order differential equations (15) and (16)

for the evolution of the t- and ϕ-components of the
photon’s position are obtained by rewriting pt and pϕ in
terms of the normalized affine parameter λ0 ¼ E=λ and the
impact parameter b ¼ Lz=E as

dt
dλ0

¼ −
1

gtt
; ð15Þ

dϕ
dλ0

¼ b
1

gϕϕ
: ð16Þ

The remaining geodesic equations for the r-component
and the θ-component of the photon’s position in the γ
space-time are then calculated with respect to the normal-
ized affine parameter in the standard way, through the
evaluation of the Christoffel symbols Γσ

μν as

d2xσ

dλ02
þ Γσ

μν
dxμ

dλ0
dxν

dλ0
¼ 0: ð17Þ

FIG. 2. Curves of zero velocity for γ ≤ 1 (left panel) and γ ≥ 1 (right panel) obtained from the effective potential (Veff ¼ 0) given by
Eq. (8) for a masssive particle with E ¼ 0.96 and Lz ¼ 3.75M. The curves are obtained by taking _r ¼ _θ ¼ 0 for the given values of E
and Lz. The allowed orbits are those for which Veff ≥ 0 and in the figure orbits are allowed inside the boundary given by the curve
Veff ¼ 0. Note that the horizontal axis (for which cos θ ¼ 0) corresponds to the equatorial plane where we retrieve known results.

FIG. 1. The black thick line defines the value of the ISCO in the
equatorial plane as a function of γ in terms of m ¼ M=γ. Vertical
dashed lines define the borders of regions with different ISCO
structure (see the text for details) corresponding to values γ ¼
1=

ffiffiffi
5

p
and γ ¼ 1=2. The horizontal dashed red line corresponds to

the radius of singular surface r ¼ 2m. The dashed green line
corresponds to the radius of photon sphere.
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In this manner, we obtain the system of equations that the
ray-tracing code can use for this space-time.
The massive source of the γ space-time is located at the

origin of the reference frame and coordinate system when
reduced to the Schwarzschild case. In the code, we set the
units in such a way that the source of the γ metric has
unitary mass, M ¼ 1. The reason is the mass M only
changes the size without affecting the shape of the shadow.
The observer’s screen is located at a distance of d ¼ 1000,
and the azimuthal and polar angles are ι and 0, respectively.
The celestial coordinates ðα; βÞ on the observer’s sky are
related to polar coordinates rscr and ϕscr on the screen by
α ¼ rscr cosðϕscrÞ and β ¼ rscr sinðϕscrÞ. The system of
geodesic equations is solved backward in time since only
the final positions and momenta of the photon on the screen
are known. The photons depart from some initial position
on the screen with a 4-momentum perpendicular to the
screen. This condition imitates placing the observing screen
at spatial infinity as only those photons that are moving
perpendicular to the screen at a distance d will also impact
the screen at spatial infinity.
The initial position and 4-momentum of each photon in

the Erez-Rozen coordinates of the γ space-time are given by

ri ¼ ðd2 þ α2 þ β2Þ1=2; ð18Þ

θi ¼ arccos

�
d cos ιþ β sin ι

ri

�
; ð19Þ

ϕi ¼ arctan

�
α

d sin ι − β cos ι

�
; ð20Þ

and �
dr
dλ0

�
i
¼ d

ri
; ð21Þ

�
dθ
dλ0

�
i
¼

− cos ιþ d
r2i
ðd cos ιþ β sin ιÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2i − ðd cos ιþ β sin ιÞ2
p ; ð22Þ

�
dϕ
dλ0

�
i
¼ −α sin ι

α2 þ ðd cos ιþ β sin ιÞ2 ; ð23Þ

�
dt
dλ0

�
i
¼ −

�
−grr

�
dr
dλ0

�
2

i
− gθθ

�
dθ
dλ0

�
2

i
− gϕϕ

�
dϕ
dλ0

�
2

i

�
1=2

:

ð24Þ

By requiring the norm of the photon 4-momentum to be
zero, we can find the component ðdt=dλ0Þi. The conserved
quantity b, which is involved in Eqs. (15) and (16), is
calculated from the initial conditions.
The code samples initial conditions on the screen in the

following way. The location of the boundary of the
compact object shadow is found inside 0 ≤ rscr ≤ 20, for

each value of ϕscr in the range 0 ≤ ϕscr ≤ 2π with a step of
π=180. The boundary is the border between the photons
that are captured by the singularity and the photons that
are able to escape to spatial infinity. The photons are
considered as captured by the singularity if they cross
r ¼ rsurf þ δr with δr ¼ 10−3, where rsurf is the radius of
the infinitely redshifted surface, which in the present case
corresponds to the location of the curvature singularity.
Then, the boundary is zoomed in to an accuracy of δrscr ∼
10−3 to accurately determine the value of rscr that corre-
sponds to the shadow boundary for the current value of ϕscr.
This methodology lets one accurately calculate the shadow
produced by light traveling in the γ space-time much more
efficiently than finely sampling the entire screen.

IV. SHADOW OF THE γ METRIC

In this section, we will study the apparent shape of the
shadow of compact object described by γ metric. To
describe the shadow with better visualization, one may
consider the celestial coordinates α and β (see Refs. [42,78]
for reference), which are defined as

α ¼ lim
r0→∞

�
−r20 sin θ0

dϕ
dr

�
; ð25Þ

β ¼ lim
r0→∞

�
r20
dθ
dr

�
; ð26Þ

where r0 is the distance between the observer and massive
source and θ0 is the inclination angle between the normal of
observer’s sky plane and observer lens axis (see Fig. 3).
In order to describe the dependence of the shape of the

shadow on the deformation parameter, we will use the
coordinate independent formalism proposed in Ref. [75].
The shape of the shadow is parametrized in terms of the

FIG. 3. Schematic illustration of the celestial coordinates used
for the ray-tracing code in the γ space-time.
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average radius of the sphere hRi and the asymmetry
parameter A. We can safely ignore the shift of the center
of the shadow from the center D since in the case of the γ

metricD is always identically equal to zero. There are other
ways to describe the shape of the shadow (see, e.g.,
Refs. [35,79]); however, the results would be similar with

FIG. 4. Ray-traced shadow images in the γ space-time. From left to right (first row) shadow images for γ ¼ ½0.15; 0.2; 0.25�,
γ ¼ ½0.25; 0.3; 0.4�, γ ¼ ½0.25; 0.5; 0.75� at an inclination angle α ¼ π=2; (second row) shadow images at inclination angles
α ¼ ½0; π=4; π=2�, α ¼ ½π=6; π=4; π=3�, and α ¼ ½0; π=4; π=2� for γ ¼ 0.25, γ ¼ 0.25, and γ ¼ 0.5, respectively; and (third row)
shadow images for γ ¼ 2 at an inclination angle α ¼ ½0; π=4; π=2� and for γ ¼ ½1; 2.5; 5� and γ ¼ ½0.55; 0.75; 0.95� at an inclination
angle α ¼ π=2. It is easy to see that for values of γ > 1=2 the ability to distinguish the Schwarzschild shadow from the one in the γ
metric will depend on the ability to accurately resolve the shape of the shadow. On the other hand, for γ < 1=2, more distinctive features
that may allow one to tell the two cases apart arise.
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any chosen parametrization. The average radius hRi is the
average distance of the boundary of the shadow from its
center, which is defined by

hRi≡ 1

2π

Z
2π

0

RðϑÞdϑ; ð27Þ

where RðϑÞ ≡ ½ðα − DÞ2 þ βðαÞ2�1=2, D ¼ 0, and ϑ≡
tan−1½βðαÞ=αÞ�. The asymmetry parameter A is the dis-
tortion of the shadow from a circle. It is defined by

A≡ 2

�
1

2π

Z
2π

0

ðR − hRiÞ2dϑ
�
1=2

: ð28Þ

The shadow of the compact object in γ space-time is
shown in Fig. 4. One can notice that the shadow images for
γ < 1 and γ > 1 are very different. While images for γ > 1
strongly resemble Schwarzschild ones, the shadow silhou-
ettes for γ < 1 differ significantly as γ becomes smaller.
Particularly, the shadow images for γ < 1=2 are clearly
distinguishable from other known ones for observers with
an inclination angle in the range π=4 ≤ ι ≤ π=2. Figure 5
shows hRi and A as a function of γ at an inclination angle of
ι ¼ π=2. For reference, we include hRi and A for the Kerr
metric as a function of spin a. We can see that the three
cases (i.e., oblate source, prolate source, and Kerr one) are
substantially different. For γ ¼ 1, the average radius hRi
and asymmetry parameter A are equal to the Schwarzschild

black hole shadow radius and zero, respectively. As γ
increases in the γ > 1 range, hRi and A also increase and
converge to their maximum values. The most interesting
case is when 0 < γ < 1. As γ moves from 1 to 0, a slow
downgrade of the parameter hRi starts to sharpen before
γ ¼ 0.5, reaching the minimal value at around γ ≃ 0.225,
followed by an increase. The asymmetry parameter A
increases, departing from spherical symmetry for both
kinds of sources. This effect for γ ≤ 1 may be due to
the appearance of a repulsive effect in the gravitational field
close to r ¼ 2m within a certain range of values of γ, as
shall be discussed below. This suggests that, if such effects
can be measured from observations, then deformations
would produce features that would allow distinguishing the
γ metric from a black hole.

A. Gravitational lensing and deflection angle

We now calculate the deflection angle for photons using
the same ray-tracing code discussed above. The algorithm
of the process is similar to the one described in Sec. III,
which is the modified version of Refs. [75,76] that follows
the method described in Ref. [77].
We consider the case when the whole trajectory of the

photon is limited on the equatorial plane of the γ metric.
The deflection angle is calculated in the following way:
photons on the screen are initialized with some celestial
coordinates ðα; βÞ. The conditions α ≠ 0, β ¼ 0 and ι ¼
π=2 in Eqs. (18)–(24) provide θ ¼ π=2, _θ ¼ 0with nonzero
_r, _ϕ and restrict the photon trajectory to lie in equatorial

FIG. 5. Average radius hRi (top row) and asymmetry parameter A (bottom row). From left ro right: hRi, A for γ ≤ 1, (first column),
γ ≥ 1 (second column), and Kerr metric with the values of spin 0 ≤ a ≤ 1 (third column). Vertical dashed lines define the borders of
regions with different ISCO structure (see the text for details).
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plane. We choose α in such a way that photons approach the
photon ring of the γ metric to a minimal distance d ¼
10−7M with impact parameter b but do not cross it. Then,
photons reach r > d ¼ 1000. We capture the initial and
final positions of the photon and calculate deflection angle
from a straight line. Figure 6 shows the calculated values of
the deflection angle as a function of photon’s impact
parameter b for different values of γ. For the comparison,
the dependence of the deflection angle for the compact
object described by Kerr space-time is also given. From the
figures, one can see that for γ ≥ 1=2 the deflection angle
increases as the photon approaches the photon capture
surface. However, for γ < 1=2, the deflection angle first
increases, then starts to decrease as the photon gets closer to
the photon capture surface before being caught by the
central object. This can be explained by the existence of the
repulsive regime depending on the value of γ. One can also
notice that for some values of γ the maximum deflection
angle is less than 2π. It suggests that we will not see
relativistic Einstein rings for this range of γ. The repulsive
effect can also be seen from Fig 7, which shows trajectories
of the photons around the central object on an equatorial
plane with three values of the photon’s impact parameter b,
for different values of γ. The photon trajectories around the
Kerr black hole with three different spins are included as a
reference. The top row plots, which correspond to γ < 1=2,
show that the closest to the central object photon deviates to
a smaller angle than those with bigger impact parameters.

From the second row, one can notice that the deflection
angle increases steadily as the impact parameter reduces.
For γ ≥ 1=2, we no longer see the repulsive effects. Once
again, this suggests that it would be possible to qualitatively
distinguish a black hole from the γ metric for values of
γ ≤ 1=2. On the other hand, values of γ close to 1 would not
allow one to easily distinguish the geometry from a black
hole geometry.
Considering astrophysical objects, it is interesting to

check whether the shadow of a nonrotating axially sym-
metric source could mimic a Kerr black hole. In the case of
the Kerr black hole, the nonvanishing angular momentum
leads to an asymmetry in the image of the accretion disk,
which does not appear in the case of static objects; therefore,
an extreme Kerr solution can in principle be distinguished
from the γ metric for any value of γ. Furthermore, from
Fig. 5, we see that the average radius hRi and asymmetry
parameter in the γ metric have considerably different
behavior for oblate and prolate sources. In the oblate case
(γ ≥ 1), the hRi and A depart only slightly from the
Schwarzschild value. On the other hand, in the prolate case
(γ ≤ 1), the values of hRi and A for a given value of 1=2 ≤
γ ≤ 1 couldmimic the corresponding values for a Kerr black
hole. Similarly, the deflection angle for photons and the
trajectory of photons in the space-time may be used to
determine possible degeneracies between the γ metric and
Kerr. In Figs. 6 and 7, it can be seen that values of γ ≥ 1=2
show qualitative behavior similar to the Kerr case, while the

FIG. 6. The deflection angle α̂ as a function of impact parameter x0 ¼ b for five different values of γ and for Kerr case with three spin
values. For γ < 1=2, the deflection angle first increases to a maximum value, followed by a decrease as the impact parameter gets
smaller. This can be explained by a repulsive nature of the gravitational field of the γ space-time for this range of values for γ. The
deflection angle increases as the photon approaches the photon capture surface for γ ≥ 1=2. As expected, the cases when γ ¼ 1 and
a ¼ 0 for Kerr are the same.
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repulsive behavior that appears for γ ≤ 1=2 does not appear
in the Kerr metric. However, it must be noted that the
possible degeneracy can be broken if one is able to measure

several properties of the space-time simultaneously. For
example, not considering experimental uncertainties, the
simultaneous determination of the ISCO and the photon

FIG. 7. Photon trajectories in the γ metric in the equatorial plane. From left to right (first row) photon trajectories for γ ¼ 0.15 (left),
γ ¼ 0.25 (middle), and γ ¼ 0.4 (right); (second row) photon trajectories for γ ¼ 0.45 (left), γ ¼ 0.5 (middle), and γ ¼ 0.75 (right); (third
row) photon trajectories for γ ¼ 1 (left), γ ¼ 2.5 (middle), and γ ¼ 5 (right) with three impact parameters; and (fourth row) photon
trajectories around the Kerr black hole with a ¼ 0 (left), a ¼ 0.5 (middle), and a ¼ 0.98 (right). From the top row, we can see the
repulsive regime for γ < 1=2. The photons with the smallest impact parameters deviate to a smaller angle than those with bigger ones.
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capture orbit would uniquely determine whether the space-
time is well described by a static or a rotating object.

V. CONCLUSION

In the present work, we have investigated the optical
properties of the γ space-time. Particularly, we have studied
the photon motion around the gravitational source and the
expected shape of the shadow that would be measured by
distant observers depending on different values of the
deformation parameter. In the limiting case when γ ¼ 1,
we get the known results of Schwarzschild black hole’s
shadow. With the increase of γ, one may observe the
increase of the size of the shadow and increase of the
distortion parameter. However, no significant difference
arises from the black hole case, which suggests it may be
difficult to distinguish the two without accurate measure-
ments. With the decrease of the γ parameter for γ < 1, we
observe decrease of the average radius of the shadow.
Noticeable differences arise for γ ≤ 1=2. The average
radius of the shadow reaches a minimum around γ ≃
0.225 and then increases for smaller values of γ. Also,
for a range of values of the deformation parameter,
repulsive effects appear in the vicinity of the singular
surface, in striking contrast with the corresponding sit-
uations for black holes. Therefore, the shadow images for
γ < 1=2 are clearly distinguishable from other known ones,
while images obtained for γ closer to 1 are not easily
distinguishable.
Using the ray-tracing code, we have investigated the

gravitational lensing, particularly studying the dependence
of deflection angle on the parameter γ. The analysis showed
that, as expected, for γ > 1=2 the deflection angle increases
with the decrease of the impact parameter. However, for
γ ≤ 1=2, the deflection angle first increases and then starts
to decrease as the photon gets closer to the photon capture
surface before being caught by the central object. This is
the indication of the repulsive character of the space-time
for small values of the γ parameter. Note that repulsive
effects in exact solutions of Einstein’s equations can occur.
For example, a similar phenomenon of gravitational repul-
sion in the general theory of relativity has been discussed in
Ref. [80]. In the case of the γ metric, one could use this
observation to argue for the physical validity of such a

geometry, in the vicinity of the singularity, for values of
γ ≤ 1=2 or to suggest a possible yet unobserved astro-
physical effect in the vicinity of extremely prolate (γ ≪ 1)
compact objects.
Concerning the possibility of distinguishing the geom-

etry of the γ metric from a black hole geometry through the
observation of the shadow, our results show that only
precise measurements of the metric coefficients obtained
from observations would allow one to distinguish a black
hole from the γ space-time when is close to 1 and γ > 1.
Future observations of the shadow of the supermassive

black hole candidates in the Milky Way galaxy (Sgr-A*)
and in the galaxy M87 will allow one to test for the first
time the validity of the hypothesis that such objects must be
black holes [81,82]. However, our work on the shadow of
the γ metric suggests that very precise measurements will
be needed in order to rule out an exotic compact object
described by this geometry with γ ≃ 1.
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