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We explore the question of obtaining global solutions in Horndeski’s theories of gravity. Toward this
end, we study a relevant set of the theory and, by employing the Einstein frame we simplify the analysis by
exploiting known results on global solutions of wave equations. We identify conditions for achieving
global solutions as well as obstacles that can arise to spoil such goal. We illustrate such problems via
numerical simulations.
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I. INTRODUCTION

In the context of extensions to general relativity,
Horndeski’s theories [1] stand out since they constitute
the most general four-dimensional, diffeomorphism
covariant theories leading to second order equations of
motion [2,3]. These theories, where the gravitational
degrees of freedom are expressed in terms of a metric
tensor together with a scalar field, have a particularly
distinct feature. Namely, the equations of motion they
define are of second order type. This property ensures the
absence of Ostrogradski ghosts (e.g., [2]), which is
arguably a necessary condition for any physical theory.
The freedom allowed by this family of theories has been
exploited in many fronts, for instance, with goals to
address dark energy (see e.g., [4–7] and references
therein) and incipient explorations of extensions of GR
in binary mergers (e.g., [8–15]). In the former front,
particular examples include quintessence [16,17], kinetic
quintessence or k-essence [18,19], and chameleon/
galileon [20,21] theories.
Typically, applications have been analyzed in the

context of linearized studies over specific backgrounds
endowed with special symmetries, and consistency with
observations in different regimes is addressed. In par-
ticular, the subset of Horndeski’s theories allowed by
observation have been severely constrained by the gravi-
tational wave event GW170817 [22–24], with constraints
derived from linearized studies. In spite of certainly
relevant discussions and consequences derived in this
context, it is important however to understand the fully
nonlinear behavior of allowed theories within this family.
For instance, a successful observation derived at the
linear level which is not derivable from the nonlinear
system would arguably call into question the original

action as providing a true model for nature1 or the extent
to which a linear analysis yields comprehensive/sensible
constraints. Consistency of solutions to the linear prob-
lem with those of the full problem in the linear regime is
not always a given as nonlinear solutions might give rise
to phenomenology completely absent at the linear level—
even when initial conditions are chosen within the linear
regime. In the case of general relativity and its applica-
tion in cosmology, requirements for this being the case
have been discussed in [25].
Naturally, the extent to which a linear solution can be

trusted—with respect to the original action—depends on
one’s understanding of the nonlinear regime. To gain such
understanding, which in turn can help decide which subset
within the theory can be considered physical, a stricter and
certainly natural condition must be satisfied. Namely, well
posedness [26]. This condition, implies a given problem
has a unique solution that depends continuously on initial
and boundary data.2 From a natural point of view, the
satisfaction of these properties is crucial for the physical
understanding of the problem under consideration.
Consequently, insisting a valid theory must yield well-

posed initial boundary value problems is a general powerful
requirement to restrict potential options and identify
possible alternatives to general relativity. The analysis of
this condition in specific theories is typically complex,
which has hindered drawing straightforward conclusions
for Horndeski’s theories in the past. Recent works however
have begun to explore this issue and, in particular, have

1In the former case, the linear system should instead
be regarded as the fundamental building block.

2The absence of Ostrogradski ghosts is necessary but certainly
not sufficient for well posedness.
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uncovered significant restrictions [27–29] even locally. We
stress the importance of this condition cannot be under-
estimated even in linearized regimes. Failure to satisfy it
implies it would be impossible to trust possible solutions let
alone seek them in the first place—regardless of the method
employed to seek for such solutions.
In this paper, both strongly motivated by and building

from these recent works, we revisit the problem from a
slightly different angle by performing our analysis in a
different frame—the so called Einstein frame. As a result,
a simpler system is obtained where the complexity of the
analysis lies primarily in understanding the equation of
motion for the scalar field. In such frame it is arguably
easier to elucidate the degree to which these theories
display a more involved behavior when contrasted with
general relativity and the obstacles that might arise to
obtain global solutions.
We recall that much has been discussed on the issue of

frames in scalar-tensor gravity theories such as Horndeski’s
(e.g., [30,31]). Whether the Ricci scalar appears “clean” in
such action or not is often signaled as being a description in
the Einstein (former) or Jordan frame. Here we explore
(a subset of) Horndeski’s theories from the initial value
problem (IVP) point of view in the Einstein frame, dis-
cuss the existence of delicate issues, and illustrate their
consequences via numerical simulations. As well, and for
concreteness, we do not concern ourselves at this time with
the “nonvacuum case,” i.e., scenarios which include matter.
Here further issues come into play that in and of themselves
raise further concerns for the theory to remain viable—from
observational points of view. This, in turn, requires invok-
ing mechanisms like “Vainshtein screening” which bring
about further mathematical difficulties; see e.g., [32].
This work is organized as follows. In Sec. II we revisit

the special case of Horndeski’s theories that has been
identified as well posed and reanalyze it in the Einstein
frame drawing general conclusions about such case and
discuss issues related to well posedness in the nonlinear
regime. In Secs. III and IV we illustrate our discussion both
analytically and numerically in a couple of special cases.

II. HORNDESKI’S THEORY, SPECIAL
CASE ANALYZED

Horndeski’s theories describe gravitational interactions
in terms of a metric tensor gab and a scalar field ϕ. Their
equations of motion are determined from the action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðΣ5
i¼1LiÞ ð1Þ

where

L1 ¼ Rþ X − VðϕÞ; ð2Þ

L2 ¼ G2ðϕ; XÞ; ð3Þ

L3 ¼ G3ðϕ; XÞ□ϕ; ð4Þ

L4 ¼ G4ðϕ; XÞRþ ∂XG4ðϕ; XÞδacbd∇a∇bϕ∇c∇dϕ; ð5Þ

L5 ¼ G5ðϕ; XÞGab∇a∇bϕ

−
1

6
∂XG5ðϕ; XÞδacebdf∇a∇bϕ∇c∇dϕ∇e∇gϕ: ð6Þ

with X ¼ −1=2∇aϕ∇aϕ, Gab the Einstein tensor, Gi are
functions of the scalars fϕ; Xg, V is a potential, and δb1::bna1::an
is the generalized Kronecker delta symbol.
A thorough analysis of hyperbolicity properties of the

resulting equations of motion, given the complexity of
the PDE system, is naturally a difficult task. One such
study has been presented recently in [27] (see also [28]).
Here, following steps taken to establish local well posed-
ness of Einstein equations [33]—whereby the introduc-
tion of harmonic coordinates renders Einstein equations
manifestly symmetric hyperbolic—a judicious coordinate
choice is found to guarantee strong hyperbolicity. Within
this context, it is shown that only a special subset of
Horndeski’s theories leads to strong hyperbolicity in
harmonic gauge in the nonlinear regime. This subset is
given by the action

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½ð1þG4ðϕÞÞRþX−VðϕÞþG2ðϕ;XÞ�:

ð7Þ
Notice the action above corresponds to the so-called Jordan
frame (as the Ricci scalar appears multiplied by a nontrivial
function of ϕ). The equations of motion obtained from this
action can be found in [27]. A conformal transformation,
of the form g̃ab ¼ Ω2gab with Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ G4ðϕÞÞ
p

, can be
exploited to obtain the equations in the Einstein frame. We
assume that the conformal factor Ω never vanishes, which
ensures that the transformation is well defined and the two
formulations of the theory are equivalent. It allows one to
rewrite the above action as

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃þ 1

ð1þ G4ðϕÞÞ2
× ½ð3½G0

4ðϕÞ�2 þ 1þ G4ðϕÞÞX̃ − VðϕÞ

þ G2ðϕ; ð1þ G4ðϕÞÞX̃Þ�
�
; ð8Þ

where X̃ ¼ −1=2∇̃cϕ∇̃cϕ. From this action, the equations
of motion are

G̃ab ¼
�
3½G0

4ðϕÞ�2 þ 1þ G4ðϕÞ
2ð1þG4ðϕÞÞ2

X̃þ−VðϕÞ þG2ðϕ;XÞ
2ð1þ G4ðϕÞÞ2

�
g̃ab

þ
�

3½G0
4ðϕÞ�2

2ð1þG4ðϕÞÞ2
þ 1þ ∂XG2ðϕ;XÞ

2ð1þG4ðϕÞÞ
�
∇̃aϕ∇̃bϕ;

ð9Þ
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�
g̃ab −

ð1þ G4ðϕÞÞ2∂2
XXG2ðϕ; XÞ

3½G0
4ðϕÞ�2 þ ð1þ G4ðϕÞÞð1þ ∂XG2ðϕ; XÞÞ

∇̃aϕ∇̃bϕ

�
∇̃a∇̃bϕ

¼ 1

3½G0
4ðϕÞ�2 þ ð1þ G4ðϕÞÞð1þ ∂XG2ðϕ; XÞÞ

�
V 0ðϕÞ − ∂ϕG2ðϕ; XÞ − 2G0

4ðϕÞ
VðϕÞ − G2ðϕ; XÞ

1þ G4ðϕÞ

þ
�
2ð1þ G4ðϕÞÞ∂2

ϕXG2ðϕ; XÞ þ G0
4ðϕÞ

�
6G00

4ðϕÞ − 1 − 3∂XG2ðϕ; XÞ − 6
½G0

4ðϕÞ�2
1þ G4ðϕÞ

��
X̃

þ 2G0
4ðϕÞð1þ G4ðϕÞÞ∂2

XXG2ðϕ; XÞX̃2

�
: ð10Þ

In order to write the scalar field equation in the convenient
form (10), we have divided it by the overall factor
3½G0

4ðϕÞ�2þð1þG4ðϕÞÞð1þ∂XG2ðϕ;XÞÞð1þG4ðϕÞÞ−2. In
the following, we will assume that this factor is nonzero.
Notice that neither of the right-hand sides in Eqs. (9) and
(10) involve second order derivatives of the relevant fields
(metric or scalar), and, the hyperbolic properties of the
system can be assessed independently for gab and ϕ. In the
case of the metric tensor, such properties only depend on
the metric tensor itself and we can draw from the vast
knowledge about properties of Einstein equations (see e.g.,
[34]). In particular, we recall that they can be straightfor-
wardly rendered into symmetric hyperbolic form. Indeed,
following again [33], one can introduce harmonic coordi-
nates (Γ̃a ¼ 0), and Eq. (9) becomes symmetric hyperbolic.
Further, we recall the speed of propagation of perturbations
is independent of the metric tensor itself (thus the equation is
linearly degenerate and no shocks can arise from smooth
initial data). Importantly, the observations above with
regards to well posedness (at least locally) and linear
degeneracy are certainly valid for other gauges. As we shall
discuss below, regardless of the gauge choice, the scalar field
equation has particular “worrisome” properties.
The principal part of the scalar field equation depends on

fgab;ϕ; ∂aϕg. Indeed, the principal part of the equation for
ϕ, Eq. (10), is given by a wave equation of a modified
metric

γab ¼ g̃ab −
ð1þ G4ðϕÞÞ2∂2

XXG2ðϕ; XÞ
3½G0

4ðϕÞ�2 þ ð1þ G4ðϕÞÞð1þ ∂XG2ðϕ; XÞÞ
× ∇̃aϕ∇̃bϕ: ð11Þ

Thus, propagation speeds of scalar field perturbations
depend on the state of the field and its gradient. As a
consequence, shocks can develop from smooth initial data,
at which point uniqueness of the solution is lost and with it,
well posedness.3 Another potential problem is that the
equation itself might change character pointwise in the

spacetime. Indeed the character of this equation, i.e.,
hyperbolic, elliptic, or parabolic, is determined by the
eigenvalues of γab. Namely, if no eigenvalue is zero, and
the sign of only one of them is opposite to the others the
equation is hyperbolic4 (with þ signature it would be one
negative). If all signs are the same the equation is elliptic
and if at least one eigenvalue is zero parabolic. For a well-
defined initial value problem describing a small departure
from general relativity, the equation would be hyperbolic.
Notice that at the linear level, Eq. (10) is symmetric
hyperbolic, linearly degenerate, and the scalar field per-
turbations propagate at the speed of light of the metric g̃ab.
However, at the nonlinear level—even with smooth initial
data—if dispersion does not win and gradients grow
(assuming ∂XXG2 ≠ 0) the character of the equation can
change and, by continuity, it would do so by turning—
locally—to parabolic and then elliptic. Thus either through
a change of character, or by loss of uniqueness due to
shocks well posedness could be lost.
Interestingly, a change in character in spherically sym-

metric nonlinear studies in subclasses of Horndeski’s the-
ories has been identified, for instance in k-essence [37] and
Einstein-Dilaton-Gauss-Bonnet theories [38]. The theories
studied in these references are seemingly different from
Eq. (7), but they can be linked to a Horndeski theory through
the following mappings. In the former case, only the kinetic
term G2ðXÞ is present, while in the latter we only have
G5ðϕ; XÞ ¼ −λ ln jXj where λ is the coupling constant.5

Notice however that the potential change in character or
the development of shocks might be absent in special cases.
To assess this, consider the following transformation for the
scalar field:

ϕ̃ ¼
Z

3½G0
4ðϕÞ�2 þ ð1þ G4ðϕÞÞð1þ ∂XG2ðϕ; XÞÞ

ð1þ G4ðϕÞÞ2
dϕ:

ð12Þ

3To recover it, further conditions would need to be imposed;
see discussions in [35,36].

4If more than one is of opposite sign, the equation would be
ultrahyperbolic in character.

5Although such a function G5 is not smooth at X ¼ 0, the
equations of motion are well defined everywhere [39].
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The scalar equation of motion becomes

g̃ab∇̃a∇̃bϕ̃ ¼ 1

ð1þ G4ðϕÞÞ2
�
V 0ðϕÞ − ∂ϕG2ðϕ; XÞ − 2G0

4ðϕÞ
VðϕÞ − G2ðϕ; XÞ

1þ G4ðϕÞ

− G0
4ðϕÞ

�
6G00

4ðϕÞ − 1þ ∂XG2ðϕ; XÞ − 6
½G0

4ðϕÞ�2
1þ G4ðϕÞ

�
X̃

�
; ð13Þ

where ϕ is to be understood as a function of ϕ̃: ϕðϕ̃Þ,
provided the relation (12) is invertible. Then, the scalar
field ϕ̃ obeys a wave equation of the original metric g̃ab,
and no pathologies would arise (unless g̃ab itself becomes
singular). However, the equivalence between the new
scalar field and the old one is a nontrivial question, as
the transformation (12) may not always be well defined.
In particular, the requirement that the newly defined
scalar field should verify ∇̃½μ∇̃ν�ϕ̃ ¼ 0 further implies that

∇̃½μðX̃∂ν�ϕÞ ¼ 0, thus X̃∂aϕ is twist free. Such condition
could be regarded as an external constraint to ensure well
posedness. In the simple example of Sec. III A, we perform
a similar redefinition of the scalar field which is always
well defined as it does not depend on X. As an illustration,
we show in the nonlinear example of Sec. III B how the
twist evolves for several representative cases.
Notice that by working in the Einstein frame, we have

straightforwardly recovered the conclusions from [27], i.e.,
local well posedness of this class of Horndeski’s theories by
virtue of the equations of motion for gab and ϕ being
symmetric hyperbolic. The question of global solutions to
this theory is, naturally, far more involved which is not
unexpected as this is already a complex question in general
relativity. Nevertheless, some relevant conclusions can
be drawn:

(i) At the nonlinear level for weak data, the equation
satisfiesKlainerman’snull condition [40] ifG is at least
orderX (∝ X̃). Consequently, togetherwith stability of
Minkowski results [41] or the weak null energy con-
dition satisfaction by Einstein equations [42], together
with contributions of ϕ satisfying Strauss’s conjecture
[43] would imply the (subclass) of Horndeski’s
theories considered has a global solution in the small
data case. Beyond the weak case, however, little is
known; although, asmentioned, the propagation speed
dependence on the field and its gradient implies a high
likelihood of shocks arising and/or a change in
character. Would such issues arise and be “invisible”
to far observers? It would depend on whether they
generically form inside a black hole. In such case,
pathological issues might be shielded from problem-
atic consequences at the classical level. A priori this
seems far from guaranteed; indeed, in the context of
Ref. [38], a change in character of the equations is
encounteredprior toablackholebeingformed.Wewill
also illustrate such a behavior in Sec. III B.

(ii) Since the speed of propagation of (perturbations of)
metric tensor and scalar field can be different, black
holes are defined by the fastest outward propagation
speeds. Additionally, gravitational Cherenkov radi-
ation would be possible and high energy cosmic
rays can help to draw constraints on this process
(e.g., [44]).

Last, we can also check what we can draw from adopting
the harmonic gauge in the Einstein frame and its implica-
tion in the Jordan frame. For starters, it is trivial to deter-
mine that Γ̃a ¼ Ω−2ðΓa − 2∇a lnΩÞ. Thus, in the Jordan
frame the harmonic condition from the Einstein frame calls
for adopting coordinates that satisfy instead Γa ¼ 2∇a lnΩ,
which implies

Γa ¼ G0
4

1þ G4

∇aϕ ð14Þ

which is precisely the condition derived in [27] in the
Jordan frame to obtain a strongly hyperbolic system of
equations and establish local well posedness.

III. ILLUSTRATION IN SPECIFIC CASES

A. Jordan and Einstein frames equations of motion.
Hyperbolicity and implications

Within the class of Horndeski’s theories, one of the
simplest ones is given by

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ω

ϕ
gαβ∇αϕ∇βϕ

�
; ð15Þ

where ω is a function of ϕ only. A comparison with
Horndeski’s Lagrangian implies

G2 ¼
ð2ω − ϕÞ

ϕ
X; G4 ¼ ϕ − 1;

with all the other functions (including the potential) set to
zero. From our previous discussion, since ∂XXG2 ¼ 0, it is
clear that in the Einstein frame characteristics of both
metric tensor and scalar field are determined by the metric.
This theory has recently been the subject of fully nonlinear
studies in the context of binary black neutron star mergers
[9,45,46]. In such scenarios global solutions describing
several orbits, merger, and aftermath have been success-
fully achieved. This suggests an underlying robustness of
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the equations of motion which can be understood at the
analytical level rather simply. To fix ideas, let us consider
the vacuum case. The field equations derived from the
(Jordan frame) action (15) are

Rμν −
1

2
gμνR ¼ ω

ϕ2

�
∇μϕ∇νϕ −

1

2
gμν∇αϕ∇αϕ

�

þ 1

ϕ
ð∇μ∇νϕ − gμν□ϕÞ; ð16Þ

□ϕ ¼ −
ϕR
2ω

þ
�

1

2ϕ
−

ω0

2ω

�
ð∇ϕÞ2: ð17Þ

Upon replacing the Ricci scalar one reexpresses Eq. (17) as

□ϕ ¼ −
ω0

3þ 2ω
ð∇ϕÞ2; ð18Þ

which satisfies the null condition in the weak case.
However, a nontrivial coupling—at the level of the princi-
pal part—is present in Eq. (16). Furthermore, notice the
right-hand side of this equation contains second derivatives
of the scalar field—thus such terms do belong to the
principal part of the system. As well, because of such terms,
the right-hand side does not seemingly satisfy the null
energy condition. Both these observations indicate it is not
a priori clear that solutions obtained from this system are
well behaved.
However, through the conformal transformation [47],

gμν → g̃μν ¼ ϕgμν; ð19Þ

and the scalar field redefinition

ϕ → ϕ̃ ¼
Z ð3þ 2ωÞ1=2

ϕ
dϕ; ð20Þ

one recasts the theory in the Einstein frame. In this frame,
the theory is defined by the standard Einstein-Hilbert action
with an extra field,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
16π

−
1

2
g̃μν∇̃μϕ̃∇̃νϕ̃

�
: ð21Þ

The field equations are the usual Einstein equations with
the scalar field as a source together with a rather trivial
equation for the scalar field itself,

R̃μν −
1

2
g̃μνR̃ ¼ 8π

�
∇̃μϕ̃∇̃νϕ̃ −

1

2
g̃μν∇̃αϕ̃∇̃αϕ̃

�
; ð22Þ

□̃ ϕ̃ ¼ 0: ð23Þ

The equation for the (conformal) metric g̃ab is amenable
to the standard analysis of well posedness in Einstein

equations (e.g., [34]). In particular, adopting harmonic
coordinates (Γ̃a ¼ 0) the principal part of Eq. (21) becomes
just ten wave equations. Further, the right-hand side now
obeys the null energy condition. Thus, in the Einstein frame
it follows that at least a local in time solution will exist and
standard geometrical arguments can be exploited to assess
general features of the spacetime behavior.
What does this imply in the Jordan frame? Here,

since, Γ̃a ¼ ϕ−2ðϕΓa −∇aϕÞ, the discussion above sug-
gests adopting coordinates satisfying Γa ¼ ϕ−1∇aϕ. With
this choice, the equations of motion in the Jordan frame can
be reexpressed in the following way. Beginning with

Rab ¼
ω

ϕ2
∇aϕ∇bϕþ 1

2ϕ
gab□ϕþ 1

ϕ
∇a∇bϕ; ð24Þ

we then define R̂ab þ∇ðaΓbÞ ≡ Rab (i.e., taking out the
covariant derivative of the trace of the Christoffels). Now,
replacing in such a term the condition on the coordinates,
we obtain

R̂ab ¼
ωþ 1

ϕ2
∇aϕ∇bϕþ 1

2
gabϕ−1□ϕ: ð25Þ

A priori we still have second order derivatives in the right-
hand side of the above equation, but—on shell—we can use
the equation for the field ϕ still. Recall,

□ϕ ¼ −
ω0

ð3þ 2ωÞ ð∇ϕÞ2: ð26Þ

Thus, the metric equation results in

R̂ab ¼
ð1þ ωÞ

ϕ2
∇aϕ∇bϕ −

ω0

2ϕð3þ 2ωÞ gabð∇ϕÞ2: ð27Þ

And it is evident the right-hand side can satisfy the null
energy condition for w ≥ 1.

B. Exploring the nonlinear behavior.
Case with ∂XXG2 ≠ 0

We now turn our attention to Horndeski’s theories with a
nonlinear kinetic term G2ðϕ; XÞ ¼ −gX2, with all other
functions, as well as the potential, set to zero for simplicity.
This choice, similar to those adopted in [37], can be thought
of as the first nonlinear term in a Taylor expansion of the
kinetic term in a k-essence theory,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ X − gX2�: ð28Þ

Our goal is to study the nonlinear behavior of the theory
and explore the possible phenomenology that can arise.
While we are restricting our discussion to a rather special
case, as we shall see, a number of possible pitfalls can
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appear which are likely to manifest in more general
cases. To simplify the treatment and presentation, we
concentrate on spherically symmetric scenarios and
present several cases defined by different initial conditions
as well as the value of the coupling g. For simplicity we
adopt Schwarzschild coordinates where the metric can be
written as

ds2 ¼ −α2dt2 þ a2dr2 þ r2dΩ2: ð29Þ

Thus the only dynamical metric functions are the lapse
function αðt; rÞ and aðt; rÞ. Recall that these coordinates
become singular when a horizon forms. Such scenario takes
place when lμ∇μr ¼ 0, where lμ is a null vector [37]. In the
gauge (29), this is simply α ¼ 0. Consequently, with our
current implementation we can explore up to black hole
formation. Despite this limitation, as we shall see below,
one can identify several problematic scenarios arising either
outside the black hole or even prior to its formation. Thus,
severe restrictions to well posedness arise which are not
cloaked by a horizon for asymptotic observers.
To simplify the discussion and the numerical implemen-

tation, we introduce standard first order variables as used
in [48],

Φ≡ ϕ0; Π≡ a
α
_ϕ; ð30Þ

using the notation _f ¼ ∂tf and f0 ¼ ∂rf. In the special
case of G2ðϕ; XÞ ¼ G2ðXÞ, as in (28), Eqs. (9) and (10),
respectively, take the form

Rμν −
1

2
gμνR ¼

�
X þ G2ðXÞ

2

�
gμν

þ
�
1þ ∂XG2ðXÞ

2

�
∇μϕ∇νϕ; ð31Þ

�
gμν −

∂2
XXG2ðXÞ

1þ ∂XG2ðXÞ
∇μϕ∇νϕ

�
∇μ∇νϕ ¼ 0 ð32Þ

where the effective inverse metric γμν, as in Eq. (11), is
given by

γμν ¼ gμν −
∂2
XXG2ðXÞ

1þ ∂XG2ðXÞ
∇μϕ∇νϕ: ð33Þ

Now, in order to monitor the character of the equation of
motion for the scalar field (32), the eigenvalues of the
effective inverse metric must be computed. In particular we
extract at any given time the two eigenvalues, here labeled
as λ� for every spatial point. Since we are mainly interested
in one of the eigenvalues going to zero, the relevant
quantities will be minðλþÞ and maxðλ−Þ, where minð·Þ
and maxð·Þ refer to the minimum and maximum in the
spatial (radial) direction, at any given time. It is important

to keep in mind that although λþ > 0 and λ− < 0 for ϕ ¼ 0,
this is not necessarily the case for arbitrary configurations.
In fact, the equations will change character when these
conditions cease to be satisfied. The two eigenvalues can be
expressed as

λ� ¼ γtt þ γrr

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
γtt þ γrr

2

�
2

− γttγrr þ ðγtrÞ2
s

¼ γtt þ γrr

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
γtt þ γrr

2

�
2

− detðγμνÞ
s

: ð34Þ

It is evident that the system will become parabolic when
detðγμνÞ ¼ 0, as expected. Additionally, it is important to
keep track of the characteristic speeds, or propagation
velocities, of the scalar field. This can be done by extracting
the eigenvalues, here labeled as V�, of the principal part of
the (first order) equations of motion for Φ and Π. These
eigenvalues determine the shape of the light cones for the
scalar field, and can be used to identify features such as
sound horizons (horizons for the scalar field [37]). With
our conventions, asymptotically Vþ → 1 while V− → −1
describing, respectively, the incoming and outgoing modes
of the field. A sound horizon—with respect to asymptotic
observers—will appear6 when V− ¼ 0; Vþ ≥ 0. Again, as
in the case of the effective metric, we are interested in
minðVþÞ and maxðV−Þ,

V� ¼ −
γtr

γtt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
γtr

γtt

�
2

−
γrr

γtt

s
¼ −

γtr

γtt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
detðγμνÞ
ðγttÞ2

s
:

ð35Þ

As mentioned, when detðγμνÞ ¼ 0 the equation changes
character. However, the rate at which ðγttÞ2 → 0 distin-
guishes two important cases with respect of the type of
change. Recall that mixed character equations can often be
classified in comparison to two standard equations [49].
These are the Tricomi equation

∂2
yuðx; yÞ þ y∂2

xuðx; yÞ ¼ 0; ð36Þ

where the characteristic speeds, �y1=2, go to zero at the
character transition line y ¼ 0, and the Keldysh equation

∂2
yuðx; yÞ þ

1

y
∂2
xuðx; yÞ ¼ 0; ð37Þ

where the speed �y−1=2 diverges at the transition line.
Notice that the discriminant between the two character-

istic speeds (35) turns out to be proportional to − detðγμνÞ.

6Naturally the opposite condition still defines a local sound
horizon, cloaking some local region from being reached by scalar
field perturbations.
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Therefore, as long as ðγttÞ2 → 0 slower than detðγμνÞ → 0,
the characteristic speeds Vþ; V− will coincide and the
scalar field light cone becomes degenerate. Thus, there
must exist some instant of time, before the system
becomes—at least locally—parabolic, when either Vþ or
V− is zero (the latter case implying a sound horizon)
indicative of a Tricomi-type transition. On the other hand,
if ðγttÞ2 → 0 faster than detðγμνÞ → 0 the characteristic
speeds diverge indicating a transition of Keldysh type.
This case is more delicate to tract numerically as the
diverging speeds imply the time step should be adjusted to
decrease inversely with the maximum speed with an
explicit integration algorithm. (Note: an implicit update
could be implemented to bypass this issue, but at the
expense of missing physics taking place at smaller scales
than the time step adopted.)
Interestingly, in [49], only a Tricomi-type behavior is

observed. Anticipating our results, we observe both cases
depending on the value of the coupling g: Tricomi-like for
g < 0 and Keldysh-type transitions g > 0. The well posed-
ness of Tricomi equation has been explored in [50,51] and,
as discussed in [49] the initial/boundary conditions to
ensure well posedness would be rather unnatural from a
time-development point of view.

1. Implementation details

In the first order variables (30) we can extract from the rr
and tt components of Eq. (31), respectively, the first order
constraint equations

α0 ¼ α

8r
½4ða2 − 1Þ þ r2ðΦ2 þ Π2Þ�

− g
rα
16a2

½ðΦ2 þ Π2Þ2 − 4Φ4�; ð38Þ

a0 ¼ a
8r

½4ð1 − a2Þ þ r2ðΦ2 þ Π2Þ�

þ g
r

16a
½ðΦ2 þ Π2Þ2 − 4Π4�: ð39Þ

Equation (32), in terms of the first order variables, is
given by

_Π ¼ 1

r2

�
r2
α

a
Φ
�0

þ 2g
a2 þ gðΦ2 − 3Π2Þ

α

a

×

�
ðΦ2 þ Π2ÞΦ0 − 2ΦΠΠ0

þ
�
r
4
Π2 −

a0

a

�
ðΦ2 − Π2ÞΦ

þ gr
4a2

ðΦ2 − Π2Þ2ΦΠ2 þ 2

r
ΦΠ2

�
; ð40Þ

together with the condition that ∂t∂rϕ ¼ ∂r∂tϕ, namely

_Φ ¼
�
α

a
Π
�0
: ð41Þ

The effective inverse metric from Eq. (33) reads

γtt ¼ −
1

α2

�
1 − g

2Π2

a2 þ gðΦ2 − Π2Þ
�
;

γrr ¼ 1

a2

�
1þ g

2Φ2

a2 þ gðΦ2 − Π2Þ
�
; ð42Þ

γtr ¼ −g
2ΠΦ

aαða2 þ gðΦ2 − Π2ÞÞ ; ð43Þ

and the matrix defining the principal part of Eqs. (40) and
(41) is

M ¼
� 0 α

a

− aγrr

αγtt −2 γtr

γtt

�

¼ α

a

�
0 1

1þ 2g Φ2þΠ2

a2þgðΦ2−3Π2Þ −4g ΠΦ
a2þgðΦ2−3Π2Þ

�
: ð44Þ

The equations of motion are solved in a constrained
evolution scheme. Both αðt; rÞ and aðt; rÞ are obtained
through a spatial integration while the scalar field is
integrated in time through a Runge Kutta fourth order
time integrator. At each time step (intermediate or full),
given a spatial profile for the fields Φ and Π, the constraint
Eqs. (38) and (39) are integrated in space using also a
Runge-Kutta fourth order method (RK4). First, a is
integrated radially outwards from r ¼ 0 to r ¼ rmax with
the initial condition aðr ¼ 0Þ ¼ 1. This condition ensures
regularity at (α0 ¼ a0 ¼ 0) at the origin. Then, α is
integrated radially inwards with the condition αðrmaxÞ ¼
1=aðrmaxÞ. Notice that, as these integrations are carried out,
the fields Φ and Π which are needed at “virtual radial
points” in between grid points are obtained through fourth
order (second order near the spatial boundaries) spatial
interpolations at any given time step.
Evolution of Φ and Π forward in time is carried out via

the method of lines with a RK4 integration using Eqs. (40)
and (41). Spatial derivatives are computed with second
order (first order near the boundaries) finite-difference
operators satisfying summation by parts. Regularity at
the origin is addressed by using l’Hôpital’s rule at r ¼ 0
to regularize the equation, and we defined totally outgoing
boundary conditions at the outer radial boundary. A small
amount of fourth order (second order near the boundaries)
artificial dissipation is added for convenience as described.
For further details see [52–54].
The numerical results displayed in this paper are per-

formed in a spatial domain ranging from r ¼ 0 to
r ¼ rmax ¼ 100, and a spatial resolution of Δr ¼ 1=80
(though convergence and consistency of the solutions
obtained is checked with resolutions of Δr ¼ 1=20 and
Δr ¼ 1=40). The Courant number is initially taken to
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be C ¼ 1=10, and therefore Δt ¼ CΔr ¼ 1=800.
Numerical output is produced every 40 time steps. For
cases displaying very fast changes, or a high speed of
propagation of the scalar field, we switch to a Courant
parameter of C ¼ 1=100 (Δt ¼ 1=8000) in the last part of
the simulation, and we produce output of the solution every
4 time steps. For reference, the times when these refine-
ments are initiated are listed in the Appendix.

2. Initial conditions and coupling parameters

As mentioned, our goal is to explore the possible
phenomenology that can arise in this theory. We have
performed extensive studies to try and isolate different
scenarios and, for concreteness in our presentation, we
present three representative cases for positive and negative
coupling values. In particular, we adopt initial data for the
(first order variables of the) scalar field given by

Φðt ¼ 0; rÞ ¼ A exp

�
−
ðr − r0Þ2

σ2

�
cos

�
π

10
r

�
;

Πðt ¼ 0; rÞ ¼ 0; ð45Þ
with r0 ¼ 55. The three cases, labeled A, B, and C, are
defined by the following parameters:

(i) Case A: A ¼ 0.02, σ ¼ 15.0.
(ii) Case B: A ¼ 0.14, σ ¼ 1.5.
(iii) Case C: A ¼ 0.045, σ ¼ 15.0.
For each of these parameter sets, we have obtained

solutions for g ¼ þ1 (labeled Aþ, Bþ and Cþ) and for
g ¼ −1 (A−, B− and C−). Naturally, the scale over which a
nontrivial physical behavior occurs depends on (i) the
initial location and amplitude of the pulse—as it travels

towards the origin in spherical symmetry, his associated
energy density naturally grows—and (ii) the strength of the
coupling parameter g.

C. Negative coupling constant: g= − 1
Setting g ¼ −1, we observe three different outcomes

depending on the initial conditions of the wave pulse as
illustrated in Fig. 1. If the data is weak enough, case A−,
the ingoing pulse reaches the origin, bounces off it, and
disperses as it propagates to infinity. For configuration B−,
the eigenvalue λþ of the effective inverse metric crosses
zero at t ≈ 56.63, r ≈ 1.75while the lapse remains bounded
from below by α ≈ 0.62. This indicates the system has
become parabolic before a light horizon forms. Further, as
predicted by Eq. (35), the characteristic speeds of the scalar
field merge together as λþ → 0 and acquire an imaginary
part after that. Before the transition point, the eigenvalue
V− crosses zero at t ≈ 56.52, r ≈ 1.90, and therefore a
sound horizon is indeed produced. However, since the lapse
function α is positive everywhere, there is no light horizon
and perturbations of the metric tensor can still propagate
through the sound horizon, thus the transition point is not
disconnected from outside observers. This is not the only
possible outcome for strong enough initial data, as in
configuration C− a light horizon does form, together with a
sound horizon at r ≈ 6.5, without any change in character
of the scalar field equation. In Fig. 1 C−, the final state at
and outside this region is described by a black hole with an
outwards propagating field. As mentioned, we cannot
comment on what takes place inside the horizon.
Interestingly, case B− displays characteristic speeds going
to zero before going imaginary where the equation changes

FIG. 1. Eigenvalues for g ¼ −1, in cases A− (left), B− (center), and C− (right). The upper three plots show the (max/min of)
eigenvalues λ� of the effective inverse metric γμν and the minimum of α. The lower three plots show the eigenvalues V� of the principal
part of the scalar field equations, corresponding to the characteristic speeds of propagation of the scalar. In each plot, the upper red
curves correspond to the spatial maximum (red dashed) and minimum (red solid) values of the λþ and Vþ, while the lower blue curves
depict the spatial maximum (blue solid) and minimum (blue dashed) of λ− and V−. The thick black solid line is the lapse function α, used
to identify the formation of a black hole. A gray line at 0 is added as a guide to the eye.
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character to parabolic. This, as discussed in [49], is an
indication that the equation is of Tricomi type.

D. Positive coupling constant: g= + 1

For g ¼ þ1, delicate features in the solution for the same
initial conditions developed in a more marked way and,
arguably, more violently. The obtained behavior is illus-
trated in Fig. 2. Naturally, there is not much qualitative
difference in Aþ configuration. This is to be expected since
for weak enough data, the impact of the scalar field is
considerably suppressed. In cases Bþ and Cþ, however, λ−
crosses zero and the system becomes parabolic in a rather
sharp, abrupt way. The transition occurs at t ≈ 54.82, r ≈
1.70 for case Bþ, and at t ≈ 68.63, r ≈ 0 for case Cþ.
In contrast to the previous case, cases Bþ, Cþ display

fastly growing characteristic speeds right before becoming
imaginary where the equation changes character to para-
bolic. This, as discussed in [49], is an indication that the

equation is of Keldysh type. Moreover, this implies these
regimes have a natural causal horizon significantly larger
than that of light (e.g., [55]). Nevertheless, the change of
character in the equation signals well-behaved solutions
can only be obtained within a finite range of time.
Furthemore, this change of character—for both values of
coupling—takes place prior to a shock being formed.
Finally, we illustrate the behavior of the (only nontrivial)

component, τtr, of the twist

τμν ¼ ∇½μðX∂ν�ϕÞ ð46Þ
in Figs. 3 and 4 for the negative and positive couplings
adopted. As is evident in the figures, in the weak cases (A−,
Aþ), the twist remains bounded and relatively small
throughout the evolution. In contrast, in all but the C−
cases the twist grows without bound. In case C−, however,
the twist remains bounded since the large value of a at the
horizon causes X ¼ a−2ðΠ2 −Φ2Þ=2 to approach zero.

FIG. 2. Eigenvalues for g ¼ þ1, in cases Aþ (left), Bþ (center) and Cþ (right). The upper three plots show the (max/min of)
eigenvalues λ� of the effective inverse metric γμν and the minimum of α. The lower three plots show the eigenvalues V� of the principal
part of the scalar field equations, corresponding to the characteristic speeds of propagation of the scalar. In each plot, the upper red
curves correspond to the spatial maximum (red dashed) and minimum (red solid) values of the λþ and Vþ, while the lower blue curves
depict the spatial maximum (blue solid) and minimum (blue dashed) of λ− and V−. The thick black solid line is the lapse function α, used
to identify the formation of a black hole. A gray line at 0 is added as a guide to the eye.

FIG. 3. Maxjτtrj for cases A− (left), B− (center), and C− (right).
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IV. FINAL COMMENTS

In this work we explored the subset of Horndeski’s
theories identified as being able to define locally well posed
problems. The analysis we build upon, described in
[27,28], relied on identifying and exploiting a specific
gauge. Such a choice might a priori be regarded as
restrictive; however, when seen from the Einstein frame
point of view, it can be argued as being quite natural.
Further, note the discussion—and problems identified that
can arise—for the dynamics of the scalar field holds
regardless of the gauge chosen to consider the evolution
for the metric sector. In particular, one can argue for the
existence of global well-behaved solutions in the weak data
case. Beyond this regime, however, the truly nonlinear
character of the equations can induce phenomenology
which present serious roadblocks. Avoiding such issues
requires satisfying a twist-free condition, but such a case
might be too restrictive depending on the application and
context of interest. In the general case, the strong possibility
of a change in character of the equation—from hyperbolic
to elliptic through a parabolic stage—as well as the loss of
uniqueness through the appearance of shocks further
question the ability to define well-posed problems with
these theories. (In simplified settings, similar deficiencies
have been identified [32,56,57]). We mention in passing
that since the effective metric depends on the gradient of the
scalar field, the transition to parabolic/elliptic regimes is
likely to take prior to the formation of shocks in generic
situations (also highlihgted in [38]). Hence, considering
Horndeski’s theories as the leading order in a gradient
expansion, problems might arise still within the a priori
assumed regime of applicability. The timescale for the
identified pathologies to arise depends, naturally, on the
coupling value considered and the initial data adopted. Due
to these difficulties, the extent to which global solutions
obtained within the linearized regime and the information
one can draw from them with respect to the original action
can be regarded as suspect.
This observation, which is arguably in tension with

interesting observations drawn at linearized levels in
the cosmological context, perhaps calls for a different

philosophy with respect to Horndeski’s theories. For
instance, to use the linearized equations of motion as a
starting point to build a new one free of the (many)
problems identified at the nonlinear level through the
addition of further suitable operators (for a related dis-
cussion, see [58]). However, it might come at the expense
of higher derivatives being introduced. A complementary
or alternative approach would be to identify the set of
behaviors which can be considered physical and, armed
with a suitable justification, modify the nonlinear equations
of motion to control unphysical pathologies (e.g., [36,59]).
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APPENDIX: NUMERICAL DETAILS

In order to have a better time resolution in the last stages
of the simulations, the Courant parameter is reduced from
1=10 to 1=100, and the output is produced every 4 time
steps. The instants of time where this happens are listed in
Table I.

FIG. 4. Maxjτtrj for cases Aþ (left), Bþ (center), and Cþ (right).

TABLE I. Instants in time where resolution is increased.

Parameter set A− B− C− Aþ Bþ Cþ
Refinement
time

Never t ¼ 56.5 Never Never t ¼ 54.0 t ¼ 68.0

LAURA BERNARD, LUIS LEHNER, and RAIMON LUNA PHYS. REV. D 100, 024011 (2019)

024011-10



Further, we compute the order of convergence of solutions Q as

2Q ¼ jSΔ=2 − SΔj
jSΔ=4 − SΔ=2j

: ðA1Þ

In Fig. 5 the order of convergence is shown as a function of time for the four grid functions, indicating convergence with the
expected rate.
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