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We derive the mass-temperature relation using an improved top-hat model and a continuous
formation model which takes into account the effects of the ordered angular momentum acquired
through tidal-torque interaction between clusters, random angular momentum, dynamical friction, and
modifications of the virial theorem to include an external pressure term usually neglected. We show
that the mass-temperature relation differs from the classical self-similar behavior, M ∝ T3=2, and
shows a break at 3–4 keV and a steepening with a decreasing cluster temperature. We then compare
our mass-temperature relation with those obtained in the literature with N-body simulations for fðRÞ
and symmetron models. We find that the mass-temperature relation is not a good probe to test gravity
theories beyond Einstein’s general relativity, because the mass-temperature relation of the ΛCDM
model is similar to that of the modified gravity theories.
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I. INTRODUCTION

The wealth of astronomical observations available
nowadays clearly shows either that our Universe contains
more mass-energy than is seen or that the accepted
theory of gravity, general relativity (GR), is somehow
not correct, or both [1]. The central assumption of the
concordance ΛCDM model relies on gravity being
correctly described by GR so that dark matter (DM), a
nonbaryonic and nonrelativistic particle, and dark energy
(DE), in the form of the cosmological constant Λ,
constitute its dominant components [2]. Despite gravita-
tional evidence for DM from galaxies [3], cluster of
galaxies [4], cosmic microwave background (CMB)
anisotropies [5], cosmic shear [6], structure formation
[7], and large-scale structure of the Universe [8], decades
of direct and indirect searches of those DM particles did
not give any positive result [9]. In addition, the accel-
erated expansion of the universe modeled with Λ [10]
raised the “cosmological constant fine-tuning problem”
and the “cosmic coincidence problem” [11–13].
The success of the ΛCDM model in describing the

formation and evolution of the large-scale structures in
the Universe at early and late times [7,14,15] cannot hide the

tensions at small [16–22] and large scales [23–29] precision
data are currently revealing.
Small-scale problems [22] have sprung two sets of

attempts of solutions to save the ΛCDM paradigm:
cosmological and astrophysical recipes. The first are
based on either modifying the power spectrum on small
scales [30] or altering the kinematic or dynamical
gravitational behavior of the constituent DM particles.
The latter, like supernovae feedback [22,31,32] and
transfer of energy and angular momentum from baryon
clumps to DM through dynamical friction [33–37], rely
on some “heating” mechanism producing an expansion
of the galaxy’s DM component which reduces its inner
density.
The previous issues seeded the push for several

new modified gravity (MG) theories, to understand
our Universe without DM [38] or at least to connect
the accelerated expansion to some new features of
gravity [39].
A first drive for MG came from fundamental problems in

the hot big bang model (horizon, flatness, and monopole
problem solved within the inflationary paradigm [40,41])
and another one from galaxy rotation curves with solutions
attempted within the modified Newtonian dynamics
(MOND) [42] and the “modified gravity” (MOG) paradigm
]43 ] and fðRÞ theories [44].
Alternative proposals to explain the accelerated expan-

sion of the Universe increased exponentially. Besides
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DM-like DE schemes [45–48], MG theories attempted to
explain such acceleration as the manifestation of extra
dimensions or higher-order corrections effects, as in
the Dvali-Gabadadze-Porrati model [49] and in fðRÞ
gravity. Nowadays, the catalog of MG theories includes
many theories, among which we recall fðRÞ [44], fðTÞ
[50], MOND and BIMOND [42,51], tensor-vector-
scalar theory [52], scalar-tensor-vector gravity theory
(MOG) [43], Gauss-Bonnet models [53,54], Lovelock
models [55], Hořava-Lifshitz [56], Galileons [57],
and Horndeski [58,59]. The freedom allowed to MG
from observations reduces to modifications on large
scales (typically Hubble scales), low accelerations
(a0 ≲ 10−8 cm s−2), or small curvatures (typically RΛ ≃
1.2 × 10−30 R⊙ [60]). Some theories violate Birkhoff’s
theorem, and this induces effects that should be disen-
tangled wisely, as they make local tests complex. Such
local tests, using PPN-like parameters1 [61–64] and
the GR condition on the two Newtonian potentials
Φ ¼ Ψ, provide a smoking gun for MG, combining
galaxy surveys (∝ Φ), the integrated Sachs-Wolfe effect
[65] in the CMB [∝

R
dlð _Φþ _ΨÞ], and weak lensing

[∝
R
dlðΦþ ΨÞ]. Real opportunities will come with

future surveys: both from satellites (Euclid [66] and
JDEM [67]) and ground-based (SKA [68] and LSST
[69]). Another smoking gun should proceed from the
best fitting of the CMB between DM and MG to
constrain the parameters of the models [70,71].
For MG theories not to alter the behavior of gravity at

small scales (e.g., Solar System) and reproduce the obser-
vational measurements [63,72], it is necessary to have some
screening mechanism which hides undesired effects on
small scales [73]. Following Ref. [74], we consider the case
of the symmetron scalar-tensor theory [75] and the cha-
meleon fðRÞ gravity [76].
Effects of MG can be probed with structure formation

and verified by means of dark-matter-only N-body
simulations [77–81]. Nevertheless, hydrodynamical sim-
ulations are more suited from an observational point of
view, as they provide observables, such as the halo
profile, the turnaround [82,83], the splashback radius
[84], and the mass-temperature relation (MTR) [74]
which can be directly compared with observations.
While the halo profile is usually studied in DM-only
simulations and it is, as such, used for a variety of
studies, the MTR can be accurately inferred only with
hydrodynamic simulations, to avoid the necessary
approximations introduced, for example, by using scaling
relations. The MTR has been used to put constraints on
MG theories. By means of hydrodynamic simulations,

Ref. [74] showed that the MTR obtained in MG theories
is different from the expectations of GR.2

In the present paper, we extended the results of Ref. [85]
to take into account the effects of dynamical friction and the
cosmological constant and revisited the results of Ref. [74]
to show that the MTR is not a good probe to disentangle
MG from GR. To this aim, we use a semianalytic model to
show that in a ΛCDM model the MTR has a behavior
similar to those obtained by Ref. [74], and this makes it
impossible to disentangle between the MG results and
those of GR.
The paper is organized as follows. Section II briefly

presents the modified gravity models analyzed in this work,
while Sec. III describes the model used to derive the MTR
relation in ΛCDM cosmologies. Section IV is devoted to
the presentation and the discussion of our results. We
conclude in Sec. V.
In this work, we use the following cosmological param-

eters: h0¼0.7,ΩΛ¼0.727,ΩDM ¼ 0.227, andΩb ¼ 0.046.
An overbar will indicate quantities evaluated at the back-
ground level.

II. MODIFIED GRAVITY: MODELS AND
SIMULATIONS

In this section, we summarize the modified gravity
theories used by Ref. [74] that we compare our model
to. These are scalar-tensor theories of gravity described by
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

plR −
1

2
∂iφ∂iφ − VðφÞ

�

þ Smðg̃μν;φiÞ; ð1Þ

where g is the determinant of the metric tensor gμν, R the
Ricci scalar, Mpl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
the reduced Planck mass (in

natural units where ℏ ¼ c ¼ 1), and φ and VðφÞ the scalar
field and the self-interacting potential, respectively. Matter
is described by the total matter action Sm. The scalar field is
conformally coupled to matter via g̃μν ¼ AðφÞgμν, with
AðφÞ the conformal factor.
The conformal coupling between matter and field gives

rise to a fifth force of the form

1The parametrized post-Newtonian (PPN) formalism is a tool
expressing Einstein’s equations in terms of the lowest-order
deviations from Newton’s law of gravitation.

2In the literature, there is no explicit emphasis onwhat is exactly
meant for mass. In general, when considering both numerical
simulations and observations, the mass has to be the virial mass, as
a result of the application of the virial theorem. This is more
appropriately true for observations but less for N-body simula-
tions, as the spherical overdensity procedure obtained to infer
structures assumes a virial overdensity but does not automatically
imply the virial theorem holding. Furthermore, the virial over-
density chosen will depend on which probe is considered (i.e.,
Sunyaev-Zel’dovich effect or x-ray emission); therefore, the virial
mass will be interpreted differently in different scenarios. We
therefore prefer to just call itmass, having inmind it is related to the
true virial mass of the object.
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Fφ ¼ −
A0ðφÞ
AðφÞ ∇φ; ð2Þ

where a prime indicates the derivative with respect to the
scalar field.

A. Symmetron

The screening mechanism of the symmetron model [76]
produces a strong coupling between matter and the extra
field in low-density regions, while in high-density regions
the scalar degree of freedom decouples from matter.
For this mechanism to work, one requires, around φ ¼ 0,

a coupling of the form

AðφÞ ¼ 1þ 1

2

�
φ

M

�
2

ð3Þ

and a potential

VðφÞ ¼ V0 −
1

2
μ2φ2 þ 1

4
λφ4; ð4Þ

where M and μ are mass scales and λ a dimensionless
parameter.
The free parameters can be recast in terms of the strength

of the scalar field, β, the expansion factor at the symmetry
breaking time, aSSB, and the range of the fifth force, λ0. The
fifth force then reads

Fφ ¼ −
φ

M2
∇φ ¼ 6ΩmH2

0

β2λ20
a3SSB

φ̃∇φ̃; ð5Þ

where the quantities with tilde are in the supercomoving
coordinates [86].

B. f ðRÞ gravity
The fðRÞ-gravity models are theories in which the Ricci

scalar in the Einstein-Hilbert action is substituted by a
function of the same quantity, and it is described by the
following action:

S ¼ 1

2
M2

pl

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ�: ð6Þ

When fðRÞ ¼ −2Λ, the ΛCDM model is recovered.
Typical of these theories is the chameleon screening

mechanism, characterized by a local density dependence of
the scalar field mass. In high-density environments, the
scalar degree of freedom is very short ranged, and the
opposite happens in low-density fields, where deviations
from GR are maximized.
Reference [74] used the Hu-Sawicki [75] model, whose

functional form is

fðRÞ ¼ −m2
c1ðR=m2Þn

1þ c2ðR=m2Þn ; ð7Þ

where the free parameter m2 ¼ H2
0Ωm;0 has dimensions of

mass squared and n > 0. The two additional constants c1
and c2 can be determined by requiring that, in the large
curvature regime (R=m2 ≫ 1), fðRÞ ≈ −2Λ:

c1
c2

≈ 6
ΩΛ;0

Ωm;0
: ð8Þ

The strength of gravity modifications is encoded in the
value of fR ¼ df=dR today:

fR0 ¼ −n
c1
c22

�
ΩΛ;0

3ðΩm;0 þ 4ΩΛ;0Þ
�
nþ1

: ð9Þ

The range of the scalar degree of freedom is λ0 ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
1=fR0

p
.

To derive the expressionof the fifth force forfðRÞmodels,
it is useful to transform them into scalar-tensor theories
using the conformal transformationAðφÞ¼ expð−βφ=MplÞ,
where β ¼ ffiffiffi

6
p

=6. We then find

Fφ ¼ −
a2β
Mpl

∇φ; ð10Þ

with a the scale factor.

C. Simulations

In order to get the MTR for fðRÞ and symmetron models,
Ref. [74] modified the ISIS code [80] and ran two sets of
simulations, one for fðRÞ-gravity models and another one
for the symmetron models, both containing 2563 DM
particles. The box size and background cosmology were
different for the two models, due to consistency with
previous works of the authors [87]. In the case of the
fðRÞ gravity (symmetron), the DM particle mass was
3 × 1010 M⊙=h (8.32×1010M⊙=h), ΩΛ¼0.727, ΩCDM¼
0.227, and Ωb ¼ 0.045 (ΩΛ ¼ 0.65, ΩCDM ¼ 0.3,
and Ωb ¼ 0.05), and the box size 200 Mpc h−1

(256 Mpc h−1), with h ¼ 0.7 (h ¼ 0.65).
Because of the different parameters for fðRÞ and

symmetron models, the background ΛCDM model of
the two models is different. Table 2 in Ref. [74] summarizes
the parameters employed.

III. THE MODEL

In the next sections, we will discuss how the top-hat
model (THM) can be improved and how the MTR is
calculated. We show two different models, the “late-
formation approximation” (see the following) and a model
in which structures form continuously.
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A. Improvements to the top-hat model

Using scaling arguments, one can show that there
exists a relation between the x-ray mass of clusters and
their temperature TX. The mass in the virial radius can be
written as MðΔvirÞ ∝ T3=2

X ρ−1=2c Δ−1=2
vir , where ρc is the

critical density and Δvir the density contrast of a spherical
top-hat perturbation after collapse and virialization.
The previous relation shows a correlation between the

mass and temperature, but this result can be highly improved.
One possibility is to improve the THM, taking into account
the angular momentum acquired by the interaction with
neighboring protostructures, dynamical friction, and a modi-
fied version of the virial theorem, including a surface
pressure term [88–91] due to the fact that at the virial radius
rvir the density is different from zero, as done in Ref. [92].
A further improvement can be obtained by taking into

account that clusters form in a quasicontinuous way. To this
aim, one substitutes the top-hat cluster formation model by
a model of cluster formation from spherically symmetric
perturbations with negative radial density gradients. The
merging-halo formalism of Ref. [93] is used to take into
account the gradual way clusters form.
To start with, we consider some gravitationally growing

mass concentration collecting into a potentialwell. Let dP ¼
fðL; r; vr; tÞdLdvrdr be the probability that a particle,
having angular momentum L ¼ rvθ, is located at
½r; rþ dr�, with velocity (vr ¼ _r) ½vr; vr þ dvr� and angular
momentum ½L; Lþ dL�. The term L takes into account
ordered angular momentum generated by tidal torques and
randomangularmomentum (seeAppendixC.2 inRef. [35]).
The radial acceleration of the particle [92,94–97] is

dvr
dt

¼ −
GM
r2

þ L2ðrÞ
M2r3

þ Λ
3
r − η

dr
dt

; ð11Þ

withΛ being the cosmological constant and η the dynamical
friction coefficient. The previous equation can be obtained
via Liouville’s theorem [92]. The last term, the dynamical
friction force per unit mass, is more explicitly given in
Ref. [35] [Appendix D, Eq. (D5)]. A similar equation
(excluding the dynamical friction term) was obtained by
several authors (see, e.g., [98–100]) and generalized to
smooth dark energy models in Ref. [101].
In the framework of general relativity, Refs. [102,103]

derived the nonlinear evolution equation of the overdensity
δ ¼ δρm=ρ̄m of nonrelativistic matter:

δ̈þ 2H _δ −
4

3

_δ2

1þ δ
− 4πGρ̄mδð1þ δÞ

− ð1þ δÞðσ2 − ω2Þ ¼ 0: ð12Þ

Recalling that δ ¼ 2GMm
Ωm;0H2

0

ða=RÞ3 − 1, where R is the effec-

tive perturbation radius and a the scale factor, substituting
into Eq. (12) one gets [101]

R̈ ¼ −
GMm

R2
−
GMde

R2
ð1þ 3wdeÞ −

σ2 − ω2

3
R; ð13Þ

where Mm and Mde are the matter mass content of the
perturbation and the mass of the dark energy component,
respectively. The previous equations can be generalized to
account for the presence of dynamical friction using
Eckart’s formalism [104]. The standard Friedmann equa-
tion is now augmented with a fluid describing the con-
tribution of the viscosity:

�
_a
a

�
2

¼ H2 ¼ 8πG
3

ðρ̄v þ ρ̄m þ ρ̄ΛÞ; ð14Þ

where ρ̄Λ is the energy density of the cosmological
constant, ρ̄m ¼ ρ̄m;0a−3 the matter component, and _̄ρv þ
3Hρ̄v ¼ 3H2ξ0ρ̄

ν
v the viscous component, with ξ0 the bulk

viscosity coefficient. The bulk viscosity is expressed as
ξ ¼ ξ0ρ̄

ν
v, where ν is a real constant.

Integrating Eq. (11) with respect to r, we have

1

2

�
dr
dt

�
2

¼ GM
r

þ
Z

r

0

L2

M2r3
drþ Λ

6
r2 −

Z
r

0

η
dr
dt

þ ϵ:

ð15Þ

The specific binding energy of the shell, ϵ, can be obtained
from the turnaround condition dr

dt ¼ 0.
One can obtain the MTR combining energy conserva-

tion, the virial theorem, using Eq. (15) and the connection
between kinetic energy K and the temperature [90]:

hKi ¼ 3β̃MkBT
2μmp

; ð16Þ

where μ ¼ 0.59 is the mean molecular weight, kB
is the Boltzmann constant, mp is the proton mass,
β̃ ¼ β½1þ fð1=β − 1ÞΩb;0=Ωm;0�, Ωb;0 (Ωm;0) is the bar-
yonic (total) matter density parameter today, f is the fraction
of the baryonic matter in the hot gas, and the parameter

β ¼ μmpσ
2
v

kBT
, σv being the ratio of the mass-weighted mean

velocity dispersion of the dark matter particles.
Using the virial theorem, we have [92,96,105]

hKi¼ 3β̃MkBT
2μmp

¼−
1

2
hUGi− hULiþhUΛiþhUηi: ð17Þ

The brackets indicate time average (see [95]). The four
terms represent the energy related to the gravitational
potential, the angular momentum, the cosmological con-
stant, and the dynamical friction, respectively.
Equation (17) does not take into account the surface

pressure term we spoke about, though. Assuming [90]
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hKi þ hEi ¼ 3PextV ¼ −νU; ð18Þ

with V the volume of the outer boundary of the virialized
region, Pext the pressure on the boundary, ν a constant, and
U the total potential (see [90]), Eq. (17) reads now

hKi ¼ ð1þ νÞ
�
−
1

2
hUGi − hULi þ hUΛi þ hUηi

�
: ð19Þ

In other words, the averaged kinetic energy differs by a
factor 1þ ν from before.
In order to estimate the effect of the boundary pressure

on the virial theorem, we consider an isothermal velocity
dispersion (σ1D ¼ const), and then P ¼ ρvirσ

2
1D, for which

we have [89]

hKi ¼ ρ̄m;vir

2ρðrvirÞ − ρ̄m;vir
hEi; ð20Þ

where ρ̄ is the mean density within the virial radius. If the
local density is negligible at rvir, the confining pressure is
zero and hKi ¼ −hEi. For a Navarro-Frenk-White profile
and a typical cluster value of the concentration parameter
c ≃ 5, we have jhKi=hEij ≃ 2. References [106,107] stud-
ied in detail the effect of the quoted boundary pressure,
finding that it changes significantly the final object. More
in detail, it is found that the virial temperature is affected
(larger than a uniform sphere but smaller than a truncated
singular approximation sphere) and the extrapolated linear
overdensity contrast δc is slightly smaller, implying an
earlier collapse.
We now use energy conservation in the form (see [92,96])

hEi ¼ hKi þ hUGi þ hUΛi þ hULi þ hUηi
¼ UG;ta þ UΛ;ta þ UL;ta þ Uη;ta; ð21Þ

where the subscript “ta” stands for turnaround.
Combining Eqs. (19) and (21), solving for hKi, and

recalling Eq. (16), we obtain

kBT
keV

¼ 1.58ðνþ 1Þμ
β

1

ψξ
Ω1=3

m;0

�
M

1015 M⊙h−1

�
2=3

ð1þ ztaÞ

×

�
1þ

�
32π

3

�
2=3

ψξρ̄2=3m;ta
1

H2
0Ωm;0M8=3ð1þ ztaÞ

×
Z

reff

0

L2

r3
dr−

2

3

Λ
Ωm;0H2

0ð1þ ztaÞ3
ðψξÞ3

−
210=3

32=3
π2=3

�
ψξ

Ωm;0H2
0

��
ρm;0

M

�
2=3 1

1þ zta

Z
η
dr
dt

dr

�
;

ð22Þ

where reff ¼ ψrta ¼ ψξð 2GM
Ωm;0H2

0

Þ1=3, rta is the radius at the

turnaround epoch zta, Ωm;0 ¼ 8πGρ̄m;0

3H2
0

, M ¼ 4πρ̄m;0x31=3,

and ξ ¼ rta=x1.

The product ψξ, using the definitions of ψ , ξ, andM can
be written as [see also Eq. (26) and Ref. [108]]

ψξ ¼ reff
rta

rta
x1

¼ reff
rta

�
ρ̄m;0

ρta

�
1=3

ð1þ ztaÞ−1; ð23Þ

where ρta is the average density inside the perturbation at
the turnaround.
Equation (22) can be also equivalently written, by using

the notation of Ref. [108], in terms of rvir:

kBT
keV

¼ 0.94ðνþ 1Þμ
β

�
rta
rvir

��
ρta
ρ̄m;ta

�
1=3

Ω1=3
m;0

×
�

M
1015 M⊙h−1

�
2=3

ð1þ ztaÞ

×

�
1þ 15rvirρ̄m;ta

π2H2
0Ωm;0ρ

3
tar

9
tað1þ ztaÞ

Z
rvir

0

L2dr
r3

−
2

3

Λ
H2

0Ωm;0

�
rvir
rta

�
3
�
ρ̄m;ta

ρta

�
1

ð1þ ztaÞ3

−
61=3

π1=3
rvirrta

�
ρ̄m;ta

ρta

�
1=3

�
ρ̄m;0

M

�
2=3 1

1þ zta

λ0
1− μðδÞ

�
;

ð24Þ

where ΩΛ ¼ Λ
3H2

0

¼ 1 −Ωm;0. In Eq. (24), we integrated the

term containing the dynamical friction; λ0 and μðδÞ are
given in Ref. [109].
The value of reff , as shown in Refs. [85,96], is given by

the solution of the cubic equation:

1 − νþ ðξψÞ3ðνþ 2Þζ − ψð2þ ζξ3Þ

−
27

32

ξ9ψ

ρ3taπ
3Gr8ta

�
ν

Z
reff

0

L2

r3
drþ

Z
rta

0

L2

r3
dr

−
16π2

9
ð2þ νÞρ2tar6ta

×

�Z
reff

0

η
dr
dt

dr −
1

2þ ν

Z
rta

0

η
dr
dt

dr

��
¼ 0; ð25Þ

where

ζ ¼ Λ
4πGρta

¼ Λr3ta
3GM

¼ 2ΩΛ;0

Ωm;0

ρ̄m;ta

ρta
ð1þ ztaÞ−3: ð26Þ

The parameter ν, as shown by Ref. [90] [Eq. (47)], depends
on the concentration parameter and the density profile. We
fixed it as νþ1

ν−1 ≃ 2 [89,90], for a typical value of the cluster
concentration parameter, c ≃ 5.

B. Revisiting the continuous formation model

The approximation in which we found the MTR is
known as the late-formation approximation and assumes
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that perturbation clusters form from having a top-hat
density profile and that the redshift of observation, zobs,
is equal to that of formation, zf . The quoted approximation
is good in the caseΩm;0 ≃ 1, where cluster formation is fast,
and at all redshifts zobs ≃ zf . For the actual value of Ωm;0,
one needs to take into account the difference between zobs
and zf . Moreover, as shown by Ref. [89], continuous
accretion is needed to get the correct normalization of
the MTR and its time evolution.
In order to improve the THM, one can take into account

the formation redshift [110,111] or the THM can be
replaced by a model in which clusters form from spheri-
cally symmetric perturbations [88,89], combined with the
merging-halo formalism of Ref. [93]. In this way, one
moves from a model in which clusters form instantaneously
to one in which they form gradually.
Integrating Eq. (15), one gets

t ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ϵþ GM

r þ R
r
ri

L2

M2r3 drþ Λ
6
r2� − R

η dr
dt dr

q : ð27Þ

Following Ref. [89], we may write the specific energy of
infalling matter as

ϵl ¼ −
1

2

�
2πGM
tΩ

�
2=3

��
M0

M

�
5=ð3mÞ

− 1

�
gðMÞ; ð28Þ

where tΩ ¼ πΩm;0=½H0ð1 − Ωm;0Þ3=2�, M0 is a fiducial
mass, m is a constant specifying how the mass variance
evolves as a function of M, and the function gðMÞ reads

gðMÞ ¼ 1þ F
x − 1

þ λ0
1 − μðδÞ þ

Λ
3H2

0Ωm;0
ξ3; ð29Þ

where x ¼ 1þ ðtΩ=tÞ2=3 is connected to the mass by
M ¼ M0x−3m=5, M0 is given in Ref. [89], and

F ¼ 27=3π2=3ρ̄2=3m;0

32=3H2
0Ωm;0M8=3

Z
rrta

ri

L2

r3
dr: ð30Þ

In order to calculate the kinetic energy E, we integrate ϵl
with respect to the mass [89] to get −

R
ϵldM ¼ E=M.

Finally, we have

kBT ¼ 4

3
ã
μmp

2β

E
M

; ð31Þ

where ã ¼ ρ̄m;vir

2ρðrvirÞ−ρ̄m;vir
is the ratio between kinetic and total

energy [89] and ρ̄m;vir the mean density within the virial
radius. Calculating E=M, we obtain

kBT
keV

¼ 2

5
ã
μmp

2β

m
m − 1

�
2πG
tΩ

�
2=3

M2=3

×

�
1

m
þ
�
tΩ
t

�
2=3

þ Kðm; xÞ
ðM=M0Þ8=3

þ λ0
1 − μðδÞ þ

Λξ3

3H2
0Ωm;0

�
; ð32Þ

where

Kðm; xÞ ¼ ðm − 1ÞFxLerchPhiðx; 1; 3m=5þ 1Þ
− ðm − 1ÞFLerchPhiðx; 1; 3m=5Þ; ð33Þ

and LerchPhi is a function defined as follows3:

LerchPhiðz; a; vÞ ¼
X∞
n¼0

zn

ðvþ nÞa : ð34Þ

Following Ref. [89] to get the normalization, Eq. (32)
can be written as [92]

kBT ≃ 8 keV

�
M

1015 h−1M⊙

�
2=3mðMÞ

nðMÞ : ð35Þ

The functions mðMÞ and nðMÞ are defined as

mðMÞ¼ 1

m
þ
�
tΩ
t

�
2=3

þ Kðm;xÞ
ðM=M0Þ8=3

þ λ0
1−μðδÞþ

Λξ3

3H2
0Ωm;0

;

ð36Þ

nðMÞ ¼ 1

m
þ
�
tΩ
t0

�
2=3

þ K0ðm; xÞ; ð37Þ

where K0ðm; xÞ indicates that Kðm; xÞ must be calculated
assuming t ¼ t0.
When compared to Eq. (17) of Ref. [89], Eq. (35) shows

an additional mass-dependent term. This means that, as in
the case of the top-hat model, the MTR is no longer self-
similar, showing a break at the low-mass end (see the next
section).
Besides Refs. [88,89], Ref. [90] found a MTR and its

scatter. Their result concerning the MTR and the scatter is
in agreement with the result we found here. In this case,

kBT ¼ 6.62 keVQ

�
M

1015 h−1 M⊙

�
2=3

; ð38Þ

where

3This definition is valid for jzj < 1. By analytic continuation, it
is extended to the whole complex z plane for each value of a.
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Q ¼ 1þ ν

1 − ν

B

AðHtÞ2=3 ð39Þ

and where B=A is a constant [see the discussion after
Eq. (25) in Ref. [90]] and ν was defined in Eq. (18).

IV. RESULTS AND DISCUSSION

In Fig. 1, we show the results of the comparison
between our continuous formation model [Eq. (35)] and
the model by Ref. [90] with that of Ref. [74] for fðRÞ and
symmetron models. For fðRÞ models, we consider n ¼ 1

and jfR0j ¼ 10−4; 10−5; 10−6, while for the symmetron
model ðβ; aSSB; λ0Þ ¼ ð1.0; 0.5; 1.0Þ for Sym A, (1.0,
0.33, 1.0) for Sym B, (2.0, 0.5, 1.0) for Sym C, and
(1.0, 0.25, 1.0) for Sym D.
In all the panels, the black straight dashed line represents

the classical MTR self-similar behavior and the black solid
line the ΛCDM model obtained in the simulations of

Ref. [74], and for the specific modified gravity models
we refer to the caption of Fig. 1. Observational data are
represented by points. Red circles come from Ref. [112],
while blue points are from Ref. [113]. Stars are from
Ref. [113] and represent data using spatially resolved
observations.
Figure 1(a) (top left panel) compares the result of

our continuous formation model for the fðRÞ models
presented in Ref. [74] (HM). The cyan band represents
the 68% confidence level region, obtained using
the continuous formation model [Eq. (35)] and cal-
culated similarly to Ref. [90] (Sec. 3.7). The white
dashed line is the average value. As expected, devia-
tions from the ΛCDM model are larger for the model
with fR0 ¼ −10−4, as it represents the model with the
strongest modifications to gravity. For smaller values of
fR0, at temperatures T < 1 keV, data are in partial
agreement with both the fðRÞ cosmology and the
model presented in this work.

(a) (b)

(d)(c)

FIG. 1. The MTR for fðRÞ (top panels) and symmetron models (bottom panels). In all the panels, the black line shows the ΛCDM
model, and the dashed black line shows the MTR ∝ T3=2 as obtained from scaling relations, while the stacked galaxy clusters are
depicted with red and blue circles, blue squares, and black stars. In (a) (top left) and in (b) (top right), the cyan region shows the
68% confidence level region, obtained using the continuous formation model [Eq. (35)] and the model by Ref. [90] [Eq. (39)],
respectively. The white dashed line is the average value. The red, blue, and green lines represent the fðRÞ model with three different
normalizations. (c) (bottom left) and (d) (bottom right) are the equivalent of (a) and (b) for the symmetron models.

MASS-TEMPERATURE RELATION IN ΛCDM AND … PHYS. REV. D 100, 024013 (2019)

024013-7



Data points have a large dispersion and circumscribe the
theoretical models at high mass, while at the lowest masses
data have a value larger than the simulated HM models and
the result of our model. Stars show lower masses than the
models considered. At high mass, all models are indis-
tinguishable, while at small masses differences become
visible.
This is because effects of modified gravity depend on the

environment and, hence, on the density. In high-density
regions, screening takes place and deviations from ΛCDM
are smaller. Therefore, in high-density regions the ΛCDM
MTR has a similar behavior to that of modified gravity
models.
Our model shows a non-self-similar behavior and

presents a break at T ≃ 3 keV. At small masses, the slope
of the central (average) curve, in the range 0.5–3 keV, is
≃2.3, and the cyan region has an inner and outer slope of
1.8 and 3, respectively. The quoted bend has been observed
in the literature by several authors (see, e.g., [114]), who,
assuming the cluster temperature to be constant after
the formation time, explained the break as due to the
formation redshift. Another possibility is that the cluster
medium is preheated in the early phase of formation [115].
Reference [90], instead, justified the break with the scatter
in the density field. The result of the model of Ref. [90] is
shown in Fig. 1(b) (top right panel), where once again the
cyan region represents the 68% confidence level region (see
Ref. [90], Sec. 3.7).
This model is not able to distinguish between the effect

of formation redshift from scatter in the initial energy of the
cluster or its initial nonsphericity. However, the presence of
nonsphericity gives rise to a mass-dependent asymmetric
scatter in the MTR. This scatter is larger than that of the
density field and at small temperatures covers all clusters
except one, while the bend in the curve of Ref. [90] takes
place almost at the same temperature, TX ≃ 3 keV, in
our model.
In our model, the bend is due to tidal interactions with

neighboring clusters, arising from the asphericity of clus-
ters (see [92] for a discussion on the relation between
angular momentum acquisition, asphericity, and structure
formation), and to the effect of dynamical friction.
Asphericity gives rise to a mass-dependent asymmetric
bend in the MTR. The lower the mass, the larger the
difference from the classical self-similar solution. The
origin of the bend is due to a few reasons. Our MTR,
differently from others (e.g., [89,90]), contains a mass-
dependent angular momentum, L, originating from the
quadrupole moment of the protocluster with the tidal field
of the neighboring objects. The presence of this additive
mass-dependent term breaks the self-similarity of the MTR.
To be more precise, the collapse in our model is different
from the THM: The turnaround epoch and collapse time
change, as well as the collapse threshold δc, which is now
mass dependent and a monotonic decreasing function of the

mass (see Fig. 1 in Ref. [116]). It is larger than the standard
value at galactic masses and tends to the standard value
when we move to the largest clusters. The temperature is
T ∝ ϵ ∝ δc (see [89]), and then less massive clusters are
hotter than more massive ones, which are characterized by
a standard MTR.
Besides the effect of angular momentum in changing the

shape of the MTR, we must recall that another factor
contributing is the modification of the partition of energy in
virial equilibrium, which influences the shape of the MT
relation. At the same time, an important role is played by
the cosmological constant and dynamical friction. Both
effects, similarly to that of angular momentum, delay the
collapse of the perturbation. A comparison of the three
effects, the three terms in Eq. (11), are shown in Fig. 1 of
Ref. [116] and in Fig. 11 of Ref. [35]. They are all of the
same order of magnitude with differences of a few percent.
The effect of dynamical friction (DF) was calculated as
shown in Refs. [35,117,118].
The first calculations of the role of DF in clusters

formation is due to Refs. [119–122], who considered the
DF generated by the galactic population on the motion of
galaxies themselves. Reference [117] took into account
also the effects of substructure and showed DF produces a
collapse delay in the collapse of low-ν peaks, with several
consequences, like the mass accumulated by the peak, and
similarly to tidal torques.
As a consequence of dynamical friction and tidal

torques, one expects changes in the threshold of collapse,
the temperature at a given mass (since T ∝ δc), the mass
function, and the correlation function. DF and angular
momentum have similar effects on structure formation:
They delay the collapse and have similar consequences on
the collapse threshold.
An important result of the previous calculation is that the

MTR in modified gravity cannot be distinguished from that
predicted by the ΛCDM model. In HM, the MTR in
modified gravity was very different from that of ΛCDM
prediction for colder clusters and indistinguishable for hotter
ones. Our plots show that theMTR bends in a similar way as
done by the MTR in the fðRÞ models and symmetron
models (see the following). The bending was explained
previously and is related to the effect of several factors as the
acquisition of angular momentum through tidal torques, by
dynamical friction, and by the cosmological constant.
Our model and the fðRÞ and symmetron models (see the

following) of Ref. [74] are in agreement with data till
≃1 keV; at lower temperatures, a discrepancy is observed
with the few clusters present. A similar result is found
comparing the fðRÞmodels with the model by Ref. [90], in
Fig. 1(b). In this case, while fðRÞ models are in disagree-
ment with the data at small masses, this is no longer true for
the model by Ref. [90] and ΛCDM. However, there is a
slight disagreement between the model with fR0 ¼ −10−4
and Ref. [90].
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In particular, in the case of the fðRÞ models, Figs. 1(a)
and 1(b) show that our model is in agreement with all fðRÞ
models considered. In Fig. 1(b), the slope of the average
value, in the range 0.5–3 keV, is ≃2.3, while that of the
inner cyan region ≃1.8 and that of the outer cyan region>3
for temperatures < 1 keV.
Figure 1(c) shows the same quantities plotted in

Figs. 1(a) and 1(b) but for the symmetron case. The plot
shows that model Sym D is the one which deviates the most
from the ΛCDM, followed by Sym C, Sym B, and Sym A.
Again, at high mass, till ≃4 keV, our model, the symme-
tron models, and the data are indistinguishable, but Sym D,
even if in agreement with the data till ≃3 keV, slightly
differs from our model, namely, with the ΛCDM predic-
tions. The discrepancy goes on till ≃2 keV and then
disappears. All the other symmetron models are in agree-
ment with our model. As in Fig. 1(a), for T ≤ 1 keV, the
models are in disagreement with a few clusters. Notice that
in Figs. 1(a) and 1(c), we compare the continuous for-
mation model with the fðRÞ and symmetron model,
respectively, and then the only change between the two
plots is due to the fðRÞ and symmetron curves. The slopes
are then the same as in Fig. 1(a).
Finally, in Fig. 1(d), we show the same results as in

Fig. 1(c) but for the model by Ref. [90]. The result is similar
to Fig. 1(b). In this case, in the range 1 ≤ T=keV ≤ 4, the
model by Ref. [90] differs from Sym B and D.
The larger discrepancy between the model by Ref. [90]

and the symmetronmodels in the temperature range 1–4keV
with respect to the predictions of our model is probably due
to the fact that, as stressed by Ref. [90], the calculation of the
effects of the nonspherical shape of the initial protocluster
are not very rigorous and should be considered as an
estimate of the actual corrections. The previous assertion
is somehow confirmed by the fact that in the given range
there is not a real discrepancy between cluster data and the
other models (except with the model by Ref. [90]).

We want to stress that the quoted discrepancies between
ΛCDM predictions and Sym B and D, however, do not
imply that the symmetron model can be used to claim the
MTR is a probe to distinguish between modified gravity
and ΛCDM, since in the quoted temperature range there are
no visible peculiar differences between the cluster data and
the model.
As before, we stress that Figs. 1(d) and 1(b) differ only

for the curves relative to the fðRÞ and symmetron models,
since we are comparing the last with the same model,
namely, Ref. [90] [Eq. (39)]. The slopes are then the same
as in Fig. 1(b).
Finally in Figs. 2(a) and 2(b), we compare the results

of the improved top-hat model [Eq. (24)] with the fðRÞ
[Fig. 2(a)] and the symmetron models [Fig. 2(b)] of
Ref. [74]. The results are similar to those plotted in
Figs. 1(a) and 1(c), with the difference that the slope
discussed previously is now smaller. The differences
between the model plotted in Figs. 1(a) and 1(c) (revised
top hat) and that in Figs. 2(a) and 2(b) (continuous
formation model) are due to the assumed redshift of
formation in the two models. The slope of the average
curve is ≃2, and those of the outer and inner cyan region
≃1.8 and ≃2.5, respectively.
Before concluding, we want to add a note on the

redshift dependence of the observed cluster data and the
MTR which depends on the redshift. All the quantities
involved in the determination are, formally, time de-
pendent (concentration and temperature). Therefore,
when evaluating the MTR, one has to be cautious
and aware of this, as the time evolution can have a
substantial effect on the final result. Nevertheless, in
our discussion, redshift evolution is not a concern as all
the objects considered in Refs. [112,113] are nearby
(z≲ 0.2), and neglecting it has a very small impact
when compared to the observational error bars on the
mass and temperature.

(a) (b)

FIG. 2. The MTR for fðRÞ (left panel) and symmetron models (right panel). Lines and symbols represent the same quantities as in
Fig. 1, but now the cyan region is the 68% confidence level region, obtained by means of the improved top-hat model [Eq. (24)].
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V. CONCLUSIONS

In the present work, we derived the MTR relationship
using an improved top-hat model and a continuous for-
mation model and compared the results with the prediction
of Ref. [74] using fðRÞ and symmetron models. Our model
takes into account dynamical friction, the angular momen-
tum acquired through tidal-torque interaction between
clusters, and a modified version of the virial theorem
including an external pressure. The continuous formation
model is based on the merging-halo formalism by Ref. [93].
Both models give a MTR different from the classical self-
similar behavior, with a break at 3–4 keV, and a steepening
with a decreasing cluster temperature. The comparison of
the quoted MTR with those obtained by Ref. [74] for fðRÞ
gravity and symmetron models shows that the MTR is not a

good probe to test gravity theories, since the MTR for the
ΛCDM model has the same behavior of that obtained by
Ref. [74] for the two modified gravity theories considered.
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Jr., J. Cosmol. Astropart. Phys. 09 (2018) 010.

[84] S. Adhikari, J. Sakstein, B. Jain, N. Dalal, and B. Li,
J. Cosmol. Astropart. Phys. 11 (2018) 033.

[85] A. Del Popolo, Astron. Astrophys. 387, 759 (2002).
[86] H. Martel and P. R. Shapiro, Mon. Not. R. Astron. Soc.

297, 467 (1998).
[87] A. Hammami and D. F. Mota, Astron. Astrophys. 584, A57

(2015).
[88] G. M. Voit and M. Donahue, Astrophys. J. Lett. 500, L111

(1998).
[89] G. M. Voit, Astrophys. J. 543, 113 (2000).
[90] N. Afshordi and R. Cen, Astrophys. J. 564, 669 (2002).
[91] A. Del Popolo, N. Hiotelis, and J. Peñarrubia, Astrophys. J.

628, 76 (2005).
[92] A. Del Popolo and M. Gambera, Astron. Astrophys. 344,

17 (1999).
[93] C. Lacey and S. Cole, Mon. Not. R. Astron. Soc. 262, 627

(1993).
[94] P. J. E. Peebles, Principles of Physical Cosmology, Prince-

ton Series in Physics, edited by P. J. E. Peebles (Princeton
University Press, Princeton, NJ, 1993).

[95] J. G. Bartlett and J. Silk, Astrophys. J. Lett. 407, L45
(1993).

[96] O. Lahav, P. B. Lilje, J. R. Primack, and M. J. Rees,
Mon. Not. R. Astron. Soc. 251, 128 (1991).

[97] A. Del Popolo and M. Gambera, Astron. Astrophys. 337,
96 (1998).

[98] P. Fosalba and E. Gaztañaga, Mon. Not. R. Astron. Soc.
301, 503 (1998).

[99] S. Engineer, N. Kanekar, and T. Padmanabhan, Mon. Not.
R. Astron. Soc. 314, 279 (2000).

[100] A. Del Popolo, F. Pace, and J. A. S. Lima, Mon. Not. R.
Astron. Soc. 430, 628 (2013).

[101] F. Pace, C. Schimd, D. F. Mota, and A. Del Popolo,
arXiv:1811.12105.

[102] F. Pace, J.-C. Waizmann, and M. Bartelmann, Mon. Not.
R. Astron. Soc. 406, 1865 (2010).

[103] F. Pace, S. Meyer, and M. Bartelmann, J. Cosmol.
Astropart. Phys. 10 (2017) 040.

[104] C. M. S. Barbosa, J. C. Fabris, O. F. Piattella, H. E. S.
Velten, and W. Zimdahl, arXiv:1512.00921.

[105] L. D. Landau and E. M. Lifshitz, Lehrbuch der
theoretischen Physik, 4th ed. (Akademie-Verlag, Berlin,
1966).

[106] P. R. Shapiro, I. T. Iliev, and A. C. Raga, Mon. Not. R.
Astron. Soc. 307, 203 (1999).

MASS-TEMPERATURE RELATION IN ΛCDM AND … PHYS. REV. D 100, 024013 (2019)

024013-11

https://doi.org/10.1146/annurev-nucl-102115-044553
https://doi.org/10.1146/annurev-nucl-102115-044553
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1086/161130
https://doi.org/10.1088/1475-7516/2006/03/004
https://doi.org/10.1088/1475-7516/2006/03/004
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.1103/PhysRevD.63.103510
https://doi.org/10.1016/S0370-2693(01)00571-8
https://doi.org/10.1016/S0370-2693(01)00571-8
https://doi.org/10.1016/j.astropartphys.2007.05.011
https://doi.org/10.1016/j.astropartphys.2007.05.011
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.89.024027
https://doi.org/10.1103/PhysRevD.70.083509
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1103/PhysRevD.71.123509
https://doi.org/10.1103/PhysRevD.71.123509
https://doi.org/10.1063/1.1665613
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1088/1742-6596/831/1/012004
https://doi.org/10.1088/1742-6596/831/1/012004
https://doi.org/10.1007/BF01807638
https://doi.org/10.1088/1475-7516/2010/10/026
https://doi.org/10.3390/universe2040023
https://doi.org/10.1086/151677
https://doi.org/10.1038/nature01997
https://doi.org/10.1038/nature01997
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1051/0004-6361/201015893
http://www.euclid-ec.org
http://www.euclid-ec.org
http://www.euclid-ec.org
http://jdem.lbl.gov/
http://jdem.lbl.gov/
http://jdem.lbl.gov/
https://www.skatelescope.org
https://www.skatelescope.org
https://www.skatelescope.org
https://www.lsst.org
https://www.lsst.org
https://www.lsst.org
https://doi.org/10.1103/PhysRevD.97.104070
https://doi.org/10.1103/PhysRevD.97.104070
https://doi.org/10.1103/PhysRevD.99.043515
https://doi.org/10.1103/PhysRevD.99.043515
https://doi.org/10.1103/PhysRevLett.98.111102
https://doi.org/10.1103/PhysRevD.86.044015
https://doi.org/10.1103/PhysRevD.86.044015
https://doi.org/10.1051/0004-6361/201629003
https://doi.org/10.1051/0004-6361/201629003
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1111/j.1365-2966.2008.13961.x
https://doi.org/10.1111/j.1365-2966.2008.13961.x
https://doi.org/10.1103/PhysRevD.83.044007
https://doi.org/10.1103/PhysRevD.83.044007
https://doi.org/10.1093/mnras/stt1575
https://doi.org/10.1093/mnras/stt1575
https://doi.org/10.1051/0004-6361/201322412
https://doi.org/10.1051/0004-6361/201322412
https://doi.org/10.1051/0004-6361/201322403
https://doi.org/10.1051/0004-6361/201322403
https://doi.org/10.1088/1475-7516/2017/07/018
https://doi.org/10.1088/1475-7516/2017/07/018
https://doi.org/10.1088/1475-7516/2018/09/010
https://doi.org/10.1088/1475-7516/2018/11/033
https://doi.org/10.1051/0004-6361:20020399
https://doi.org/10.1046/j.1365-8711.1998.01497.x
https://doi.org/10.1046/j.1365-8711.1998.01497.x
https://doi.org/10.1051/0004-6361/201526606
https://doi.org/10.1051/0004-6361/201526606
https://doi.org/10.1086/311415
https://doi.org/10.1086/311415
https://doi.org/10.1086/317084
https://doi.org/10.1086/324282
https://doi.org/10.1086/429859
https://doi.org/10.1086/429859
https://doi.org/10.1093/mnras/262.3.627
https://doi.org/10.1093/mnras/262.3.627
https://doi.org/10.1086/186802
https://doi.org/10.1086/186802
https://doi.org/10.1093/mnras/251.1.128
https://doi.org/10.1046/j.1365-8711.1998.02033.x
https://doi.org/10.1046/j.1365-8711.1998.02033.x
https://doi.org/10.1046/j.1365-8711.2000.03275.x
https://doi.org/10.1046/j.1365-8711.2000.03275.x
https://doi.org/10.1093/mnras/sts669
https://doi.org/10.1093/mnras/sts669
http://arXiv.org/abs/1811.12105
https://doi.org/10.1111/j.1365-2966.2010.16841.x
https://doi.org/10.1111/j.1365-2966.2010.16841.x
https://doi.org/10.1088/1475-7516/2017/10/040
https://doi.org/10.1088/1475-7516/2017/10/040
http://arXiv.org/abs/1512.00921
https://doi.org/10.1046/j.1365-8711.1999.02609.x
https://doi.org/10.1046/j.1365-8711.1999.02609.x


[107] I. T. Iliev and P. R. Shapiro, Mon. Not. R. Astron. Soc. 325,
468 (2001).

[108] P. B. Lilje, Astrophys. J. Lett. 386, L33 (1992).
[109] S. Colafrancesco, V. Antonuccio-Delogu, and A. Del

Popolo, Astrophys. J. 455, 32 (1995).
[110] T. Kitayama and Y. Suto, Astrophys. J. 469, 480 (1996).
[111] P. T. P. Viana and A. R. Liddle, Mon. Not. R. Astron. Soc.

281, 323 (1996).
[112] X. Dai, C. S. Kochanek, and N. D. Morgan, Astrophys. J.

658, 917 (2007).
[113] D. J. Horner, R. F. Mushotzky, and C. A. Scharf,

Astrophys. J. 520, 78 (1999).

[114] A. Finoguenov, T. H. Reiprich, and H. Böhringer, Astron.
Astrophys. 368, 749 (2001).

[115] H. Xu, G. Jin, and X.-P. Wu, Astrophys. J. 553, 78 (2001).
[116] A. Del Popolo, F. Pace, and M. Le Delliou, J. Cosmol.

Astropart. Phys. 03 (2017) 032.
[117] V. Antonuccio-Delogu and S. Colafrancesco, Astrophys. J.

427, 72 (1994).
[118] A. Del Popolo, Astron. Astrophys. 454, 17 (2006).
[119] S. D. M. White, Mon. Not. R. Astron. Soc. 174, 19 (1976).
[120] A. Kashlinsky, Mon. Not. R. Astron. Soc. 208, 623 (1984).
[121] A. Kashlinsky, Astrophys. J. 306, 374 (1986).
[122] A. Kashlinsky, Astrophys. J. 312, 497 (1987).

DEL POPOLO, PACE, and MOTA PHYS. REV. D 100, 024013 (2019)

024013-12

https://doi.org/10.1046/j.1365-8711.2001.04422.x
https://doi.org/10.1046/j.1365-8711.2001.04422.x
https://doi.org/10.1086/186286
https://doi.org/10.1086/176552
https://doi.org/10.1086/177797
https://doi.org/10.1093/mnras/281.1.323
https://doi.org/10.1093/mnras/281.1.323
https://doi.org/10.1086/509651
https://doi.org/10.1086/509651
https://doi.org/10.1086/307437
https://doi.org/10.1051/0004-6361:20010080
https://doi.org/10.1051/0004-6361:20010080
https://doi.org/10.1086/320662
https://doi.org/10.1088/1475-7516/2017/03/032
https://doi.org/10.1088/1475-7516/2017/03/032
https://doi.org/10.1086/174122
https://doi.org/10.1086/174122
https://doi.org/10.1051/0004-6361:20054441
https://doi.org/10.1093/mnras/174.1.19
https://doi.org/10.1093/mnras/208.3.623
https://doi.org/10.1086/164350
https://doi.org/10.1086/164895

