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We show that the recently discovered logarithmic terms in the soft-graviton theorem induce a late time
component in the gravitational waveform that falls off as inverse power of time, producing a tail term
to the linear memory effect.
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One of the reasons for the recent interest in the soft-
graviton theorem is its connection to the memory effect
[1–4]—the fact that a passing gravitational wave causes a
permanent change in the distance between two detectors
placed in its path [5–8]. This connection usually proceeds
via asymptotic symmetries [9–11] and has led to the
prediction of a new kind of memory effect associated with
the super-rotation symmetry [2]. In contrast, in Ref. [12], we
established a direct connection between the soft factors that
arise in soft theorems and the low frequency classical
radiation in a classical process by taking the classical limit
of the quantum scattering process. This has the advantage of
being valid in all space-time dimensions, irrespective of
whether or not the soft theorem can be related to an
asymptotic symmetry. However, while applying this for-
mula to four dimensions, we encounter a new phenomenon:
due to the long range force on the particles involved in the
scattering, the soft factor at the subleading order gets a
contribution proportional to the logarithm of the energy of
the soft radiation [13]. Our goal in this paper is to describe
the observational signature of this logarithmic term in the
soft-graviton theorem. We shall use ℏ ¼ c ¼ 8πG ¼ 1
units, although since we are analyzing classical radiation,
ℏ never enters any formula.
The result of this paper may be summarized as

follows. In any process that involves the breakup of a
massive object of mass M into another object of mass
M0 ≃M and a set of light particles, the gravitational
waveform eTTij near future null infinity is given, at late

retarded time u, by Eq. (7). Aij and Bij in this equation
are determined in terms of the final state mass and
velocity distribution of the light particles via Eqs. (11)
and (12). The coefficient Aij describes the standard
memory effect, while the coefficient Bij describes a tail
term that falls off as an inverse power of u.
The setup we shall investigate is a process in which a

system of mass M, describing the initial system, makes a
transition into a system of mass M0 < M and some
matter/radiation that escapes the system. We shall work
in the rest frame of the original system and assume for
simplicity that the total energy carried by the escaping
matter/radiation is small compared to the mass of the
original system so that M0 ≃M and the recoil velocity of
the final system is small [14]. An example of this would
be the merger of neutron stars where a large amount of
matter is ejected from the parent system but the total
amount of energy lost is still small compared to the mass
of the system that remains behind. Another example
would be the merger of two black holes where the energy
is radiated away gravitationally, but we shall see that the
effects we shall describe vanish in the case where only
massless particles carry away the energy. Our focus will
be on the low frequency radiative component of the
metric field hμν ≡ ðgμν − ημνÞ=2.
In Ref. [13], a formula for the soft radiation was found in

a situation where a light particle of mass m scatters from a
heavy particle of mass M0. Here, a light particle refers to a
particle carrying energy ≪ M0. However, since the soft-
graviton theorem expresses the result as independent sums
over initial and final states, the result can be easily
generalized to the case where there are no light particles
in the initial state and multiple light particles in the final
state. We shall now state this result. For more details, we
refer the reader to Ref. [13].
Let t0 ≃ jx⃗j þM0 ln jx⃗j=4π be the time at which the peak

of the gravitational radiation reaches the observer at x⃗. For
the radiative part of the trace reversed metric
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ẽμνðω; x⃗Þ≡
Z

dteiωðt−t0Þeμνðt; x⃗Þ;

eμνðt; x⃗Þ≡
�
hμνðt; x⃗Þ −

1

2
hρρðt; x⃗Þημν

�
; ð1Þ

the results of Refs. [12,13], when applied to the situation
where we have light particles only in the final state, can be
stated as follows. Up to an overall constant phase that can
be absorbed into a shift of the time coordinate, we have [16]

ẽijðω; x⃗Þ ¼
i

4πjx⃗j e
−iM0ω lnω−1=ð4πÞ

2
64X

a

maβaiβaj
1

1 − n̂:β⃗a

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β⃗2a

q fω−1 þ iCa lnω−1 þ finiteg

3
75; ð2Þ

where “finite” refers to terms that have a finite ω → 0 limit,
the sum over a runs over all the light final states, β⃗a is the
velocity of the ath light particle, ma is the mass of the ath
light particle, and

Ca≡−M0

1−3β⃗2a

8πjβ⃗aj3
; n̂≡ x⃗

jx⃗j ; k≡−ωð1; n̂Þ: ð3Þ

The ẽ0μ components are undetermined at this stage
but can in principle be determined by using the constraint
kμẽμν ¼ 0 that follows from the linearized Einstein’s
equation. The result for ẽμν is ambiguous up to the linearized

gauge transformation δẽμν¼ζμkνþζνkμ−ζ:kημν for any
4-vector ζ.
We now define the transverse traceless component ẽTTij as

ẽTTij ¼ ẽij þ ξikj þ ξjki − ξδij; ð4Þ
where the 3-vector ξi and the scalar ξ are to be chosen
such that

kiẽTTij ¼ 0; δijẽTTij ¼ 0: ð5Þ
It is easy to see that ẽTTij is invariant under a gauge trans-
formation.Using (2), (4), and (5),wenowget, after expanding
the exponential factor in (2) to the first subleading order,

ẽTTij ðω; x⃗Þ ¼ i
4πjx⃗j

X
a

�
ω−1 þ i

�
Ca −

M0

4π

�
lnω−1 þ finite

�
ma

1

1 − n̂:β⃗a

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β⃗2a

q ðβaiβajÞTT;

ðβaiβajÞTT ≡
�
βaiβaj − n̂:β⃗aðn̂iβaj þ n̂jβaiÞ þ

1

2
ðβ⃗2a þ ðn̂:β⃗aÞ2Þn̂in̂j þ

1

2
ððn̂:β⃗aÞ2 − β⃗2aÞδij

�
: ð6Þ

The coefficient of lnω−1 proportional to Ca represents
the effect of late time radiation from the outgoing particles
accelerating in the background gravitational field, while the
term proportional to M0=4π represents the effect of back-
scattering of the soft graviton due to the background
gravitational field [17–19].
Since (6) gives the small ω behavior of ẽTTij ðω; x⃗Þ, it

encodes the behavior of its inverse Fourier transform
eTTij ðt; x⃗Þ at large time. We shall now explicitly find this
behavior. Let us suppose that eTTij has the following
asymptotic behavior,

eTTij ðt; x⃗Þ ≃
(
0 for u → −∞
Aij þ u−1Bij þOðu−2Þ for u → ∞

;

u≡ t − t0; ð7Þ

where we allow logarithmic multiplicative factors in the
Oðu−2Þ terms. As mentioned earlier, t0 denotes the time
when the peak of the gravitational wave reaches the

observer at x⃗, but the precise choice is not important since
a finite shift will not affect the expansion coefficients Aij

and Bij. Since eTTij ðt; x⃗Þ does not fall off as u → ∞, the
correct way to interpret (1) is to write eiωu ¼ ðiωÞ−1 d

du e
iωu

in the Fourier integral and carry out an integration by parts,
ignoring the boundary terms. This gives

ẽTTij ðω; x⃗Þ ¼ −
1

iω

Z
du eiωu∂ueTTij ðt; x⃗Þ: ð8Þ

We now express this as

ẽTTij ðω; x⃗Þ ¼ −
1

iω

Z
du ∂ueTTij ðt; x⃗Þ

−
1

iω

Z
dufeiωu − 1g∂ueTTij ðt; x⃗Þ: ð9Þ

The first term gives iω−1Aij. The second term can be
estimated by dividing the integration region to u ≪ ϵ−1,
ϵ−1 < u < ηω−1, ηω−1 < u < ω−1, and ω−1 < u < ∞
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where ϵ and η are two small but finite positive numbers.
Since eiωu − 1 is bounded in magnitude by ωu and since,
for large negative u, eTTij ðu; x⃗Þ falls off fast, the contribution
to ẽTTij from the u < ϵ−1 region remains finite in the ω → 0

limit. In the region ϵ−1 < u < ηω−1, we can approximate
eiωu − 1 as iωu and ∂ueTTij by −Bij=u2. Therefore, the
integral gets a contribution of order Bijflnω−1 þ lnðηϵÞg.
In the region ηω−1 < u < ω−1, we can use the results
jeiωu − 1j ≤ ωu and ∂ueTTij ≃ −Bij=u2 to argue that the
integral is bounded in magnitude by lnð1=ηÞ. Finally, in the
region u > ω−1, we can use the results jeiωu − 1j ≤ 2 and
∂ueTTij ≃ −Bij=u2 to show that the integral is bounded in
magnitude by 2Bij. Therefore, by taking ϵ, η to be small but
fixed, we see that the leading contribution to the integral for
small ω is given by

ẽTTij ðω; x⃗Þ ¼ iω−1Aij þ Bij lnω−1 þ finite: ð10Þ

Comparing (6) and (10) and using (3), we can determine the
coefficients Aij and Bij,

Aij ¼
1

4πjx⃗j
X
a

ma
1

1 − n̂:β⃗a

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β⃗2a

q ðβaiβajÞTT

¼ 2G
jx⃗j

X
a

ma
1

1 − n̂:β⃗a

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β⃗2a

q ðβaiβajÞTT; ð11Þ

Bij ¼
M0

32π2jx⃗j
X
a

ma
1

1 − n̂:β⃗a

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β⃗2a

q 1 − 3β⃗2a þ 2jβ⃗aj3
jβ⃗aj3

ðβaiβajÞTT

¼ 2G2M0

jx⃗j
X
a

ma
1

1 − n̂:β⃗a

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β⃗2a

q

×
1 − 3β⃗2a þ 2jβ⃗aj3

jβ⃗aj3
ðβaiβajÞTT; ð12Þ

where in the last steps we have rewritten the result in terms
of the Newton’s constant G ¼ 1=8π.
A term in hij of the form Bij=u produces Riemann

tensor components Ruiuj ∝ Bij=u3. The associated Ricci
tensor vanishes, showing that it satisfies vacuum Einstein’s
equation. On the other hand, the nonvanishing Riemann
tensor shows that the result is not a gauge artifact. This has
to be contrasted to the memory term Aij for which the
Riemann tensor vanishes even though the effect is physical.
If we consider the case where all the final states are

massless/ultrarelativistic particles for which jβ⃗aj ¼ 1, then
we see from (12) that Bij vanishes. Therefore, in this case,
there will be no tail effect—showing that the nonlinear

memory effect [20–24] has no tail term of order 1=u. This
shows that, in order to realize the tail effect, we need to
focus on processes where some of the final state light
particles are massive. For small jβ⃗aj, the tail term appears to
dominate over the memory term—in fact, Eq. (12) gives the
impression that Bij diverges as jβ⃗aj → 0. However, we note

that there is no real singularity in the jβ⃗aj → 0 limit since it
will take a period of orderGM0=jβ⃗aj3 for the kinetic energy
maβ⃗

2
a=2 of the particles to dominate the potential energy

GM0ma=ðjβ⃗ajuÞ so that we can use the asymptotic formula
for the particle trajectory used in deriving (2). After waiting
for time u ∼GM0=jβ⃗aj3 after the peak of the gravitational
wave has passed, the tail term Bij=u already becomes of the
order of the memory term Aij. It falls below the memory
term as u increases further.
The tail effect has been discussed earlier in various

contexts, e.g., in Refs. [25–32]. Like us, the authors also
explore the behavior of the gravitational waveform at late
retarded time. However, since these papers do not have
massive particles in the final state, their results cannot be
directly compared to the one described here. To the best of
our knowledge, the tail effect of the kind we are discussing
first appeared in Ref. [33], and our results are in perfect
agreement with the results of this paper [13]. In Ref. [13],
we have also verified that our formula correctly reproduces
the gravitational radiation during a scattering where the
main force responsible for the scattering is electromagnetic
instead of gravitational. The main new feature of our result
is that the soft-graviton theorem provides a way to express
the tail term in a compact form in terms of the velocity and
mass distribution of the outgoing particles, without know-
ing the details of the scattering process.
The following simple calculation allows us to get an idea

of the order of magnitude of this effect. Consider for
example a core-collapse supernova [34] somewhere in our
Galaxy that produces a neutron star of mass M0 ∼M⊙,
moving at a speed of 1000 km=s, and the momentum is
balanced by ejected matter of total mass m ∼M⊙=5,
moving in the opposite direction at a speed of about
5000 km=s. In this case, a rough estimate shows that the
timescale GM0=jβaj3 at which the tail effect becomes
visible is of the order of a second and the amplitude
Bij=u ∼Gmjβj2=jx⃗j of hij, at this time, is of order 10−22

[35]. These are at the edge of LIGO detection limits [36].
With improved detectors, such effects may be detectable
even for supernova explosions outside our Galaxy.
Therefore, it is not inconceivable that such effects may
be observed in the near future.
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