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We study the time-independent scattering of a planar gravitational wave propagating in the curved
spacetime of a compact body with a polytropic equation of state. We begin by considering the geometric-
optics limit, in which the gravitational wave propagates along null geodesics of the spacetime; we show that
a wavefront passing through a neutron star of tenuity R=M ¼ 6 will be focused at a cusp caustic near the
star’s surface. Next, using the linearized Einstein field equations on a spherically symmetric spacetime, we
construct the metric perturbations in the odd and even parity sectors; and, with partial-wave methods, we
numerically compute the gravitational scattering cross section from helicity-conserving and helicity-
reversing amplitudes. At long wavelengths, the cross section is insensitive to stellar structure and, in the
limit Mω → 0, it reduces to the known low-frequency approximation of the black hole case. At higher
frequencies Mω≳ 1, the gravitational wave probes the internal structure of the body. In essence, we find
that the gravitational wave cross section is similar to that for a massless scalar field, although with subtle
effects arising from the nonzero helicity-reversing amplitude, and the coupling in the even-parity sector
between the gravitational wave and the fluid of the body. The cross section exhibits rainbow scatteringwith
an Airy-type oscillation superposed on a Rutherford cross section. We show that the rainbow angle, which
arises from a stationary point in the geodesic deflection function, depends on the polytropic index.
In principle, rainbow scattering provides a diagnostic of the equation of state of the compact body; but, in
practice, this requires a high-frequency astrophysical source of gravitational waves.
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I. INTRODUCTION

The first direct detection of gravitational waves (GW)
from a binary black hole (BH) inspiral was announced in
2016 [1], and the first catalogue of gravitational wave
transients (GWTC-1) was released in late 2018 [2]. The
catalogue comprises ten confirmed transient events, of
which nine are consistent with the GW signal generated
by a binary black hole merger [3–6]; and one (GW170817)
is consistent with that generated by a binary neutron star
inspiral [7]. The latter was accompanied by a series of
observations across the electromagnetic spectrum [8].
Gravitational waves (GWs) are generated by highly

energetic astrophysical processes, such as binary mergers
and supernovae. GWs are subject to negligible scattering
from the intervening dust, gas and plasma between the
source and Earth, due to their weak coupling to the matter
sector. GWs provide observers with relatively direct access
to the physics at the heart of the source; in contrast,
electromagnetic signals are much more strongly affected by
intervening matter. On the other hand, by the equi-
valence principle, GWs feel the gravitational influence

of matter/energy sources, and so they can be significantly
scattered in strongly-curved regions of spacetime, such as
near black holes or neutron stars.
A gravitational wave scattered by a neutron star bears the

imprint of its gravitational potential. Consequently, obser-
vations of scattered waves could, in principle, probe and
inform models of the equation of state (EoS) of nuclear
matter under immense pressures. In practice, such scattered
waves would be challenging to observe.
This study aims to improve our theoretical understanding

of gravitational wave scattering in a idealized scenario, in
which a monochromatic gravitational wave of circular
frequency ω impinges upon a spherically symmetric
compact body of radius R and mass M in vacuum. We
model the compact body using three different polytropes,
with indices n ∈ f0; 0.5; 1g (see below). We focus particu-
larly on computing the scattering cross section dσ=dΩ, i.e.,
the intensity of the flux scattered to infinity as a function of
scattering angle.
The time-independent scattering of waves by a black

hole has received attention since 1968, following the
work of Matzner [9] and, later, Sanchez [10]. The work
in Refs. [11–13] culminated in a 1988 monograph by
Futterman, Handler and Matzner [14]. In recent years, black
hole scattering calculations have been made by Crispino
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and coworkers [15–19] and several other groups [20–27].
The idealized scenario of time-independent scattering by
compact objects has also received some recent attention
[28,29] (see also related work [30–32]).
The scattering process depends, in part, on the compact-

ness of the scattering body, described here by the (dimen-
sionless) tenuity Rc2=ðGMÞ (henceforth we use units such
that G ¼ c ¼ 1) and the index n of the polytropic equation
of state, with n ¼ 0 corresponding to a star of constant
density. Some characteristic values include R=M ∼ 6 for
neutron stars, ∼1.4 × 103 for a massive white dwarf (e.g.,
Sirius B), ∼9.4 × 103 for a typical white dwarf, 4.7 × 105

for the Sun, and 1.4 × 109 for Earth.

In Ref. [28] (henceforth Paper I) we studied the scatter-
ing of a scalar field Φ, governed by the Klein-Gordon
equation □gΦ ¼ 0, by a spherically symmetric star of
constant density (n ¼ 0) and mass M. We found that, for
moderate-to-high frequencies Mω≳ 1, the scattering proc-
ess may be understood via semiclassical arguments, with
reference to a congruence of null geodesics which pass
through the star (see Figs. 1–3). In Paper I, we conjectured
that gravitational waves would, in essence, behave in a
qualitatively similar fashion to massless scalar waves, with
additional features relating to spin transport, helicity-
reversal and coupling to matter degrees of freedom. We
investigate this conjecture here, building on the foundation
laid in the works of Ipser and Price [33]; Kojima [34]; Allen
et al. [35]; Martel and Poisson [36]; Barack and Lousto
[37]; and others [38–42].
Key features of the scattering process, in the semi-

classical picture, are summarized in Figs. 1–3. Figure 1
shows a congruence of null geodesics, initially parallel,
encountering a constant density star of tenuity R=M ¼ 6.
The rays come together at a cusp caustic, which may be
inside or outside the neutron star. Beyond the cusp, each
wavefront has multiple segments. An observer on-axis
downstream would encounter the wavefront in two parts;
arriving first, the segment that scattered from the weak-field
potential, and later, due to time dilation, the segment that
passed through the central potential. Figure 2 shows that the
position of the cusp caustic, and the rainbow angle θr of the
wedge, depends on the polytropic index n of the matter
distribution. The caustic moves closer to the center, and the
wedge gets wider, as the body becomes more centrally
dense (see also Fig. 1 in Paper I and Fig. 2 in Ref. [43] for
higher tenuities). Figure 3 shows the wave scattering
pattern for a scalar field Φ at moderate (Mω ¼ 1) and
high frequencies (Mω ¼ 8). In the latter case, significant
amplification at the cusp caustic is evident.
Key features of the scattering cross section dσ=dΩ may

be understood with reference to the deflection function
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FIG. 1. Formation of a cusp caustic on a neutron star spacetime.
A congruence of null geodesics passing through a compact body
are shown as thin grey lines; the successive wavefronts, propa-
gating from left to right, are shown as alternating blue and purple
solid lines; and the cusp caustic appears as a dotted red line.
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FIG. 2. A congruence of null geodesics passing through a spherical compact body of tenuity R=M ¼ 6 with a polytropic equation of
state index n ¼ 0 (a), n ¼ 0.5 (b), and n ¼ 1 (c). The cusp caustic forms near the surface of the body for n ¼ 0, and deeper inside the
body for higher polytropic indices. Asymptotically, the cusp caustic defines a rainbow wedge with rainbow angle (a) θr ¼ 59.6°,
(b) θr ¼ 66.6°, (c) θr ¼ 79.7°.
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ΘgeoðbÞ, where b is the impact parameter of a ray (a null
geodesic). The “classical” scattering cross section, dσ

dΩ jcl ¼
b

sin θjΘ0j with Θ0 ¼ dΘ
db, is singular at the poles (θ ¼ 0, π), and

also at stationary points of the deflection function, if they
exist. In semiclassical theory [44,45], the singularities
soften into familiar interference effects: glories arise near
the poles, and stationary points in the deflection function
generate rainbow scattering oscillations. The standard
semiclassical prescription for rainbow scattering (reviewed
in Paper I) leads to Airy’s formula [44],

dσ
dΩ

≈
2πbr

ωq2=3 sin θ
Ai2

�
θ − θr
q1=3

�
; q≡ Θ00

r

2ω2
; ð1Þ

where the condition Θ0ðbrÞ ¼ 0 defines a rainbow impact
parameter br, a rainbow angle θr ≡ jΘðbrÞj, and a second
derivative Θ00

r ≡ d2Θ
db2 ðbrÞ. Thus, the colors of the rainbow

are separated in angle according to wavelength, with the
“primary” peak appearing at θr − 0.237½λ2Θ00

r �1=3 [see
Eq. (1)], where λ is the wavelength. The scattered intensity
falls off rapidly in the classically forbidden shadow region
for θ > θr, whereas on the bright side of the rainbow the
cross section has supernumerary peaks beyond the primary.
At low frequencies Mω ≪ 1, we anticipate that the

scattering cross section for massless fields encountering
a compact body will be the same as for fields approaching a
Schwarzschild black hole, namely [20,46–48],

lim
Mω→0

�
M−2 dσ

dΩ

�
¼
8<
:

cos4sðθ=2Þ
sin4ðθ=2Þ ; s¼ 0; 1

2
and 1;

cos8ðθ=2Þþsin8ðθ=2Þ
sin4ðθ=2Þ ; s¼ 2:

ð2Þ

The first line states the general result for spin 0 (scalar), 1=2
(spinor), and 1 (electromagnetic) waves. The second line is
the result for a gravitational wave (s ¼ 2). The extra
“anomalous” term arises from a scattering amplitude
associated with the reversal of the helicity of the incident
wave (see e.g., [20]).
This paper is organized as follows. In Sec. II we describe

our methods, focusing on the stellar model II A; the
gravitational perturbations outside the star II B, inside
the star II C and at the surface II D; the construction of
a physical solution II E; the gravitational plane wave II F;
the scattering cross section II G; and the numerical methods
employed II H. In Sec. III we present a selection of results.
In Sec. IV we conclude with a discussion of physical
implications, analogies, and future work. The −þþþ
signature and units such that G ¼ c ¼ 1 are used through-
out. Commas and semicolons are used to denote partial and
covariant derivatives, respectively.

II. MODEL AND METHODS

We model time-independent scattering of a gravitational
plane wave by a spherically symmetric compact body, such
as a neutron star. Standard perturbation theory is employed,
where the metric is expressed as gTμν ¼ gμν þ hμν. The
background metric, gμν, is a known solution to the Einstein
field equations (EFE). The gravitational perturbation, hμν,
is governed by the linearized perturbed EFE. Many authors
have studied perturbations of the Schwarzschild (exterior)
spacetime [49–51]. Typically a spherical harmonic decom-
position is used, and possibly a Fourier decomposition. We
employ a powerful gauge-invariant and covariant formal-
ism for metric perturbations on Schwarzschild, developed
by Martel and Poisson [36].

FIG. 3. A unit amplitude plane wave consisting of a scalar field being scattered by a compact body (outline in black). The compact
body is a polytrope with index n ¼ 1 and R=M ¼ 6. The incident wave has coupling (a)Mω ¼ 1 and (b)Mω ¼ 8. The amplitude can be
increased by a factor up to approximately 4 and 20 for Mω ¼ 1 and Mω ¼ 8 respectively. For the higher frequency case, it is just
possible to make out the rainbow scattering feature of a primary peak at θ ≈ 79.7°.
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The primary object of interest is the scattering cross
section dσ=dΩ: the flux of the scattered radiation per unit
solid angle. To calculate it, we follow the standard approach
in [14]: we compute hμν and “match” it to a plane wave in
the far field, extracting the scattered part of the wave. The
details of our calculation differ from the standard approach
which employs Weyl scalars and the Newman-Penrose
formalism [14]. Instead, we work with the metric pertur-
bation directly, using the Martel-Poisson formalism.

A. Metric and stellar model

The line element for the background space-time of a
spherically symmetric star in Schwarzschild coordinates
ft; r; θ;ϕg may be written as

ds2 ¼ gμνdxμdxν ¼ gabdxadxb þ r2ΩABdxAdxB: ð3Þ

Here, lower case Latin indices run over ft; rg, upper case
Latin indices run over fθ;ϕg, and Greek indices run over
all coordinates (unless specified otherwise). We have

gabdxadxb ¼ −AðrÞdt2 þ B−1ðrÞdr2;
ΩABdxAdxA ¼ dθ2 þ sin2θdϕ2; ð4Þ

where AðrÞ and BðrÞ are radial functions that depend on the
matter distribution. Lower and upper case Latin indices are
lowered with gab and ΩAB respectively, and raised with the
corresponding inverse metrics. Greek indices are lowered
and raised with gμν and its inverse gμν.
A spherically symmetric star composed of an ideal fluid

has the stress energy tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν ð5Þ

where uμðrÞ is the fluid 4-velocity, pðrÞ the pressure, and
ρðrÞ the energy density. It is convenient to define a function
mðrÞ in terms of the metric function B via

BðrÞ ¼ 1 −
2mðrÞ

r
: ð6Þ

The (t, t) and (r, r) components of the EFE give

1

A
dA
dr

¼ −
2

ρþ p
dp
dr

;
dm
dr

¼ 4πr2ρ: ð7Þ

From the conservation of energy-momentum, Tμν
;ν ¼ 0,

one can then derive the Tolman-Oppenheimer-Volkov
(TOV) equation of hydrostatic equilibrium for the interior
of the star,

dp
dr

¼ −
ðρþ pÞðmþ 4πr3pÞ

rðr − 2mÞ : ð8Þ

For details see e.g., Chap. 10 of Schutz [52].

Outside the star, the mass is constant and thus
AðrÞ ¼ BðrÞ ¼ 1–2M=r, by Birkhoff’s theorem. Inside
the star, we must specify an equation of state (EoS) before
we can solve Eqs. (7)–(8) to find pðρÞ. A simple and
effective model is a polytropic star, with EoS

pðρÞ ¼ κρ1þ1=n; ð9Þ

where n is the polytropic index and κ is a constant. By
solving (8) numerically for a given n, κ and central density
ρð0Þ, we obtain the pressure and density profiles, pðrÞ and
ρðrÞ, and also the radius and mass of the star, R and M.
The speed of sound in the star is

c2s ¼ c2
∂p
∂ρ

����
S
; ð10Þ

where the derivative is taken at constant entropy, S. For a
typical white dwarf or neutron star the temperature is
effectively zero everywhere, so that the specific entropy is
also negligible everywhere [53].
As n → 0 the fluid that makes up the star becomes stiffer.

The case n ¼ 0 corresponds to a star of constant density
(Schwarzschild’s interior solution [54]) with an infinite
speed of sound [55]. Keeping in mind its paradoxical
nature, the constant density star is nevertheless interesting
as a limit of the sequence of decreasing n. In the n ¼ 0 case,
the solution can be found analytically. The metric functions
for a constant density star are

AðrÞ ¼ 1

4R3
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 − 2Mr2

p
− 3R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 2M

p
Þ2;

BðrÞ ¼ 1 −
2Mr2

R3
: ð11Þ

For the polytropes with n ≠ 0, we found it necessary to
match the numerical solution to an analytical polytropic
“atmosphere” [33]. To obtain more suitable neutron star
models, we took n ∈ f0.5; 1g (see e.g., [35]). Higher values
of n are typically used to model more diffuse stars.

B. The exterior perturbation

We now consider the metric perturbation equations
in three regions: in the vacuum exterior; in the interior
of the compact body; and at its surface. It is important
to note that the metric perturbation itself, denoted hμν, is
not gauge invariant. Under a small coordinate trans-
formation xμ → x0μ ¼ xμ þ ξμ, where ξμ ¼ OðϵÞ is small,
the linear metric perturbation transforms according to
hμν → h0μν ¼ hμν − 2ξðν;μÞ. Different gauges have different
technical benefits. For example, the asymptotic plane wave
solution (Sec. II F) is expressed in transverse-traceless
gauge, whereas it is simplest to solve for the metric
perturbation in the stars interior in Regge-Wheeler (RW)
gauge (Sec. II C). The main quantity of interest in this
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work—the energy flux of the scattered radiation—is
gauge-invariant.
Far from the compact body in asymptotically Cartesian

coordinates, as r → ∞, the radiative parts of the metric
perturbation in spherical coordinates scale as [36]

hradab ∼ r−1; hradaB ∼ r0; hradAB ∼ r1: ð12Þ

Working in a specific radiation gauge in which
tahab ¼ 0 ¼ tahaB, where ta is the timelike Killing vector,
Martel and Poisson [36] showed that the radiative part of a
metric perturbation on Schwarzschild can be written as a
sum over modes, as

hradAB ¼ r
X
p¼�1

X∞
l≥2

Xm¼l

m¼−l
Φp

lmðr; tÞXlmp
AB ðθ;ϕÞ; ð13Þ

where Xlmp
AB are the tensor spherical harmonics, andΦ�

lm are
the master functions defined in [36].1 They also show that
the leading order parts of hradab and hradaB are zero in this
gauge. The parity of a mode is either polar/even (p ¼ 1) or
axial/odd (p ¼ −1). The polar and axial master functions,
Φþ

lm and Φ−
lm, are also known as the Zerilli-Moncrief and

Cunningham-Price-Moncrief master functions, respec-
tively [36]. These functions may be decomposed in
Fourier modes Φ̃�

lmðr;ωÞ using

Φ�
lmðr; tÞ ¼

1

2π

Z
∞

−∞
dωΦ̃�

lmðr;ωÞeiωt: ð14Þ

The master functions Φ̃�
lm, which do not depend on the

choice of gauge, are governed by a pair of second order
ODEs, namely

d2Φ̃�
lm

dr2�
þ ðω2 − V�

l ðrÞÞΦ̃�
lm ¼ 0: ð15Þ

Here V−
l ðrÞ is the Regge-Wheeler potential,

V−
l ðrÞ ≔ A

�
lðlþ 1Þ

r2
−
6M
r3

�
; ð16Þ

and Vþ
l ðrÞ the Zerilli potential

Vþ
l ðrÞ ≔

A
Λ2

�
μ2
�
μþ 2

r2
þ 6M

r3

�
þ 36M2

r4

�
μþ 2M

r

��
;

ð17Þ

with μ ≔ ðl − 1Þðlþ 2Þ and Λ ≔ μþ 6M=r. The tortoise
coordinate r� is defined by

dr
dr�

¼
ffiffiffiffiffiffiffi
AB

p
: ð18Þ

In the far field, the solutions to Eq. (15) behave
asymptotically as

Φ̃p
lmðr;ωÞ ∼ Ain

lpðωÞeiωr� þ Aout
lp ðωÞe−iωr� ; ð19Þ

where Ain
lp and Aout

lp are complex constants. The full
radiative perturbation in the far field can be recon-
structed as

htotalAB ∼ r
Z

∞

−∞
dω

�X
p¼�1

X∞
l≥2

Xm¼l

m¼−l
ðAin

lpðωÞeiωr�

þ Aout
lp ðωÞe−iωr� ÞeiωtXlmp

AB

�
: ð20Þ

C. The interior perturbation

Although there are works on gauge-invariant formalisms
for a general spherically symmetric spacetime [56,57], we
found it convenient to work in Regge-Wheeler (RW) gauge.
In particular, we make use of the formalisms of Kojima
[34], and Allen et al. [35], for the odd and even parity
sectors respectively. The even (odd) parity sector couples
(does not couple) to fluid perturbations [58].

1. Odd parity

In RW gauge, the odd-parity perturbations for a general
spherically symmetric spacetime are determined by a single
scalar function, Q̃lmðr;ωÞ, used in the decomposition of hμν
(see e.g., [34] where Q̃lm → Xlm, or [58]). This function is
governed by the radial equation

d2Q̃lm

dr2�
þ ðω2 − VlðrÞÞQ̃lm ¼ 0; ð21Þ

where

VlðrÞ ≔ AðrÞ
�
lðlþ 1Þ

r2
−
6mðrÞ

r
− 4πðprad − ρÞ

�
: ð22Þ

In vacuum, VlðrÞ reduces to V−
l , and thus Q̃lm satisfies the

Regge-Wheeler equation and it is proportional to Φ̃−
lm,

Φ̃−
lmðr;ωÞ ¼

2

iω
Q̃lm: ð23Þ

2. Even parity

The even-parity spacetime perturbations couple to the
fluid perturbations. Ipser and Price reduced the problem to
a fourth-order system of ODEs working in frequency space
[33], or alternatively a coupled pair of second-order

1Martel and Poisson denote Xlmþ
AB and Xlm−

AB by Xlm
AB and Ylm

AB
respectively
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equations. Allen et al. investigated even-parity perturba-
tions as an initial value problem [35], also in RW gauge.
They formulated the problem as three second-order wave
equations and a constraint equation. Two of these equations
are for space-time variables, Slmðr; tÞ and Flmðr; tÞ; see
Eqs. (10) and (11) of [35] for their relations to the metric
perturbation. The constraint can be used to eliminate the
third variable, describing the fluid perturbations, again
reducing the problem to two coupled wave equations
(Eqs. (14) and (18) of [35]). Here we make use of these
two coupled equations. The Fourier transforms of the
variables of Allen et al., S̃lmðr;ωÞ and F̃lmðr;ωÞ, are
governed by

d2S̃
dr2�

þ
�
ω2þ A

r3
ð4πr3ðρþ3pÞþ2m− lðlþ1ÞrÞ

�
S̃

¼−
4A2

r5

�ðmþ4πpr3Þ2
ðr−2mÞ þ4πρr3−3m

�
F̃; ð24Þ

and

d2F̃
dr2�

−
�
1−

1

c2s

� ffiffiffiffi
A
B

r
1

r2
ðmþ4πpr3ÞdF̃

dr�

þ
�
ω2

c2s
þ A
r3

�
4πr3

�
3ρþ p

c2s

�
−m

�
1− 3

c2s

�
− lðlþ1Þr

��
F̃

¼
�
1−

1

c2s

�
r

ffiffiffiffi
B
A

r
dS̃
dr�

þ
�
2Bþ

�
1−

1

c2s

�
lðlþ1Þ

2
−8πðpþρÞr2

�
S̃; ð25Þ

where we have dropped mode labels lm for brevity, and
here m ¼ mðrÞ refers to the mass function defined
in Eq. (6).
In vacuum, the even-parity master function Φ̃þ

lm is related
to S̃lm and F̃lm by

Φ̃þ
lmðr;ωÞ ¼

2

lðlþ 1Þ
�
F̃lm þ 2

Λ
ð2AF̃lm

− rA∂rF̃lm þ r2S̃lmÞ
�
: ð26Þ

D. Perturbations at the stellar surface

The continuity of the first and second fundamental forms
at the stellar surface r ¼ R implies the continuity of Q̃lm,
S̃lm, F̃lm, ∂rQ̃lm, and ∂rS̃lm there, and a junction condition
for F̃lm [33,35],

½∂rF̃lm�þ− ¼ −
ρ

2ω2r2ðpþ ρÞ ½rðlðlþ 1Þ− 2ω2r2A−1ÞS̃lm
þ r2lðlþ 1Þ∂rS̃lm þ ððlðlþ 1Þ −ω2r2A−1Þ∂rA

− 2ω2r2ÞF̃lm þ 2ω2r2∂rF̃lm�jr¼R− : ð27Þ

The notation ½zðrÞ�þ− denotes limϵ→0½zðRþ ϵÞ − zðR − ϵÞ�
and the right-hand side of Eq. (27) is evaluated on the
surface by taking the limit from below.
In addition, on the stellar surface the Lagrangian change

in pressure should vanish [33]. This yields a boundary
condition in the form of a single constraint relating S̃lm,
∂rS̃lm, F̃lm and ∂rF̃lm just inside the stellar surface (see
Eq. (5.2) in [33]). This constraint is equivalent to the radial
derivative of the Hamiltonian constraint in [35].

E. Construction of a physical solution

In the odd-parity sector, we start with a solution that is
regular at the origin, Q̃lm ∼ rlþ1, and use the differential
equation (21) to extend it into the exterior, using the
continuity of Q̃lm and its derivative across the stellar
surface. Outside the star, we may use Eq. (23) to relate
Q̃lm to the master variable Φ̃−

lm.
In the even-parity sector, there are two independent

solutions to Eqs. (25) and (24) that satisfy regularity at the
origin,

fS̃1lm; F̃1
lmg ∼ frlþ1; a1rlþ3g; ð28Þ

fS̃2lm; F̃2
lmg ∼ frlþ3; a2rlþ1g as r → 0; ð29Þ

where a1 and a2 are constants determined by the metric/
stellar model. We may write our solution as a linear sum
Y ¼ α1Y1 þ α2Y2, where Y ¼ ½S̃lm; ∂rS̃lm; F̃lm; ∂rF̃lm�t,
and Yi refer to the two independent solutions above.
Just inside the stellar surface, we must apply the boundary
condition that arises from insisting that the Lagrangian
change in pressure vanishes (Eq. (5.2) in [33]). This
constraint yields a unique F̃lm and S̃lm that satisfies the
boundary conditions at the stellar surface and the origin, up
to an overall scaling. We may then extend this solution
beyond the surface using the junction conditions of
Sec. II D.

F. Plane waves

A left circularly polarized gravitational plane wave of
angular frequency ω0 traveling up the z axis and expressed
in a spherical coordinate system, ft; r; θ;ϕg, on flat space
in transverse-traceless gauge is

hij ¼ Re

8<
:Heið2ϕ−χÞ

2
64
s2 rsc irs2

• r2c2 ir2sc

• • −r2s2

3
75
9=
;; ð30Þ

where H is the amplitude of the wave; χ ≡ ω0ðt − zÞ;
indices (i, j) run over spatial coordinates; s and c are
shorthand for sin θ and cos θ, respectively. All other
components are zero.
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The physical solution we seek is, qualitatively, the sum
of a plane wave and an outgoing radiative component in the
far field. However, a plane wave is not a valid solution on
the Schwarzschild background, even in the far-field region,
due to the long-range 1=r nature of the field. Following
convention (see [14]) we replace (30) with a distorted plane
wave by making the substitution r → r� in the exponent of
Eq. (30) (i.e., z → z� ¼ r� cos θ). From this metric pertur-
bation, we may compute the master variables Φplane

lmp .
We construct our solution for Φlmp so that its ingoing

part matches, asymptotically, the ingoing part of the
distorted plane wave Φplane

lmp . The outgoing, scattered com-
ponent of the radiation is then

Φscat
lmp ¼ Φlmp −Φplane

lmp : ð31Þ

The master functions for a left-handed circularly polarized
distorted plane wave can be expanded in the far field as

Φplane
l2;−1ðr; tÞ ¼

2πHCl2

ω0

ðð−1Þlþ1e−iω0r� þ eiω0r� Þe−iω0t

þOðr−1Þ; ð32Þ

Φplane
l2;þ1ðr; tÞ ¼ −

2πiHCl2

ω0

ðð−1Þlþ1e−iω0r� þ eiω0r� Þe−iω0t

þOðr−1Þ; for l ≥ 2; ð33Þ

where

Cl2 ¼
�ð2lþ 1Þ

4π

ðl − 2Þ!
ðlþ 2Þ!

�
1=2

: ð34Þ

It follows from the reality condition on hμν that
Φl;−m;p ¼ Φ�

lmp. Only the m ¼ �2 and l ≥ 2 modes are
needed; all other modes (l < 2 or m ≠ �2) are zero for the
plane wave (see the Appendix A).

G. Scattering cross section

Once the scattered radiation has been found via Eq. (31),
the associated energy flux at infinity can be calculated. The
scattering cross section, dσ=dΩ, is the energy flux per unit
solid angle in the scattered radiation, divided by the energy
flux per unit area in the incident plane wave. As shown in
Appendix B (see also Ref. [14]), the cross section can be
written as the sum of the square modulus of a helicity-
preserving scattering amplitude, fðθÞ, and a helicity-
reversing amplitude, gðθÞ,

dσ
dΩ

¼ jfðθÞj2 þ jgðθÞj2; ð35Þ

where

fðθÞ ≔ π

ω

X
l;p

�ð2lþ 1Þ
4π

�
1=2

ðe2iδpl − 1Þ−2Yl2ðθÞ; ð36Þ

gðθÞ ≔ π

ω

X
l;p

p

�ð2lþ 1Þ
4π

�
1=2

ðe2iδpl − 1Þ2Yl2ðθÞ: ð37Þ

The spherical harmonics with spin-weight s, sYlmðθ;ϕÞ,
were introduced by Goldberg [59], and we have suppressed
the ϕ dependence. The phase shifts δpl are defined in terms

of the mode coefficients Ain=out
lp in Eq. (20) by

e2iδ
p
l ¼ ð−1Þlþ1

Aout
lp

Ain
lp

: ð38Þ

H. Numerical method

In Sec. II E we outlined how a regular solution satisfying
physically motivated boundary conditions could be con-
structed. Here, we give details of how we compute Aout

lp and

Ain
lp, and thus the scattering coefficients e2iδ

p
l in practice.

The odd-parity master function for the interior pertur-
bation has a regular Frobenius series solution at the origin

Q̃lm ∼ rlþ1
Xk
j¼0

q2jr2j: ð39Þ

The series coefficients qj can be found by inserting this
series into Eq. (21), and fixing the normalization by
choosing q0 ¼ 1.
For the even parity system, the ODE system has regular

singular points at r ¼ 0 and at r ¼ R. We can find series
solutions near the origin (r0 ¼ 0) and near the surface
(r0 ¼ R) by expressing the equations in matrix form,

Y0 ¼ 1

z
M · Y; ð40Þ

where Y ¼ ½S̃lm; F̃lm; zS̃
0
lm; zF̃

0
lm�t, z ¼ jr − r0j, Y0 denotes

dY=dz, andM is a 4 × 4 matrix. One may then expand the
matrix in a power series,

M ¼
X∞
j¼0

zjMj; ð41Þ

where Mj are constant matrices, and make the ansatz

Y ¼ zσ
X∞
j¼0

zjYj: ð42Þ

Substituting Eqs. (41) and (42) into Eq. (40), and equating
coefficients of zσ gives
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ðM0 − σIÞ · Y0 ¼ 0; ð43aÞ

½M0 − ðσ þ kÞI� · Yk ¼ −
Xk
j¼1

Mj · Yk−j: ð43bÞ

Equation (43a) determines the eigenvalues σ and the
corresponding eigenvectors Y0, and Eq. (43b) generates
the higher terms Yj in the series solutions. At the origin,
two of these series are regular, fYð1Þ;Yð2Þg, with eigen-
values σ ¼ lþ 1. Starting with initial conditions Yð1Þ, Yð2Þ

and Q̃ at r ¼ ϵ, where ϵ is some small value, we then
numerically integrate the coupled ODEs (21), (24), and
(25), to extend the solutions to r ¼ R. Typically we use
ϵ ¼ 10−6R and we expand the series to order k ¼ 15.
For the polytropes with n ≠ 0, the speed of sound goes to

zero at the stellar surface (cs → 0 as r → R−), and Eq. (25)
cannot be used reliably near r ¼ R. Keeping only the terms
of order 1=c2s in Eq. (25) allows us to solve for Yj between
r ¼ R − ϵ and r ¼ R. Imposing the boundary condition
and utilizing the junction conditions gives the odd and even
parity master functions, Φ̃�

lmðR;ωÞ, at the (outer) surface
(see Sec. II D). We integrate these out to some large value
of r ¼ rmax, typically choosing rmax ≈ 100R.
In the far field we compute generalized series solutions

for Φ̃�
lm about r ¼ ∞ of the form

Φ̃out
lmpðr;ωÞ∼e−iωr�

XN
j¼0

bjr−j; Φ̃in
lmpðr;ωÞ¼ Φ̃out�

lmpðr;ωÞ:

ð44Þ

We choose N ¼ 15 to achieve accurate results. We then
match this to the numerical solution to obtain the mode
coefficients by solving

� Φ̃out
lmp Φ̃in

lmp

∂rΦ̃out
lmp ∂rΦ̃in

lmp

��Aout
lp

Ain
lp

�
¼
� Φ̃lmp

∂rΦ̃lmp

�����
r¼rmax

: ð45Þ

III. RESULTS

The scattering process is encapsulated by the specific
stellar model or compact object used, and the dimension-
less parameters Mω ¼ πRS

λ and R
M ¼ 2R

RS
, where RS ¼ 2M is

the Schwarzschild radius and λ is the wavelength of the
incident wave. We consider a range of couplings
Mω ∼ 0.1–10, and the tenuity R=M ¼ 6, which is compa-
rable to that of a neutron star. After fixing the tenuity, the
polytropic index n determines the stellar structure in
our model.
Low-frequency (Mω ≪ 1) analytic approximations for

scattering by a black hole are summarized in Eq. (2). In
Fig. 4 we compare the approximations with numerically
determined scattering cross sections for an n¼1, R=M ¼ 6

polytrope with Mω ¼ 0.1. We find that the cross sections
are very similar, and the polytrope cross sections appear to
approach the low frequency black hole approximations as
Mω → 0. This is consistent with the interpretation that long
wavelength waves do not “see” the strong-field structure of
the scatterer if λ ≫ R, and thus the cross section is
insensitive to the nature of the central body.
The universality of the cross section at low Mω, seen in

Fig. 6, does not persist at higher frequencies. Figure 5
shows the case Mω ¼ 1, where the cross sections for GWs
scattering from a compact body (R=M ¼ 6) are clearly
different from those for scattering from a black hole, with
visible differences occurring at large angles (θ ≳ 20°). The
differences become more marked at shorter wavelengths
(higher frequencies), as the wave can resolve and probe the
details of the internal structure of the body.

FIG. 4. Helicity preserving (red) and helicity reversing (blue)
gravitational scattering cross sections for a polytropic (PT) star
with tenuity R=M ¼ 6, polytropic index n ¼ 1, and coupling
Mω ¼ 0.1. The cross section for a scalar wave incident on the star
is also shown (green). The low-frequency approximations for
black hole (BH) scattering cross sections, given in Eq. (2), are
shown as dotted lines.

FIG. 5. Gravitational wave scattering cross sections for a
polytropic star with R=M ¼ 6, polytropic index n ¼ 1 (black,
solid) and a Schwarzschild black hole (red, dashed). The coupling
is Mω ¼ 1.
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Figure 6 shows the cross sections for a polytropic star
with n ¼ 1, R=M ¼ 6, and a range of couplings Mω. At
low Mω, the helicity-reversing cross section jgj2 plays a
role in large-angle scattering. As shown in plots (b), (c) and
(d), the contributions from jgj2 diminishes at higher Mω,
and it is negligible for Mω ¼ 4. Once the coupling is
sufficiently large,Mω≳ 2, a rainbow pattern appears in the
cross section. That is, a primary peak at some θp, which
may be followed by supernumerary troughs and peaks at
θ < θp, and a falling off of the cross section into the
“shadow zone,” θ > θp. The primary peak is close to the
rainbow angle, θr, which is the maximum deflection angle
for a null geodesic incident on the compact body (for
details of how θr is calculated see [28]). The rainbow
feature is superposed on a Rutherford-type scattering cross
section, with a forward divergence, which essentially arises
because we are modeling a plane wave of infinite extent in a
long-range field. In the semiclassical regime, Mω ≫ 1, θp
approaches θr from below, and the width of the oscillations
in the cross section decreases, as may be anticipated from
Airy’s formula, Eq. (1).

(a) (b)

(c) (d)

FIG. 6. Scattering cross sections for a polytropic star with R=M ¼ 6, polytropic index n ¼ 1 and coupling (a)Mω ¼ 0.1, (b)Mω ¼ 1,
(c)Mω ¼ 2 and (d)Mω ¼ 4. The helicity preserving (reversing) part of the GW cross section is shown in dashed blue (dot-dashed red),
and the cross section for a scalar wave is shown in dotted green. The rainbow angle, θr ≈ 79.7°, is shown as a solid vertical line for the
two higher frequency cases.

FIG. 7. Rainbow scattering for three polytropes with n ¼ 1
(black, solid), n ¼ 0.5 (blue, long-dashed), and n ¼ 0 (red, short-
dashed). For smaller n the rainbow angle, and thus the positions
of the primary and supernumerary troughs and peaks, are shifted
to smaller angles. The rainbow angles are indicated with vertical
lines with the same style as the corresponding cross section. The
rainbow angle is θr ≈ 59.6°; 66.6°, and 79.7° for n ¼ 0, 1, and 2,
respectively. The generic rainbow scattering pattern, superim-
posed on a divergence at θ ¼ 0, remains for all cases.
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We find that rainbow scattering is seen for a range of
stellar models at higher frequencies. Figure 7 shows the
scattering cross sections for polytropes with polytropic
index n ¼ 0, 1, 2, with n ¼ 0 corresponding to a star of
constant density. Generally, as n increases, the bodies mass
becomes more concentrated in the center, and the star
becomes “less stiff,” with a slower internal speed of sound.
As a consequence, the maximally deflected geodesic,
which passes through the body, scatters through a greater
angle. This is confirmed for the small sample of polytropes
we consider in Table I. Consequently, the rainbow pattern
of supernumerary peaks and troughs is shifted to higher
angles for larger n, as shown in Fig. 7. The stellar structure
is clearly affecting the scattering cross section. The inverse
problem of determining stellar structure from a scattering
cross section would be worth addressing, in principle.

IV. DISCUSSION AND CONCLUSIONS

In the preceding sections, we have presented numerical
results for GW scattering cross sections for compact bodies
of tenuity R=M ¼ 6, modeled as spherically symmetric
polytropes. We may now draw several conclusions.
(1) The cross section for the gravitational wave is

qualitatively similar to that for a scalar field Φ
which is not directly coupled to the matter sector
(studied in Paper I [28]), with some minor
differences at lower frequencies.

(2) At low frequencies (long wavelengths) Mω ≪ 1,
the scattering cross section is insensitive to the
internal structure of the compact body, and the cross
section for a compact body reduces to that for a
Schwarzschild black hole of the same mass, given by
Eq. (2). At low frequencies and large angles θ ≳ 90°
there is a significant contribution from the helicity-
reversing amplitude jgj2, due to the fact that the
phase shift for odd and even-parity perturbations
differs (see Fig. 4).

(3) The contribution from the helicity-reversing ampli-
tude diminishes as the frequency increases, becom-
ing negligible in practice for Mω≳ 1 (see Fig. 6).

(4) The even-parity perturbation in the gravitational
wave couples directly to the fluid degrees of freedom
of the star, whereas the odd-parity part does not.
However, the lack of a significant helicity-reversing

amplitude, implying that the odd and even-parity
phase shifts are approximately equal, would appear
to imply that this coupling plays no major role in
time-independent scattering. (Fluid motions could
be important in the time-dependent context, as
suggested by Allen et al. [35].)

(5) At high frequencies, the gravitational wave exhibits
the expected features of rainbow scattering (see
Figs. 6 and 7), as anticipated from the ray analysis
in Fig. 1–3, Eq. (1) and Paper I.

(6) A wavefront passing through a neutron star will be
focused at a cusp caustic (see Figs. 1 and 3). For
tenuity R=M ¼ 6 the cusp caustic may form inside
the star, or just outside, depending on the polytropic
index n.

(7) The rainbow angle θr is sensitive to both the
polytropic index n and tenuity R=M (see Fig. 7
and Table I).

The direct coupling between the gravitational wave and
fluid motions appears to be inconsequential in time-
independent scattering. On the other hand, the internal
structure of the fluid star, determined by its EoS, is certainly
not. Constraining the EoS for a neutron star is an important
goal where multiple disciplines overlap including nuclear,
particle and gravitational physics. The EoS determines the
body’s density and pressure profiles, which consequently
alter the space-time curvature, the effective potential and
thus the scattering of the incident wave. We have shown
here that the rainbow angle, and thus the position of the
primary rainbow maximum for moderate-to-high frequen-
cies, is sensitive to the EoS.
Rainbow scattering is a wave phenomenon that arises on

disparate scales in physics. In the context of ion-scattering
experiments [60–62], rainbow scattering was used to
discriminate between competing models of the nuclear
potential (see e.g., Fig. 11 in [62]). In fact, in the nuclear
case the quantum-mechanical deflection function possesses
two stationary points, linked to the (repulsive) long-ranged
Coulomb interaction and the (attractive) short-range
nuclear interaction, respectively: see Fig. 9 in [62]. The
former leads to small-angle rainbow scattering and the
latter to the wide-angle rainbow features from which one
may infer basic properties of the nuclear potential.
Let us now consider gravitational wave scattering by

neutron stars in an astrophysical context. A typical neutron
star has a mass of M ≈ 1.5 M⊙, corresponding to a
gravitational radius of rg ¼ GM=c2 ≈ 2.2 km. For this
mass, the range of frequencies considered here, Mω ∼
0.1–10 in geometric units, corresponds to wave frequencies
in the range ω ∼ 104–106 Hz. Known astrophysical sources
emit GWs with frequencies ω≲ 103 Hz [63], with the
highest frequency source being millisecond pulsars. (The
fastest-spinning pulsar known, PSR J1748-2446ad, has a
frequency of 716 Hz. If it is not axisymmetric about its
rotation axis, it will emit gravitational waves [64,65] with

TABLE I. Rainbow angles, θr, for polytropes with tenuity R=M
and polytropic index n.

n

R=M 0 0.5 1

5 81.1° 92.1° 115°
6 59.6° 66.6° 79.7°
7 47.3° 52.4° 61.5°
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ω ¼ 9 × 103 Hz). Thus the low-frequency approximation,
Eq. (2), is likely to be approximately valid for generic time-
independent scattering scenarios involving gravitational
waves and neutron stars. At low frequencies, the cross
section is insensitive to the internal structure of the star, and
so rainbow scattering is not manifest.
The conditions for rainbow scattering will arise naturally

for gravitational waves impinging upon larger, less com-
pact bodies such as white dwarfs (R=M ∼ 1400); or upon
intermediate-mass black holes (102–105 M⊙) and super-
massive black holes M ≳ 105 M⊙ surrounded by a shell of
matter [27].
The rainbow interference effect can arise naturally, too,

for other weakly interacting fields. Motivated by neutrino
oscillations, Alexandre and Clough recently investigated
the plane wave scattering of coupled and flavored massive
scalars on a Schwarzschild black hole background [25].
They showed that a long-range interference pattern will
form, altering the flavor oscillation probability. They
postulate that this effect may also be seen for neutrinos,
and that unexpected neutrino detection patterns could be
observed when a black hole is situated between a terrestrial
detector and neutrino source. The consequences of replac-
ing the black hole with a dense compact body are yet to be
explored fully. For example, it is not known if the rainbow
scattering cross sections for neutron stars can be accurately
calculated via a sum of Regge poles (see Ref. [66] for
recent progress in the black hole context).
An open question is whether a rainbow from (quasi)time

independent scattering could ever be detected in practice, in
the gravitational context. To verify the diffraction pattern, a
detector would need to sample at least one peak and trough
of the interference pattern. This would certainly require a
fortuitous alignment of scatterer and source, such that a
detector lay just inside the rainbow angle θr. As the angle of
observation θobs would be essentially fixed, the detector
would need to sample across a range of frequencies Δω.
This would necessitate a gravitational wave source that is
either multiband, like an eccentric binary, or which sweeps
across a range of frequencies over time, like a binary
inspiral. The Airy formula (1) yields an estimate Δω

ω ∼ 2q
θr−θobs

for the range of frequencies that would be needed to sample
the rainbow.
One interesting avenue for further work is to consider the

possible physical consequences of the cusp caustic that
forms in the gravitationally scattered wavefront (Fig. 1),
due to the focusing effect of gravity. The position of the
cusp caustic is sensitive to the density and compactness of
the compact body. Whereas for a neutron star it can form
inside the star, or close to its crust, for a dilute body like the
Sun it will form at a distance of approximately 550
astronomical units [67]. Cusp caustics also arise naturally
in other wave-propagation contexts. For example, in
shallow water, a wave propagates more slowly wherever
it passes over a submerged island. Berry [68,69] has

described how cusp caustics may arise in tsunamis due
to seabed topography, leading to the focusing of energy,
with potentially devastating consequences. There are close
parallels between shallow water wave propagation and
gravitational waves on a curved spacetime which we may
explore in future work.
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APPENDIX A: PLANE WAVE MATCHING

The scattered part of the metric perturbation is found by
matching to the total metric perturbation and the plane
wave via

hscatAB ¼ htotalAB − hplaneAB : ðA1Þ

In order to carry this subtraction out in a gauge invariant
way we instead use the master functions, as in Eq. (31). We
assume that the scattered part is all outgoing in the far field

Φ̃scat
lmpðr;ωÞ ∼ αlmpðωÞe−iωr� : ðA2Þ

The leading order behavior of the scalar master functions
for a left circularly polarized distorted plane wave in the far
field is given by Eqs. (32) and (33). The method for finding
the master functions of a given perturbation is described in
Martel and Poisson (MPo) [36], and Barack and Lousto
(BL) [37]. Table III of BL provides the necessary differ-
ential operations to apply to hμν to find the coefficients of
their particular spherical harmonic decomposition. The
decomposition of MPo is similar to that of BL, so it is
simple to then deduce the decomposition coefficients of
MPo that define the master functions in their Eqs. (4.23)
and (5.13). Substituting Eqs. (19), (32) and (33) into
Eq. (31), gives

αlm−ðωÞ ¼
ð2πÞ2HCl2

ω
ðe2iδ−l ðωÞ − 1Þ½δm2δðω0 − ωÞ

− δm;−2δðω0 þ ωÞ�; ðA3Þ

αlmþðωÞ ¼ −
ð2πÞ2HCl2

ω
iðe2iδ−l ðωÞ − 1Þ½δm2δðω0 − ωÞ

þ δm;−2δðω0 þ ωÞ�: ðA4Þ

The metric perturbation corresponding to the scattered
wave in the far field can then be reconstructed with
Eq. (13),
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hscatAB ∼
r
2π

Z
∞

−∞
dω

�X
l;m;p

αlmpðωÞeiωðt−r�ÞXlmp
AB

�
: ðA5Þ

It is convenient to be able to switch to using spin-weighted
spherical harmonics, sYlm, defined in [59], where s is the
spin weight. They satisfy sȲlm ¼ ð−1Þmþs

ð−sÞYlð−mÞ, where
an overbar denotes the complex conjugate. The MPo
harmonics can be written in terms of spin-weight �2
spherical harmonics,

Xlm−
AB ¼ i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
× ð2Ylmm̄Am̄B − −2YlmmAmBÞ; ðA6Þ

Xlmþ
AB ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
× ð2Ylmm̄Am̄B þ −2YlmmAmBÞ; ðA7Þ

where mA ¼ 2−1=2ð1; i sin θÞ. Note Xlð−mÞp
AB ¼ ð−1ÞmX̄lmp

AB .

APPENDIX B: SCATTERED FLUX

The energy flux per unit solid angle in the scattered
radiation is given by (p. 72 [14]),

dE
dtdΩ

¼ lim
r→∞

r2Tr
t: ðB1Þ

A gauge invariant way to calculate the stress energy of a
metric perturbation is to use a space-time averaging process
[70,71], denoted by placing angular brackets around the
quantity to be averaged, h� � �i. The Brill-Hartle (BH)
averaged stress energy tensor of a metric perturbation is

hTμνi ¼
1

32π
hhρτ ;μhρτ;νi: ðB2Þ

The radiative part of the relevant component of the stress
energy tensor is

hTr
ti ∼

1

r4
1

32π
h∂rhAB∂thABi as r → ∞: ðB3Þ

Substituting Eq. (A5) into Eq. (B3), expressing the MPo
spherical harmonics in terms of spin weighted spherical
harmonics [Eq. (A6)], and performing the BH averaging
over a region much larger than the wavelength, results in

�
dE
dtdΩ

	
¼ H2

16π

�����π
X
l;p

�ð2lþ 1Þ
4π

�
1=2

× ðe2iδpl ðω0Þ − 1Þ−2Yl2ðθÞ
����
2

þ
����π
X
l;p

p

�ð2lþ 1Þ
4π

�
1=2

× ðe2iδpl ðω0Þ − 1Þ2Yl2ðθÞ
����
2
�
:

ðB4Þ

The flux per unit area in the incident plane wave is

dE
dtdA

����
Plane

¼ H2ω2

16π
: ðB5Þ

The scattering cross section is defined as

dσ
dΩ

≔
dE
dtdΩ

. dE
dtdA

����
Plane

: ðB6Þ

Substituting Eq. (B4) and (B5) into Eqs. (B6) gives
Eq. (35), the scattering cross section for gravitational plane
wave scattering.
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