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The scalar radiation emitted by a source in geodesic circular orbit around a regular Bardeen black hole is
analyzed. We use the quantum field theory in a curved spacetime framework to obtain the emitted power of
radiation by computing the one-particle-emission amplitude of scalar particles in the curved background.
We compare our results to a similar setting in the spacetime of a Reissner-Nordström black hole.
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I. INTRODUCTION

Black holes (BHs) play a central part in general relativity
(GR) and other theories of gravity. Their nontrivial causal
structure, particularly the presence of an event horizon,
provides an interesting setting to test fundamental physics.
Moreover, these properties of BH spacetimes, and their
strong gravity regime, are interesting in their own right and
may have implications for the very nature of spacetime. In
particular, BH solutions are usually plagued with singu-
larities, where GR, as a description of spacetime physics,
breaks down.
Within GR, the occurrence of singularities is quite

generic, in the sense that the singularity theorems impose
severe constraints on the types of matter which can avoid
them [1]. Additionally, it is expected that almost all
singularities are protected by event horizons, according
to the weak cosmic censorship conjecture [2,3]. Hence,
usually, a singularity is expected to be located in the inside
region of a BH. There are, however, BH solutions with no
singularities, the so-called regular BHs. The first regular
BH solution was presented in Ref. [4] (see Ref. [5] for an
extensive review about regular BHs). Although most, if not
all, regular BH solutions include exotic matter, it is also a
possibility that common matter in alternative theories of
gravity gives rise to entirely regular solutions. This may be
the case if regular BH solutions are viewed as an effective
description to spacetime in a quantum theory of gravity [6].
The interaction of BHs with fundamental test fields is

important, not only for its theoretical implications, but also
because it can be useful in the investigation of the BH
properties, through the imprints left by the geometry
on the observables. It is the case, for example, of the
BH quasinormal modes, which are instantiated by the test

field modes [7–9]. Geometry signatures may also be found
in scattering and absorption data. The analysis of emitted
radiation by matter surrounding a BH is particularly
important to infer properties of both matter and spacetime.
In this context, radiation settings in BH spacetimes have
been extensively studied since the 1970s. Moreover, the
recent detections of gravitational waves and electromag-
netic counterparts in a binary neutron star inspiral (see
Ref. [10] and references therein) have drawn additional
attention to this research subject.
The gravitational radiation emitted by a source that is

falling radially into a Schwarzschild BH was computed in
Refs. [11,12]. Due to its simplicity, a massless scalar field
can be used as a model to study more general (electro-
magnetic or gravitational) radiation emission processes by
sources near BHs. For the source orbiting the BH in a
circular geodesic orbit, the so-called geodesic synchrotron
radiation setting, the massless scalar field model was
used to compute the high-frequency radiation emission
as a first approximation to the gravitational radiation case
in Ref. [13]. Using the quantum field theory in a curved
spacetime framework, the scalar radiation emission in
Schwarzschild spacetime was revisited in Refs. [14–17].
In the context of geodesic synchrotron radiation, this
framework has been used to analyze the emission of
gravitational radiation in Ref. [18]. There are also other
results for emitted radiation in BH spacetimes such as the
electromagnetic field in a Schwarzschild BH [19] and the
massless scalar field in Kerr BH [20]. Regarding regular
BHs, absorption and scattering of scalar waves by Bardeen
BHs were studied in Refs. [21–23].
In this paper, we consider the emission of scalar radiation

by a source in circular motion around a Bardeen BH. We
compare our results to the case of a source orbiting a
Reissner-Nordström BH. This paper is organized as fol-
lows. In Sec. II, we review the spacetime of a Bardeen BH
and the corresponding circular geodesics. In Sec. III we
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revisit the framework of a quantum scalar field theory in the
curved spacetime of a spherically symmetric BH. We
apply this framework to the computation of the emitted
power of scalar radiation by a source in circular geodesic
orbit around the BH. We present our numerical results
in Sec. IV, comparing them with the corresponding ones
for Reissner-Nordström BHs. We end this paper with
some remarks in Sec. V. We use natural units such that
c ¼ G ¼ ℏ ¼ 1.

II. BARDEEN REGULAR BLACK HOLES

The line element of a spherically symmetric BH space-
time can be written as

ds2 ¼ −fðrÞdt2 þ dr
gðrÞ þ r2ðdθ2 þ sin θ2dϕ2Þ: ð1Þ

For the so-called Bardeen black hole, we have

fðrÞ ¼ gðrÞ ¼ 1 −
2Mr2

ðr2 þ q2BÞ32
; ð2Þ

where the parameterM is associated to the mass of the BH.
The parameter qB was identified in Ref. [24] as the charge
of a magnetic monopole in a theory of nonlinear electro-
dynamics, described by the following action:

S ¼ SEH þ
Z

d4x
ffiffiffiffiffiffi
−g

p LðFÞ
4π

; ð3Þ

where SEH is the Einstein-Hilbert action. The Lagrangian
LðFÞ associated to the electromagnetic field strength Fab,
with F ¼ 1

4
FabFab, is given by

LðFÞ ¼ 3

2sq2B

� ffiffiffiffiffiffiffiffiffiffiffi
2q2BF

p
1 −

ffiffiffiffiffiffiffiffiffiffiffi
2q2BF

p �5=2

ð4Þ

where s ¼ jqBj=2M.
The existence of zeros of the function fðrÞ depends

on the parameters M and qB. If 0 ≤ qB < qextB , where
qextB ≡ 4M=ð3 ffiffiffi

3
p Þ, fðrÞ vanishes at two values of r, r ¼ r−

and r ¼ rþ, which are associated to two horizons. One of
them (r ¼ r−) is a Cauchy horizon and the other (r ¼ rþ) is
an event horizon. For q ¼ qextB , the two horizons coincide.
For q > qextB we have no horizons. We shall consider only
the cases in which 0 ≤ q ≤ qextB .
The causal structure of the Bardeen BH is very similar to

the causal structure of an electrically charged BH, the so-
called Reissner-Nordström (RN) BH, which is described by
the line element (1) with

fðrÞ ¼ gðrÞ ¼ 1 −
2M
r

þ q2RN
r2

: ð5Þ

In Eq. (5), qRN is the electric charge of the BH. The RN
solution also presents two horizons for 0 ≤ qRN < qextRN,
where qextRN ≡M. In the extreme case (qRN ¼ qextRN), the
two horizons coincide. For q > qextRN, we have a naked
singularity.
We aim to compare the emitted power of scalar radiation

in Bardeen and RN spacetimes. For the RN case, this was
computed in Ref. [25]. Although the charges in the RN and
Bardeen spacetimes are associated to different fields, we
expect a somewhat similar behavior for the emission of
scalar radiation by a source in a circular orbit in these two
spacetimes. In order to better compare the two situations,
we parametrize our results by the normalized charge,
namely

QðiÞ ≡ qðiÞ=qextðiÞ ; ð6Þ

with ðiÞ ¼ B;RN and there is no implicit sum in the (i)
subscripts.

A. Circular geodesics in a Bardeen BH

Let us briefly review the circular geodesic orbits in a
spherically symmetric spacetime such as the Bardeen BH
spacetime. Following Refs. [26,27], the equations of
motion governing geodesics can be derived from the
following Lagrangian:

2L ¼ gμν _xμ _xν; ð7Þ

where the overdot denotes differentiation with respect to an
affine parameter. (For timelike geodesics, the particle’s
proper time can be considered as the affine parameter.) For
spacetimes described by Eq. (1), with fðrÞ ¼ gðrÞ, the
Lagrangian can be written as

2L ¼ −fðrÞ_t2 þ _r2

fðrÞ þ r2 _θ2 þ r2sin2θ _ϕ2: ð8Þ

Since this Lagrangian is independent of both t and ϕ, it
follows from the Euler-Lagrange equations for these
coordinates that the canonical momenta, given by

pt ¼ −
∂L
∂_t ¼ fðrÞ_t ¼ E; ð9Þ

pϕ ¼ ∂L
∂ _ϕ ¼ r2 _ϕ ¼ L; ð10Þ

are integrals of motion. Considering the motion in the
equatorial plane (θ ¼ π=2, _θ ¼ 0) and noting that 2L ¼ −1
for timelike geodesics, the equation of motion for the
particle’s radial coordinate may be written as

RAFAEL P. BERNAR and LUÍS C. B. CRISPINO PHYS. REV. D 100, 024012 (2019)

024012-2



_r2 ¼ fðrÞ
�
E2 −

L2

r2
− 1

�
: ð11Þ

For a circular orbit, with r ¼ R, the _r ¼ ̈r ¼ 0 equations
yield

E2 ¼ 2fðRÞ
2fðRÞ − Rf0ðRÞ ; L2 ¼ R3f0ðRÞ

2fðRÞ − Rf0ðRÞ ; ð12Þ

which, since E2 and L2 are positive quantities, imply

2fðRÞ − Rf0ðRÞ > 0: ð13Þ

Solving the equation

RLight ¼
2fðRLightÞ
f0ðRLightÞ

; ð14Þ

one obtains the radial position RLight of the light ring, which
is a planar circular null geodesic [27]. In view of Eq. (13),
RLight is also the limiting value for the radius of the circular
timelike geodesics. The orbital angular velocity of the
circular geodesics is given by

Ω ¼ dϕ
dt

¼
_ϕ
_t
¼

ffiffiffiffiffiffiffiffiffiffiffi
f0ðRÞ
2R

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðR2 − 2q2BÞ
ðR2 þ q2BÞ5=2

s
; ð15Þ

where the last equality is valid for a Bardeen BH.

III. SCALAR RADIATION AND EMITTED POWER

The quantization of a massless scalar field in the
spacetime outside a Bardeen BH is very similar to the
same procedure in the Schwarzschild spacetime. In this
section, we follow mainly Ref. [14]. The massless scalar
field ΦðxÞ obeys the Klein-Gordon equation, namely

∇μ∇μΦðxÞ ¼ 0: ð16Þ

Positive-frequency solutions to Eq. (16), with respect to the
timelike Killing vector field ∂t, can be written as

uωlmðxÞ ¼
ffiffiffiffi
ω

π

r
ψωlðrÞ

r
Ylmðθ;ϕÞe−iωt ðω > 0Þ; ð17Þ

where Ylmðθ;ϕÞ are the scalar spherical harmonics. The
functions ψωlðrÞ satisfy the following Schrödinger-like
equation:

�
−fðrÞ d

dr

�
fðrÞ d

dr

�
þ VeffðrÞ

�
ψωlðrÞ ¼ ω2ψωlðrÞ; ð18Þ

where the effective potential is given by (see Fig. 1)

VeffðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ f0ðrÞ

r

�
: ð19Þ

The asymptotic forms of the two independent solutions
to Eq. (18) are given by

ψup
ωl ≈

(
Aup
ωl ðeiωr

� þRup
ωl e

−iωr� Þ; r≳ rþ;

Aup
ωl T

up
ωl e

iωr� ; r ≫ rþ;
ð20Þ

ψ in
ωl ≈

(
Ain
ωlT

in
ωle

−iωr� ; r≳ rþ;

Ain
ωlðe−iωr

� þRin
ωle

iωr�Þ; r ≫ rþ;
ð21Þ

where r� is the tortoise coordinate defined by dr� ≡ f−1dr.
The up solutions represent modes purely incoming from the
past event horizon H−, while the in solutions represent
modes purely incoming from the past null infinity J −.
The quantum field operator Φ̂ðxÞ is expanded in terms of

positive-frequency solutions uPωlmðxÞ to Eq. (16) and their
complex conjugates, namely

Φ̂ðxÞ ¼
X
P

X
l;m

Z
∞

0

dω½uPωlmðxÞâPωlm þ H:c:�; ð22Þ

where the superscript P stands for in and up modes. We
normalize the modes uPωlmðxÞ according to the Klein-
Gordon inner product, defined by

hΦ;Ψi≡ i
Z
Σ
dΣμðΦ̄∇μΨ −Ψ∇μΦ̄Þ; ð23Þ

where the overbar denotes complex conjugation and Σ
is a Cauchy hypersurface. It can readily be shown that the
inner product (23) is independent of the choice of the
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FIG. 1. Effective potential, given by Eq. (19), plotted for l ¼ 1,
as a function of r=rþ. We compare the Schwarzschild BH case
(jQBj ¼ 0) with the jQBj ¼ 0.5 and jQBj ¼ 0.9 Bardeen
BH cases.
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hypersurface Σ, if Φ and Ψ satisfy the equations of motion
(16) [28]. By requiring that

huPωlm; uP
0

ω0l0m0 i ¼ δPP
0
δll

0
δmm0

δðω − ω0Þ; ð24Þ

the creation and annihilation operators, âP†ωlm and âPωlm,
satisfy the usual nonvanishing commutation relations,
given by

½âPωlm; âP
0†

ω0l0m0 � ¼ δPP
0
δll

0
δmm0

δðω − ω0Þ: ð25Þ

Using the inner product (23), we obtain the overall
normalization constants in Eqs. (20) and (21), namely

Ain
ωl ¼ Aup

ωl ¼
1

2ω
: ð26Þ

We consider a scalar source jðxÞ, in circular geodesic
orbit around the Bardeen BH, interacting with the scalar
field via the following contribution to the action:

ŜI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
jðxÞΦ̂ðxÞ: ð27Þ

For the source moving with constant angular velocity Ω (as
measured by asymptotic static observers), at r ¼ R, in the
plane θ ¼ π=2, we may write

jðxÞ ¼ λ

ut
ffiffiffiffiffiffi−gp δðr − RÞδðθ − π=2Þδðϕ −ΩtÞ; ð28Þ

where λ is a small coupling constant. The 4-velocity of the
rotating source is

uμ ¼ ðγ; 0; 0; γΩÞ; ð29Þ

where

γ ¼ dt
dτ

¼ 1

½fðRÞ − R2Ω2�12 : ð30Þ

To first order in perturbation theory, the emission
amplitude of a P ¼ in; up scalar particle with quantum
numbers l, m, and frequency ω, is given by

AP;ωlm
em ¼hP;ωlmjiŜIj0i¼ i

Z
d4x

ffiffiffiffiffiffi
−g

p
jðxÞuPωlmðxÞ: ð31Þ

The vacuum j0i is the quantum state annihilated by all
the âPωlm; i.e., it is a Boulware-like vacuum [29] for the
Bardeen BH spacetime. For the Unruh- or Hartle-Hawking-
like vacuum states [30,31], the power associated with
Eq. (31) would be the one obtained for the net radiation
emitted by the source, since the absorption and stimulated
emission rates induced by the thermal fluxes are exactly the
same. Due to the source’s structure, given by Eq. (28), the

emission amplitude is proportional to δðω −mΩÞ; i.e.,
there is only emission of scalar particles with ω ¼ mΩ.
The emitted power is then given by

WP;lm
em ¼

Z
∞

0

dωωjAP;ωlm
em j2=T; ð32Þ

where T ¼ R∞
−∞ dt ¼ 2πδð0Þ is the total time as measured

by an asymptotic static observer [32,33]. By using Eq. (17)
to compute the emission amplitude given by Eq. (31), we
find the emitted power to be

WP;lm
em ¼ 2ω2

mλ
2½fðRÞ − R2Ω2�

����ψP
ωml

R

����2jYlmðπ=2;ΩtÞj2;

ð33Þ

where ωm ≡mΩ. The jYlmðπ=2;ΩtÞj2 is a time indepen-
dent quantity, which is zero for odd values of lþm and

jYlmðπ=2;ΩtÞj2¼
2lþ1

4π

ðlþm−1Þ!!ðl−m−1Þ!!
ðlþmÞ!!ðl−mÞ!! ð34Þ

for even values of lþm [34].

IV. RESULTS

To compute the power of scalar radiation emitted by the
source in circular orbit around the Bardeen BH, we have to
numerically integrate Eq. (18), in order to obtain the radial
functions ψup

ωl and ψ in
ωl. For circular geodesics, we can

invert Eq. (15) to find R as a function of Ω, so that the
emitted power can be written exclusively as a function of
quantities measured at infinity, namely M and Ω. We can
thus obtain numerically the emitted power for arbitrary
circular geodesic orbits, i.e., for different values of the
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FIG. 2. Emitted power of the mode l ¼ m ¼ 1 as a function of
Ω, for the source rotating around the following BH in
the following cases: (i) a Schwarzschild BH; (ii) a Bardeen
BH with jQBj ¼ 0.9; (iii) a Reissner-Nordström BH with
jQRN j ¼ 0.9.
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associated angular velocityΩ. For the numerical integration
of Eq. (18), we use the same procedure as described
in Ref. [18].
In Fig. 2, we compare the emitted power for a given

choice of l and m, namely

Wlm
em ¼ Win;lm

em þWup;lm
em ; ð35Þ

for the mode l ¼ m ¼ 1, when the source is rotating around
a Schwarzschild BH, a Bardeen BH with jQBj ¼ 0.9 or a
RN BH with jQRN j ¼ 0.9. For low angular velocities, the
emitted power in the Bardeen BH case is slightly greater
than the one in the RN case. However, as we increaseΩ, the
RN emitted power starts to dominate, in comparison with
the Bardeen one. This happens generically for any mode.
This is in accordance with the fact that, far away from the
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SCALAR RADIATION FROM A SOURCE ROTATING AROUND A … PHYS. REV. D 100, 024012 (2019)

024012-5



BH, where Ω → 0, the charge contribution to the metric
falls off as r−3 in the Bardeen case, whereas it behaves like
r−2 in the RN spacetime. Thus, far away from the BH, the
Bardeen metric is more similar to the Schwarzschild metric
than the RN one, which is reflected in the emitted power.
We also compute the emitted power for different values

of the charge Q. We see, in Fig. 3, that the peak of the total
emitted power decreases as we increase the charge of the
Bardeen BH. In the RN spacetime, the behavior is more
involved. We first see an increase in the peak of the total
emitted power as we increase the charge and, from a certain
value of the charge on, the behavior is similar to the
Bardeen BH case. The main difference between the
Bardeen and RN cases is that the in mode peaks have a
notable increment as we increase the charge in the RN case
(see the top plot in the right panel of Fig. 3). Moreover, the
up mode peaks in the RN BH case have a slower falloff as
we increase the charge, which can be seen in the middle
right plot of Fig. 3.
The total emitted power is given by

Wem ¼
X

P¼in;up

X
l;m

WP;lm
em : ð36Þ

The observed power at infinity is obtained by summing
only the contributions from the in modes in Eq. (36) (see,
e.g., Ref. [14]), namely

Win
em ¼

X
l;m

Win;lm
em ; ð37Þ

which can be compared to the total emitted power. In Fig. 4,
we plot the ratio between the observed power at infinity,
Win

em, given by Eq. (37), and the total emitted power, given
by Eq. (36). For a Bardeen BH and a RN BH, this ratio
behaves very similarly for low to intermediate values of the

angular velocity (up to ΩM ≈ 0.175), with the radiation in
the former case being slightly higher. For angular velocities
higher than ΩM ≈ 0.175, the radiated power reaching null
infinity in the RN case is higher than the one emitted in the
Bardeen setting. Moreover, we see that, in both RN and
Bardeen cases, the amount of radiation reaching infinity is
higher in comparison with the Schwarzschild case, for the
same value of the orbital angular velocity.
For a given value of the source’s angular velocity, the

amount of total power radiated to infinity in the RN BH
case can be the same as the one obtained in the Bardeen BH
case, for specific values of the pair ðQB;QRNÞ. Given a
value for the normalized charge QB of a Bardeen BH, one
can search for the corresponding normalized chargeQRN of
a RN BH, such that the observed radiated power, given by
Eq. (37), is the same in both cases. In Fig. 5 we plot, for
some representative values of QB, the normalized charge
QRN as a function of the source’s angular velocity, up to the
maximum allowed value in Schwarzschild spacetime
(ΩM ¼ 1

3
ffiffi
3

p ). The l summation in Eq. (37) was truncated

at a certain value lmax, such that the computed observed
powers, using truncations at lmax and lmax þ 1, differ in less
than 1%. As we increase the angular velocity, higher
multipole modes start to significantly contribute to the
total emitted power (synchrotron radiation). Consequently,
the truncation in l needs to be much higher than considered
here and the convergence of our numerical results is
affected. From Fig. 5 we see that there is a considerable
difference between the normalized charges in each case.

V. FINAL REMARKS

In this paper we have computed the scalar radiation
emitted by a source in circular geodesic orbit around a
Bardeen black hole, which constitutes a regular spacetime.
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Using the quantum field theory in a curved spacetime
approach, we obtained the emitted power by computing the
one-particle-emission amplitude when the scalar field is
excited by the external source. We compared this emitted
power with the one obtained when the scalar source orbits a
Reissner-Nordström black hole. We have found that, as we
increase the normalized charge in both cases, the peak in
the emitted power of the Bardeen black hole case suffers a
notable drop. In the Reissner-Nordström case, we first
observe a small increase to the emitted power peak and, as
we continue to increase the charge, there is a moderate
decrease of the peak. The difference in the emitted power
between the two cases is mainly due to the behavior of the
inmodes, which are the ones that contribute to the observed
power at infinity.
We have also shown that the Bardeen black hole setting

allows, for low to intermediate values of the source’s
angular velocity, more of the emitted radiation to reach
null infinity in comparison to the case of a Reissner-
Nordström black hole, although their behaviors are quite
similar in this range. Beyond a certain value of the angular
velocity, the emitted radiation reaching null infinity
becomes higher in the Reissner-Nordström black hole
setting. In both cases, the observed radiation is higher
than in the similar setting of a Schwarzschild black hole.
The total radiated power observed at infinity in the

Reissner-Nordström black hole case can be equal to the

same quantity in the Bardeen black hole setting, for
appropriate values of the corresponding normalized
charges. For a given value of the normalized charge QB
in the Bardeen case, our results show that the normalized
charge QRN of the Reissner-Nordström black hole, needed
for the equality between the total observed powers, is
smaller than QB, for values of the source’s angular velocity
smaller than the maximum allowed value in Schwarzschild
spacetime (ΩM ¼ 1

3
ffiffi
3

p ).

The radiation setting considered here also serves as a first
step in considering more realistic scenarios such as the
emission of electromagnetic and gravitational radiations in
the spacetime of regular black holes, such as the Bardeen
solution.
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