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While no-hair theorems forbid isolated black holes from possessing permanent moments beyond their
mass, electric charge, and angular momentum, research over the past two decades has demonstrated that a
black hole interacting with a time-dependent background scalar field will gain an induced scalar charge. In
this paper, we study this phenomenon from an effective field theory (EFT) perspective. We employ a novel
approach to constructing the effective point-particle action for the black hole by integrating out a set of
composite operators localized on its worldline. This procedure, carried out using the in-in formalism,
enables a systematic accounting of both conservative and dissipative effects associated with the black hole’s
horizon at the level of the action. We show that the induced scalar charge is inextricably linked to accretion
of the background environment, as both effects stem from the same parent term in the effective action. The
charge, in turn, implies that a black hole can radiate scalar waves and will also experience a “fifth force.”
Our EFT correctly reproduces known results in the literature for massless scalars, but now also generalizes
to massive real scalar fields, allowing us to consider a wider range of scenarios of astrophysical interest. As
an example, we use our EFT to study the early inspiral of a black hole binary embedded in a fuzzy dark
matter halo.

DOI: 10.1103/PhysRevD.100.024010

I. INTRODUCTION

The uniqueness theorems pioneered by Israel [1] (see
also Ref. [2] for a recent review) tell us that black holes are
remarkably simple objects characterized only by their
mass, electric charge, and angular momentum. Even if
one considers more general field theories interacting with
gravity, the general rule, summarized by the “no-hair”
theorems [2–12], is that there are no additional charges that
a black hole can carry. These precise theorems are
predicated on several crucial assumptions, however, which
if violated can lead to a variety of new solutions. Many such
examples are known today, including colored black holes
[13], black holes with a cosmic string [14], and black holes
with complex massive scalar or Proca hair supported by
rotation [15,16], or real scalar hair supported by exotic
gravitational couplings [17,18].
In this paper, we revisit a different kind of circumvention

of the no-hair theorems. By relaxing the assumptions of
stationarity and asymptotic flatness, which bear little

resemblance to astrophysical environments, even aminimally
coupled, real scalar field can exhibit interesting phenomenol-
ogy around a black hole. A classic example is the inflaton.
Neglecting backreaction, Jacobson [19] showed that the
solution near the event horizon1 is given by the Kerr metric
surrounded by an effectively massless scalar,

ϕðt; rÞ ¼ ϕ0 þ _ϕ0

�
tþ 2GMrþ

rþ − r−
log

�
r − rþ
r − r−

��
; ð1:1Þ

whereϕ0 þ _ϕ0t is the background “coasting” solution and r�
mark the locations of the inner and outer horizons in Boyer-
Lindquist coordinates. Although valid only while _ϕ0t is
sufficiently small, this solution nonetheless remains a good
effective description of the inflationary epoch from the
perspective of the black hole, whose light-crossing time is
much shorter than cosmological timescales.
Let us now zoom out on this solution by expanding in

powers of GM=r. We can write

ϕ ¼ Φþ Q
4πr

þOð1=r2Þ; Q ¼ −A∂tΦ; ð1:2Þ
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1Solutions that extend all the way to the cosmological horizon
have also been found [20,21], albeit only for spherical black
holes.
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where A ¼ 8πGMrþ is the area of the event horizon. The
first term, Φ ¼ ϕ0 þ _ϕ0t, describes the background scalar
field that persists independently of the black hole. The
effect of the black hole is to “drag” the scalar, leading to the
Coulomb-like potential in the second term, whose dimen-
sionless numerator Q is called the induced scalar charge.2

More recently, Horbatsch and Burgess [22] applied this
result to models of the Universe in which late-time
acceleration is driven by a rolling scalar. In such cases,
all black holes should be dressed with a charge Q ¼ −A _ϕ0,
which they argue enables a black hole to radiate energy and
momentum into scalar waves. Furthermore, as scalar
radiation would lead to a faster decay in the orbital period
of a binary, they arrive at the constraint

ffiffiffiffiffiffiffiffiffi
4πG

p
j _ϕ0j≲ ð16 daysÞ−1 ¼ 7 × 10−7 s−1 ð1:3Þ

on any rolling scalar in the vicinity of the quasar OJ287.
This bound stems from the supermassive black hole binary
at the center of the quasar having an inspiral consistent with
the predictions of general relativity in vacuum to within an
uncertainty of 6% [23–25]. While by no means a spec-
tacular bound (a slow-rolling scalar should satisfyffiffiffiffiffiffiffiffiffi
4πG

p j _ϕ0j ≪ H0 ¼ 2 × 10−18 s−1), that black holes are
sensitive to this value at all is interesting. Black holes
observed by LIGO have also been used to constrain this
effect [26], but the bound obtained is much looser.
It is worth emphasizing that this behavior is not unique to

rolling scalars: Black holes will develop scalar charges
when embedded in any arbitrary scalar-field environment,
as long as the background scalar evolves in time relative to
the black hole’s rest frame. This intuition is supported by
numerical relativity simulations [27,28], which show that
scalar radiation is also emitted by black holes moving
through background scalar fields (even static ones) that are
spatially inhomogeneous. In general, an analytic descrip-
tion of such systems is not possible, except when there
exists a large hierarchy between the length and timescales
of the black hole and its environment. In this limit, which
will be our focus, the black hole can be approximated as a
point particle traveling along the worldline of some
effective center-of-energy coordinate. The general defini-
tion for the scalar charge should then be

QðτÞ ≔ −A _Φ(zðτÞ); ð1:4Þ

where τ is the proper time along the worldline zμðτÞ.
This brings us to the motivation for this work: Can we

understand the full extent to which generic scalar-field
environments affect the motion of black holes embedded
within them? To date, only the flux of scalar radiation has
been studied, but it is possible that a black hole’s scalar

charge impacts the inspiral in other ways. Moreover,
previous analytic studies have all been limited to massless
scalar-field backgrounds varying at most linearly with
space and time. In this case, results can be obtained by
appropriating Damour and Esposito-Farèse’s calculations
[29] for the inspiral of binary neutron stars in scalar-tensor
theories, since the derivatives of Φ are constant. New
“technology” will have to be developed, however, for
backgrounds that are more complicated functions of space
and time. This generalization is worth exploring, since
many scenarios beyond the Standard Model predict the
existence of massive (pseudo)scalar fields that can form
localized, gravitationally bound objects, which resist col-
lapse by oscillating in time [30–34]. The prime example is a
galactic fuzzy dark matter halo formed by an ultralight
scalar of mass μ ∼ 10−22–10−21 eV [35–38]. Whether black
holes can be used to probe such configurations is an
interesting question. (Of course, black hole superradiance
already provides a way of probing new fundamental fields
[39–49]. Our work explores a complementary avenue, as it
does not rely on rotation and only pertains to fields with a
Compton wavelength much larger than the black hole.)
We push forward by constructing an effective field

theory (EFT) à la Goldberger and Rothstein [50,51], which
describes black holes in terms of worldlines furnished with
composite operators that capture finite-size effects. The key
benefit of this description is the ability to disentangle
questions about the long-distance, infrared (IR) physics we
are interested in—such as the trajectory of the black hole—
from the short-distance, ultraviolet (UV) physics transpir-
ing near its horizon. Information about the latter is
accessible to distant observers, like ourselves, through
the way it impacts the black hole’s multipolar structure.
Mathematically, this is characterized in the EFT by
Wilsonian coefficients, whose values can be determined
by matching calculations with the “full theory.” As we are
doing purely classical physics, we have the advantage of
knowing what this UV completion is—it is just general
relativity.
This paper is organized as follows: We begin in Sec. II by

solving perturbatively the Einstein-Klein-Gordon field
equations for a black hole interacting with a massive scalar
field. This generalizes Jacobson’s result and will be later
used to fix Wilsonian coefficients. We then construct the
EFT in Sec. III. The main novelty of our approach is the
way we obtain the black hole’s effective action: By
integrating out composite operators localized on its world-
line using the in-in formalism, we obtain an action
expressed in terms of correlation functions that can
systematically account for both conservative and dissipa-
tive effects. Contained in these correlation functions are the
aforementioned Wilsonian coefficients. We find that the
coefficient responsible for the induced scalar charge also
sets the accretion rate of the background scalar onto the
black hole. This inextricable connection is the EFT’s way

2Other definitions in the literature differ on minus signs and
factors of 4πG. We find this definition the most natural.
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of saying that the charge arises as a natural consequence of
ingoing boundary conditions at the horizon.
The remainder of the paper is concerned with explo-

ring our EFT’s broader phenomenological implications.
Section IV presents the derivation of the universal part of
the equation of motion for the black hole’s worldline,
demonstrating that the black hole experiences a drag force
due to accretion and a fifth force due to its scalar charge.
We then specialize to the case of a black hole binary
embedded in a fuzzy dark matter halo in Sec. V. In addition
to the effects already discussed in earlier sections, our EFT
also provides a natural language for calculating two other
effects not unique to black holes but common to any
massive body: dynamical friction and the gravitational
force exerted by the halo. Finally, our calculations are
combined with observations of OJ287 to constrain the
allowed local density of fuzzy dark matter. The result is a
very weak upper bound, which is unsurprising, since
typical halos are too dilute to leave any observable imprints
in the binary’s inspiral. The paper concludes in Sec. VI,
where we discuss some potential future applications of our
EFT, which may lead to better observational prospects.
Note that while we use the usual ℏ ¼ c ¼ 1 units (except in
Sec. II where we also set G ¼ 1), in this paper the reduced
Planck mass is defined bym2

Pl ¼ 1=ð32πGÞ to be consistent
with the EFT literature.

II. SCALAR MULTIPOLE MOMENTS
IN THE FULL THEORY

We start by considering what happens when a black hole
of mass M is embedded within a background environment
comprised solely of a Klein-Gordon field ϕ of mass μ. The
problem is analytically tractable under four conditions:
(1) As perceived by an observer in the rest frame of the

black hole, the timescale ω−1 on which the back-
ground varies is much longer than the black hole
light-crossing time, Mω ≪ 1.

(2) Similarly, the background is assumed to vary on a
length scale R that is much greater than the black
hole’s radius, M=R ≪ 1.

(3) The Compton wavelength μ−1 of the scalar is also
assumed to be much greater than the size of the black
hole, Mμ ≪ 1.

(4) The energy density in the scalar field is dilute
enough that, in the immediate vicinity of the black
hole, its backreaction onto the geometry is subdomi-
nant to the black hole’s own spacetime curvature.

Rather than being seen as just simplifying assumptions,
these should be considered defining characteristics for what
it means to be a background environment.
The last condition implies that the scalar behaves like a

test field near the horizon of the black hole. By neglecting
its backreaction, the problem of studying the effect of the
black hole on ϕ reduces to one of solving the Klein-Gordon
equation on a fixed Kerr background. This equation is

separable in Boyer-Lindquist coordinates ðt; r; θ;φÞ; thus,
one can make the ansatz [52,53]

ϕ ∝ e−iωtþimφRlmðrÞSlmðθÞ;

where the integers ðl; mÞ label different angular-momen-
tum states. To obtain an analytic solution, we further restrict
attention to near-horizon distances3 r ≪ maxðω−1; μ−1Þ
and truncate the solution to first order in Mω and Mμ.
With these simplifications, the angular part of the solution
SlmðθÞeimφ reduces to the spherical harmonics Ym

l ðθ;φÞ,
while the radial part is [53]

RlmðrÞ∝
�
r− rþ
r− r−

�
iPm

2F1

�
−l;lþ 1;1− 2iPm;

r− r−
rþ− r−

�
;

ð2:1Þ
having imposed ingoing boundary conditions at the future
event horizon. The parameter Pm is defined to be

Pm ≔
am − 2Mrþω

rþ − r−
; ð2:2Þ

where a is the specific angular momentum of the
black hole.
As we did with Jacobson’s result, let us zoom out on

Eq. (2.1) to obtain a coarse-grained description valid at
distances M ≪ r ≪ maxðω−1; μ−1Þ. The two dominant
terms are

RlmðrÞ ∝ rl þ Clmr−l−1; ð2:3Þ
with relative coefficients, accurate to first order in Mω and
Mμ, given by [53,54]

Clm ¼ −iPmðrþ − r−Þ2lþ1
ðl!Þ2

ð2lÞ!ð2lþ 1Þ!
Yl
j¼1

ðj2 þ 4P2
mÞ:

ð2:4Þ
These expressions can now be used to read off a black
hole’s scalar multipole moments.

A. Scalar charge

Consider first the l ¼ 0 mode. At distances
M ≪ r ≪ maxðω−1; μ−1Þ, the solution reads

ϕ ¼ Φ0e−iωtð1þ C00r−1Þ; ð2:5Þ

having included an overall amplitudeΦ0 for the field. From
Eq. (2.4), C00 ¼ 2Mrþiω, and for real scalar fields, taking
the real part of Eq. (2.5) yields

3This suffices for our purposes, since larger distances are well
within the purview of our EFT. We only need this full-theory
calculation to resolve the UV physics near the horizon.
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ϕ ¼ Φ0 cosωtþ
8πMrþΦ0 sinωt

4πr
: ð2:6Þ

It should be readily apparent that this reproduces Eq. (1.2):
For a background environment of the form Φ ¼ Φ0 cosωt
in the vicinity of the black hole, the full scalar field behaves
as ϕ ¼ ΦþQ=ð4πrÞ, with the scalar charge Q defined by
Eq. (1.4) as before.

B. Higher multipole moments

Now suppose our scalar field is not quite homogeneous
but has a linear gradient:Φ ¼ ðb · xÞ cosωt. This induces a
dipole moment in the scalar, via the l ¼ 1 mode, whose
solution is

ϕ ¼
X1
m¼−1

bme−iωtðrþ C1mr−2ÞYm
1 ðθ;φÞ: ð2:7Þ

The constants bm ∼Oð1=RÞ are related to the Cartesian
components of the vector b ¼ ðbx; by; bzÞ via

b�1 ¼
ffiffiffiffiffiffi
2π

3

r
ðbx þ ibyÞ; b0 ¼

ffiffiffiffiffiffi
4π

3

r
bz: ð2:8Þ

Unlike the l ¼ 0 case, C1m has a term that is independent
of ω:

C1m ¼ −
i
3
amM2 þOðMωÞ: ð2:9Þ

Substituting this back into Eq. (2.7) reveals that in the
presence of a nontrivial background scalar gradient
∇Φ ¼ b cosωt, black holes also acquire a spin-dependent
dipole moment,

ϕ ¼ Φþ p · x̂
4πr2

; p ¼ 4πaM2

3
ðŜ ×∇ΦÞ þOðMωÞ;

ð2:10Þ

where Ŝ is the unit vector along the black hole’s spin axis.
Notice that the dipole moment p survives in the static limit
ω → 0. The no-hair theorems are still circumvented here
because a linear spatial gradient Φ ∼ b · x violates the
assumption of asymptotic flatness.
Spherical black holes can also attain higher-order

moments, although the effect is suppressed by one power
of Mω relative to the spinning case. Setting a ¼ 0 in
Eq. (2.4) yields

Clmja¼0 ¼
ðl!Þ4

ð2lÞ!ð2lþ 1Þ! ð2MÞ2lþ2iω: ð2:11Þ

Upon substitution into Eq. (2.7), we find that the spin-
independent part of the dipole moment is

pja¼0 ¼ −
16πM4

3

d
dt
ð∇ΦÞ: ð2:12Þ

The same procedure can be repeated for l ≥ 2; hence,
we learn that a black hole gains not just a scalar charge
when immersed in an arbitrary scalar-field environment
Φðt;xÞ, but an infinite set of multipole moments. In
practice, however, it often suffices to keep only the scalar
charge and, in the case of rotating black holes, the spin-
dependent dipole moment. Higher multipole moments are
suppressed by ever greater powers of M=R, making their
phenomenology increasingly irrelevant.

III. THE EFFECTIVE ACTION

The systems of interest in this paper are all governed by
the action4

Sf½g;ϕ� ¼
Z
x

ffiffiffiffiffiffi
−g

p �
2m2

PlR −
1

2
ð∂ϕÞ2 − 1

2
μ2ϕ2

�
: ð3:1Þ

When the length and timescales of its environment are
much greater than those of the black hole, the latter can be
approximated as an effective point particle traveling along a
worldline zμðτÞ with 4-velocity uμ, normalized to satisfy
uμuμ ¼ −1. This description emerges after integrating out
short-wavelength modes from the full theory to generate
the effective action [50]

S ¼ Sf½g;ϕ� þ Sp½z; g;ϕ�: ð3:2Þ

The first term Sf now governs only the remaining long-
wavelength modes of the fields ðg;ϕÞ, while the dynamics
of the worldline and its interaction with the fields living in
the bulk are given by the point-particle action Sp.
Performing this integration generally leads to an infinite

number of terms in Sp, which can be organized according
to relevancy as an expansion in three small “separation-of-
scale parameters,”

GM=R ≪ 1; GMω ≪ 1; and GMμ ≪ 1: ð3:3Þ

In this section, we discuss how to systematically construct
Sp and determine the most relevant terms needed to
describe the interaction of a black hole with its scalar-field
environment.

A. Worldline degrees of freedom

Finite-size effects are modeled in the EFT by introducing
a set of composite operators fqLðτÞ;…g localized on the
worldline, which represent short-wavelength degrees of

4Note that we write
R
x ¼

R
ddx as shorthand. Later, we will

also write
R
p ¼ R

ddp=ð2πÞd for integrals over momentum
variables.
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freedom (d.o.f.) living near the horizon [51,55,56]. Using
standard EFT reasoning, we then construct the effective
action by writing down all possible terms that couple these
operators to the long-wavelength fields ðg;ϕÞ in a way that
is consistent with the symmetries of the theory. In this case,
they are general covariance, worldline reparametrization
invariance, and worldline SO(3) invariance. (We restrict
attention to spherical black holes for simplicity; the gener-
alization to rotating ones is left for the future.) These steps
lead us to the “intermediary” point-particle action

Ip ¼ −
Z
τ
M þ

X∞
l¼0

Z
τ
qLðτÞ∇Lϕþ � � � : ð3:4Þ

The first term is the familiar action for a point massM. The
second term accounts for all possible interactions between
the black hole and the real scalar field ϕ. Analogous terms
that couple other worldline operators to the curvature tensors
are also present, but these have been omitted from Eq. (3.4)
and will be neglected in this paper, since they become
important only at much higher orders in perturbation theory
[50,57]. Note that conventional multi-index notation is being
used [58]: Theworldlineoperators arewritten asqL ≡ q{̂1…{̂l ,
whereas ∇L ≡∇{̂1…∇{̂l denotes the action of multiple
covariant derivatives. The indices {̂ ∈ f1; 2; 3g label the
three directions in the black hole’s rest frame that are
mutually orthonormal to one another and to the tangent uμ

of the worldline.
Traces of ∇Lϕ are redundant operators; hence, they can

be absorbed into redefinitions of qL−2n, where n counts the
number of traces [55,56]. As a result, the worldline
operators qLðτÞ can be taken to be symmetric and trace
free (STF). The set of all STF tensors of rank l generates an
irreducible representation of SO(3) of weight l [59]; thus,
the worldline operators admit an interpretation as dynami-
cal multipole moments of the black hole [51]. The l ¼ 0
operator qðτÞ must therefore be responsible for the induced
scalar charge, while the l ¼ 1 operator q{̂ðτÞ will lead to
the induced dipole moment. The lth operator, in turn,
corresponds to the lth multipole moment.
As its name suggests, the intermediary point-particle

action (3.4) is not yet the end of the story. At the moment, it
is comprised of both UV d.o.f., which a distant observer
cannot directly probe, and the IR d.o.f. ðz; g;ϕÞ that we
ultimately care about. While it is possible to perform
calculations directly with this action (see, e.g.,
Refs. [51,56]), for our purposes it will be instructive—
and more convenient—to integrate out qL and obtain a truly
effective point-particle action:

Sp½z; g;ϕ� ¼ −i log
Z

DqL expðiIp½z; g;ϕ; qL�Þ: ð3:5Þ

Being dynamical variables in their own right, the worldline
operators qL come with kinetic terms that govern their

dynamics, but we have also neglected to write these
down explicitly in Eq. (3.4) since their exact forms are
unknown to us. Without detailed knowledge of their
kinetic terms, integrating out qL leaves us with an effective
action expressed in terms of their correlation functions
hqLðτÞ…qL

0 ðτ0Þi,5 which can be reconstructed through a
series of matching calculations with the full theory. The
situation simplifies tremendously, however, if we assume
that the dynamics of these operators is fully characterized
by their two-point correlation functions. Far from being just
convenient, this assumption is linked to the test-field
approximation in Sec. II and is thus valid under the
conditions outlined therein.

B. Integrating out

Because we are interested in studying the real, causal
evolution of a system, rather than calculating in-out scatter-
ing amplitudes, the appropriate language required for inte-
grating out theworldline operators is the in-in, or closed time
path (CTP), formalism. (See Refs. [60–64] for classic texts
on the subject and Refs. [57,65–67] for applications similar
to the present context.) At its heart, this formalism converts
the standard version of Hamilton’s variational principle,
which is inherently a boundary value problem, into an initial
value problem. It accomplishes this by doubling all dynami-
cal d.o.f. Ψ → ðΨ1;Ψ2Þ and allowing the two copies to
evolve independently subject to appropriate boundary con-
ditions. Physical observables are obtained by making the
identification Ψ1 ¼ Ψ2 ¼ Ψ at the end. Following Galley
[68], we will refer to this identification as “taking the
physical limit.”

1. Fixed worldlines

The d.o.f. of our EFT are Ψ ¼ fzμ; gμν;ϕ; qLg, and we
wish to integrate out qL. It will be instructive to begin by
considering a simplified problem in which we fix the metric
and worldline to be nondynamical. Under this restriction,
the intermediary point-particle action (3.4) reads

Ip ¼
Z
τ
ðq1ϕ1 − q2ϕ2Þ þ � � � ð3:6Þ

when recast in the in-in formalism. We focus on the
l ¼ 0 operator to streamline the discussion, although the
generalization to higher multipole moments is straight-
forward. Introducing CTP indices a; b ∈ f1; 2g allows us
to write

q1ϕ1 − q2ϕ2 ¼ cabqaϕb ¼ qaϕa:

5Expectation values are taken with respect to the ground state
of the worldline theory, which corresponds to a classical,
unperturbed black hole. Hawking radiation can be neglected.
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Note that all our d.o.f. Ψa ¼ ðΨ1;Ψ2Þ innately come with a
downstairs index; indices are raised with the CTP met-
ric cab ¼ cab ¼ diagð1;−1Þ.
The assumption that the dynamics of qðτÞ is fully

characterized by its two-point functions implies that
Eq. (3.5) is a Gaussian integral that can be evaluated
exactly to yield

Sp ¼
Z
τ
hqaiϕa þ 1

2

Z
τ;τ0

χabðτ; τ0ÞϕaðτÞϕbðτ0Þ: ð3:7Þ

If nonvanishing, the vacuum expectation value hqai in the
first term describes a permanent scalar charge of the black
hole. From what we know of the no-hair theorems, this
must be zero, leaving us with only the linear response in the
second term. The matrix of two-point functions is [62,64]

χab ¼
�
χF χ−

χþ χD

�
ð3:8Þ

(see Appendix A for details on the individual two-point
functions) and satisfies the symmetry property

χabðτ; τ0Þ ¼ χbaðτ0; τÞ: ð3:9Þ

In most circumstances, it is more convenient to work in a
different basis called the Keldysh representation. Define the
average and difference of our two copies as, respectively,

Ψþ ≔
1

2
ðΨ1 þΨ2Þ; Ψ− ≔ Ψ1 − Ψ2: ð3:10Þ

In the physical limit (PL), ΨþjPL ¼ Ψ and Ψ−jPL ¼ 0. This
transformation can also be written in index notation as

ΨA ¼ ΛA
aΨa; ΛA

a ¼
� 1

2
1
2

1 −1

�
; ð3:11Þ

with A; B ∈ fþ;−g. Similarly, CTP tensors like χab trans-
form as χAB ¼ ΛA

aΛB
bχab. Using the identities in Eq. (A2),

χAB ¼
� 1

2
χH χR

χA 0

�
: ð3:12Þ

Because the transformation is linear, the identity in
Eq. (3.9) holds also in this basis. Indices can still be raised
and lowered with the CTP metric, which in this represen-
tation reads

cAB ¼ cAB ¼
�
0 1

1 0

�
: ð3:13Þ

Repeating similar steps for the higher multipole
moments and using the no-hair theorems to infer that
hqLi ¼ 0, in general we have

Sp ¼ 1

2

X∞
l¼0

Z
τ;τ0

χLL
0

AB ðτ; τ0Þ∇Lϕ
AðτÞ∇L0ϕBðτ0Þ: ð3:14Þ

2. Dynamical worldlines

Having gained a sense for how this calculation proceeds,
let us now integrate out qL in the general case when all our
d.o.f. Ψ ¼ fzμ; gμν;ϕ; qLg are dynamical. Complications
arise when there are two copies ðz1; z2Þ of the worldline for
one black hole, each with their own proper times, since the
operators qL1 ðτ1Þ appear to be living on the first copy z1ðτ1Þ,
whereas qL2 ðτ2Þ live on the second. How, then, should we
integrate out these worldline operators, given that they
appear to be living on different spaces?
The resolution comes by recalling that zμ are merely

parametrizations in a given coordinate chart. The worldline
itself is a map γ∶ I → M from the interval I ⊂ R to the
bulk, four-dimensional manifold M. When there are two
copies za, there are also two maps γa, but there is still only
one underlying manifold I . Let λ or σ be the coordinate on
I used to parametrize both copies of the worldline
simultaneously. The tangent to each worldline is written
as _zμa ¼ dzμa=dλ. (We reserve uμ for when the worldline is
parametrized by its proper time.) The operators qLa ≡
qLa ðτaÞ are pulled back onto I via the map

τaðλÞ ¼ τaðλiÞ þ
Z

λ

λi

dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ga;μν(zaðσÞ)

dzμa
dσ

dzνa
dσ

r
; ð3:15Þ

where it should be understood that the CTP index a above
is acting as a placeholder and is not to be summed over. We
are always free to choose the lower integration limit λi and
the initial value τaðλiÞ. The intermediary point-particle
action thus reads

Ip ¼
Z
λ
½−M_τ1ðλÞ þ _τ1ðλÞq1(τ1ðλÞ)ϕ1(z1ðλÞ)� − ð1 ↔ 2Þ:

ð3:16Þ

As before, we focus only on the l ¼ 0 operator, since it is
straightforward to generalize the following steps for l ≥ 1.
Clearly, Eq. (3.16) suggests we need better notation. To

that end, we begin by generalizing the CTP metric to a set
of tensors defined by

ca1…an ¼

8>><
>>:

þ1 a1 ¼ a2 ¼ � � � ¼ an ¼ 1;

−1 a1 ¼ a2 ¼ � � � ¼ an ¼ 2;

0 otherwise:

ð3:17Þ

With these at our disposal, one can verify by direct
evaluation that Eq. (3.16) is equivalent to
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Ip ¼ −M
Z
λ
ca _τaðλÞ þ

Z
λ
qaðλÞJ aðλÞ; ð3:18Þ

given sources J a defined by

Δaðλ; xÞ ≔
Z
σ
cabcdδ(λ − τbðσÞ)δð4Þ(x − zcðσÞ)_τdðσÞ;

J aðλÞ ≔
Z
x
cabcΔbðλ; xÞϕcðxÞ: ð3:19Þ

In this form, Eq. (3.18) is reminiscent of the simplified
problem in Sec. III B 1, apart from two minor differences:
The manifold I is parametrized by λ rather than τ, and the
scalar field ϕa is here replaced by J a. These prove to be no
obstacle to evaluating the functional integral, which yields

Sp ¼ −M
Z
λ
ca _τaðλÞ þ

1

2

Z
λ;λ0

χaa0 ðλ; λ0ÞJ aðλÞJ a0 ðλ0Þ:

ð3:20Þ

Before proceeding any further, let us remark that the
Hadamard propagator χH ≡ χþþ appears in this action
flanked by two powers of J þ ≡ J −, which vanishes in
the physical limit. This implies that when we extremize the
action S to obtain the equations of motion for the system,
χH will never contribute; thus, we set χH ¼ 0 from now on.
The hard work is over at this point, but the result in

Eq. (3.20) is not yet written in a form convenient for
calculations. Specifically, we want to make manifest its
dependence on ϕa. Using the definitions in Eq. (3.19), we
write

Sp ¼ −M
Z
λ
ca _τaðλÞ þ

1

2

Z
x;x0

Xaa0 ðx; x0ÞϕaðxÞϕa0 ðx0Þ;

ð3:21Þ

expressed in terms of the correlation functions

Xaa0 ðx; x0Þ ≔
Z
λ;λ0

cabcca
0b0c0ΔbΔb0χcc0 : ð3:22Þ

This is the desired end result. In the definition above, the
two-point functions all depend on the same argument,
χcc0 ≡ χcc0 ðλ; λ0Þ, and a primed index denotes dependence
on primed variables, i.e., Δb ≡ Δbðλ; xÞ whereas
Δb0 ≡ Δb0 ðλ0; x0Þ. As a generalization of Eq. (3.9), it is
easy to show that

Xaa0 ðx; x0Þ ¼ Xa0aðx0; xÞ: ð3:23Þ

These correlation functions can be written in the Keldysh
representation by utilizing the transformation rule

XAA0 ðx; x0Þ ¼ Xaa0 ðx; x0ÞΛa
AΛa0

A0
; ð3:24Þ

where Λa
A is the inverse of ΛA

a, satisfying Λa
AΛA

b ¼ δba.
Having explicit expressions for XAA0

will be useful. The
same argument that allowed us to neglect χH earlier also
allows us to neglect X−−. Taken together with the sym-
metry property in Eq. (3.23), we conclude that it suffices to
know only the following two components:

Xþþðx; x0Þ ¼ 1

2

Z
λ;λ0

½2χRðΔ1Δ10 − Δ2Δ20 Þ

−χCðΔ1 þ Δ2ÞðΔ10 − Δ20 Þ�; ð3:25aÞ

X−þðx; x0Þ ¼ 1

4

Z
λ;λ0

½2χRðΔ1Δ10 þ Δ2Δ20 Þ

−χCðΔ1 − Δ2ÞðΔ10 − Δ20 Þ�: ð3:25bÞ

In both cases, judicious use of Eqs. (A1) and (A2) has
been made to express XAA0

only in terms of the retarded
propagator χR and the commutator χC (and χH, which is
then discarded). The definition in Eq. (A1g) can then be
used to infer that

χRðτ; τ0Þ − χRðτ0; τÞ ¼ χCðτ; τ0Þ; ð3:26Þ

which in Fourier space reads6

χ̃CðωÞ ¼ χ̃RðωÞ − χ̃Rð−ωÞ ¼ 2iImχ̃RðωÞ: ð3:27Þ

Thus, once we know χR, we also know χC.

C. Matching calculations

So far, the effective action we have constructed is fully
generic and can account for finite-size effects of any
spherical compact object interacting with a real scalar
field. We will now specialize to black holes exclusively
by fixing the form of the retarded propagator.
On general grounds, we expect χR to depend on both the

black hole mass M and the scalar field mass μ. Dimensi-
onal analysis and the assumption of spherical symmetry are
sufficient to deduce that

χ̃LL
0

R ðωÞ ¼ δLL
0 ðGMÞ2lþ1FlðGMω; GMμÞ; ð3:28Þ

where δLL
0
is the identity on the space of STF tensors of

rank l. The dimensionless functions Fl almost certainly
depend in a complicated way on their arguments. However,
for low-frequency sources, we can expand in powers of the
first argument to obtain

6Since the worldline is reparametrization invariant, the two-
point functions depend on τ and τ0 only via their difference τ − τ0,
making them amenable to a Fourier transform.
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Fl ¼
X∞
n¼0

½Fð2nÞ
l ðGMωÞ2n þ iFð2nþ1Þ

l ðGMωÞ2nþ1�

¼ Fð0Þ
l þ iFð1Þ

l GMωþ Fð2Þ
l ðGMωÞ2 þ � � � ; ð3:29Þ

where the dimensionless coefficients FðnÞ
l themselves admit

an expansion in the remaining argument GMμ. Naturally,
the finite size of the black hole sets the UV cutoff for this
EFT, and only the first few terms in this expansion are
needed in practice when GMω ≪ 1. It is also worth
remarking that this series cannot capture nonperturbative
effects like quasinormal-mode resonances, but we do not
expect such effects to be important in the low-frequency
limit. The terms in Eq. (3.29) even in ω are time-reversal
symmetric and constitute what is called the “reactive” part
of the black hole’s response. On the other hand, the odd
terms break time-reversal symmetry and are responsible for
dissipative processes.
We can now determine the values of each of these

Wilsonian coefficients by a matching calculation. To make
contact with our results in Sec. II, we ought to compute
field expectation values. While working with the full fields
ðg;ϕÞ earlier was advantageous to manifestly preserve
general covariance, to compute observables, we split

ϕA ¼ ΦA þ φA; gA;μν ¼ ḡA;μν þ
hA;μν
mPl

: ð3:30Þ

The background fields ðḡA;ΦAÞ describe a scalar-field
environment that persists independently of the black hole.
As these fields are nondynamical, we can immediately fix

ðḡþ;ΦþÞ ¼ ðḡ;ΦÞ; ðḡ−;Φ−Þ ¼ 0:

Moreover, we will no longer have need to refer to the full
metric explicitly, so let us drop the overbars and denote the
background metric by gμν. Being much smaller than its
environment, a black hole sources fluctuations ðh;φÞ in the
fields that can be treated perturbatively.
Expectation values of these fields can be computed by

taking appropriate derivatives of the generating functional

Z½j; J� ¼
Z

Dh�Dφ� expðiS½z; gþ h=mPl;Φþ φ�Þ

× exp

�
i
Z
x

ffiffiffiffiffiffi
−g

p ðφAjA þ hAμνJ
μν
A Þ

�
; ð3:31Þ

where ðjA; JμνA Þ are arbitrary sources. This is approximated
in perturbation theory by working with

Z½j; J� ¼ expðiSðintÞf þ iSpÞZ0½j; J�; ð3:32Þ

where Z0½j; J� is the (gauge-fixed) generating functional

for the propagators of the free fields and SðintÞf denotes the

part of the field action not included in Z0. Further details
can be found in Appendix B.
At leading order, hφðxÞi is sourced only by terms in Sp

that are linear in φ. Moreover, the worldline can be held
fixed when computing field expectation values; hence, it
suffices to work with the simplified action in Sec. III B 1.
Substituting the field decomposition (3.30) into the action
(3.14), we obtain

Sp ¼
X∞
l¼0

Z
τ;τ0

χLL
0

R ðτ; τ0Þ∇Lφ−ðτÞ∇L0Φðτ0Þ þOðφ2Þ;

ð3:33Þ

having used Eq. (3.9) to simplify terms. Using the Fourier

representation of χR and concentrating on the Fð1Þ
0 term for

now, we find

Sp ⊃
Z
τ;τ0

Z
ω
½Fð1Þ

0 ðGMÞ2iωþ � � ��e−iωðτ−τ0Þφ−ðτÞΦðτ0Þ

¼ −
Z
τ
Fð1Þ
0 ðGMÞ2φ−ðτÞ _ΦðτÞ þ � � � ; ð3:34Þ

where the second line follows from integrating by parts.
The Wilsonian coefficient Fð1Þ

0 characterizes the leading-
order, low-frequency dissipative response and is respon-
sible for the induced scalar charge of the black hole. To see
this, we compute

hφðxÞi ¼ hφþðxÞijPL
¼ ð−iÞ3

Z
τ
ðGMÞ2Fð1Þ

0
_ΦðτÞ δ2Z0½j; J�

δjþðxÞδj−ðzðτÞÞ
����
ðj;JÞ¼0

¼ Fð1Þ
0

16π

Z
τ
GRðx; zðτÞÞQðτÞ; ð3:35Þ

whereGR is the retarded propagator for the scalar field. The
way this is written suggests that

Fð1Þ
0 ¼ 16π; ð3:36Þ

and indeed this is true. We verify this by considering (so as
to reproduce the scenario in Sec. II) a black hole at rest at
the origin, zμðτÞ ¼ ðτ; 0Þ, around which the background
field behaves as

ΦðxÞ ¼ Φ0 cosωtþ ðb · xÞ cosωtþOðr2=R2Þ:

Recall that R denotes a typical length scale of the back-
ground, jbj ∼Oð1=RÞ, and we will further assume a
gravitationally bound state such that ω2 < μ2. Moreover,
let us suppose that Φ ∼OðεÞ is sufficiently weak not just in
the vicinity of the black hole but everywhere in spacetime,
such that the background admits the weak-field expansion
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g ¼ ηþH, whereH ∼Oðε2Þ is the backreaction of Φ onto
the geometry. To leading order in ε, it suffices to evaluate
the integral in Eq. (3.35) on flat space. Integrals of this form
will need to be evaluated many times in this paper, and the
general technique is reviewed in Appendix C. The result is

hφðxÞi ¼ QðtÞ
4πr

e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r; ð3:37Þ

in total agreement with the full theory. Note that the
Yukawa suppression is to be expected here, despite it
not featuring in our results in Sec. II, since the latter
concentrated only on distances r ≪ maxðω−1; μ−1Þ. The
same procedure can be repeated for the higher multi-
pole moments; the spin-independent dipole moment in
Eq. (2.12), for instance, is reproduced by our EFT provided

Fð1Þ
1 ¼ 16π=3: ð3:38Þ

What about the other Wilsonian coefficients? To start
with, consider the following three terms also present in the
effective action:

Sp ⊃
Z
τ
ðFð0Þ

0 GMΦ − Fð2Þ
0 ðGMÞ3Φ̈

þ Fð0Þ
1 ðGMÞ3∂ {̂Φ∂ {̂ þ � � �Þφ−: ð3:39Þ

These constitute the most relevant terms characterizing the
reactive part of the response. Two comments are worth
making at this stage: First, this part of the action could just
as easily have been constructed by writing down all allowed
contractions between uμ, the fields ðg;ϕÞ, and their
derivatives (see, e.g., Ref. [69]). This bottom-up approach
cannot account for dissipative processes, however, hence
our more comprehensive and systematic route of integrat-
ing out worldline operators. Our second comment is that
Eq. (3.39) is exactly the action Horbatsch and Burgess [22]
took to be responsible for the induced scalar charge, but
from what we have learned this cannot be true. The
conclusions of their paper are nonetheless still valid, since
their arguments do not rely on a specific form for the action.
Computing hφðxÞi as before, we find that the Fð0Þ

0 term
generates a scalar-field profile due to a charge proportional

toΦ, whereas the Fð0Þ
1 coefficient is responsible for a dipole

moment proportional to ∂iΦ. Neither of these features are
present in the full theory; thus, demanding consistency with
the predictions of general relativity forces us to conclude

that Fð0Þ
0 ¼ Fð0Þ

1 ¼ 0. More precisely, these coefficients are
zero up to possible quadratic-order corrections in GMμ,
since our calculations in Sec. II are accurate only to linear
order in GMμ and GMω. Accordingly, the value of the

coefficient Fð2Þ
0 , which predicts a contribution to the scalar

charge proportional to ðGMÞ2Φ̈ ∼O(ðGMωÞ2), cannot be
determined at present.

We can now deduce the following by induction: Power
counting indicates that the coefficient FðnÞ

l is responsible
for effects appearing at order ðGM=RÞlðGMωÞn at the
earliest. Being accurate only to first order in GMω, the
limitations of our results in Sec. II preclude determining
the values for any coefficient with n ≥ 2. The n ¼ 1
coefficients have a one-to-one mapping with the objects
Clmja¼0 in Eq. (2.11), so can all be determined, up to
corrections in GMμ, by following the same procedure that
led to Eqs. (3.36) and (3.38).
For the n ¼ 0 coefficients, the vanishing of Clmja¼0 in

the static limit ω → 0 implies

Fð0Þ
l ≃ 0 ∀ l; ð3:40Þ

up to possible corrections quadratic in GMμ. These
coefficients are the scalar analog of a black hole’s tidal
Love numbers, and Eq. (3.40) implies that they vanish
identically when μ ¼ 0. (The same result is obtained in
Ref. [70] by different means.) It is well known that the
(gravitational) tidal Love numbers also vanish [70–74],
which in the EFT translates to the vanishing of analogous
Wilsonian coefficients that couple the black hole to the
curvature tensors. This presents a fine-tuning problem, as
there is no apparent symmetry in the EFT that would make
this vanishing technically natural [75,76]. A potential
resolution has recently been put forward [77], but for
now we will just accept Eq. (3.40) at face value. (Note that
for scalars, this problem is unrelated to the no-hair
theorems, which only tell us that there are no permanent
scalar multipole moments; hqLi ¼ 0.)

D. Worldline vertices

When working to leading, nontrivial order in the
separation-of-scale parameters, it suffices to keep only
the Fð1Þ

0 coefficient. At this order, the retarded propagator
for qðτÞ is simply

χRðτ; τ0Þ ¼ A
Z
ω
iωe−iωðτ−τ0Þ; ð3:41Þ

while its commutator χC is just twice that. In fact, when
written in this way, Eq. (3.41) is valid not only for spherical
black holes, but for rotating ones as well.
We conclude this section by substituting Eq. (3.41) back

into the point-particle action Sp to obtain simplified
expressions for the worldline vertices. This process will
also help elucidate the rich physical content currently
hidden in the correlation functions XAA0 ðx; x0Þ. We begin
by decomposing the fields according to Eq. (3.30) to obtain
the expansion

Sp ¼
X∞
nh¼0

X∞
nφ¼0

S
ðnh;nφÞ
p ; ð3:42Þ
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where the integers ðnh; nφÞ count the number of field
perturbations appearing in each term. Diagrammatic rep-
resentations for the first few in this series are drawn
in Fig. 1.

1. Scalar terms

The scalar field enters the point-particle action only
through the second term in Eq. (3.21). Decomposing ϕ
according to Eq. (3.30), it becomes

1

2

Z
x;x0

ðXþþΦΦ0 þ 2XAþφAΦ0 þ XAA0
φAφA0 Þ; ð3:43Þ

having used Eq. (3.23) to simplify the second term and
writing Φ0 ≡Φðx0Þ for brevity. Note that the full metric is
still hiding in XAA0

, so this can be further expanded to
generate an infinite series of terms with nh ≥ 0 and
0 ≤ nφ ≤ 2. Here, we concentrate on terms that depend
only on φ.
A discussion of the first term in Eq. (3.43) is postponed

until Sec. IV. The second term, linear in φ and drawn in
Fig. 1(e), sources the induced scalar charge and can be
rewritten as

Sð0;1Þp ¼
Z
x

ffiffiffiffiffiffi
−g

p
QAðxÞφAðxÞ ð3:44Þ

upon defining the induced charge density of the black hole,

QAðxÞ ≔ 1ffiffiffiffiffiffi−gp
Z
x0
XAþðx; x0ÞΦðx0Þ: ð3:45Þ

The reader will not be surprised to learn that, in the physical
limit,

QþðxÞjPL ¼
Z
τ

δð4Þ(x − zðτÞ)ffiffiffiffiffiffi−gp QðτÞ; Q−ðxÞjPL ¼ 0:

ð3:46Þ

This result is derived in Appendix A.

2. Graviton terms

Two terms appear in the point-particle action that are
linear in the graviton h. In both cases, they emerge from
having expanded the metric appearing in the definition of
the proper time, _τaðgþ h=mPlÞ ¼ _τaðgÞ þ δ_τa þOðh2Þ.
The first-order piece is

δ_τ1ðλÞ ¼ −
1

2mPl

Z
x

ffiffiffiffiffiffi
−g

p
h1;μνðxÞtμν1 ðx; λÞ; ð3:47Þ

with a similar expression holding for δ_τ2 after relabeling
1 ↔ 2. Writing gð_z1; _z1Þ ¼ gμνðz1Þ_zμ1 _zν1 as shorthand,

tμν1 ðx; λÞ ¼ _zμ1 _z
ν
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gð_z1; _z1Þ
p δð4Þ(x − z1ðλÞ)ffiffiffiffiffiffi−gp ð3:48Þ

is the contribution to the energy-momentum tensor of a unit
point mass when it is at the position λ along the worldline
z1. The total energy-momentum tensor of a point massM is
then obtained by simply integrating over the worldline:

Tμν
a ðxÞ ¼ M

Z
λ
tμνa ðx; λÞ: ð3:49Þ

Substituting this expansion into the point-mass term
−M

R
ca _τa ⊂ Sp, we get the familiar contribution

Sð1;0Þp ⊃
1

2mPl

Z
x

ffiffiffiffiffiffi
−g

p
haμνðxÞTμν

a ðxÞ: ð3:50Þ

This vertex is drawn in Fig. 1(c). Even without explicit
calculation, we know that this term sources the gravita-
tional potential ∼GM=r of the black hole.
The second contribution to Sð1;0Þp comes from the termZ

x;x0
Xþþðx; x0ÞΦðxÞΦðx0Þ: ð3:51Þ

To unpack this, substitute in Eq. (3.25a) and integrate over
the delta functions contained in Δa. Most of the terms will
vanish, since χR is purely dissipative at leading order, so is
therefore odd under time reversal. By definition, χC is also

FIG. 1. Examples of worldline vertices. The graviton h is drawn as a helical line, the scalar φ is drawn as a dashed line, and each
insertion of the background scalar Φ is denoted by a dotted line terminating in a circle. The black hole worldline, which is held
nondynamical while the fields are being integrated out, is depicted as a solid line. The physical interpretation for each vertex is as
follows: (a) kinetic term for the black hole leading to the geodesic equation, (b) correction to the kinetic term due to accretion of the
background scalar, (c) a graviton sourced by a black hole of constant mass, (d) correction to the graviton vertex due to mass growth by
accretion, and (e) induced scalar charge of the black hole.
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odd under time reversal. One therefore finds that the only
nontrivial part of Eq. (3.51) is

1

2

Z
λ;λ0

_τ1_τ20χCðτ1; τ20 ÞΦðz1ÞΦðz20 Þ: ð3:52Þ

Recall, for brevity, that (un)primed indices denote
functions of (un)primed variables; e.g., τ1 ≡ τ1ðλÞ whereas
z20 ≡ z2ðλ0Þ. At this stage, we can expand the metric
entering via the proper times to first order in h.
Technical details of this derivation are relegated to
Appendix A. The end result is

Sð1;0Þp ⊃ −
Z
λ
δ_τaðλÞ½δMaðλÞ − δMaðλfÞ�; ð3:53Þ

where the function δM1 is defined by

δM1ðλÞ ≔ A
Z

λ

λi

dσ _Φ(z1ðσÞ)
Z

λf

λi

dσ0 _Φ(z2ðσ0Þ)

× δ(τ1ðσÞ − τ2ðσ0Þ): ð3:54Þ

One obtains the definition for δM2 by interchanging 1 ↔ 2.
The integration limits ðλi; λfÞ appearing in these formulas
are the initial and final times at which appropriate boundary
conditions are specified according to the in-in formalism.
Using the expression for δ_τa in Eq. (3.47), the first term

in Eq. (3.53) yields

Sð1;0Þp ⊃
Z
x

ffiffiffiffiffiffi
−g

p ha;μνðxÞ
2mPl

Z
λ
cabcδMbðλÞtμνc ðx; λÞ: ð3:55Þ

When compared with Eq. (3.50), we recognize that this
vertex, drawn in Fig. 1(d), describes a graviton sourced by a
black hole whose mass is slowly growing due to accretion
of the background scalar. Indeed, in the physical limit, the
increase in mass as a function of the proper time is

δMðτÞ ¼ δMþjPL ¼ A
Z

τ

τðλiÞ
dτ0 _Φ2(zðτ0Þ); ð3:56Þ

which is exactly what we would predict from the full theory
by calculating the flux of the scalar across the horizon
[19,21,78,79]. What is remarkable here is that we did not
put this result in by hand. After performing matching
calculations to reproduce the correct behavior of the scalar
charge, our EFT immediately gives us the correct accretion
rate for free. This is proof that our formalism is working
correctly and, more importantly, that the physics governing
these two effects are one and the same. Indeed, their
magnitudes are both set by the same Wilsonian coefficient

Fð1Þ
0 ¼ 16π. Interestingly, this coefficient manifests as a

scalar charge when it appears in the retarded propagator χR
but is responsible for setting the accretion rate when
appearing in the commutator χC. In this light, the relation

between a black hole’s scalar charge and its accretion rate
can be viewed as a special case of the fluctuation-dis-
sipation theorem.
What about the second term in Eq. (3.53)? It is a constant

contribution to the black hole mass, but one that generically
diverges in the limit λf → ∞. Physically, this IR divergence
is signaling the breakdown of our EFT at late times. This
makes intuitive sense, since an increase in the black hole’s
mass must be compensated for by a depletion of the
surrounding scalar-field environment. Eventually, the black
hole will grow to be nearly as massive as its dwindling
environment, at which point there is no longer a good
separation of scales. Accordingly, we should only trust this
EFT for a limited duration of time. Within its period of
validity, it is safe to just absorb δMþðλfÞ into a renorm-
alization of the constant M appearing in the Lagrangian,
such that M represents the mass of the black hole at the
point when initial conditions are specified.
Another way to see that our EFT cannot be valid for all

times is to differentiate Eq. (3.56) to obtain the accretion
rate

δ _MðτÞ ¼ A _Φ2(zðτÞ): ð3:57Þ

Notice that the horizon area A appearing on the rhs is that
defined at some fixed time. This is only a good approxi-
mation provided δM ≪ M. A more precise formula would
see the constant A replaced by the instantaneous area AðτÞ,
but doing it properly would require a resummation involv-
ing higher-order terms. It will be interesting to explore how
to do so in the future, but in practice we expect typical
scalar-field environments to be dilute enough that
Eq. (3.57) is a valid approximation for long enough periods
of time.

IV. WORLDLINE DYNAMICS

Having successfully constructed our effective action, we
now wish to understand its phenomenological implications.
Two classes of observables are worth calculating in this
theory: field expectation values, which tell us about
gravitational and scalar radiation, and the equation of
motion for the worldline. The general method for comput-
ing the former has already been discussed in Sec. III C. For
instance, Eq. (3.35) can be used to determine the profile of
scalar waves (at leading order) radiated by a black hole
traveling along some worldline zμðτÞ.
To determine the trajectory of this worldline, we inte-

grate out the bulk fields to obtain a new effective action
[57,65,66]

Γ½z�� ¼ −i log
Z

Dh�Dφ� expðiSÞ

¼ Sð0;0Þp þ
�

sum of connected

Feynman diagrams

�
: ð4:1Þ
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Its equation of motion is then obtained from the extrem-
ization condition

δΓ
δzμ−

����
PL

¼ 0: ð4:2Þ

The sum of Feynman diagrams in Eq. (4.1) stems from
the backreaction of the black hole onto the background
fields, leading to a number of self-force effects including
radiation reaction from the emission of gravitational and
scalar waves. If present, interactions with other compact
objects would also appear in this sum. We believe there is
little to be gained from discussing these terms in generality
here. Rather, they are better understood through examples
and so are left to be explored further in Sec. V.
In this section, we concentrate on the part of the equation

of motion for the worldline arising from Sð0;0Þp ⊂ Γ, which
applies universally to black holes embedded in any scalar-
field environment. This part of the action reads

Sð0;0Þp ¼ −M
Z
λ
ca _τa þ

1

2

Z
x;x0

Xþþðx; x0ÞΦðxÞΦðx0Þ: ð4:3Þ

The two terms are drawn in Figs. 1(a) and 1(b), respec-
tively. Note that this action is a functional of zþ ≔
ðz1 þ z2Þ=2 and z− ≔ z1 − z2, which give the average
and difference of the coordinates of the two worldline
copies ðz1; z2Þ, but do not themselves correspond to world-
lines. Of course, the average coordinate tends to a descrip-
tion of the physical worldline, zþjPL ¼ z, whereas
z−jPL ¼ 0. The latter suggests that we can easily solve
Eq. (4.2) by Taylor expanding the action in powers of
z− and reading off the linear coefficient.
Performing this expansion for _τ1 (note z1 ¼ zþ þ z−=2),

we obtain _τ1ðz1Þ ¼ _τ1ðzÞ þ δ_τ1 þOðz2−Þ, where

δ_τ1 ¼
1

2

�
aμzμ− −

d
dτ

ðuμzμ−Þ
�
; ð4:4Þ

with aμ ≔ uα∇αuμ denoting the acceleration of the world-
line. Being interested only in the physical limit, we have
already taken the liberty of sending zþ → z and para-
metrizing it by the proper time τ. The result for δ_τ2 is
similar up to the change of sign z− → −z−. Using this
expansion, the point-mass term in the action gives

−M
Z
λ
ca_τa ¼ −M

Z
τ
aμzμ− þOðz2−Þ: ð4:5Þ

As for the second term in Eq. (4.3), we demonstrated in
Sec. III D 2 that it simplifies to

1

2

Z
λ;λ0

_τ1_τ20χCðτ1; τ20 ÞΦðz1ÞΦðz20 Þ: ð4:6Þ

We now have to expand this to first order in z−. There are
two routes from which z− emerges: from expanding the
proper times _τ → _τ þ δ_τ and from expanding the arguments
of the background scalarΦ. The method for performing the
first of these expansions has already been established, with
the final result given in Eq. (3.53). After renormalizing the
IR-divergent part, we find

Sð0;0Þp ⊃ −
Z
λ
δ_τaδMa ¼ −

Z
τ
ðδMaμ − δ _MuμÞzμ−: ð4:7Þ

Second, we expand the arguments of Φ and use the
antisymmetry property of χC to obtain

Sð0;0Þp ⊃ −
1

2

Z
τ;τ0

χCðτ; τ0ÞΦ(zðτÞ)∂μΦ(zðτ0Þ)zμ−

¼
Z
τ
QðτÞ∂μΦ(zðτÞ)zμ−; ð4:8Þ

where the second line follows after writing χC in Fourier
space and then integrating by parts.
Combining the results in Eqs. (4.5), (4.7), and (4.8), we

learn that the equation of motion for the worldline
(neglecting backreaction effects) is

½M þ δMðτÞ�aμ ¼ −δ _MðτÞuμ þQðτÞgμν∂νΦ: ð4:9Þ

The terms involving δM administer a drag force on the black
hole due to accretion,whereas the remaining term involving a
derivative on Φ must be interpreted as a scalar fifth force.
The reader familiar with scalar-tensor theories will find this
last term a little odd, seeing as the fifth force usually appears
in the equation of motion asQðgμν þ uμuνÞ∂νΦ [80]. In fact,
we can easily put Eq. (4.9) into such a form since, by
definition,

δ _M ¼ A _Φ2 ¼ −Q _Φ ¼ −Quν∂νΦ: ð4:10Þ

Thus, an equivalent way of writing Eq. (4.9) is

½M þ δMðτÞ�aμ ¼ QðτÞðgμν þ uμuνÞ∂νΦ: ð4:11Þ

In Sec. III D 2, we saw that the physics of the scalar charge
and of accretion were one and the same, having emerged
from the same term in the point-particle action. Here, this
connection is made manifest at the level of the equations of
motion: The scalar fifth force due to this charge includes the
drag force due to accretion. It is impossible for one to exist
without the other.

V. BINARY BLACK HOLES
IN FUZZY DARK MATTER HALOS

We have so far been limited in our discussion to the
general features of our EFT, which apply universally to
black holes embedded in any scalar-field environment.
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There is further insight to be gleaned from specializing to
concrete systems. To complete this paper, we explore one
such example involving a black hole binary embedded in a
galactic fuzzy dark matter (FDM) halo. While the calcu-
lations in this section apply to astrophysical black holes of
any size, our focus will center on supermassive black holes,
for which effects stemming from the scalar chargeQ are the
largest, since Q ∝ A.
Galactic halos in FDM models consist of a central

(pseudo)solitonic core that is surrounded by an envelope
of fluctuating density granules arising from wave interfer-
ence [81–84]. The core resists further gravitational collapse
by coherently oscillating in time at a frequency ω that is
essentially set by the scalar’s mass, ω ≈ μ,7 and has a
typical length scaleR determined by the scalar’s de Broglie
wavelength,

R ∼ 400 pc

�
μ

10−22 eV

�
−1
�

vvir
300 km s−1

�
−1
;

where vvir denotes the virial velocity of the halo.
As galaxies merge, the black holes at their centers form a

binary that inspirals for eons before ultimately coalescing
[85]. In this section, we use our EFT to determine how the
binary’s early inspiral is affected when situated inside
an FDM halo’s core.8 For simplicity, we will focus
exclusively on systems for which the orbital separation a
is much smaller than the typical length scale R of the
background. Even a gargantuan 1010 M⊙ black hole has a
radius that extends only to a few milliparsecs; thus, it is
easy to envision comfortably fitting not just one black hole,
but a binary of supermassive black holes within such a
distance. Calculations are straightforward in this regime
because the constituents of the binary perceive a local
environment that is effectively spatially homogeneous:

Φ ¼ Φ0 cosðμtþ ΥÞ þOða=RÞ; ð5:1Þ

where Υ is some arbitrary phase. Let ε ¼ Φ0=mPl be a
dimensionless parameter that characterizes the local density
of this halo. Typical FDM halos satisfy the condition ε ≪ 1
[see also Eq. (5.15) later]; hence, the scalar field backreacts
onto the geometry only weakly. As a result, we can expand
the background metric as g ¼ ηþH about Minkowski
space, where H ∼Oðε2Þ is the gravitational potential of the
halo.
Provided that background gradients ∂H are not

too strong (a more precise statement will be made in
Sec. VA 4), the dominant force acting on the black holes
is still their mutual gravitational attraction. In such

circumstances, the virial theorem relates the orbital sepa-
ration of the binary to the typical size GM and the
characteristic velocity v of its constituents; v2 ∼GM=a.
For most of its inspiral, v ≪ 1, allowing us to study the
evolution of this system in the nonrelativistic, post-
Newtonian (PN) limit.
Furthermore, when v is small, the system neatly sepa-

rates into a “near zone” and a “far zone.” Following
Refs. [50,87,88], these two zones are dealt with one at a
time by constructing a tower of EFTs. To that end, we split

ðh;φÞ → ðh̄; φ̄Þ þ ðh;φÞ:

The fields ðh;φÞ on the rhs represent potential modes that
mediate forces in the near zone (at distances r ∼ a),
whereas ðh̄; φ̄Þ denote radiation modes in the far zone
(r≳ a=v). The former are always off shell, whereas the
latter can go on shell and propagate to infinity. The
potential modes are integrated out first to obtain a new
effective action governing the dynamics of the binary
coupled to the remaining radiative d.o.f.,

Seff ½zκ; h̄; φ̄� ¼ −i log
Z

Dh�Dφ� expðiSÞ; ð5:2Þ

where S ¼ Sf þ
P

κSp;κ is the original gauge-fixed
9 effec-

tive action [cf. Eq. (3.2)] and the index κ ∈ f1; 2g labels the
individual members of the binary. The flux of radiative
modes off to infinity can be calculated at this stage using
Seff . The effective action for the self-consistent motion of
the worldlines is obtained after also integrating out the
radiation modes [cf. Eq. (4.1)]:

Γ½zκ� ¼ −i log
Z

Dh̄�Dφ̄� expðiSeffÞ: ð5:3Þ

A convenient way to perform these integrations in
perturbation theory is with the use of Feynman diagrams,
which can be organized to scale in a definite way with the
expansion parameters of our EFT. Schematically, each term
in the effective action Γ scales as

Γ ∼ L1−lv2nεp1ðGMμÞp2 ;

where L ∼Mav is the characteristic angular momentum of
the binary. The integer l counts the number of loops in a
given Feynman diagram, and since L ≫ 1 for astrophysical
black holes, only the tree-level contributions are needed
[50]. The integer or half-integer n counts the order in the
usual PN expansion, which is supplemented by two addi-
tional parameters, ε and GMμ, that characterize the impact

7This relation holds up to small, negative corrections from a
nonrelativistic binding energy [30–34], which we neglect.

8Binaries outside the core may find their orbital inspiral stalled
at kiloparsec scales due to interactions with FDM fluctuations,
which pump energy into the orbit [38,86].

9We gauge fix the potential mode h with respect to the
background g ¼ ηþH þ h̄=mPl to preserve gauge invariance
of Seff [50].
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of the scalar-field environment on the binary.10 The terms
with p1 ¼ p2 ¼ 0 constitute the standard PN equations for
a binary in vacuum [58] and need not be revisited here.
Effects involving the scalar field first appear when
p1 ¼ p2 ¼ 2. As in earlier parts of this paper, we work
only at leading nontrivial order; hence, our EFT is, in fact,
organized as an expansion in just two small parameters: v
and εGMμ.

A. Phenomenology

In what follows, we discuss five distinct physical effects
that arise when a black hole binary is embedded in an FDM
halo. Concomitantly with some explicit calculations, we
also establish power counting rules to determine the order
at which they appear in the PN expansion. As the effects we
discuss span a range of 4.5PN orders, a comprehensive and
systematic expansion of Γ in powers of v is far beyond the
scope of this paper. We will limit ourselves to deriving only
the leading-order expression for each effect.

1. Scalar dipole radiation

It is only fitting that we begin our discussion with the
phenomenon that started it all. In the PN limit, the
coordinate time t can be used to parametrize the worldlines;
hence, the charge densities in Sec. III D 1 reduce to

QA
κ ðxÞ ¼ QκðtÞδAκ ðxÞ ð5:4Þ

at leading order in v, where the delta function

δa;κðxÞ ≔ δð3Þ(x − za;κðtÞ) ð5:5Þ

localizes the integral to be along the ath copy of the κth
worldline. For the background in Eq. (5.1), the scalar
charge is QκðtÞ ¼ AκμΦ0 sinðμtþ ΥÞ. The radiation mode
φ̄ couples to the binary via the term

Seff ⊃
X
κ

Z
x
QA

κ ðxÞφ̄AðxÞ: ð5:6Þ

Definite scaling in v is achieved by multipole expanding
the radiation mode as [50]

φ̄Aðt;xÞ ¼ φ̄Aðt; 0Þ þ xi∂iφ̄Aðt; 0Þ þ � � � ð5:7Þ

about the binary’s barycenter, which we place at the origin.
Substituting this back into Eq. (5.6), we find that the
monopole term ∝ φ̄Aðt; 0Þ does not radiate at this PN order
but merely describes the total scalar charge of the binary.
The dominant channel for scalar radiation is the dipole
moment, whose term in the action reads

X
κ

Z
x
QA

κ ðxÞxi∂iφ̄AðxÞ: ð5:8Þ

In the physical limit, this leads to the expectation value

hφ̄ðxÞi ⊃ −
∂
∂xi

Z
t0
GRðt;x; t0; 0ÞPiðt0Þ; ð5:9Þ

sourced by the binary’s scalar dipole moment

PiðtÞ ¼
X
κ

QκðtÞziκðtÞ: ð5:10Þ

The master integral in Appendix C can be used to
evaluate Eq. (5.9). Keeping only the radiative part that
reaches an observer at infinity, we find

hφ̄ðxÞi ⊃ −
1

4πr
2Re

Z
∞

μþ

dω
2π

x̂ · P̃ðωÞike−iðωt−krÞ; ð5:11Þ

where the wave number k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p
. Finally, we

integrate the ðt; rÞ component of the scalar’s energy-
momentum tensor over a spherical shell of radius r and
discard terms that vanish in the limit r → ∞ to obtain the
radiated power

Fϕ ¼ −r2
Z

d2Ω∂rhφ̄i∂thφ̄i: ð5:12Þ

For a circular binary with orbital frequency Ω, the flux at a
distance r is

Fϕ ¼ 16πm2
Pl

3
ðεGMμÞ2ðGMΩÞ8=3ν2

�
M1 −M2

M

�
2

×

�
v3þ

Ω4þ
Ω4

þ θðΩ − 2μÞv3−
Ω4

−

Ω4

−θðΩ − 2μÞvþv−ðvþ þ v−Þ
Ω2þΩ2

−

Ω4
cosϖ

�
; ð5:13Þ

where M ¼ M1 þM2 is the total mass of the binary and
ν ¼ M1M2=M2 is its symmetric mass ratio.
Four worthy observations can be made here: First, the

terms in square brackets signify that scalar waves emanate
at two frequencies, Ω� ¼ Ω� μ. This is to be expected
since the dipole moment P̃iðωÞ is the convolution ofQκ and
zκ. The two waves travel with different group velocities
v� ¼ ð1 − μ2=Ω2

�Þ1=2, and the third line in Eq. (5.13)
accounts for their interference after they accumulate a
phase difference ϖ ¼ 2μtþ 2Υ − ðΩþvþ −Ω−v−Þr.
Second, the presence of step functions indicates that the
larger-frequency mode Ωþ is radiated throughout the entire
history of the inspiral, whereas the lower-frequency mode
Ω− is radiated only when Ω− > μ. This stems from the
simple fact that only sources with frequencies greater than

10Of the three separation-of-scale parameters we started with in
Eq. (3.3), only GMμ survives because we neglect spatial
variations of Φ and have set ω ≈ μ.
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the scalar’s mass can deposit energy into on-shell modes.
Third, observe that the flux vanishes entirely in the equal-
mass limit. We can understand this by noticing in Eq. (5.10)
that the dipole moment becomes proportional to the
position of the barycenter when M1 ¼ M2. Finally, as a
sanity check, we note that Eq. (5.13) reduces to the correct
expression [Eq. (2.37) of Ref. [22] ] in the massless limit
μ → 0 with Qκ → const.
Let us clarify when our result for Fϕ is valid. It relies on

the multipole expansion in Eq. (5.7), which holds if the
larger-frequency mode, with momentum jpj¼ðΩ2þ−μ2Þ1=2,
satisfies ajpj ≪ 1. Writing a2p2 ¼ a2Ω2 þ 2a2μΩ, we can
rephrase this as two conditions: We require a2Ω2 ≪ 1 and
a2μΩ ≪ 1. The first of these equivalently reads v2 ≪ 1, so
is always satisfied during the early inspiral. The second can
be rewritten as μav ≪ 1 or a ≪ 1=ðGMμ2Þ and signifies
that the binary cannot be too widely separated;

a ≪ 10 pc
�

M
1010 M⊙

�
−1
�

μ

10−22 eV

�
−2
: ð5:14Þ

Wemay regard this condition as an IR cutoff for the validity
of our EFT when applied to this system.
This kind of scaling analysis can also be used to establish

power counting rules, which enable a quick estimate of the
relative sizes of different effects. (The rules developed here
and later in this section are summarized in Table I.) For
simplicity, we will concentrate on the later stages of the
inspiral (Ω ≫ μ) when discussing radiative effects, since
this is when they are most pronounced. In this regime, the
4-momentum of φ̄ satisfies p ∼ Ω ∼ v=a; thus, the propa-
gator scales as hφ̄ φ̄i ∼ R

d4p=p2 ∼ ðv=aÞ2, and so φ̄ ∼ v=a
when appearing as an internal line in a Feynman diagram.
Similar reasoning implies h̄ ∼ v=a [50]. In position space,
the 4-momentum pμ translates into a derivative ∂μ; thus,
∂μ ∼ v=a when acting on the radiation modes. Time
derivatives acting on the background scalar can be arranged
to scale in the same way by taking Φ=mPl ∼ εμa=v, such
that ∂tΦ ∼ μεmPl. Consequently, Q ∼

ffiffiffiffiffiffi
Lv

p ðεGMμÞ after
using the relationM=mPl ∼

ffiffiffiffiffiffi
Lv

p
[50]. We use these rules to

deduce that Eq. (5.8) scales as

Z
dtQxi∂iφ̄ ∼

�
a
v

�
Qa

�
v
a

�
2

∼
ffiffiffiffi
L

p
v3=2ðεGMμÞ;

where
R
dt ∼ a=v, since the orbital period is the key

timescale in this system. Integrating out the radiation
modes, two copies of this vertex linked by a propagator
generate a term in Γ that scales as Lv3ðεGMμÞ2. Hence,
scalar radiation reaction first appears at 1.5PN order, albeit
suppressed by two powers of εGMμ. For typical FDM
halos [81,82,89,90],

ðεGMμÞ2 ∼ 2 × 10−16
�

ρ

100 M⊙pc−3

��
M

1010 M⊙

�
2

;

ð5:15Þ

where ρ ¼ μ2Φ2
0=2 is the local energy density.

It is instructive to compare this with gravitational
radiation reaction, which scales as Lv5 (2.5PN order).
Our power counting rules then tell us that the energy
radiated in scalar waves is suppressed by ðεGMμÞ2=v2
relative to gravitational waves. Indeed, this simple estimate
is consistent with a more detailed calculation. In the Ω ≫ μ
limit, the ratio of Fϕ to the leading quadrupolar flux of
gravitational waves F g [58] is

Fϕ

F g
∼

5

48

ðεGMμÞ2
v2

�
M1 −M2

M

�
2

sin2ðμtþ ΥÞ: ð5:16Þ

Taking v ≈ 0.1 and ðεGMμÞ2 ≈ 2 × 10−16, this ratio is at
most 2 × 10−15. Clearly, the impact of scalar radiation on
the inspiral of the binary is unlikely to be observable. That
said, effects appearing at lower PN orders may have better
observational prospects; hence, the remainder of this
section concentrates on terms in Γ that arise from integrat-
ing out the potential modes.

2. Scalar fifth force

The potential mode φ couples to the scalar charge of the
black hole in the same way as φ̄, namely through the term

Sp;κ ⊃
Z
x
QA

κ ðxÞφAðxÞ: ð5:17Þ

The diagrams in Fig. 2 arise from connecting two copies of
this vertex by a propagator. Using standard Feynman rules
(outlined in Appendix B), they yield

TABLE I. Post-Newtonian power counting rules for black hole binaries embedded in fuzzy dark matter halos. All
derivatives ∂μ scale in the same way, except spatial derivatives acting on the potential modes, which are denoted by
the 3-momentum p, and spatial derivatives on Φ, which vanish. The rules involving the radiation modes assume
Ω ≫ μ for simplicity.

h;φ h̄; φ̄ Φ=mPl H ∂μ p M=mPl δM=mPl Qffiffiffi
v

p
=a v=a εμa=v ðεμa=vÞ2 v=a 1=a

ffiffiffiffiffiffi
Lv

p ffiffiffiffiffiffi
Lv

p ðεGMμÞ2v−3 ffiffiffiffiffiffi
Lv

p ðεGMμÞ
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Fig: 2 ¼
X
κ;κ0

Z
x;x0

QκðtÞδþκ ðxÞGRðx; x0Þδ−κ0 ðx0ÞQκ0 ðt0Þ:

ð5:18Þ

The sum over terms with κ ¼ κ0 leads to the self-energy
diagram in Fig. 2(b), which is pure counterterm and
vanishes identically in dimensional regularization [50]
(at leading order in GMμ). Only the cross terms κ ≠ κ0
in Fig. 2(a) have interesting physical consequences. As we
did in Sec. IV, the equations of motion for the worldlines
can be read off after expanding each term in Γ to first order
in z−. We use the fact that

δþκ ðxÞ ¼ −zi−
∂
∂xi δ

ð3Þ(x − zκðtÞ)þOðz2−Þ; ð5:19aÞ

δ−κ ðxÞ ¼ δð3Þ(x − zκðtÞ)þOðz−Þ ð5:19bÞ

to write

Fig: 2ðaÞ ¼
X
κ≠κ0

Z
t;t0

∂
∂ziκ ½QKQκ0GRðt; zκ; t0; zκ0 Þ�zi−;κ:

ð5:20Þ

It is instructive to first evaluate this integral while
holding the black holes fixed at their respective positions.
This permits use of the master integral in Appendix C,
which returns

Fig: 2ðaÞ ¼
X
κ≠κ0

Z
t

∂
∂ziκ

�
QκQκ0

4πjzκ − zκ0 j
�
zi−;κ: ð5:21Þ

In general, the κth black hole obeys an equation of motion
of the formMκaκ ¼ Fκ. Taking the functional derivative of
Fig. 2(a) with respect to z−, we learn that the first black hole
experiences the scalar fifth force

F1 ⊃ −
Q1Q2

4πr2
n; ð5:22Þ

where r ¼ z1 − z2, r ¼ jrj, and n ¼ r=r. Naturally, inter-
changing the labels 1 ↔ 2 yields an identical force acting
on the second black hole.11

We obtained this result by keeping the black holes at rest,
but nothing changes at this PN order had they been allowed
to move freely, since any departure from the static case
must depend on v. When working to higher orders, we
achieve definite scaling in powers of v by expanding the
propagator for the potential mode φ about its instantaneous
limit:

G̃RðpÞ ¼
1

p2 þ μ2
¼ 1

p2

�
1þ ðp0Þ2 − μ2

p2
þ � � �

�
: ð5:23Þ

The instantaneous part 1=p2 is responsible for the inverse-
square law force; hence, the potential mode has 3-momenta
satisfying p ∼ 1=a, or, in other words, spatial derivatives
acting on φ scale as 1=a. In contrast, the oscillating
background forces the energy of the scalar to have two
pieces that scale differently: jp0j ∼ μþ v=a, such that
½ðp0Þ2 − μ2�=p2 ∼ v2 þ μav. Thus, we see that assuming
φ propagates instantaneously is valid only under the
conditions v2 ≪ 1 and μav ≪ 1, which are the same
conditions we derived earlier for the radiation modes;
cf. Eq. (5.14).
For the power counting rules, it suffices to neglect the

subleading μav dependence when working to leading order
in GMμ,12 such that ðp0Þ2 − μ2 ∼ v2=a2, while time deriv-
atives of φ scale with v=a. Taken together, these consid-
erations imply φ ∼

ffiffiffi
v

p
=a. Similar relations apply to the

potential-mode graviton h (see Table I), whose propagator
admits the analogous quasi-instantaneous expansion [50]

D̃RðpÞ ¼
1

p2
¼ 1

p2

�
1þ ðp0Þ2

p2
þ � � �

�
: ð5:24Þ

These power counting rules tell us that Fig: 2∼
Lv0ðεGMμÞ2; thus, the scalar fifth force is a Newtonian-
order effect.

3. Accretion

We already encountered the drag force from accretion in
Sec. IV in a fully relativistic setting. When expanded in

FIG. 2. (a) The exchange of a potential-mode scalar between
the worldlines mediates an attractive scalar fifth force. (b) Self-
energy diagram that is pure counterterm. Its mirror inverse, in
which the scalar propagates to and from the top worldline, is
included implicitly since we do not distinguish between the two
solid lines.

11Note that these labels now distinguish between the members
of the binary. Equations of motion are always given in the
physical limit, so there are no longer any CTP indices floating
around.

12At higher orders, it becomes necessary to factor it out
explicitly; for instance, by working with the complex field ψ
instead, defined from φðxÞ ∝ ½e−iμtψðxÞ þ H:c:�.
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powers of v, the leading term in Eq. (4.6) is proportional to
v2 and is depicted in Fig. 3(a).13 Schematically,

Fig: 3ðaÞ ∼
Z

dt
1

2
δMðtÞv2 ∼ Lv−3ðεGMμÞ2:

In the presence of a second black hole, an additional
diagram contributes at this order: Fig. 3(b) accounts for the
change in the gravitational force between the black holes
due to their increasing masses. Notice that only one of the
black holes is accreting in this diagram; the diagram in
which both are accreting first appears at Oðε4Þ and, thus, is
neglected.
Even without detailed calculation, it is easy to correctly

intuit that Fig. 3 leads to the force

F1 ⊃−δ _M1v1−δM1a1−
GðM1δM2þM2δM1Þ

r2
n: ð5:25Þ

Formally, this is a −1.5PN effect but is still subleading to
the Newtonian-order interactions ∼Lv0 due to suppression
by two powers of εGMμ. The negative-power scaling in
v indicates that the effects of accretion—in contrast to
radiation reaction—are most pronounced at the very early
stages of the inspiral when the binary is widely separated.
Consequently, future space-based gravitational-wave detec-
tors like LISA are unlikely to be sensitive to this effect.
Rather, pulsar timing arrays or other astronomical obser-
vations may prove more suitable when attempting to
observe, or at least constrain, the impact of an FDM halo
on a supermassive black hole binary. We will return to the
subject of constraining FDM models in Sec. V B.

4. Background gravitational potential

The three effects discussed so far—scalar radiation, the
fifth force, and accretion—all stem from the interaction
between a black hole’s horizon and the scalar field. Two
other effects, which are not unique to black holes but which
influence the motion of any massive body, can also be

calculated using our EFT framework. We discuss the
external force due to the halo’s gravitational potential here,
before turning to dynamical friction in Sec. VA 5.
As we did for the radiation modes, we preserve definite

scaling in v by multipole expanding

Hμνðt;xÞ ¼ Hμνðt; 0Þ þ xi∂iHμνðt; 0Þ

þ 1

2
xixj∂i∂jHμνðt; 0Þ þ � � � ð5:26Þ

about the binary’s barycenter. NoteHμν must depend on the
spatial coordinates—despiteΦ being (approximately) just a
function of time—if it is to be a consistent solution atOðε2Þ
to the background field equation

Rμν ¼ 8πG

�
∂μΦ∂νΦþ 1

2
ημνμ

2Φ2

�
: ð5:27Þ

This equation enforces the relation R ∼ ∂∂H ∼ ε2μ2, which
is satisfied provided all derivatives acting on H scale as
∂μ ∼ v=a, while taking H ∼ ðεμa=vÞ2.
Although it is possible to stick with the general multipole

expansion in Eq. (5.26), it is far more convenient if we
work in Fermi normal coordinates [91,92]. We then have
that both Hμνðt; 0Þ and ∂iHμνðt; 0Þ ¼ 0 in this gauge,14

whereas

1

2
∂i∂jH00ðt; 0Þ ¼ −R0i0jðt; 0Þ; ð5:28aÞ

1

2
∂i∂jH0kðt; 0Þ ¼ −

2

3
R0ikjðt; 0Þ; ð5:28bÞ

1

2
∂i∂jHklðt; 0Þ ¼ −

1

3
Rkiljðt; 0Þ: ð5:28cÞ

At leading order in the PN expansion, the only contribution
involving Hμν comes from expanding the point-mass term
in the action:

Γ ⊃
X
κ

ca
Z
t

1

2
MκH00(t; za;κðtÞ)

¼ −
X
κ

Z
t
MκR0i0jðt; 0Þzi−;κzjþ;κ; ð5:29Þ

which gives rise to the force

Fi
κ ⊃ −Ri

0j0ðt; 0ÞMκz
j
κ: ð5:30Þ

The effect of this force on binary pulsars has previously
been studied in Ref. [93]. Its effect on black hole binaries is
analogous and will be discussed briefly in Sec. V B.

FIG. 3. Leading-order diagrams accounting for accretion. As
with earlier diagrams, their mirror inverses (in which the back-
ground scalar interacts with the top worldline) are included
implicitly.

13There would also have been an Oðv0Þ term if Φ were
spatially inhomogeneous, which would yield the scalar fifth force
∝ ∂iΦ exerted by the background; cf. Eq. (4.9). 14The linear terms ∂iH would be nontrivial if ∂iΦ ≠ 0.
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Power counting tells us that this external force first
appears at −3PN order; Eq: ð5.29Þ ∼ Lv−6ðεGMμÞ2. This
inverse scaling with v, which we first met in Sec. VA 3, is
signaling a second type of IR breakdown of our EFT.15 To
see this, recall that our perturbative expansion is predicated
on the virial relation v2 ∼GM=a, which holds only if the
Newtonian-order interactions ∼Lv0 are the dominant terms
in the action. This demands that the binary satisfy the
condition v6 ≫ ðεGMμÞ2, which can equivalently be
written as a3 ≪ GM=ðεμÞ2 or most transparently as
ðεμa=vÞ2 ∼H ≪ 1. For small enough velocities or large
enough orbital separations, our scaling rules naively
suggest that H can attain values of order one, at which
point it stops being a weak perturbation to the Minkowski
metric. Before this can happen, spatial variations of
Φ become relevant and must be taken into account.
Thus, a multipole expansion of the background fields is
valid only if

a ≪ 80 pc

�
ρ

100 M⊙pc−3

�
−1=3

�
M

1010 M⊙

�
1=3

: ð5:31Þ

This is a second, independent IR cutoff for our EFT, which
must be satisfied in addition to Eq. (5.14).

5. Dynamical friction

The final effect we wish to discuss is the drag force due
to dynamical friction. It arises because the gravitational
field of a black hole, or any massive body, perturbs the
medium through which it moves, forming a wake in the
latter that then exerts a gravitational pull back on the object.
Although usually considered in the context of collisionless
or gaseous media [94–97], recent studies have begun
exploring what modifications are needed to account for
the wavelike nature of FDM [38,86,98]. Our EFT formal-
ism provides a natural language for calculating the force
that dynamical friction exerts on a massive body. The
interaction of a black hole with its gravitationally induced
wake is depicted in Fig. 4(a) and yields

Fκ ⊃ −16πðGMκÞ2 _Φ2v2κ v̂κ: ð5:32Þ

The derivation is presented in Appendix D.
This formula relies on the assumption that the binary is

tight enough to satisfy the condition μav ≪ 1 [cf. Eq. (5.14)]
such that the scalar can be approximated as propagating
instantaneously at leading PN order. In Refs. [38,86,98], the
impact of dynamical friction within an FDM halo is studied
in the opposite regime μav≳ 1 (objects orbiting the center
of a galaxy, for instance, satisfy this condition). Con-
sequently, our results cannot be directly compared and they

need not agree. We have, however, verified that our EFT
approach correctly reproduces the results in Appendix A of
Ref. [98] when working under similar assumptions.
Let us return to our own result in Eq. (5.32): Power

counting tells us that dynamical friction first appears at
−1PN order. In contrast, the diagrams in Figs. 4(b)
and 4(c)—which depict the backscattering of gravitons
off the gravitational potential and energy density of the halo
—scale with ε and GMμ in the same way but appear earlier
at −2PN order. Evaluating these diagrams proves to be
more challenging, however, and is for the time being left as
an open problem.

B. Observational constraints

We conclude this section by exploring how well obser-
vations of OJ287 can be used to constrain FDM models.
The supermassive black hole binary at the center of the
quasar has an orbital period that decays at a rate _P ∼ 10−3,
which is consistent with the predictions of vacuum PN
theory to within an uncertainty of 6% [25]. Hence, the
effects discussed in Sec. VA should not hasten or stall the
inspiral by more than jδ _Pj ¼ 6 × 10−5. This condition can
be translated into an upper bound on the local FDM density
ρ in the vicinity of the quasar. Although PN corrections are
needed to accurately predict the evolution of the inspiral
due to gravitational-wave emission [25], it suffices to treat
effects involving the scalar field as first-order perturbations to
theKepler problemwhendetermining their contribution to _P.
The general method for performing such calculations is
described at length in Chap. 3 of Poisson and Will [99]; in
what follows, we will simply quote the required formulas.
Consider the effective-one-body Kepler problem

̈rþ GM
r2

n ¼ f; ð5:33Þ
where r ¼ z1 − z2 is the separation of the binary of total
mass M, n ¼ r=r, and f is an additional force (per unit
mass) acting on the system, which we will treat as a small
perturbation. After time-averaging over one orbit, the force
f results in a secular decay of the orbital period given to first
order by

h _Pi ¼ 3GM

ðGMΩÞ4=3
Z

2π

0

du½ðf · λÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ ðf · nÞe sin u�;

ð5:34Þ

FIG. 4. Feynman diagrams constituting (a) dynamical friction
and (b),(c) the backscattering of gravitons. Details about the
interaction vertices in the bulk can be found in Appendix B.

15The first type has to do with a breakdown at arbitrarily late
times; see the last few paragraphs of Sec. III D 2.
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where Ω is the orbital frequency of the unperturbed binary
and e is its eccentricity. The unit vector λ points along the
direction orthogonal to both n and the binary’s angular
momentum vector. The trajectory along the orbit is
parametrized by the eccentric anomaly u, which can be
related to the coordinate time t via Kepler’s equation,
Ωðt − t0Þ ¼ u − e sin u. The orbital parameter t0 is called
the time of pericenter passage and can be set to zero in this
calculation without loss of generality.
The power counting rules established in Sec. VA can be

used to infer that, of the five effects we calculated, the
forces due to the halo’s gravitational potential and accretion
will provide the largest contributions to _P, since they scale
with the most negative powers of v. For this reason, we
concentrate only on these two effects. Respectively, they
exert the forces

fibkg ¼ −Ri
0j0ðt; 0Þrj; ð5:35Þ

facc ¼ −
�
δ _M1

M2
1

þ δ _M2

M2
2

�
Mν_r −

GðδM1 þ δM2Þ
r2

n: ð5:36Þ

Substituting these forces into Eq. (5.34), we obtain an
expression for h _Pi that is a function of the local density ρ
we wish to constrain, the known orbital parameters as
summarized in Table II, and one unknown: the phase factor
Υ of the background relative to our zero of our time. Not
knowing what value this parameter ought to have, we can
obtain a conservative estimate for h _Pi by marginalizing
over Υ assuming a uniform prior.16 The resulting expect-
ation value is

E½h _Pi� ¼ 1

2π

Z
2π

0

dϒh _Pi: ð5:37Þ

This procedure automatically excludes any contribution
from fbkg, since the Riemann tensor is proportional to
cosð2μtþ 2ϒÞ. It is still possible to extract a meaningful
constraint by choosing ϒ such that we calculate the
maximum possible value of jh _Pij (as Ref. [93] does for
binary pulsars), but we will not elect to do so and will
instead simply concentrate on facc. It turns out that the
constraint we derive from facc is several orders of magni-
tude better than what we would get from fbkg. This is
because facc has a component (∝ −_r) that is always
opposing the binary’s motion.
The contribution from facc to the orbital period decay is

E½h _Piacc� ¼ −
48πG2MPð2ν − eÞρ

1 − e
: ð5:38Þ

Requiring that this have a magnitude less than jδ _Pj ¼
6 × 10−5 imposes the upper bound

ρ≲ 2 × 109 M⊙ pc−3 ð5:39Þ

at the 1σ level for the local density of FDM. Note that
Eq. (5.38) assumes that the black holes are spherical for
simplicity (even though the spin of the primary black hole
has been measured), since that is good enough for deriving
an order-of-magnitude constraint. As a final step, it is
necessary to check that this bound is consistent with the IR
cutoffs in Eqs. (5.14) and (5.31). While the second is easily
satisfied for the case of OJ287, which has an orbital
separation a ≈ 56 mpc, the first of these tells us that our
conclusions are valid only for scalars with a mass
μ ≪ 8 × 10−22 eV.
The constraint in Eq. (5.39) is very weak, as FDM halos

are expected to have core densities of around 100 M⊙ pc−3

[81,82,89,90]. Accordingly, we conclude that typical dark
matter halos are too dilute to leave any observable imprints
in the inspiral of a black hole binary. This is entirely in line
with our expectations going in. Nonetheless, the work in
this section is still useful for illustrating how our EFT
framework can be used to make quantitative predictions. In
the next section, we will briefly comment on other scalar-
field environments with greater observational potential that
are worth exploring in future work.

VI. CONCLUSIONS

We have developed a worldline EFT that accurately
describes how black holes in general relativity interact with
minimally coupled, real scalar fields. Stringent no-hair
theorems limit the kinds of terms that are allowed in the
effective action—in particular, black holes are not permit-
ted any permanent scalar multipole moments of their
own—but we still uncover a rich phenomenology
when accounting for finite-size effects. Being an extension
of Goldberger and Rothstein’s construction [50,51], the

TABLE II. Parameters of the supermassive black hole binary in
quasar OJ287, reproduced from Ref. [25]. Errors have been
omitted for any quantity accurate to at least three significant
figures. The intrinsic period P is determined by rescaling the
value measured on Earth by the scale factor ð1þ zÞ−1 [23]. The
uncertainty on _P is at the 1σ level.

Parameter Value

Redshift z 0.306
Primary black hole mass M1 1.83 × 1010 M⊙
Secondary black hole mass M2 1.50 × 108 M⊙
Primary dimensionless spin parameter χ1 0.381
Eccentricity e 0.657
Intrinsic orbital period P 9.24 yr
Orbital period decay _P ð99� 6Þ × 10−5

16By randomly sampling values of ϒ ∈ ½0; 2πÞ and observing
how they affect the value of h _Pi, we have verified that our
assumption of a uniform prior does not bias our conclusions.
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novelty of our approach is in the integrating out of
composite operators localized on the worldline, which
encode information about UV physics transpiring near
the horizon. This procedure proved to be a powerful
method for generating new terms in the effective action
never before considered in the literature. Central to this
achievement was our use of the in-in formalism of quantum
field theory, which enabled the accounting of dissipative
effects at the level of the action.
Our EFT reveals that the motion of a black hole

embedded in a scalar-field environment exhibits three
features that distinguish it from other compact objects:
First, the black hole experiences a drag force due to
accretion of the background scalar field, which proceeds
at a rate that is uniquely determined (at leading order) by
the area of its horizon. Second, a scalar-field environment
induces a scalar charge onto the black hole, granting it the
ability to radiate energy and momentum into scalar waves.
Third, the onset of this scalar charge also stipulates that a
black hole must move under the influence of a fifth force.
Of these three effects, accretion is the most natural and

unsurprising. Accordingly, many studies [89,100,101] have
appreciated its importance, which in optimal scenarios may
even dominate over radiation reaction in driving the
evolution of a black hole’s inspiral [101]. However, typical
estimates for the accretion rate often rely on the absorption
cross section for free, collisionless, nonrelativistic particles
[102], which is strictly valid only for a black hole moving
slowly through a gas of such particles. In contrast, we are
often more interested in the motion of a black hole through
a background field that is localized and bound by its own
self-gravity. To qualify as a background, the total mass of
this configuration must also be much greater than that of the
black hole. In such cases, the correct accretion rate is
determined from computing the flux of this scalar field
across the horizon [19,21,78,79]. As we pointed out earlier,
what is remarkable is that this accretion rate emerges
naturally from first principles in our EFT. Importantly,
our equation for the resulting drag force works not only in
the Newtonian regime, but holds in a fully relativistic
setting.
Less obvious is the fact that black holes gain scalar

charges when embedded in a scalar-field environment. The
prediction of scalar radiation originates with Horbatsch and
Burgess [22], but to the best of our knowledge, we are the
first to point out that a black hole can experience a fifth
force mediated by a minimally coupled scalar field. While
scalar radiation and fifth forces are par for the course in
alternative theories of gravity, owing to a nonminimal
coupling between the scalar and one or more curvature
tensors [80,103,104], the effects discussed in this paper
emerge as necessary and inescapable consequences of
accretion of the background scalar onto the black hole.
Our EFT exposes this connection in no uncertain terms,
showing that all three effects—accretion, scalar radiation,

and the fifth force—can be traced back to a single parent
term in the effective action.
We illustrated how this EFT can be used to make

quantitative predictions by studying the early inspiral of
a black hole binary located in the core of a fuzzy dark
matter halo. This example was useful as a case study, since
a series of approximations made performing calculations
straightforward, but ultimately, typical halos in these
models are too dilute to leave any observable imprints in
the binary’s inspiral. This is no cause for discouragement,
however, as there are still other examples of scalar-field
environments worth studying, which may have greater
observational potential. At least two come to mind: Even
if an ultralight scalar field is not produced in large
abundances during the early Universe, rapidly rotating
black holes with radii coincident with the scalar’s
Compton wavelength can quickly generate a corotating
condensate of the field through a superradiant instability
[39–44]. Such a system is outside the regime of validity of
our point-particle EFT, since there is no separation of scales
between the scalar condensate and its host black hole, but
our EFT is perfectly poised to study what would happen
to a much smaller black hole orbiting this system. In
more exotic scenarios, it is also possible to envision a
stellar-mass black hole orbiting a supermassive, compact
horizonless object like a boson star [33]. Both of these
extreme-mass-ratio inspiral scenarios have been studied in
the past [100,101], albeit using a Newtonian approach with
finite-size effects included in an ad hoc fashion. Our EFT
provides a systematic framework for extending these results
into the fully relativistic regime while also accounting for
effects associated with the black hole’s induced scalar
charge, hitherto unexplored. This points to one exciting
direction for future work.
Also in the future, it will be interesting to extend our EFT

to include a black hole’s spin and to push its capabilities
beyond leading, nontrivial order in the separation-of-scale
parameters. The novel techniques we have employed when
constructing the effective action are also likely to be
invaluable when modeling the interactions of black holes
or other compact objects with external scalar, vector, or
tensor fields.

ACKNOWLEDGMENTS

It is a pleasure to thank Cliff Burgess, Vitor Cardoso,
Bogdan Ganchev, Joe Keir, Jorge Santos, Ulrich Sperhake,
and IraRothstein for helpful comments and discussions. This
work has been partially supported by STFC Consolidated
Grants No. ST/P000371/1, No. ST/P000673/1, and No. ST/
P000681/1. L. K.W. is supported by the Cambridge
Commonwealth, European and International Trust, and
Trinity College, Cambridge. R. G. is also supported in
part by Perimeter Institute. Research at Perimeter Institute
is supported by the Government of Canada through the
Department of Innovation, Science and Economic

WONG, DAVIS, and GREGORY PHYS. REV. D 100, 024010 (2019)

024010-20



Development and by the Province of Ontario through the
Ministry of Research and Innovation.

APPENDIX A: DERIVING
THE POINT-PARTICLE ACTION

This Appendix collates several technical details used in
deriving the point-particle action Sp in Sec. III.

1. Two-point correlation functions

Let us review several key features of two-point corre-
lation functions. The basic ingredients are the Wightman
functions

−iχLL0
þ ðτ; τ0Þ ≔ hqLðτÞqL0 ðτ0Þi; ðA1aÞ

−iχLL0
− ðτ; τ0Þ ≔ hqL0 ðτ0ÞqLðτÞi; ðA1bÞ

from which all other two-point functions can be built.
Respectively, we define the Feynman, Dyson, Hadamard,
and Pauli-Jordan propagators as

− iχLL
0

F ðτ; τ0Þ ≔ hTqLðτÞqL0 ðτ0Þi; ðA1cÞ

− iχLL
0

D ðτ; τ0Þ ≔ hT�qLðτÞqL0 ðτ0Þi; ðA1dÞ

−iχLL0
H ðτ; τ0Þ ≔ hfqLðτÞ; qL0 ðτ0Þgi; ðA1eÞ

− iχLL
0

C ðτ; τ0Þ ≔ h½qLðτÞ; qL0 ðτ0Þ�i; ðA1fÞ

where T and T� denote the time-ordering and anti-time-
ordering operators, respectively. Whether minus signs or
factors of i appear on the lhs is simply a matter of
convention. Note also that −iχC is nothing but the com-
mutator. Last but not least, we define the retarded and
advanced propagators by

χLL
0

R ðτ; τ0Þ ≔ θðτ − τ0ÞχLL0
C ðτ; τ0Þ; ðA1gÞ

χLL
0

A ðτ; τ0Þ ≔ −θðτ0 − τÞχLL0
C ðτ; τ0Þ; ðA1hÞ

where θðxÞ is the Heaviside step function.
Not all of these two-point functions are independent.

Notice from their definitions that

χLL
0

þ ðτ; τ0Þ ¼ χL
0L

− ðτ0; τÞ ðA2aÞ

and, furthermore, the identity θðxÞ þ θð−xÞ ¼ 1 implies

χR ¼ χF − χ− ¼ χþ − χD; ðA2bÞ

χA ¼ χF − χþ ¼ χ− − χD; ðA2cÞ

χH ¼ χF þ χD ¼ χþ þ χ−: ðA2dÞ

In these last three equations, all two-point functions have
the same indices LL0 and arguments ðτ; τ0Þ, which have
been suppressed for readability.

2. Charge density

In the main text, we defined the induced charge density
of the black hole as

QAðxÞ ≔ 1ffiffiffiffiffiffi−gp
Z
x0
XAþðx; x0ÞΦðx0Þ: ðA3Þ

To obtain the end result in Eq. (3.46), we substitute in
explicit expressions for XAþ and simplify. The two cases
A ∈ fþ;−g must be treated separately, but since the steps
are almost identical, it suffices to work through just one
example. Let us do Qþ. Using Eq. (3.25), we obtain

ffiffiffiffiffiffi
−g

p
Qþ¼

Z
λ;λ0

f½χRðλ;τ10 ÞΔ1−χCðλ;τ10 ÞΔþ�_τ10Φðz10 Þ

− ½χRðλ;τ20 ÞΔ2−χCðλ;τ20 ÞΔþ�_τ20Φðz20 Þg ðA4Þ

after integrating over the delta functions in Δa0 . We write
Δþ ¼ ðΔ1 þ Δ2Þ=2, τa0 ≡ τaðλ0Þ, and za0 ≡ zaðλÞ for brev-
ity. Now substitute in explicit forms for χR and χC, given by
Eq. (3.41), to obtain

ffiffiffiffiffiffi
−g

p
Qþ ¼ A

Z
λ;λ0

Z
ω
½Δ1_τ20 iωe−iωðλ−τ20 ÞΦðz20 Þ − ð1 ↔ 2Þ�:

ðA5Þ

Recognizing that _τ20iω can be rewritten as a derivative
d=dλ0 acting on the exponential, and likewise for 1 ↔ 2, we
find

ffiffiffiffiffiffi
−g

p
Qþ ¼ −A

Z
λ;λ0

½Δ1
_Φðz20 Þδðλ − τ20 Þ − ð1 ↔ 2Þ� ðA6Þ

after integrating by parts. Finally, integrating over the
remaining delta functions in Δ1;2 gives us

Qþ ¼ −A
Z
λ

δð4Þðx− z1Þffiffiffiffiffiffi−gp _τ1

Z
λ0
_Φðz20 Þδðτ1 − τ20 Þ− ð1↔ 2Þ:

ðA7Þ

Repeating similar steps to obtain an expression for Q−,
we recognize the following pattern: If we define

Q1ðxÞ ≔ −A
Z
λ

δð4Þ(x − z1ðλÞ)ffiffiffiffiffiffi−gp _τ1ðλÞ
Z
λ0
_Φ(z2ðλ0Þ)

× δ(τ1ðλÞ − τ2ðλ0Þ) ðA8Þ

and define Q2ðxÞ by interchanging 1 ↔ 2 in the above
equation, then the charge densities Q∓ ≡Q� in the
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Keldysh representation are obtained through the usual
transformation rule in Eq. (3.10).

3. Accretion rate

We now turn to deriving the accretion rate. Our starting
point is

Sp ⊃
1

2

Z
λ;λ0

_τ1_τ20χCðτ1; τ20 ÞΦðz1ÞΦðz20 Þ: ðA9Þ

As we did in the main text, we perturb the proper time such
that τa → τa þ δτa. The terms linear in δτa are

1

2

Z
λ;λ0

_τ1_τ20χCðτ1; τ20 ÞΦðz1ÞΦðz20 Þ

×

��
δ_τ1
_τ1

þ ∂ð1ÞχC
χC

Z
λ

λi

dσδ_τ1ðσÞ
�

þ
�
δ_τ20

_τ20
þ ∂ð2ÞχC

χC

Z
λ0

λi

dσδ_τ2ðσÞ
��

; ðA10Þ

where we write ∂ðnÞ to mean the derivative with respect to
the nth argument. Using the explicit expression for χC in
Fourier space, this becomes

A
Z
λ;λ0

Φðz1ÞΦðz20 Þ
Z
ω
e−iωðτ1−τ20 Þ

×

��
δ_τ1_τ20 iω − _τ1_τ20 ðiωÞ2

Z
λ

λi

dσδ_τ1ðσÞ
�

þ
�
δ_τ20 _τ1iωþ _τ1_τ20 ðiωÞ2

Z
λ0

λi

dσδ_τ2ðσÞ
��

: ðA11Þ

Just as we did when deriving the charge density, recognize
that each appearance of _τ1iω can be replaced by a derivative
−d=dλ acting on the exponential, and likewise each factor
of _τ20 iω can be replaced by d=dλ0. Having done so,
Eq. (A11) simplifies to

A
Z
λ;λ0

Φðz1ÞΦðz20 Þ
�
d
dλ

�Z
λ

λi

dσδ_τ1ðσÞ
d
dλ0

�

−
d
dλ0

�Z
λ0

λi

dσδ_τ2ðσÞ
d
dλ

��
δðτ1 − τ20 Þ: ðA12Þ

Integrating by parts then yields

A
Z

λf

λi

dλ
Z

λ

λi

dσδ_τ1ðσÞ _Φðz1Þ
Z
λ0
_Φðz20 Þδðτ1 − τ20 Þ

− ð1 ↔ 2Þ: ðA13Þ

Note that ðλi; λfÞ correspond to the initial and final times at
which boundary conditions are to be specified according to
the in-in formalism. The final result in Eq. (3.53) is

obtained after swapping the integration limits on λ and σ
by using the identityZ

λf

λi

dλ
Z

λ

λi

dσ ¼
Z

λf

λi

dσ
Z

λf

σ
dλ

¼
Z

λf

λi

dσ

�Z
λf

λi

dλ −
Z

σ

λi

dλ

�
: ðA14Þ

APPENDIX B: PROPAGATORS AND BULK
VERTICES IN WEAKLY CURVED SPACETIMES

As we did for the point-particle action in Sec. III D, we
substitute the decomposition (3.30) into the field action Sf
to obtain the series

Sf ¼
X∞
nh¼0

X∞
nφ¼0

S
ðnhþnφÞ
f ; ðB1Þ

where recall the integers ðnh; nφÞ count the powers of the
field perturbations appearing in each term. Since the
background ðg;ΦÞ is assumed to be a valid solution of
the field equations, there are no terms with nh þ nφ < 2.
With general relativity being a gauge theory, it is necessary
that we supplement Sf with a gauge-fixing term à la
Faddeev and Popov,

Sgf ¼ −
Z
x

ffiffiffiffiffiffi
−g

p
cABgμνGA

μGB
ν ; ðB2Þ

which imposes the gauge condition GA
μ ≈ 0. If we impose

the generalized Lorenz gauge

GA
μ ¼ ∇ν

�
hAμν −

1

2
hAgμν

�
−

ζ

2mPl
φA∇μΦ ðB3Þ

defined in terms of an arbitrary constant ζ, the part of the
field action quadratic in the perturbations is

Sð2Þf ¼ 1

2
cAB

Z
x

ffiffiffiffiffiffi
−g

p �
hAαβðPαβμν

□ −MαβμνÞhBμν

þ 1 − ζ

2mPl
hAμν½2∇μΦ∇ν − gμνð∇αΦ∇α þ μ2ΦÞ�φB

−
ζ

mPl
hAμνφB∇μ∇νΦþ φAð□ − μ2effÞφB

	
: ðB4Þ

This is expressed in terms of three background quantities:

Pαβμν ¼ 1

2
ðgαμgβν þ gανgβμ − gαβgμνÞ; ðB5aÞ

Mαβμν ¼ 2ðgαμRβν − RαμβνÞ − μ2Φ2

4m2
Pl

Pαβμν; ðB5bÞ
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μ2eff ¼ μ2 þ 2ζ2

m2
Pl

∇αΦ∇αΦ: ðB5cÞ

The convenient gauge choice ζ ¼ 1 exchanges derivative
interactions between the different field perturbations in
favor of simpler algebraic ones, but nonetheless an arbitrary
background with Φ ≠ 0 will lead to a quadratic action
that mixes the graviton with the scalar. In general, these
mixing terms must be treated nonperturbatively, meaning
we cannot speak of a propagator for h and a separate
propagator for φ [105].
An exception to this rule is when Φ ∼OðεÞ is itself a

weak perturbation living on top of a vacuum geometry. In
such cases, the background solution admits its own
expansion in the small bookkeeping parameter ε, namely

Φ ¼ Φð1Þ þOðε2Þ; g ¼ gð0Þ þ gð2Þ þOðε3Þ:

The example of a fuzzy dark matter halo we consider in
Sec. V admits this expansion; the vacuum spacetime is
described by the Minkowski metric, gð0Þ ¼ η, which is only
weakly perturbed by the gravitational potential gð2Þ ≡H of
the halo. This Appendix establishes the Feynman rules for
backgrounds of this form.

1. Free-field propagators

SinceΦ ∼OðεÞ is assumed to be small, the mixing terms
in the second and third lines of Eq. (B4) can be treated
perturbatively as interactions. Hence, the graviton and
scalar now have their own propagators, which are defined
on flat space. The gauge-fixed generating functional for the
free fields, which we introduced in Sec. III C, is then

Z0½j; J� ¼ exp
�
i
2

Z
x;x0

JAαβðxÞDαβμν
AB ðx; x0ÞJBμνðx0Þ

�

× exp

�
i
2

Z
x;x0

jAðxÞGABðx; x0ÞjBðx0Þ
�
: ðB6Þ

Directly analogous to Eq. (3.12), the scalar field has a
matrix of propagators given by

GAB ¼
� 1

2
GH GR

GA 0

�
ðB7Þ

in the Keldysh representation, whereas the matrix of
graviton propagators reads

Dαβμν
AB ¼ Pαβμν

� 1
2
DH DR

DA 0

�
ðB8Þ

in the Lorenz gauge ζ ¼ 0.17 Note that the tensor P is here
defined in terms of the Minkowski metric.
One finds that both propagator matrices are symmetric

under the simultaneous interchange of the arguments
x ↔ x0 and the CTP indices A ↔ B. As a result, appro-
priate relabeling of dummy indices and integration varia-
bles can always be used to replace the advanced
propagators ðGA;DAÞ in a Feynman diagram with the
retarded propagators ðGR;DRÞ. Moreover, much like with
the Hadamard propagator χH for the worldline operators in
Sec. III B 2, one also finds that ðGH;DHÞ are always
flanked by at least two quantities that vanish in the physical
limit. Consequently, they never contribute to the (classical)
equations of motion [57,65] and can therefore be neglected.
Taken together, these observations tell us that only the
retarded propagators are needed for calculating physical
observables. For our purposes, it is most convenient to
write the scalar’s retarded propagator as

GRðx; x0Þ ¼
Z
p

eip·ðx−x0Þ

−ðp0 þ iϵÞ2 þ p2 þ μ2
: ðB9Þ

The graviton’s retarded propagator DR has an identical
expression, except with μ ¼ 0.

2. Bulk vertices

We treat every term in the field action Sf not included in
the generating functional Z0 perturbatively as an interac-
tion vertex. Three are relevant for the purposes of this paper.
At linear order in ε, the aforementioned mixing terms give
us the vertex

LhφΦ ¼ hμνA
2mPl

½2∂μΦ∂ν − ημνð∂αΦ∂α þ μ2ΦÞ�φA; ðB10Þ

drawn in Fig. 5(a). The second vertex, depicted in Fig. 5(b),
is an effective mass for the graviton,

FIG. 5. Examples of bulk vertices. The graviton h is drawn as a
helical line while the scalar φ is drawn as a dashed line. Insertions
of the background fields are denoted as dotted lines terminating in
a given shape. The circle, filled square, and empty square
correspond to the background scalar Φ, the mass tensor M,
and the background gravitational potential H, respectively.

17We must set ζ ¼ 0 when Φ ∼OðεÞ ≪ 1, as the last term in
Eq. (B3) is now smaller than the others. Were we to choose a
nonzero value for ζ, the gauge-fixing term would still attempt to
enforce the Lorenz gauge atOðε0Þ and then subsequently attempt
to enforce the condition φA∇μΦ ≈ 0 at Oðε1Þ. This would be
undesirable.
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Lh2M ¼ −
1

2
hAαβM

αβμνhA;μν; ðB11Þ

where the mass tensor M ∼Oðε2Þ at leading order.
The final vertex in Fig. 5(c) comes from expanding the
background metric in the graviton’s kinetic term to first
order in H:

Lh2H ¼ 1

2
Hμν

�
1ffiffiffiffiffiffi−gp ∂

∂gμν ð
ffiffiffiffiffiffi
−g

p
hAαβðPαβρσ

□ÞhA;ρσÞ
�
g¼η

:

ðB12Þ

This generates a large number of terms that derivatively
couple Hμν to the gravitons. We will omit writing down an
explicit expression, since it will not be needed for any of
our calculations in this paper.

3. Position-space Feynman rules

Let us schematically denote each bulk vertex as

Sf ⊃
Z
x
Vf

hnh

nh!
φnφ

nφ!
; ðB13Þ

where all indices have been suppressed. In general, Vf is a
derivative operator acting on the fields. The worldline
vertices in Sec. III D are denoted in a similar way by
replacing subscript f’s with subscript p’s. The position-
space Feynman rules for our EFT are then as follows:
(1) Each bulk vertex gives an appropriate factor of iVf,

while each worldline vertex gives a factor of iVp.
(2) Each graviton or scalar line corresponds to an

appropriate propagator matrix, either −iDαβμν
AB or

−iGAB, respectively.
(3) All CTP and spacetime indices are to be summed

over, and all spacetime points are to be integrated
over, except those corresponding to external legs.

(4) Divide each diagram by the appropriate symmetry
factor.

If the diagram being computed has no external legs, we
choose to additionally multiply by a factor of −i such that it
constitutes a term in the effective action Γ rather than one
in iΓ.

APPENDIX C: MASTER INTEGRAL

Many occasions in the main text call for the evaluation of
an integral of the form

G½f�ðt;xÞ ≔
Z
t0
GRðt;x; t0; 0Þfðt0Þ; ðC1Þ

which describes the leading-order expectation value for φ
due to a time-dependent source fðtÞ at rest at the origin. In
the interest of efficiency, let us discuss how to evaluate this
integral (on flat space) once for an arbitrary source fðtÞ.

We begin by expressing both GR and f in Fourier space
to find

G½f� ¼
Z
t0

Z
ω
f̃ðωÞe−iωt0

Z
p

e−ip
0ðt−t0Þeip·x

−ðp0þ iϵÞ2þp2þμ2
: ðC2Þ

Integrating over t0 generates a delta function which imposes
the condition p0 ¼ ω. Also integrating over p0 then gives

G½f� ¼
Z
ω
f̃ðωÞe−iωt

Z
p

eip·x

p2 þ μ2 − ðωþ iϵÞ2 : ðC3Þ

The integral over momentum space must be evaluated
separately depending on the sign of the real part of
k2 ¼ ðωþ iϵÞ2 − μ2. When k2 ≤ 0, the scalar gives rise
to the Yukawa potential

IðωÞ ≔
Z
p

eip·x

p2 − k2
⊃ θð−k2Þ e

−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r

4πr
: ðC4Þ

If instead k2 > 0, we expect this equation to describe
spherical waves emanating from the origin. Indeed, per-
forming the integral yields

IðωÞ ⊃ θðk2Þ
4πr

ðθðωÞei
ffiffiffiffiffiffiffiffiffiffi
ω2−μ2

p
r þ θð−ωÞe−i

ffiffiffiffiffiffiffiffiffiffi
ω2−μ2

p
rÞ: ðC5Þ

The complete result for IðωÞ is formed by taking the sum of
these two equations. Substituting this back into Eq. (C3),
we find that we can write

G½f� ¼ 1

4πr

Z
ω
f̃ðωÞe−iωtþikðωÞr; ðC6Þ

where the root of k2 is defined as

kðωÞ ≔
(
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
ω2 ≤ μ2

sgnðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p
ω2 > μ2:

ðC7Þ

Occasionally, it will be convenient to simplify this
further by exploiting the fact that the Fourier transform
of a real source fðtÞ satisfies f̃ð−ωÞ ¼ f̃�ðωÞ, while our
definition for kðωÞ satisfies kð−ωÞ ¼ −k�ðωÞ. Thus, an
equivalent expression is

G½f� ¼ 1

4πr
2Re

Z
∞

0

dω
2π

f̃ðωÞe−iωtþikðωÞr: ðC8Þ

APPENDIX D: AN EFT APPROACH
TO DYNAMICAL FRICTION

Here we derive the drag force in Eq. (5.32) due to
dynamical friction. Taking its nonrelativistic limit, the
graviton vertex in Eq. (3.50) reduces to
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Sp;κ ⊃
Mκ

2mPl

Z
x
δAκ ðxÞhA;00ðxÞ ðD1Þ

at leading order in v. This can be used in conjunction with
the Feynman rules in Appendix B to obtain

Fig:4ðaÞ¼
�

M
2mPl

�
2
Z
x;x0;y;y0

δþðxÞδ−ðx0Þ

×
Z
p;p0;q

eip·ðx−yÞ

p2

eiq·ðy−y0Þ

q2

eip
0·ðy0−x0Þ

p02

×P00αβV
αβ
hφΦðy0;q0ÞP00μνV

μν
hφΦðy00;−q0Þ; ðD2Þ

having kept only the instantaneous part of the propagators;
cf. Eqs. (5.23) and (5.24). We have also suppressed the
index κ since this force acts independently on each member
of the binary. The vertex functions in the third line read

P00αβV
αβ
hφΦðy0; q0Þ ¼

1

2mPl
½−2iq0 _Φðy0Þ − μ2Φðy0Þ�: ðD3Þ

The two terms in square brackets scale with different
powers of GMμ and v, but it will be instructive to keep
both of them around in this derivation. It turns out that the
second term μ2Φ provides no contribution whatsoever to
the force.
We first simplify Eq. (D2) by performing a number of

trivial integrations. Integrating over p0 and p00 produces
delta functions that enforce the conditions y0 ¼ x0 ≡ t and
y00 ¼ x00 ≡ t0, respectively. Moreover, integrating over y
and y0 enforces the conservation of 3-momentum along the
entire diagram, p ¼ p0 ¼ q. The result is

Fig: 4ðaÞ ¼ M2

16m4
Pl

Z
x;x0

δþðxÞδ−ðx0Þ
Z
q

eiq·ðx−x0Þ

q6
Wðq0; t; t0Þ;

ðD4Þ

with Wðq0;t;t0Þ¼½−2iq0 _ΦðtÞ−μ2ΦðtÞ�½2iq0 _Φðt0Þ−μ2Φðt0Þ�.
We perform the integral over q by utilizing the standard
identity

Z
ddq
ð2πÞd

eiq·r

ðq2Þα ¼
1

ð4πÞd=2
Γðd=2 − αÞ

ΓðαÞ
�
r2

4

�
α−d=2

; ðD5Þ

while the integral over q0 is performed by replacing each
factor of iq0 in Wðq0; t; t0Þ with a derivative d=dt0 acting

on e−iq
0ðt−t0Þ and then integrating by parts. These steps

give us

Fig: 4ðaÞ ¼ M2

16m4
Pl

Z
t;t0

δðt − t0Þ
�
W0ðt; t0Þ þW1ðt; t0Þ

d
dt0

þW2ðt; t0Þ
d2

dt02

�Z
x;x0

δþðxÞδ−ðx0Þjx − x0j3;

ðD6Þ

with W2ðt; t0Þ ¼ −4 _ΦðtÞ _Φðt0Þ. Determining expressions
for W0 and W1 will not be necessary.
Now expand δ�ðxÞ in powers of z− according to

Eq. (5.19). To linear order in z−, the term involving W2

yields

Fig: 4ðaÞ ⊃ −
8π

3
ðGMÞ2

Z
t;t0

δðt − t0Þ _ΦðtÞ _Φðt0Þzi−ðtÞ

×
d2

dt02

� ∂
∂ziþðtÞ jzþðtÞ − zðt0Þj3

�
PL
: ðD7Þ

Evaluating the derivatives, the second line becomes

6ðr · vÞvi
jrj þ 3v2ri

jrj −
3ðr · vÞ2ri

jrj3 − 3jrjai −
3ðr · aÞri

jrj ; ðD8Þ

where we write r≡ zðtÞ − zðt0Þ for brevity. Defining
s¼ t−t0, we Taylor expand r¼svðtÞþs2aðtÞ=2þOðs3Þ
and substitute it back into Eq. (D7) to obtain

Fig: 4ðaÞ ⊃ −16πðGMÞ2
Z
t

_Φ2v2v̂ · z−; ðD9Þ

after integrating over s. Notice that only the Oðs0Þ terms
contribute to the force because of the delta function δðsÞ.
The desired result can already be read off from Eq. (D9),
meaning that the terms involving W0 and W1 do not
contribute. This is easy to see, since

W0ðt; t0Þ
� ∂
∂ziþðtÞ jzþðtÞ − zðt0Þj3

�
PL

∼Oðs2Þ;

W1ðt; t0Þ
d
dt0

� ∂
∂ziþðtÞ jzþðtÞ − zðt0Þj3

�
PL

∼OðsÞ:
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