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We study the local well-posedness of the initial value problem for cubic Horndeski theories. Three
different strongly hyperbolic modifications of the Arnowitt-Deser-Misner formulation of the Einstein
equations are extended to cubic Horndeski theories in the “weak field” regime. In the first one, the
equations of motion are rewritten as a coupled elliptic-hyperbolic system of partial differential equations.
The second one is based on the Baumgarte-Shapiro-Shibata-Nakamura formulation with a generalized
Bona-Massó slicing (covering the 1þ log slicing) and nondynamical shift vector. The third one is an
extension of the CCZ4 formulation with a generalized Bona-Massó slicing (also covering the 1þ log
slicing) and a gamma driver shift condition. This final formulation may be particularly suitable for
applications in nonlinear numerical simulations.
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I. INTRODUCTION

In the past few decades there has been a growing interest
in modifying general relativity (GR) and exploring various
properties of these modified theories. The most common
reason for this is that the cosmological constant problem
led some people to believe that GR may not be the correct
theory of gravity, even at large distance scales and low
energies. Investigating the properties of extensions of GR is
also relevant from an effective field theory (EFT) point of
view: since GR is nonrenormalizable, one expects that it is
only an EFT valid up to some energy scale. When
describing strong field phenomena, other operators (besides
the Einstein-Hilbert term) might become relevant in the
action of the underlying UV complete theory. Finally,
testing the rigidity of the predictions and mathematical
properties of GR to small deformations can also help us
better understand GR itself and discover new techniques.
Trying to modify GR with the purpose to cure one of its

shortcomings, however, typically introduces new unwanted
pathologies elsewhere. For example, theories with equa-
tions of motion containing higher than second derivatives
generically suffer from the so-called Ostrogradsky insta-
bilities.1 To avoid such instabilities, investigations are
usually restricted to theories with second order equations
of motion. Examples of such theories include Horndeski
theories [2]. Horndeski theories are the most general
diffeomorphism-invariant scalar-tensor theories with an

action principle that has second order equations of motion.
The action for general Horndeski theory is

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðL1 þ L2 þ L3 þ L4 þ L5Þ ð1Þ

with

L1 ¼ Rþ X

L2 ¼ G2ðϕ; XÞ
L3 ¼ G3ðϕ; XÞ□ϕ

L4 ¼ G4ðϕ; XÞRþ ∂XG4ðϕ; XÞδabcd∇a∇cϕ∇b∇dϕ

L5 ¼ G5ðϕ; XÞGab∇a∇bϕ

−
1

6
∂XG5ðϕ; XÞδabcdef∇a∇dϕ∇b∇eϕ∇c∇fϕ

and X ≡ − 1
2
ð∂ϕÞ2, Gi (i ¼ 2, 3, 4, 5) are freely specifiable

functions, R and Gab denote the Ricci scalar and the
Einstein tensor, respectively (corresponding to the space-
time metric g).
Even a theory with second order equations of motion

cannot automatically be considered as a viable physical
theory, unless it possesses a well-posed initial value
formulation (Cauchy problem). This means that the theory
can be formulated in terms of a system of time evolution
equations that satisfies the following two physically rea-
sonable properties. Given suitable initial data (that satisfies
certain constraints), (i) a unique solution must exist to the
evolution equations and (ii) the solution must depend
continuously on the initial data (in a suitable norm).
Apart from being a crucial mathematical criterion, the
problem of well-posedness is also interesting from a
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1However, in the EFT context it may be argued that such a

runaway behavior can be discarded as the mass of the ghost is
usually around the cutoff and solutions of this type fall beyond
the range of validity of the EFT (see e.g., [1]).
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numerical and experimental point of view. Observations of
gravitational wave signatures from coalescing black holes
provide new possibilities to test general relativity and its
alternatives [3]. In order to do this, however, one needs a
stable numerical scheme to solve the equations of motion
which is not possible without a well-posed initial value
formulation of the theory. Ill-posed systems are unsuitable
for numerical computer simulations because initial numeri-
cal errors tend to grow drastically during the evolution.
In general, the equations of motion in these theories are a

nonlinear system of PDEs. A generic feature of these types
of equations is that there may not exist global in time
solutions for all data, solutions may blow up in a finite time.
The best one can hope for (at least for generic initial data) is
to establish local well-posedness, that is to say, the above
two criteria are only required to hold for a finite (but strictly
nonzero) time. To establish local well-posedness of the
nonlinear equations, it is sufficient to study the properties
of the highest derivative (principal) terms in the linearized
equations of motion in a generic background.
The set of algebraic conditions on the principal terms in a

system of PDEs that are relevant for well-posedness is
generally called hyperbolicity. There exist multiple notions
of hyperbolicity in the literature such as weak, strong, strict
and symmetric hyperbolicity. It can be shown [4] that
strongly hyperbolic equations possess a locally well-posed
initial value formulation, whereas weaker notions of hyper-
bolicity do not guarantee well-posedness (see definitions and
more precise statements in Appendix A). For this reason,
strong hyperbolicity is considered to be a minimal require-
ment to perform numerical simulations and in this paper, we
shall be primarily concerned with strong hyperbolicity.
The problem of well-posedness in theories of gravity is

exacerbated by the fact that most of these theories are
diffeomorphism-covariant. This implies that solutions to the
equations of motion are never unique in a mathematical
sense. This problem is usually solved by fixing the gauge.
This involves imposing a condition on the components of the
metric and/or its derivatives, andmodifying the equations of
motion by terms that vanishwhen the gauge condition holds.
In general relativity the simplest gauge condition leading to a
well-posed formulation is provided by the harmonic gauge
[5,6] which reduces the Einstein equations to a system of
quasilinear wave equations on each component gμν.
The question of well-posedness in modified theories is far

from settled. Local well-posedness has been established for
some scalar-tensor theories [7,8] and the Lorentz-violating
Einstein-æther theory [9]. In addition, there are some results
for dynamical Chern-Simons theory [10] as well as pro-
gress in numerical simulations in some Horndeski theories
[11–14] and in dynamical Chern-Simons theory [15,16].
In [17,18] Papallo and Reall studied the linearized

equations of motion of Lovelock [19] and Horndeski
theories in a generic “weak field” background and in
(generalized) harmonic gauge. Throughout this paper,

the weak field terminology refers to field configurations
in which the Horndeski terms are small compared to the
(minimally coupled) Einstein-scalar-field terms in the
equations of motion. [See Eq. (27) for a more precise
definition.] Note that this encompasses situations in which
the nonlinearities of general relativity are important, for
example, gravitational collapse to a black hole that is large
compared to the scale defined by coupling constants of the
Horndeski terms. The restriction to a weak field back-
ground in [17,18] is due to the fact that in these theories
well-posedness is known to break down when the back-
ground fields are strong [17,20–23]. However, one may still
hope that the theory does not lose its predictive power when
it is used to describe small deviations from GR. It turns out
that the only subclass of these theories that has a well-posed
Cauchy problem in a generalized harmonic gauge is the so-
called k-essence-type theories (G3 ¼ ∂XG4 ¼ G5 ¼ 0). It
should be noted that the linearized equations of motion in
theories with nontrivial G3 were shown to be strongly
hyperbolic in a specific choice of generalized harmonic
gauge. However, this result does not extend to the non-
linear case in a generic background.
Despite this result, one cannot immediately conclude that

more general theories are useless. There exists several
different well-posed formulations of GR so one might hope
that some other formulation and a different choice of gauge
could be suitably extended to more general Horndeski
theories. In this paper, we focus on the cubic subclass ðG4 ¼
G5 ¼ 0Þ of Horndeski theories2 and study its initial value
formulation in more detail. Recently, bouncing cosmological
solutions have received some attention in the framework of
this particular class of theories [24–28]. Furthermore, cubic
Horndeski theories naturally arise as certain low energy
limits of massive gravity theories [29,30].
The main result of this paper is that cubic Horndeski

theories do possess a well-posed initial value formulation
(at least in the weak field regime) and we provide three
examples of strongly hyperbolic formulations. Since read-
ers with different backgrounds may find different parts of
this paper interesting, we intend to organize our results
accordingly.
We begin with a general discussion of the Arnowitt-

Deser-Misner (ADM) formulation of cubic Horndeski
theories in Sec. II. More specifically, we present the
standard ADM evolution and constraint equations of cubic
Horndeski theories and show that a suitable linear combi-
nation of these equations give a scalar evolution equation
which contains no second derivatives of the spacetime
metric. This observation has already been made in [24] but
we emphasize this fact here again, since it is a key step to
obtain well-posed formulations. The section is concluded
by a preliminary discussion of constraint propagation.

2This is related to the theory given by G2 ≠ 0, G3 ¼ bðϕÞX,
G4 ¼ G4ðϕÞ and G5 ¼ 0 by a field redefinition.
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Section III is mathematically more involved3 so readers
interested in numerical applications may jump straight to
Sec. IV. In Sec. III we present an elliptic-hyperbolic
formulation of cubic Horndeski theories, using ideas put
forward by Andersson and Moncrief in [31] for vacuum
GR. After briefly reviewing [31], we show how a suitable
modification of the constant (or arbitrarily prescribed)
mean curvature and spatial harmonic gauge conditions
lead to second order elliptic equations for the lapse function
and the shift vector. In the weak field regime and on slices
with negative Ricci curvature, existence and uniqueness of
solutions to these elliptic equations are guaranteed. It is
finally shown that under these assumptions, the strong
well-posedness result of Andersson and Moncrief for GR
extends to cubic Horndeski theories.
In Sec. IV we consider a version of the Baumgarte-

Shapiro-Shibata-Nakamura (BSSN) formulation [32,33]
with a generalized Bona-Massó slicing condition [34]
and nondynamical (i.e., arbitrary but a priori fixed) shift
vector. This formulation contains 2 free parameters: one
that describes the slicing condition and one that describes
how we modify the evolution system by the momentum
constraint. It is shown that when these parameters obey a
lower bound then the system of equations is strongly
hyperbolic in the weak field regime.
Finally, Sec. V is the most relevant to those with interests

in nonlinear numerical computer simulations. Here we
review the so-called covariant conformal Z4 (CCZ4)
formulation [35] which was constructed to enhance the
accuracy of numerical simulations in GR. This was
achieved by an appropriate modification of Einstein’s
equation so that constraint violations are damped away
during the evolution. Together with a 2-parameter family of
dynamical gauge conditions (generalized Bona-Massó
slicing and gamma driver conditions), a straightforward
generalization of the CCZ4 system to cubic Horndeski
theories constitutes a strongly hyperbolic system of PDEs
whenever a simple lower bound on these parameters is

imposed and the fields are sufficiently weak. In particular,
the slicing conditions selected by strong hyperbolicity
include the 1þ log slicing which is used in many numerical
applications. We also comment on the issue of constraint
damping in cubic Horndeski theories.

II. SETTING UP THE PROBLEM

A. Equations of motion

In this section we provide the ideas that all three
formulations (presented in the subsequent sections) share.
We adapt the following notation. We are going to use the

Latin letters ða; b; c;…Þ for abstract indices and Greek
letters ðμ; ν; ρ;…Þ for coordinate indices. The Latin letters
ði; j; k;…Þ will be used for spatial indices. As mentioned
before, we use calligraphic letters (R, Rab, Gab, etc.) for
spacetime curvature tensors, whereas curvature tensors
defined on spatial slices are denoted by regular (R, Rab,
etc.) letters. For a metric m, j · jm denotes the pointwise
norm with respect to m (e.g., for a vector field va we have
jvjm ¼ mabvavb). Our convention on the metric signature
is ð−;þ;þ;þÞ.
As mentioned in the Introduction, the class of theories

under consideration can be described by the action
[X ≡ − 1

2
ð∂ϕÞ2]

S¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþXþG2ðϕ;XÞþG3ðϕ;XÞ□ϕÞ:

ð2Þ
The reason for separating out X in this action is that we

are going to view Horndeski theories as small deformations
of Einstein’s theory with a minimally coupled scalar field
(referred to as the Einstein-scalar-field theory later, sim-
ilarly to [17]).
Varying the action (2) with respect to the metric yields

the equation of motion [18]

Eab ≡ Gab −
1

2
ðX þ G2 þ 2X∂ϕG3Þgab −

1

2
ð1þ ∂XG2 þ 2∂ϕG3Þ∇aϕ∇bϕ

þ 1

2
∂XG3ð−□ϕ∇aϕ∇bϕþ 2∇ðaϕ∇bÞ∇cϕ∇cϕ −∇c∇dϕ∇cϕ∇dϕgabÞ ¼ 0: ð3Þ

In the ADM-type formulations of general relativity, it is often beneficial to use the linear combination Eab − 1
2
Egab ¼

Rab ¼ 0 as equation of motion, rather than Eab ¼ Gab ¼ 0. In fact, it turns out that it is useful to consider the same
combination of the gravitational equations of motion in Horndeski theories:

Eab −
1

2
Egab ¼ Rab þ

1

2
ðG2 − X∂XG2 − X∂XG3□ϕÞgab −

1

2
ð1þ ∂XG2 þ 2∂ϕG3Þ∇aϕ∇bϕ

þ 1

2
∂XG3ð−□ϕ∇aϕ∇bϕþ 2∇ðaϕ∇bÞ∇cϕ∇cϕÞ ¼ 0: ð4Þ

3Some additional information is provided on pseudodifferential calculus and its applications to hyperbolic and elliptic PDEs in
Appendix A.
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In the scalar evolution equation

Eϕ≡ − ð1þ ∂XG2 þ 2X∂2
XG2 þ 2∂ϕG3 þ 2X∂2

XϕG3Þ□ϕþ ∂XG3Rab∇aϕ∇bϕ

− ð∂2
XG2 þ 2∂2

XϕG3Þðð∂ϕÞ2□ϕ −∇aϕ∇bϕ∇a∇bϕÞ − ∂XG3ðð□ϕÞ2 −∇a∇bϕ∇a∇bϕÞ
þ ∂2

XG3∇aϕ∇bϕð□ϕ∇a∇bϕ −∇a∇cϕ∇c∇bϕÞ þ 2Xð∂2
ϕG3 þ ∂2

XϕG2Þ − ∂ϕG2 ¼ 0 ð5Þ

(obtained by varying the action (2) with respect to ϕ) the only term involving second derivatives of the metric is
Rab∇aϕ∇bϕ. We will see that it is useful to express this from ðEcd − 1

2
EgcdÞ∇cϕ∇dϕ. In other words, instead of the

equation Eϕ ¼ 0, we are going to use

Ẽϕ ≡ Eϕ − ∂XG3

�
Ecd −

1

2
Egcd

�
∇cϕ∇dϕ ¼ −ð1þ ∂XG2 þ 2X∂2

XG2 þ 2∂ϕG3 þ 2X∂2
XϕG3Þ□ϕ

− ð∂2
XG2 þ 2∂2

XϕG3Þðð∂ϕÞ2□ϕ −∇aϕ∇bϕ∇a∇bϕÞ − ∂XG3ðð□ϕÞ2 −∇a∇bϕ∇a∇bϕÞ
þ ∂2

XG3∇aϕ∇bϕð□ϕ∇a∇bϕ −∇a∇cϕ∇c∇bϕÞ þ 2Xð∂2
ϕG3 þ ∂2

XϕG2Þ − ∂ϕG2

þ ∂XG3ð2X2 þ XG2 þ X2∂XG2 þ X2∂XG3□ϕþ 4X2∂ϕG3 þ 2X∂XG3∇aϕ∇bϕ∇a∇bϕÞ ¼ 0 ð6Þ

as the scalar evolution equation. The reason for this is that
this equation contains derivatives of the scalar field up to
second order and derivatives of the metric only up to first
order. (Some benefits of the use of this particular linear
combination were also noticed in [24].)
Now we assume that the spacetime manifold ðM; gÞ is

globally hyperbolic M ¼ R × Σ and hab is the spatial
metric induced on the spacelike Cauchy surfaces Σt.
Let na be the future directed unit normal to Σt. The
lapse function N and the shift vector Na are then
defined by

� ∂
∂t
�

a
¼ Nna þ Na: ð7Þ

The convention on the extrinsic curvature used here is

Kab ¼ −
1

2
Lnhab ¼ −

1

2N
ð∂t − LNÞhab: ð8Þ

We also need ADM variables for the derivatives of the
scalar field, let

A≡ na∇aϕ ¼ 1

N
ð∂t − LNÞϕ ð9Þ

and

Aa ≡ hba∇bϕ: ð10Þ
For convenience, we also introduce a fixed, smooth

background metric on the spatial slices h
∘
and denote the

corresponding covariant derivative and Christoffel symbol

by D
∘
and Γ

∘ i
jk, respectively.

Now we are ready to provide the standard ADM-type
equations of motion in cubic Horndeski theories. Taking
the spatial projection of (4) in both indices yields the tensor
evolution equation (some helpful formulas for carrying out
ADM decompositions are provided in Appendix B)

ð∂t − LNÞKij −
1

2
∂XG3ðXhij þ AiAjÞð∂t − LNÞA ¼ −DiDjN þ N

�
Rij þ KKij − 2KikKk

j

þ 1

2
hijðG2 − X∂XG2 − X∂XG3ðDkAk þ AK þ AkDk lnNÞÞ − 1

2
ð1þ ∂XG2 þ 2∂ϕG3ÞAiAj

þ 1

2
∂XG3ðAkDkðAiAjÞ − AiAjDkAk − AiAjAK − AiAjAkDk lnN − 2AAðiDjÞAÞ

�
: ð11Þ

Note that

X ¼ 1

2
ðA2 − AkAkÞ: ð12Þ

Similarly to general relativity, the projections Eabnanb and Ecbhcanb in Horndeski theories yield constraint equations: the
Hamiltonian constraint is
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2H≡ 2Eμνnμnν ¼ Rþ K2 − KijKij −
�
1

2
AiAi þ 1

2
A2 −G2 þ A2∂XG2 þ ðA2 þ AiAiÞ∂ϕG3

�

− ∂XG3ðA3K þ A2DiAi − KijAiAjA − AiAjDiAjÞ ¼ 0; ð13Þ

while the momentum constraint reads as

Mi ≡ Eμinμ ¼ DiK −DjKij −
1

2
ð1þ ∂XG2 þ 2∂ϕG3ÞAAi

−
1

2
∂XG3ðA2AiK þ AAiDkAk − KklAkAlAi − AAjDjAi − AiAkDkAþ A2DiAÞ ¼ 0: ð14Þ

Even though we are not going to use the explicit form of the scalar evolution equation (6), only some of its properties, we
rewrite it in terms of the ADM variables, for reference. One obtains4

Eϕ ≡ Φ
�
1þ ∂XG2 þ A2∂2

XG2 þ 2∂ϕG3 þ ∂2
XϕG3ðA2 þ AiAjhijÞ þ 2Φij∂XG3hij

þ 1

4
ð∂XG3Þ2ð3A4 − 2AiAjA2hij − AiAjAkAlhikhjlÞ þ ∂2

XG3ðA2Φijhij − AkAlΦijhikhjlÞ
�

− ∂ϕG2 −Φijhij − 2Φij∂ϕG3hij þ ∂2
XϕG2ðA2 − AiAjhijÞ

þ ∂2
ϕG3ðA2 − AiAjhijÞ þ

1

2
G2∂XG3ðA2 − AiAjhijÞ þ ∂2

XG2ð−2AiAΦjhij þ AkAlΦijhikhjlÞ

þ ∂XG2

�
−Φijhij þ

1

4
∂XG3ðA4 − 2AiAjA2hij þ AiAjAkAlhikhjlÞ

�

þ ∂2
XϕG3ð−4AiAΦjhij þ A2Φijhij þ 2AkAlΦijhikhjl − AiAjΦklhijhklÞ

þ ∂XG3

�
∂ϕG3ðA4 − 2AiAjA2hij þ AiAjAkAlhikhjlÞ þ

1

2
A4 − 2ΦiΦjhij

− AiAjA2hij þ 1

2
AiAjAkAlhikhjl −ΦijΦklhijhkl þΦijΦklhikhjl

�

þ ∂2
XG3ð−A2ΦiΦjhij − 2AiAΦjlΦkhikhjl þ AiAjΦkΦlhikhjl

þ 2AkAΦijΦlhikhjl − AlAmΦinΦjkhilhjmhkn þ AmAnΦijΦklhimhjnhklÞ

þ 1

4
ð∂XG3Þ2ð−8AiA3Φjhij þ A4Φijhij þ 4AkAlA2Φijhikhjl

− 2AiAkA2Φjlhikhjl þ AiAjAkAlΦmnhikhjlhmn − 4AiAkAlhikhjlð−2AΦj þ AmΦjnhmnÞÞ ¼ 0: ð15Þ

where we used the following auxiliary variables

Φ≡ 1

N
ð∂t − LNÞA − AiDi lnN; ð16Þ

Φi ≡DiAþ KijAj; ð17Þ

Φij ≡DiAj þ AKij: ð18Þ

In the modifications of the ADM formulation considered
in this paper, the system of evolution equations takes the
general form

∂tu ¼ LNuþ Nv ð19aÞ

aðu;Du; v;D2u;DvÞ∂tv

¼ aðu;Du; v;D2u;DvÞLNvþ Nbðu;Du; v;D2u;DvÞ
ð19bÞ

where u and v are both column vectors of size n,
corresponding to the dynamical variables; a and b are

4The Mathematica package xAct [36] was of great help in the
derivation of the equations.
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n × n matrices, depending on the fields u, v (and their
derivatives). We assume that the matrix a is invertible
so that the hypersurfaces Σt are noncharacteristic and
spacelike.
In Horndeski theories, for example, the variables u

include fields like the components of the induced metric
hij and the scalar field ϕ, while the variables v are auxiliary
variables such as the extrinsic curvature Kij and the normal
derivative of the scalar field A. Since the formulations to be
discussed have different dynamical fields, this will be made
explicit later, on a case-by-case basis.
The hyperbolicity of the system of equations (19a) and

(19b) is found by analyzing its characteristic equation.
This is obtained by linearizing the evolution equations,
selecting the highest derivative (principal) terms and
replacing all the derivatives with ∂μ → iξμ ≡ iðξ0; ξiÞ.
Note that in Eq. (19a) the principal terms are the terms
proportional to v and first derivatives of u; whereas in
Eq. (19b) the principal terms are first derivatives of v and
second derivatives of u. The characteristic equations have
the general form

iξ0AU ¼ LðξkÞU ð20Þ

where A is a 2n × 2n matrix depending on the back-
ground fields, LðξkÞ is also a 2n × 2n matrix depending
on the background fields and the spatial Fourier variable
ξk, U is a size 2n column vector associated with the
dynamical fields (i.e., u and v). The condition that t ¼
constant surfaces are noncharacteristic implies that A is
invertible.
Equation (20) can be regarded as the eigenvalue

problem for the matrix MðξkÞ≡A−1LðξkÞ. The system
(19a), (19b) is called weakly hyperbolic if and only if the
eigenvalues of MðξkÞ are real for any ξk of unit norm
ξkξk ¼ 1. When the matrix MðξkÞ (i) has real eigenvalues,
(ii) is diagonalizable and (iii) has a complete set of
eigenvectors that depend smoothly on ξk, for any ξk of
unit norm, then the system (19a), (19b) is said to be
strongly hyperbolic. In order for the Cauchy problem of
(19a), (19b) to be well-posed, the system must be at least
strongly hyperbolic. For more precise definitions and
statements, see Appendix A and references cited therein.
In particular, for cubic Horndeski theories,5 we can

write U ¼ ðUg;Uϕ; UAÞT where Ug is a size 2n − 2

vector that corresponds to the gravitational variables
(e.g., hij and Kij); the components Uϕ and UA corre-
spond to the variables ϕ and A. Since the Eqs. (9) and
(15) contain no principal terms associated with the
spacetime metric g, the matrices A and M have the
upper triangular form

Aðu;Du; v;D2u;DvÞ

¼
�Aggðu;Du; vÞ Agϕðu;Du; vÞ

0 Aϕϕðu;Du; v;D2u;DvÞ

�
ð21Þ

Lðu;Du; v;D2u;DvÞ

¼
�Lggðu;Du; vÞ Lgϕðu;Du; vÞ

0 Lϕϕðu;Du; v;D2u;DvÞ:

�
ð22Þ

The matrix blocks labeled by subscripts gg, gϕ and ϕϕ
have sizes ð2n − 2Þ × ð2n − 2Þ, 2 × ð2n − 2Þ and 2 × 2,
respectively. It is also worth noting that the matrices Agg,
Agϕ, Lgg, Lgϕ depend only on the fields u, Du and v, that
is to say, the tensor (gravitational) evolution equations are
quasilinear [see e.g., Eq. (11)].
It will be useful (especially in Sec. V) to separate the

Einstein-scalar-field theory and the Horndeski (i.e., G2 and
G3-dependent) parts in A and L:

A ¼ A0 þ δA;

L ¼ L0 þ δL ð23Þ
where L0 and M0 correspond to the Einstein-scalar-field
theory, δA and δL are the Horndeski terms. The specific
forms of these terms will also be given on a case-by-
case basis.
Let us consider in more detail the characteristic equation

corresponding to (6) [or (15)]. Selecting the second
derivatives of ϕ in the linearized version of (6) [recall that
there are no second derivatives of g in (6)] and substituting
the derivatives ∂μ → iξμ ≡ iðξ0; ξiÞ, the characteristic
equation for the scalar mode is given by

0 ¼ ðP0
ϕϕÞμνξμξν

≡ PϕϕðξÞ − ∂XG3

�
Pμν
gϕðξÞ −

1

2
gρσgμνP

ρσ
gϕðξÞ

�
∇μϕ∇νϕ

ð24Þ
with

Pμν
gϕðξÞ ¼

1

2
∂XG3∇μϕ∇νϕjξj2g

− ∂XG3ξ
σ∇σϕ

�
ξðμ∇νÞϕ −

1

2
gμνξρ∇ρϕ

�
ð25Þ

and

PϕϕðξÞ¼ ð1þ∂XG2þ2X∂2
XG2þ2∂ϕG3þ2X∂2

XϕG3Þjξj2g
þð∂2

XG2þ2∂2
XϕG3Þðð∂ϕÞ2jξj2g− ðξμ∇μϕÞ2Þ

þ2∂XG3ðð□ϕÞjξj2g−ξμξν∇μ∇νϕÞ
−∂2

XG3∇μϕ∇νϕð□ϕξμξνþjξj2g∇μ∇νϕ

−2ξρξðμ∇νÞ∇ρϕÞ: ð26Þ
5For different formulations of the theory, the number of

dynamical variables may be different so we continue the
discussion with general n.
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The notations Pgϕ, Pϕϕ and P0
ϕϕ refer to the coefficients of

the second derivatives of ϕ in the linearized versions of
equations (3), (5) and (6), respectively.
The same characteristic equation corresponding to the

scalar degree of freedom (d.o.f.) has been previously found
in [17,24]. More precisely, to make a comparison with [17],
we note that with the preferred gauge choice Hab ¼
−∂XG3∇aϕ∇bϕ (and G4 ¼ 0) made therein, Eq. (230)
of [17] agrees with (24).
In a regime in which the fields are sufficiently weak, P0

ϕϕ

is close to the spacetime metric g and therefore, it is a
Lorentzian metric. By “sufficiently weak fields” we mean
field configurations such that the Horndeski terms are
small compared to the Einstein-scalar-field terms. More
precisely, let E ¼ max fjRμνρσj1=2; j∇μϕj; j∇μ∇νϕj1=2g in
all orthonormal bases. Then the weak field condition is
equivalent to

j∂k
X∂l

ϕG2jE2kþ2 ≪ 1 k ¼ 0; 1; 2; l ¼ 0; 1;

j∂k
X∂l

ϕG3jE2k ≪ 1k; l ¼ 0; 1; 2: ð27Þ

Note that this condition can be satisfied when spacetime
is strongly curved with respect to standard terminology
but the function G3 contains small enough coupling
constants.
Regarding (24) as an equation for the characteristic

speeds ξ0 for given ξi ≠ 0, this equation has two distinct
real solutions ξϕ;�0 . Furthermore, the weak field assump-
tions (27) also ensure that the spacelike t ¼ constant
hypersurfaces are noncharacteristic.

B. Constraint propagation

In addition to studying the hyperbolicity of the equa-
tions of motion in different formulations, we need to
address the issue of constraint propagation. That is to say,
we need to check whether solutions to the equations used
in these formulations remain solutions of the original
Horndeski equations of motion during the evolution. Here
we present a fairly detailed derivation of the equations
governing the propagation of gauge conditions and con-
straints, even though the individual steps are quite stan-
dard. The purpose of this is to demonstrate that the
Bianchi identity (and its generalization) leads straightfor-
wardly to a homogeneous system of PDE for the con-
straint variables, without making any reference to a
specific form of the equations of motion. The only
assumption we make is that the equations of motion
are second order PDEs obtained by varying a diffeo-
morphism invariant action. This guarantees that the normal
projection of the equations of motion is a constraint
equation. Note that in this section we derive the equations
without gauge fixing, the effect of the gauge fixing terms
on the constraint propagation system will be discussed
later. Let Eab ¼ 0 be the equations of motion obtained by

varying the action with respect to the spacetime metric
gab. Let us decompose it as

Eab ¼ Eab − naMb − nbMa þ nanbH ð28Þ

with

Eab ¼ Ecdhcahdb; ð29aÞ

H ¼ Eabnanb ð29bÞ

Ma ¼ Ecbhcanb: ð29cÞ

These variables denote the spatial evolution equation, the
Hamiltonian constraint and the momentum constraint,
respectively.
First, we consider

nb∇aEab ¼ −Eab∇anb − nbna∇aMb

þ∇aMa − na∇aHþ KH; ð30Þ

using Eabnb ¼ 0,Mana ¼ 0, nana ¼ −1 and ∇ana ¼ −K.
Furthermore, the following identities hold:

∇aMa ¼ DaMa þMbna∇anb ð31aÞ

Eab∇anb ¼ −EabKab ð31bÞ

nbna∇aMb ¼ −Mbna∇anb ¼ −Mb
DbN
N

: ð31cÞ

We would like to use the spatial projection of the trace
reversed version of Eab as evolution equation,6 i.e.,

Eab ¼ hcahdb

�
Ecd −

1

2
gefEefgcd

�

¼ Eab −
1

2
Ehab þ

1

2
Hhab:

Hence, we set

Eab ¼ Eab þHhab − Ehab: ð32Þ

With these identities we have

nb∇aEab ¼ −ð∂t − LNÞHþ 2NKHþ 1

N
DiðN2MiÞ

þ NEijðKij − KhijÞ: ð33Þ

6The reason why we prefer to use Eab ¼ 0 as evolution
equation rather than Eab ¼ 0 is that in general relativity the
latter approach yields only a weakly hyperbolic system of
equations for the constraint variables [37].
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Next, we consider the spatial projection

hbc∇aEab ¼ hbc∇aEab −∇anaMc − nahbc∇aMb

−∇anbhbcMa þHhbcna∇anb: ð34Þ

In this case we use

hbc∇aEab ¼ DaEac þ Eacnb∇bna ð35aÞ

nahbc∇aMb ¼ hbcðLnMb −Ma∇bnaÞ ð35bÞ

hbcMa∇anb ¼ hbcMa∇bna ¼ −MaKa
b ð35cÞ

Hhbcna∇anb ¼ Hna∇anc ð35dÞ

to obtain

∇μEμi ¼ −ð∂t − LNÞMi þ NKMi þ
1

N
DiðN2HÞ

þDj½NðEij − EhijÞ� ð36Þ

(cf. Eqs. (103,104) in [37]).
Now we consider the generalized version of the Bianchi

identity, that is,

∇aEab − Eϕ∇bϕ ¼ 0 ð37Þ
which is a consequence of the diffeomorphism invariance
of the Horndeski action. Recall that we wish to use Ẽϕ ¼ 0

as the scalar evolution equation. For this reason we set

Eϕ ¼ Ẽϕ þ ∂XG3

�
Ecd −

1

2
Egcd

�
∇cϕ∇dϕ: ð38Þ

Putting together equations (33), (36), (37) and (38) gives
the equations governing the evolution of the momentum
and Hamiltonian constraints

ð∂t − LNÞH ¼ 2NKHþ 1

N
DiðN2MiÞ þ NEijðKij − KhijÞ

− ẼϕA − N∂XG3AðEijAiAj þ 2HA2 þ EA2 − 2AMiAiÞ ð39Þ

ð∂t − LNÞMi ¼ NKMi þ
1

N
DiðN2HÞ þDj½NðEij − EhijÞ�

− ẼϕAi − N∂XG3AiðEijAiAj þ 2HA2 þ EA2 − 2AMiAiÞ: ð40Þ

In both of these equations, the terms in the second line arise
due to the fact that we use Eq. (15) instead of (5) as the
scalar equation of motion. Note that in each of the
formulations studied in this paper, the tensor evolution
equation is modified with gauge fixing terms. In other
words, the equation Eij ¼ 0 is replaced with a different
equation which introduces additional terms into equa-
tions (39)–(40). This will be analyzed on a case-by-case
basis.

III. ELLIPTIC-HYPERBOLIC FORMULATION

A. Review of Andersson and Moncrief’s results

In this subsection we briefly summarize the work done
by Andersson and Moncrief in [31] on the vacuum
Einsteins equations. First, we describe how they derived
a coupled elliptic-hyperbolic system equivalent to the
vacuum Einstein’s equations. Then we sketch their argu-
ments establishing local well-posedness.
We start from the ADM formulation in which the

vacuum Einstein equations

Rab ¼ 0 ð41Þ

are rewritten as two sets of first order in time evolution
equations

ð∂t − LNÞhij ¼ −2NKij ð42aÞ

ð∂t − LNÞKij ¼ −DiDjN þ NðRij þ KKij − 2KikKk
jÞ;
ð42bÞ

complemented by the Hamiltonian constraint

2H≡ 2Eμνnμnν ¼ Rþ K2 − KijKij ¼ 0 ð42cÞ

and the momentum constraint

Mi ≡ Eμinμ ¼ DiK −DjKij ¼ 0: ð42dÞ

Andersson and Moncrief consider a modified version of
the system (42) by imposing constant mean curvature
(CMC) slicing7

7We see that the mean curvature K is constant over the slices
Σt, but not necessarily in time. As it is mentioned in [31], they
could also have considered a prescribed mean curvature slicing,
i.e., K ¼ sðt; xÞ.
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K ≡ hijKij ¼ t ð43Þ

and a spatial harmonic (SH) gauge condition

Vi ≡ hklðΓi
kl − Γ̃i

klÞ ¼ 0: ð44Þ

The evolution equations are the defining equation of the
extrinsic curvature (42a) and (42b) modified by adding
−DðiVjÞ to the right-hand side (RHS) of (42b):

ð∂t − LNÞhij ¼ −2NKij ð45aÞ

ð∂t − LNÞKij ¼ −DiDjN þ NðRij −DðiVjÞ
þ KKij − 2KikKk

jÞ: ð45bÞ

Equations (42c), (42d) are replaced by the modified
constraints which can be regarded as the equations which
determine the lapse function and the shift vector:

−DiDiN þ NKijKij ¼ 1 ð45cÞ

DkDkNi þ Ri
jN

j − LNVi ¼ 2DkNlðΓi
kl − Γ

∘ i
klÞ

− 2NKklðΓi
kl − Γ

∘ i
klÞ

þ 2KijDjN −DiNK: ð45dÞ

Equation (45c) can be obtained by taking the trace of (45b),
using the Hamiltonian constraint to trade in the Ricci
curvature R for lower order terms and using the CMC
condition to set ð∂t − LNÞK ¼ 1.
Equation (45d) can be derived as follows. Taking the

time derivative of Vi and commuting ∂t with hkl and the
spatial derivatives, one easily obtains

∂tVi ¼ DkDkVi þ Ri
jN

j þ ð2NKkl − 2DkNlÞðΓi
kl − Γ

∘ i
klÞ

− 2DjðNKijÞ þDiðNKÞ: ð46Þ

Using the momentum constraint, the CMC slicing
condition (DiK ¼ 0) and the spatial harmonic condition
ð∂t − LNÞVi ¼ 0 to eliminate second derivatives of the
spatial metric and first derivatives of the extrinsic curvature
then yields (45d). It is worth emphasizing that the CMC
slicing condition was used to arrive at both Eq. (45c)
and (45d).
Now we move on to the question of well-posedness of

the system (45a)–(45d) in Sobolev spaces and consider
initial data hij; N; Ni ∈ Hs and Kij ∈ Hs−1 (s > 5

2
in

4-dimensional spacetime) that satisfies the Hamiltonian
and momentum constraints.
The modified constraints (45c), (45d) are equations

relating derivatives of N;Ni up to second order to deriv-
atives of hij up to first order (including the extrinsic
curvature), when written in coordinates. This statement

is obvious for (45c) but one can check that the second
derivatives of hij cancel each other out on the left-hand side
(LHS) of (45d). More precisely, the modified constraints
have the form

Aðh; ∂h;KÞu ¼
�
1

0

�
ð47Þ

with u ¼ ðN;NiÞT and A being a second order, linear
elliptic differential operator, with coefficients depending
only on the spatial metric, its first spatial derivatives and the
extrinsic curvature. Moreover, the elliptic operator A is
lower triangular:

A ¼
�−DiDi þ KijKij 0

Biðh; ∂h;KÞ Ci
jðh; ∂h;KÞ

�
ð48Þ

with

Ci
jðh; ∂h;KÞNj ≡ −DkDkNi − Ri

jN
j þ LNVi

− 2DkNlðΓi
kl − Γ

∘ i
klÞ: ð49Þ

Standard results in the theory of elliptic PDEs (see
AppendixA 2) show that the scalar elliptic operator−DiDi þ
KijKij is an isomorphism Hs → Hs−2. Furthermore, it is
proved in [31] that the elliptic operatorCi

j is an isomorphism
Hs → Hs−2, if ðΣ; hÞ is a compact manifold with negative
Ricci curvature.8 These results and the lower triangular
structure of A then implies that A is also an isomorphism
Hs → Hs−2. Therefore, if we a priori assume that hij ∈ Hs

and Kij ∈ Hs−1, then the unique solutions N;Ni to the
modified constraints are in Hsþ1, i.e., they have an extra
regularity compared tohij. This is necessary because thisway
the terms involving first derivatives ofNi in (45a) and second
derivatives of N in (45b) are nonprincipal.
It follows that by solving the modified constraints to

determine N and Ni, the evolution equations become a first
order quasilinear system of pseudodifferential equations. It
is easy to see now that this system of evolution equations is
strongly hyperbolic. Linearizing the evolution equations
and substituting the derivatives with the Fourier variables
ð∂t; ∂kÞ → ðiξ0; iξkÞ, the coefficients of the highest deriva-
tive (principal) terms define the principal symbol. Based
on the definitions and general arguments presented in
Appendix A 3, strong hyperbolicity means that the princi-
pal symbol has real eigenvalues with a complete set of
eigenvectors with smooth dependence on ξi. Linearizing
(45a) and (45b) around a generic solution hij → hij þ γij,
Kij → Kij þ κij, the eigenvalue problem of the principal
symbol reads as

8Note that this formulation was ultimately used to prove a
global existence theorem for nonlinear perturbations of spatially
compact versions of FRW spacetimes with k ¼ −1 [38].
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iξ0

�
γ̂ij

2κ̂ij

�
¼ P0ðξÞklij

�
γ̂kl

2κ̂kl

�
ð50Þ

where M0 is the 2 × 2 block matrix (recall that the terms
involving second derivatives ofN and first derivatives ofNi

are nonprincipal)

M0ðξÞklij ¼
� iðNmξmÞhki hlj −Nhki h

l
j

Nξ2hki h
l
j iðNmξmÞhki hlj

�
: ð51Þ

It is easy to see that the principal symbol has eigenvalues
ξ�0 ¼ Nkξk � Njξjh with a complete set of eigenvectors: for
any symmetric matrix uij,

�
γ̂ij

2κ̂ij

�
¼

�
uij

∓ iðnμξμÞuij

�
ð52Þ

is an eigenvector with ξμ ¼ ðξ0; ξiÞ. Note that this means
that ξμ is a null vector. Since all eigenvalues are real and the

eigenvectors can be chosen to be independent of ξk, the
system of evolution equations is strongly hyperbolic when
the modified constraints are solved. (In fact, it is symmetric
hyperbolic so one can demonstrate well-posedness by
standard energy methods in physical space, as was done
in [31].)

B. Equations of motion and gauge fixing
in cubic Horndeski theories

We will now show that the above formalism can be
extended to cubic Horndeski theories. For this, we first
discuss the generalization of the SH-CMC gauge condition.
Recall that the CMC condition in General Relativity was
used to set ð∂t − LNÞK to 1 in the trace of the evolution
equation.When taking the trace of (11), it is possible to get a
constraint equation by a choice of an appropriate slicing
condition which sets the terms involving ð∂t − LNÞK and
ð∂t − LNÞA to an a priori fixed function. For this reason, we
take an approach very similar to the one above: in the trace of
(11) we trade in R using the Hamiltonian constraint to get

ð∂t − LNÞK −
1

4
∂XG3ð3A2 − AkAkÞð∂t − LNÞA ¼ −DiDiN −

1

4
∂XG3ð3A2 − AkAkÞAiDiN

þ N

�
KijKij þ 1

2
A2 þ 1

2
G2 þ

1

4
ðA2 þ AkAkÞ∂XG2 þ A2∂ϕG3

þ ∂XG3

�
1

4
ðA2 þ AkAkÞðDiAi − AKÞ − AAiDiAþ AKijAiAj

��
ð53Þ

We are seeking a gauge condition of the form

K þ fðϕ; A; Ai; hklÞ ¼ sðx; tÞ ð54Þ
to eliminate the time derivatives in Eq. (53). Taking the
normal derivative of (54) gives

ð∂t − LNÞsðx; tÞ ¼ ð∂t − LNÞK þ N∂ϕfA

þ ∂Afð∂t − LNÞAþ ∂Ak
fDkðNAÞ

− 2NKkl
∂f
∂hkl : ð55Þ

Therefore, the desired choice is an f satisfying

∂Af ¼ −
1

4
∂XG3ð3A2 − AkAkÞ: ð56Þ

Note that this slicing condition has an interesting relation-
ship with the canonical momentum πij conjugate to hij. If
we switch to a Hamiltonian description, Eq. (53) [which is
the trace of (11)] is equivalent to the trace of

∂tπ
ij ¼ −

δH
δhij

ð57Þ

whereH is the Hamiltonian. Hence, it is clear that the time
differentiated terms in (53) come from ∂tðhijπijÞ, that is,
the preferred slicing condition is equivalent to π ¼ sðx; tÞ.
Rewriting G3ðϕ; XÞ as a function depending on ϕ, A, Ai

and hij, the condition (56) can be integrated in A and so f
can be determined up to the addition of an arbitrary
function of ϕ, hij and Ai. Hence, the elliptic equation
for N reads as

ð∂t − LNÞsðx; tÞ ¼ −DiDiN −
	
1

4
∂XG3ð3A2 − AkAkÞAi − A∂Ai

f



DiN þ N

�
KijKij þ 1

2
A2

þ ∂ϕfA − 2Kij
∂f
∂hij þ ∂Ai

fDiAþ 1

2
G2 þ

1

4
ðA2 þ AkAkÞ∂XG2 þ A2∂ϕG3

þ ∂XG3

�
1

4
ðA2 þ AkAkÞðDiAi − AKÞ − AAiDiAþ AKijAiAj

��
: ð58Þ
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Based on standard results in the theory of elliptic PDEs (see
Appendix A 2 and the references cited therein), this
equation has a unique solution for N if the coefficient of
the zeroth order term (i.e., terms enclosed by the curly
brackets fg) is non-negative. This condition is satisfied if
the Horndeski terms are small corrections to GR, i.e., in the
weak field regime [see Eq. (27)]. Note that the weak field
requirements on f are

j∂l
ϕ∂k

AfjEkþ1 ≪ 1 k ¼ 0; 1; l ¼ 0; 1

j∂k
AifjEkþ1 ≪ 1 k ¼ 0; 1

j∂k
hij
fjEkþ1 ≪ 1 k ¼ 0; 1; ð59Þ

with E ¼ max fjRμνρσj1=2; j∇μϕj; j∇μ∇νϕj1=2g in an ortho-
normal basis.
The generalization of the spatial harmonic gauge is more

straightforward: we require

Ji ≡ Vi þHiðhkl;ϕ; AkÞ ¼ 0 ð60Þ

for some Hi [Vi is as in Eq. (44)]. Once again, we can
derive an elliptic equation for the shift vector by requiring
ð∂t − LNÞJi ¼ 0 and eliminating derivatives of the extrin-
sic curvature by using the momentum constraint and the
generalized CMC condition. The result is

DkDkNi þ Ri
jN

j − LNVi

þ ð2NKkl − 2DkNlÞðΓi
kl − Γ̃i

klÞ
¼ 2KijDjN −DiNK − ð∂t − LNÞHi − NDif

− Nfð1þ ∂XG2 þ 2∂ϕG3ÞAiA

þ ∂XG3ðAAiðDkAk − AKÞ þ KklAkAlAi

þ A2DiA − AiAkDkA − AAkDkAiÞg:

Furthermore, using

ð∂t − LNÞHi ¼ N∂ϕHiAþ ∂Ak
HiDkðNAÞ − 2NKkl

∂Hi

∂hkl
ð61Þ

and

Dif ¼ ∂ϕfAi þ ∂AfDiAþ ∂Ak
fDiAk

¼ ∂ϕfAi −
1

4
∂XG3ð3A2 − AkAkÞDiAþ ∂Ak

fDiAk

ð62Þ

gives

DkDkNi þ Ri
jN

j − LNVi − ð−2NKkl þ 2DkNlÞðΓi
kl − Γ̃i

klÞ ¼ 2KijDjN −DiNK − A∂Ak
HiDkN

− N

�
ð1þ ∂XG2 þ 2∂ϕG3ÞAiAþ A∂ϕHiAþ ∂Ak

HiDkA − 2Kkl
∂Hi

∂hkl þ ∂ϕfAi þ ∂Ak
fDiAk

þ ∂XG3

�
AAiðDkAk − AKÞ þ KklAkAlAi þ 1

4
ðA2 þ AkAkÞDiA − AiAkDkA − AAkDkAi

��
: ð63Þ

The operator on the LHS acting onNi is exactly the same as in GR [cf. (49)] which means that (63) has a unique solution for
Ni on spatial slices with negative spatial Ricci curvature.
Finally, we need to decide how to use the generalized spatial harmonic condition in the evolution equations. As

mentioned before, we do not modify the scalar equation Ẽϕ, only the tensor equation in the most natural way, i.e., by
replacing Eij by Ẽij ≡ Eij −DðiJjÞ:

ð∂t − LNÞKij −
1

2
∂XG3ðXhij þ AiAjÞð∂t − LNÞA ¼ −DiDjN þ N

�
Rij −DðiJjÞ þ KKij − 2KikKk

j

þ 1

2
hijðG2 − X∂XG2 − X∂XG3ðDkAk þ AK þ AkDk lnNÞÞ − 1

2
ð1þ ∂XG2 þ 2∂ϕG3ÞAiAj

þ 1

2
∂XG3ðAkDkðAiAjÞ − AiAjDkAk − AiAjAK − AiAjAkDk lnN − 2AAðiDjÞAÞ

�
: ð64Þ

Therefore, the Cauchy problem for cubic Horndeski theories can be formulated as follows. Consider initial data
hij; N; Ni;ϕ ∈ Hs and Kij; A ∈ Hs−1 (s > 7

2
)9 that satisfies the Hamiltonian and momentum constraints. Then the system of

equations to be solved consists of the evolution equations (8), (9), (15) and (64), together with the elliptic
equations (58), (63).

9The lower bound on s is stronger than in vacuum GR due to the fact that the scalar evolution equation (15) is not quasilinear (see
Appendix A 3).

WELL-POSEDNESS OF CUBIC HORNDESKI THEORIES PHYS. REV. D 100, 024005 (2019)

024005-11



C. Constraint propagation

Before moving on to the question of well-posedness, in
this section we explain how to get the equations describing
the propagation of the gauge conditions and the original
constraints using the gauge-fixed equations of motion. As
described in the previous section, we use Ẽij ≡ Eij −
DðiJjÞ ¼ 0 as tensor evolution equation. Following the

argument started in Sec. II B, we set Ẽij ¼ Ẽϕ ¼ 0 and
switch to the new variables

F≡ K þ f − sðx; tÞ; ð65aÞ
Ji ≡ Vi þHi; ð65bÞ

H̃≡ 2H −DkJk ð65cÞ

and

M̃i ¼ 2Mi −DiF; ð65dÞ
we have the following system of homogeneous linear
evolution equations

ð∂t − LNÞF ¼ NH̃ ð66aÞ

ð∂t − LNÞJi ¼ NM̃i ð66bÞ

ð∂t − LNÞH̃ ¼ 2NKH̃þDiNM̃i þ 2NDðiJjÞKij

þ JjDjðNKÞ þ NDiDiFþ 2DiNDiF

− ∂XG3AðDiJjAiAj þ H̃A2

þ 2DiJiA2 − AM̃iAi − AAiDiFÞ ð66cÞ

ð∂t − LNÞM̃i ¼ NKM̃i þ NKDiFþDiNH̃

þ 2DjNDðiJjÞ þ NðDkDkJi þ RijJjÞ
− ∂XG3AiðDkJjAkAj þ H̃A2

þ 2DkJkA2 − AM̃kAk − AAkDkFÞ: ð66dÞ

The first two equations follow easily by recalling the steps
we used to get the elliptic equations (45c), (45d) from the
evolution equations and the constraints. To show that the
quantities ðF; Ji; H̃; M̃iÞ remain zero during the evolution,
we first note that it follows from Eqs. (66a), (66b) that if
ðF; Ji; H̃; M̃iÞ vanish initially then ∂tF ¼ ∂tJi ¼ 0 on the
initial surface. It turns out that one can obtain a simple
energy estimate for the system (66) without solving the
eigenvalue problem of the principal symbol. Consider the
energy10

Econstraint½Σt� ¼
1

2

Z
Σt

d3x
ffiffiffi
h

p
ðjFj2 þ jDFj2h þ jJj2h

þ jDJj2h þ jH̃j2 þ jM̃j2hÞ: ð67Þ

Specifically, we want to show that j∂tEconstraintj ≤
CEconstraint for some constant Cðh;K;NÞ. Clearly, the
action of ∂t on the volume form can be bounded by a
constant. When the time derivative acts on the gauge and
constraint quantities, we use (66) to exchange the time
derivatives. Since the energy (67) is invariant under spatial
diffeomorphisms, the terms involving Lie derivatives will
vanish.
The nonprincipal terms can be estimated by the energy

itself. For example,

ð∂t − LNÞjFj2 ¼ 2NFH̃ ≤ CðjFj2 þ jH̃j2Þ ð68Þ

ð∂t − LNÞjJj2h ¼ 2NhijJiM̃j þ 2NKijJiJj

≤ CðjJj2h þ jM̃j2hÞ: ð69Þ

The potentially problematic (principal) terms are

ð∂t − LNÞjH̃j2 ≃ 2NH̃DiDiF ∼ −2NDiH̃DiF ð70Þ

ð∂t − LNÞjDJj2h ≃ 2NDiJjDkM̃lhikhjl

∼ −2NDkDkJjM̃lhjl ð71Þ

ð∂t − LNÞjDFj2 ≃ 2NDiFDiH̃ ð72Þ

ð∂t − LNÞjM̃j2h ≃ 2NDkDkVjM̃lhjl ð73Þ

where ≃ denotes equivalence up to principal terms and ∼
denotes equivalence of the integrands up to integration by
parts. We see that the terms containing higher derivatives
cancel each other out, giving us the desired result. Therefore,
if Econstraint vanishes initially, then it remains zero during the
evolution as well, implying ðF; Ji; H̃; M̃iÞ ¼ 0.

D. Proof of strong hyperbolicity

Now we linearize the equations of motion (8), (9), (15),
(64), (58), (63) around a generic weak field background [in
the sense of (27)] with negative spatial Ricci curvature. The
linearized quantities are as follows:

hij → hij þ γij

Kij → Kij þ κij

N → N þ α

Ni → Ni þ βi

ϕ → ϕþ ψ

A → Aþ a

10The steps of the proof of constraint propagation, as well as
the expression for the energy, are the same as in [31]
(Lemma 4.1.), since the extra terms entering to the equations
due to the presence of a scalar field are nonprincipal. Never-
theless, we provide a sketch of the proof for completeness.
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Now we assume that the elliptic equations (58) and (63)
have unique solution for any ðγij; κij;ψ ; aÞ satisfying the
gauge conditions and constraint equations. Recall that this
is true for weak fields and when the background spacetime
has negative spatial Ricci curvature.
The important difference compared to GR is that in this

case the first derivatives of βi appearing in the defining
equation of the extrinsic curvature (8) and the second
derivatives of α appearing in the tensor evolution equa-
tion (64) are principal terms. To see how these terms affect
the hyperbolicity of the evolution equations, we have to
look at the principal terms in the linearized versions of the
elliptic equations (58), (63):

hij∂i∂jα ≃
1

4
N∂XG3ðA2 þ AkAkÞhij∂i∂jψ

− Nð−∂Ak
f þ ∂XG3AAkÞ∂ka ð74Þ

hkl∂k∂lβ
i ≃ N

	
ð−∂Aj

Hi þ ∂XG3AiAjÞ

−
1

4
∂XG3ðA2 þ AkAkÞhij



∂ja

þ N½ð−∂Ak
f þ ∂XG3AAkÞhil

− ∂XG3AAihkl�∂k∂lψ

Solving the linearized elliptic equations for given ψ , a, γij
and κij, one obtains a (nonlocal) map ðα̂; β̂Þ∶ðψ ; a; γ; κÞ →
ðα; βÞ. This solution map is a pseudodifferential operator of
class OP−2

cl with principal symbol (see Appendix A)

α̂ð0Þ½ψ̂ ; â; ξ� ¼ 1

4
N∂XG3ðA2 þ AkAkÞψ̂

þ iNð−∂Ak
f þ ∂XG3AAkÞ ξk

jξj2h
â ð75Þ

β̂ð0Þi½ψ̂ ; â; ξ� ¼ −iN
	
ð−∂Aj

Hi þ ∂XG3AiAjÞ

−
1

4
∂XG3ðA2 þ AkAkÞhij



ξj
jξj2h

â

þ N
	
ð−∂Ak

f þ ∂XG3AAkÞ ξ
iξk
jξj2h

− ∂XG3AAi



ψ̂ ; ð76Þ

where the ˆ on the fields ψ and a denotes the Fourier
transform. Note that the principal symbol of the solution
map does not depend on γ̂ and κ̂.
By solving the elliptic equations, the evolution equations

take the form of a first order pseudodifferential system
of evolution equations. To determine the hyperbolicity of
this system, we consider the eigenvalue problem of the

principal symbol, c.f. (20). The vector U is now a column
vector of size 14

U ¼ ½γ̂ij; κ̂ij; ψ̂ ; â�T:

The characteristic equation can be written as

i
N
ðξ0 − NkξkÞγ̂ij ¼ −2κ̂ij þ

2i
N
hlðiξjÞβ̂

ð0Þl½ψ̂ ; â; ξ�; ð77aÞ

i
N
ðξ0 − NkξkÞψ̂ ¼ â; ð77bÞ

i
N
ðξ0 − NkξkÞ2κ̂ij

−
i
N
∂XG3ðXhij þ AiAjÞðξ0 − NkξkÞâ

¼ jξj2hγ̂ij þ
2

N
ξiξjα̂

ð0Þ½ψ̂ ; â; ξ�
− ∂XG3ð−ðXhij þ AiAjÞjξj2hψ̂
þ AkξkAðiξjÞψ̂ − 2iAAðiξjÞâÞ
þ 2∂Ak

HðiξjÞξkψ̂ ;

A
i
N
ðξ0 − NkξkÞâ ¼ iBðξÞâþ iCðξÞψ̂ ð77cÞ

where the specific form of the linearized version of (15) is
quite long and unessential for our purposes. Nevertheless,
we note that substituting (77b) into (77c) gives [recall
Eq. (24)]

ψ̂ðP0
ϕϕÞμνξμξν ¼ 0: ð78Þ

It follows from the upper triangular structure of the
characteristic equation (see Sec. II) that

½γ̂ij; κ̂ij; ψ̂ ; â�T ¼
	
ûij;−i

1

2
ðnμξ�μ Þûij; 0; 0



T

ð79Þ

is an eigenvector of (77a)–(77c)) with eigenvalues ξ�0 ¼
Nkξk � Njξjh for any symmetric ûij. (Recall that ξμ ¼
ðNkξk � Njξjh; ξiÞ is a null vector with respect to the
spacetime metric.) One can easily find 6 linearly indepen-
dent vectors ûij. Taking into account the two sign choices in
ξ�0 and in (79), this gives 12 eigenvectors: a 6-dimensional
eigenspace for both eigenvalues ξ�0 ¼ Nkξk � Njξjh. Note
that these include the 2 pairs of transverse-traceless modes
corresponding to the gravitational d.o.f., i.e.,

½γ̂ij; κ̂ij; ψ̂ ; â�T ¼
	
ûTTij ;−i

1

2
ðnμξ�μ ÞûTTij ; 0; 0



T

ð80Þ

with ûTTij satisfying hijûTTij ¼ 0 and ξiûTTij ¼ 0.
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The remaining eigenvalues ξϕ;�0 are found by solving

ðP0
ϕϕÞμνξμξν ¼ 0 ð81Þ

(see Sec. II for notation). Recall that for weak fields, ξϕ;�0

are distinct and real. The corresponding eigenvectors have
the form

½γ̂ij; κ̂ij; ψ̂ ; â�T ¼ ½γ̂ϕij; κ̂ϕij; 1; iðnμξμÞ�T

with

γ̂ϕij ¼ −∂XG3ðXhij þ AiAjÞ

þ 2

jξj2h
ð∂XG3AkAðiξjÞ − ∂Ak

HðiξjÞÞξk

−
ξiξj
2jξj2h

∂XG3ðA2 þ AkAkÞ ð82Þ

κ̂ϕij ¼ iðnμξϕ;�μ Þ∂XG3ðXhij þ AiAjÞ

þ 2i
	
ð−∂Ak

f þ ∂XG3AAkÞ ξiξjξkjξj2h
− ∂XG3AAðiξjÞ



:

ð83Þ
These expressions are clearly smooth functions of ξi for

any choice of Hi, since hij is a positive definite metric and
ξi ≠ 0 by assumption (ξi has unit norm).
These two physical eigenvectors corresponding to the

scalar d.o.f. satisfy the high frequency limit of the
Hamiltonian and momentum constraints

2Ĥ≡ −2ξ2hijγ̂ij þ 2ξiξjγ̂ij

þ ∂XG3ðA2jξj2h − ðAkξkÞ2Þψ̂ ¼ 0;

M̂i ≡ iξiκ̂ − iξjκ̂ij þ
1

2
∂XG3ðAAijξj2hψ̂ − AAjξjξiψ̂

þ AiAkξkiâ − A2iξiâÞ ¼ 0:

To summarize, we have found that the principal symbol
[see Eqs. (77a)–(77c)] has 14 real eigenvalues and the
corresponding eigenvectors are linearly independent and
have smooth dependence on ξ ∈ S2. This implies that the
evolution equations are strongly hyperbolic when the
modified constraint equations have a unique solution for
arbitrary ðϕ; A; h; KÞ. In particular, this is the case in a weak
field regime [in the sense of (27)] and in spacetimes that can
be foliated with generalized prescribed mean curvature
slices with negative Ricci curvature.

IV. BSSN-TYPE FORMULATION WITH
NON-DYNAMICAL SHIFT VECTOR

A. Equations of motion

The Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
mulation (together with its modifications) is a popular

method used to numerically integrate Einsteins equations.
Several versions of this approach give rise to a strongly
hyperbolic reformulation of the vacuum Einstein equations
[39–41]. Here, we extend this approach to cubic Horndeski
theories.
The equations of motion are obtained from the standard

ADM equations given in Sec. II as follows. First, we
introduce the conformal metric h̃ij as a new variable,
defined by

h̃ij ≡ e−4Ωhij ð84Þ

where the conformal factor Ω is

Ω≡ 1

12
ln
h

h
∘ ð85Þ

for an arbitrary smooth background metric h
∘
ij. Note that

this implies that det h
∘
¼ det h̃. The inverse conformal

metric, denoted by h̃ij is then

h̃ij ¼ e4Ωhij: ð86Þ

Next, we define the quantity

Ṽi ≡ h̃klðΓ̃i
kl − Γ

∘ i
klÞ ¼ −D

∘
jh̃

ij ð87Þ

where Γ
∘
and D

∘
denote the Christoffel symbol and the

covariant derivative corresponding to h
∘
ij. Similarly, let D̃

be the covariant derivative corresponding to the metric h̃
and let

Ãi ≡ D̃iϕ ð88Þ

and

Ãi ≡ h̃ijÃj: ð89Þ

Clearly, the definition of Ãi does not depend on h̃ but the
index of the vector field Ã is raised and lowered with h̃,
whereas the index of A is raised and lowered with h. We
continue to use a similar convention in the further dis-
cussion: indices of tensor fields denoted by letters with a
tilde are raised and lowered with h̃, whereas indices of
tensor fields without a tilde are raised and lowered with h.
The extrinsic curvature is decomposed to its trace and

conformal traceless parts

Kij ≡ e4Ω
�
Q̃ij þ

1

3
h̃ijK

�
; ð90Þ

or alternatively,
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Q̃ij ≡ e−4Ω
�
Kij −

1

3
hijK

�
: ð91Þ

The evolution equations for the variables h̃ij and Ω are

∂0h̃ij ¼ −2NQ̃ij þ 2h̃kðiD
∘
jÞNk −

2

3
h̃ijD

∘
kNk ð92Þ

∂0Ω ¼ −
N
6
K þ 1

6
D
∘
kNk ð93Þ

where ∂0 is given by

∂0 ≡ ∂t − NkD
∘
k: ð94Þ

To write the remaining equations in a more compact way,
we use the conformal versions of the auxiliary variables
introduced in (16):

Φ̃≡Φ ¼ 1

N
ð∂0A − e−4Ωh̃ijÃiD̃jNÞ; ð95Þ

Φ̃i ≡Φi ¼ D̃iAþ Q̃ikÃjh̃
jk þ 1

3
KÃi; ð96Þ

Φ̃ij ≡Φij ¼ D̃iÃj − 2ðÃjD̃iΩþ ÃiD̃jΩ − h̃ijh̃
klÃkD̃lΩÞ

þ Ae4Ω
�
Q̃ij þ

1

3
Kh̃ij

�
: ð97Þ

The evolution equation for K is the trace of the tensor
evolution equation, i.e., the same as (53), except that
the variables hij and Kij (and the covariant derivatives)
are now replaced by the corresponding expressions
(84)–(90).

∂0K þ NΦ∂XG3

�
3

4
A2 −

1

4
ÃiÃjh̃

ije−4Ω
�

¼ −h̃ijD̃iD̃jN − 2h̃ijD̃iND̃jΩþ N

�
Q̃ikQ̃jlh̃

ijh̃kl þ 1

3
K2 þ 1

2
A2 þ ∂ϕG3A2 þ 1

2
G2 þ

1

4
∂XG2ðA2 þ ÃiÃjh̃

ije−4ΩÞ

þ ∂XG3e−4Ω
�
1

4
A2Φ̃ijh̃

ij − ÃiAΦ̃jh̃
ij þ 1

4
ÃiÃjΦ̃klh̃

ijh̃kle−4Ω
��

ð98Þ

The equation describing the evolution of Q̃ij is obtained by taking the trace free part of (11)

∂0Q̃ij−
N
2
e−4Ω∂XG3

�
ÃiÃj−

1

3
h̃ijÃ

kÃk

�
Φ

¼Ne−4Ω
	
Rij−

1

N
D̃iD̃jNþ4D̃ðiΩD̃jÞ lnN−

1

2
ð1þ∂XG2þ2∂ϕG3ÞÃiÃj

þ∂XG3

�
−AÃðiΦ̃jÞ−

1

2
ÃiÃjΦ̃klh̃

kle−4ΩþÃkÃðiΦ̃jÞlh̃kle−4Ω
�


TF
þNKQ̃ij−2NQ̃ikQ̃

k
jþ2Q̃kðiD

∘
jÞNk−

2

3
Q̃ijD

∘
kNk; ð99Þ

where T̃TF
ij denotes the trace free part of a symmetric tensor Tij,

T̃TF
ij ≡ T̃ij −

1

3
T̃klh̃

klh̃ij; ð100Þ

and the conformal decomposition of the spatial Ricci tensor is

Rij ¼ −
1

2
h̃klD

∘
kD
∘
lh̃ij þ h̃kðiD

∘
jÞṼk −

1

2
ṼkD

∘
kh̃ij þ ðΓ̃k

il − Γ
∘ k
ilÞðΓ̃l

kj − Γ
∘ l
kjÞ −D

∘
kh̃lðiD

∘
jÞh̃kl − 2D̃iD̃jΩ − 2h̃ijD̃kD̃kΩ

þ 4D̃iΩD̃jΩ − 4h̃ijD̃kΩD̃kΩ: ð101Þ

Finally, the equation for Ṽi is obtained by commuting ∂0 with D
∘
to get

∂0Ṽi ¼ −2NDj

∘
Q̃ij − 2Q̃ijD

∘
jN − ṼkD

∘
kNi þ 2

3
ṼiD

∘
kNk þ h̃klD

∘
kD
∘
lNi þ 1

3
h̃ijD

∘
jD
∘
kNk ð102Þ

and then adding the momentum constraint times 2mN to (102) gives
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∂0Ṽi ¼ −2Q̃ijD
∘
jN − ṼkD

∘
kNi þ 2

3
ṼiD

∘
kNk þ h̃klD

∘
kD
∘
lNi þ 1

3
h̃ijD

∘
jD
∘
kNk þ N

�
2ðm − 1ÞD̃kQ̃

ki

−
4m
3

D̃iK þ 2mh̃ij
	
1

2
ð1þ ∂XG2 þ 2∂ϕG3ÞAÃj −

1

2
∂XG3

�
−A2Φ̃j þ ÃlAΦ̃jkh̃

kle−4Ω

− ÃjAΦ̃klh̃
kle−4Ω þ ÃkÃjΦ̃lh̃

kle−4Ω
�
�

ð103Þ

wherem is arbitrary. We will show that for a range of values for the parameterm, the system is strongly hyperbolic. Finally,
once again we use Ẽϕ ¼ 0 as the scalar evolution equation [defined in (6)] which can also be rewritten in terms of the
variables introduced here:

∂0ϕ ¼ NA ð104Þ

Ẽϕ ≡ Φ
�
1þ ∂XG2 þ A2∂2

XG2 þ 2∂ϕG3 þ ∂2
XϕG3ðA2 þ ÃiÃjh̃

ije−4ΩÞ þ 2Φ̃ij∂XG3h̃
ije−4Ω

þ 1

4
ð∂XG3Þ2ð3A4 − 2ÃiÃjA2h̃ije−4Ω − ÃiÃjÃkÃlh̃

ikh̃jle−8ΩÞ þ ∂2
XG3ðA2Φ̃ijh̃

ije−4Ω − ÃkÃlΦ̃ijh̃
ikh̃jle−8ΩÞ

�

− ∂ϕG2 − Φ̃ijh̃
ije−4Ω − 2Φ̃ij∂ϕG3h̃

ije−4Ω þ ∂2
XϕG2ðA2 − ÃiÃjh̃

ije−4ΩÞ

þ ∂2
ϕG3ðA2 − ÃiÃjh̃

ije−4ΩÞ þ 1

2
G2∂XG3ðA2 − ÃiÃjh̃

ije−4ΩÞ þ ∂2
XG2ð−2ÃiAΦ̃jh̃

ije−4Ω þ ÃkÃlΦ̃ijh̃
ikh̃jle−8ΩÞ

þ ∂XG2

�
−Φ̃ijh̃

ije−4Ω þ 1

4
∂XG3ðA4 − 2ÃiÃjA2h̃ije−4Ω þ ÃiÃjÃkÃlh̃

ikh̃jle−8ΩÞ
�

þ ∂2
XϕG3

�
−4ÃiAΦ̃jh̃

ije−4Ω þ A2Φ̃ijh̃
ije−4Ω þ 2ÃkÃlΦ̃ijh̃

ikh̃jle−8Ω − ÃiÃjΦ̃klh̃
ijh̃kle−8Ω

�

þ ∂XG3ð∂ϕG3ðA4 − 2ÃiÃjA2h̃ije−4Ω þ ÃiÃjÃkÃlh̃
ikh̃jle−8ΩÞ þ 1

2
A4 − 2Φ̃iΦ̃jh̃

ije−4Ω

− ÃiÃjA2h̃ije−4Ω þ 1

2
ÃiÃjÃkÃlh̃

ikh̃jle−8Ω − Φ̃ijΦ̃klh̃
ijh̃kle−8Ω þ Φ̃ijΦ̃klh̃

ikh̃jle−8ΩÞ
þ ∂2

XG3ð−A2Φ̃iΦ̃jh̃
ije−4Ω − 2ÃiAΦ̃jlΦ̃kh̃

ikh̃jle−8Ω þ ÃiÃjΦ̃kΦ̃lh̃
ikh̃jle−8Ω

þ 2ÃkAΦ̃ijΦ̃lh̃
ikh̃jle−8Ω − ÃlÃmΦ̃inΦ̃jkh̃

ilh̃jmh̃kne−12Ω þ ÃmÃnΦ̃ijΦ̃klh̃
imh̃jnh̃kle−12ΩÞ

þ 1

4
ð∂XG3Þ2ð−8ÃiA3Φ̃jh̃

ije−4Ω þ A4Φ̃ijh̃
ije−4Ω þ 4ÃkÃlA2Φ̃ijh̃

ikh̃jle−8Ω − 2ÃiÃkA2Φ̃jlh̃
ikh̃jle−8Ω

þ ÃiÃjÃkÃlΦ̃mnh̃
ikh̃jlh̃mne−12Ω − 4ÃiÃkÃlh̃

ikh̃jlð−2AΦ̃j þ ÃmΦ̃jnh̃
mne−4ΩÞe−8ΩÞ ¼ 0: ð105Þ

Equations (92), (93), (98), (99), (103) and (105) must be
complemented with the evolution equations for the lapse
function and the shift vector. This can be done by choosing
an appropriate slicing condition and a spatial coordinate
condition. A popular choice for the slicing condition is
harmonic slicing and its generalizations. Harmonic slicing
means that the harmonic coordinate condition is imposed
only on the time coordinate

□gt ¼ 0:

Writing this out in terms of the ADM variables gives an
evolution equation for the lapse function:

∂0N ¼ −N2K: ð106Þ

Sometimes it is more convenient to consider a generaliza-
tion of this condition, called the Bona-Massó slicing
condition

∂0N ¼ −N2FðNÞK ð107Þ

for a suitable function F. The choice FðNÞ ¼ 2
N called the

1þ log slicing is the most widely used in numerical
applications. We will generalize this condition even further
for cubic Horndeski theories

∂0N ¼ −2N2Fðt; x; N;ϕ; A; Ãk; KÞ: ð108Þ

To simplify the discussion of the linearized equations,
we introduce
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σ ≡ ∂F
∂K ; ρ̃≡ 1

∂XG3

∂F
∂A ; ρ̃k ≡ 1

∂XG3

∂F
∂Ãk

: ð109Þ

There are a number of ways to impose a dynamical
gauge condition on the shift vector in general relativity.
However, it has also been demonstrated that it is possible to
write Einsteins equations in a strongly (even symmetric)
hyperbolic form by choosing an arbitrary (but a priori
fixed) shift vector [40]. In these latter formulations, the shift
vector is only a source term. In this section we take this
latter approach and show that the equations of motion of the
subclass of Horndeski theories under consideration can be
written in a strongly hyperbolic form with arbitrarily fixed
shift vector.

B. Proof of strong hyperbolicity

In this section, we are going to show that the BSSN
equations of motion [consisting of Eqs. (92), (93), (98),
(99), (103), (108), (104), (105)] is a strongly hyperbolic
system for the dynamical variables. Our strategy will be
as follows. First, we linearize the equations and select
the highest derivative (principal) terms in the equations.
(The list of the variables and their linearized versions is
summarized in Table I.) These are the terms that are at the
first derivative level in Eqs. (92), (93), (108), (104) and
the ones at the second derivative level in Eqs. (98), (99),
(103), (105). The second step is to convert the principal
terms in the equations to the eigenvalue problem of the
principal symbol. This involves switching to Fourier
variables:

ð∂0; ∂kÞ → ðiξ0; iξkÞ
ðα;ω; κ; γ̃ij; qij; ṽi;ψ ; aÞ → ðα̂; ω̂; κ̂; ˆ̃γij; q̂ij; ˆ̃vi; ψ̂ ; âÞ:

Note that in this section our choice of basis is slightly
different from the one used in Sec. III: here we use
∂0 ≡ ∂t − Nk∂k, rather than ∂0 ≡ ∂t. Clearly, this only
amounts to a shift in the variable ξ0 → ξ0 − Nkξk.
Nevertheless, from now on, we will denote the eigenvalues
of the principal symbol by ξ0 in this basis. This includes the
solutions ξ�;ϕ

0 to the scalar characteristic equation (24).
Next, we solve the eigenvalue problem, by determining

the eigenvalues ξ0 and the corresponding eigenvectors
explicitly. Finally, we show that the conditions of strong
hyperbolicity are met for an appropriate choice of the
parameters m and σ: the principal symbol has real eigen-
values and a complete set of eigenvectors with smooth
dependence on ξk.
Since the linearization is straightforward, we simply just

state the eigenvalue problem for the 20 variables
ðα̂; ω̂; κ̂; ˆ̃γij; q̂ij; ˆ̃vi; ψ̂ ; âÞ:

iξ0α̂ ¼ −2N2ðσκ̂ þ ∂XG3ρ̃ âþ∂XG3ρ̃
kiξkψ̂Þ ð110aÞ

iξ0κ̂ −
1

4
∂XG3ð3A2 − AkAkÞiξ0â

¼ Ne−4Ω
�
1

N
jξj2

h̃
α̂ −

1

4
∂XG3ðA2 þ AkAkÞjξj2h̃ψ̂

− ∂XG3AÃ
kiξkâ

�
ð110bÞ

iξ0ω̂ ¼ −
N
6
κ̂ ð110cÞ

iξ0ψ̂ ¼ Nâ ð110dÞ
iξ0 ˆ̃γij ¼ −2N ˆ̃qij ð110eÞ

iξ0 ˆ̃qij −
1

2
e−4Ω∂XG3

�
ÃiÃj −

1

3
h̃ijÃ

kÃk

�
iξ0â

¼ Ne−4Ω
�
1

2
jξj2

h̃
ˆ̃γij þ iξði ˆ̃vjÞ −

1

3
iξk ˆ̃v

kh̃ij

þ 2ξiξjω̂ −
2

3
jξj2

h̃
ω̂h̃ij þ

1

N
ξiξjα̂ −

1

3

1

N
jξj2

h̃
α̂h̃ij

− A∂XG3â

�
ÃðiiξjÞ −

1

3
Ãkiξkh̃ij

�

þ e−4Ω∂XG3ψ̂

�
1

2

�
ÃiÃj −

1

3
h̃ijÃ

kÃk

�
jξj2

h̃

− ÃkÃðiξjÞξk þ
1

3
ÃkÃlξkξlh̃ij

��
ð110fÞ

iξ0 ˆ̃v
i¼N

�
2ðm−1Þiξk ˆ̃qki−

4m
3
iξiκ̂þm∂XG3A2iξiâ

þe−4Ωm∂XG3ðAÃkξkξ
iψ̂ −AÃijξj2

h̃
ψ̂ − ÃiÃkiξkâÞ

�
:

ð110gÞ

iξ0Aâ ¼ iBâþ Cψ̂ ð110hÞ

where the coefficients A, B and C depend on the back-
ground fields and ξi and their explicit form is not important
for our purposes [although it is straightforward to obtain

TABLE I. The list of variables used in the BSSN formulation.

Quantity/Definition Notation
Linearized
version

Conformal factor Ω ω
Conformal metric h̃ij γ̃ij
Lapse function N α
Scalar field ϕ ψ
A≡ Lnϕ A a
Trace of the extrinsic curvature K κ
Conformal traceless extrinsic
curvature

Q̃ij q̃ij

Ṽi ≡ −D
∘
jh̃

ij Ṽi ṽi
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them by linearizing (105)]. Substituting (77b) into (77c)
gives

ψ̂ðP0
ϕϕÞμνξμξν ¼ 0; ð111Þ

that is to say, Eq. (24). In the discussion of the eigenvalues
and eigenvectors it is simpler to use the variable

ξ̄0 ≡ ξ0
Ne−2Ωjξjh̃

¼ ξ0
Njξjh

ð112Þ

instead of ξ0.
We can identify a subset of eigenvalues and eigenvectors

of (110) by setting ψ̂ ¼ â ¼ 0. These 18 eigenvalues and
eigenvectors are the same as in the formulation described in
Sec. IV of [40] for vacuum GR:

(I) Transverse-traceless (physical) modes with null
characteristics ξ̄0 ¼ �1. Since there are two linearly
independent transverse-traceless symmetric tensors
ˆ̃γTTij , the eigenvectors span a 4-dimensional space.

(II) Transverse modes with null characteristics, spanning
a 2-dimensional space.

(III) A 4-dimensional space of modes with ˆ̃γij ¼ ξðiejÞ
for any ei orthogonal to ξi with respect to h̃ij
and ξ̄0 ¼ � ffiffiffiffi

m
p

.
(IV) Zero speed modes (ξ̄0 ¼ 0) with ˆ̃γij ¼− 2

jξj2
h̃

ðiξði ˆ̃vjÞþ
2ξiξjω̂ÞTF where ω̂ and ˆ̃vi are arbitrary, spanning a
space with dimension 4.

(V) A two-dimensional space of modes with ξ̄0 ¼
� ffiffiffiffiffi

2σ
p

.
(VI) A two-dimensional space of modes with ξ̄0 ¼

�
ffiffiffiffiffiffiffiffiffi
4m−1
3

q
.

The expressions for the eigenvectors are listed in
Table II. These eigenvalues are real and the eigenvectors
are smooth functions of their arguments when σ > 0

and m > 1
4
.

For strong hyperbolicity, we need 20 linearly independent
eigenvectors with real eigenvalues and smooth dependence
on ξi. Since we have already found 18, this amounts to
finding two additional eigenvalues and eigenvectors with
nontrivial ψ̂ and â. The eigenvalues corresponding to these
eigenvectors are found by solving the system consisting of
Eqs. (110d) and (110h), or equivalently, (24). As mentioned
before, this equation has two distinct real solutions ξϕ;�0

when the Horndeski terms are much smaller than the
Einstein-scalar-field terms [see the end of Sec. II and
Eq. (27)]. Therefore, in a weak field background, there
must indeed be 2 additional eigenvectors. The only thing that
needs to be shown is the condition on smooth dependence.
The easiest way to obtain the corresponding eigenvectors

is to derive a closed equation containing ψ̂ , âϕ ≡ 1
N iξ

ϕ;�
0 ψ̂

and the Fourier transform of the linearized extrinsic
curvature

κ̂ij ¼ e4Ω ˆ̃qij þ
1

3
κ̂hij: ð113Þ

Equations (110) imply

jξϕ;�j2g
�
κ̂ij −

1

2
∂XG3ðXhij þ AiAjÞâϕ þ i∂XG3AAðiξjÞψ̂

�

¼ ð2m − 2σ − 1Þξiξjκ̂ − 2ðm − 1Þξðiκ̂jÞξ
−
2

3
ðm − 1Þðjξj2hκ̂ − κ̂ξξÞhij

þ ∂XG3

�
ðm − 1ÞAðiξjÞðAkξkâϕ − iAjξj2hψ̂Þ

− ξiξjððmA2 þ 2ρÞâϕ − ðmAAk − 2ρkÞiξkψ̂Þ

þ 1

3
ðm − 1ÞâϕðA2jξj2h − ðAkξkÞ2Þhij

�
ð114Þ

with κ̂iξ ≡ κ̂ijξ
j and

jξϕ;�j2g ¼ −ðξϕ;�0 Þ2 þ N2jξj2h:
Note that in (114) we raise and lower indices with h.
It follows from (113) and (110) that if the solutions κ̂ϕ;�ij

of (114) are smooth functions of ξi, then the same is true for
the auxiliary variables ˆ̃qij, κ̂, ˆ̃γij, ˆ̃vi, ω̂ and α̂. Based on the
tensorial structure of (114), we look for an eigenvector of
the form

κ̂ϕij ¼ c1ξiξj þ c2jξj2hhij þ c3AiAj þ 2c4AðiξjÞ: ð115Þ
Note that

κ̂ϕiξ ¼ððc1þc2Þjξj2hþc4ðAkξkÞÞξiþðc3ðAkξkÞþc4jξj2hÞAi

ð116Þ

and

κ̂ϕ ¼ ðc1 þ 3c2Þjξj2h þ c3AkAk þ 2c4Akξk: ð117Þ

TABLE II. The list of eigenvalues and eigenvectors of the
principal symbol with ψ̂ ¼ â ¼ 0.

α̂ ω̂ κ̂ ˆ̃γij ˆ̃vi ξ̄0

I. 0 0 0 γ̃TTij 0 �1

II. 0 0 0 h̃ij −
ξiξj
jξj2

h̃

0 �1

III. 0 0 0 ξðiejÞ −i m−1
2

jξj2
h̃
ei � ffiffiffiffi

m
p

IV. 0 ω̂ 0 − 2
jξj2

h̃

ðiξði ˆ̃vjÞ
þ2ξiξjω̂ÞTF

ˆ̃vi 0

V. Nσ 1
12 − iξ0

2N ðξiξjjξj2
h̃

ÞTF i 2
3
ξi � ffiffiffiffiffi

2σ
p

VI. 0 0 0 ðξiξjjξj2
h̃

ÞTF 2iðm − 1Þξi �
ffiffiffiffiffiffiffiffiffi
4m−1
3

q
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Plugging this into (114) we get the following system of
linear equations for the coefficients

c1jξj2g ¼ð2m−2σ−1Þððc1þ3c2Þjξj2hþc3AkAkþ2c4AkξkÞ
−2ðm−1Þððc1þc2Þjξj2hþc4ðAkξkÞÞ
−∂XG3ððmA2þ2ρÞâϕ− ðmAAk−2ρkÞiξkψ̂Þ

ð118Þ

jξj2g
�
c2jξj2h −

1

2
∂XG3Xâ

�

¼ −
2

3
ðm − 1Þð2c2jξj4h þ c3ðAkAkjξj2h − ðAkξkÞ2ÞÞ

þ 1

3
ðm − 1Þâϕ∂XG3ðA2jξj2h − ðAkξkÞ2Þ ð119Þ

jξj2g
�
c3 −

1

2
∂XG3âϕ

�
¼ 0 ð120Þ

jξj2gð2c4 þ i∂XG3Aψ̂Þ
¼ −2ðm − 1Þðc3ðAkξkÞ þ c4jξj2hÞ
þ ∂XG3ðm − 1ÞðAkξkâϕ − iAjξj2hψ̂Þ ð121Þ

The solution is

c3 ¼
1

2
∂XG3âϕ ð122Þ

c4 ¼ −i
1

2
∂XG3Aψ̂ ð123Þ

c2 ¼
1

2

1

jξj2h
∂XG3Xâϕ ð124Þ

c1 ¼
1

−ðξϕ;�0 Þ2 þ 2σN2jξj2h
∂XG3

	�
−
6σ þ 1

4
A2

þ 2σ − 1

4
AkAk − 2ρ̃

�
âϕ þ ð2σAAk − 2ρ̃kÞiξkψ̂




ð125Þ

In order for c1 to be smooth for any ξi ∈ S2, −ðξϕ;�0 Þ2 þ
2σN2jξj2h must be nonzero for any ξi. This can be achieved
by choosing σ to be large enough. To see why this is true,
we first note that the zeros of the function

F σðξ0; ξiÞ ¼ −ðξ0Þ2 þ 2σN2jξj2h ð126Þ

define a cone for any σ, ξ0. In the weak field regime [in the
sense of (27)], the null cone of P0

ϕϕ is close to the null cone
of the spacetime metric g for any ξi ∈ S2, they might even
intersect for special values of ξi. Recall that

gμνξμξν ¼ −ðξ0Þ2 þ N2jξj2h ¼ F σ¼1=2ðξ0; ξiÞ: ð127Þ

Since P0
ϕϕðξ0; ξiÞ andF σ¼1=2ðξ0; ξiÞmay intersect for some

ξi, and ξ
ϕ;�
0 are the solutions of P0

ϕϕðξ0; ξiÞ ¼ 0, this means
that the expression on the RHS of (125) could blow up for
some ξi if σ is close to (or equal to) 1

2
. To avoid this, we can

just choose σ to be large enough (i.e., larger than 1
2
), so that

the cones given by F σðξ0; ξiÞ lie entirely inside the null
cones of g andPϕϕ. In other words, for an appropriate σ > 1

2
,

F σðξϕ;�0 ; ξiÞ vanishes for no choice of ξi. Choosing larger
values of σ makes it possible to deal with stronger back-
ground fields.
To summarize, we have shown that the equations of

motion for cubic Horndeski theories form a strongly
hyperbolic system in a version of the BSSN formulation,
under the assumption that the Horndeski terms are suffi-
ciently small compared to the Einstein-scalar-field terms
[i.e., in the weak field regime defined in (27)]. The system
was obtained using a generalization of the harmonic slicing
condition and an arbitrary but (nondynamically) fixed shift
vector. The system is strongly hyperbolic for anym > 1

4
and

for suitable σ ≡ ∂KF > 1
2
, regardless of how the source

functionF depends on the scalar field and its derivatives. (In
weak field backgrounds, choosing a large enough constant,
e.g., σ ¼ 1 is enough.) Thismeans that the original harmonic
slicing σ ¼ 1

2
does not work for cubic Horndeski theories.11

On the other hand, the so-called 1þ log slicing often used in
numerical general relativity, corresponds to the choiceσ ¼ 1

N
and hence remains a good slicing condition as long as
N < 2. Note that for GR the condition for strong hyper-
bolicity is m > 1

4
and σ > 0, whereas the condition for

symmetric hyperbolicity is 6σ ¼ 4m − 1 > 0.

C. Propagation of constraints

To show that the solutions of the BSSN system are also
solutions of the original Horndeski equations of motion, we
derive a system of evolution equations for the Hamiltonian
constraint, the momentum constraint and the variable

W̃k ≡ Ṽk þD
∘
lh̃

kl; ð128Þ
and show that the systemof equations is strongly hyperbolic.
By uniqueness of the solutions to strongly hyperbolic
systems, it follows that if the constraints are satisfied initially
then they continue to hold throughout the evolution.
Starting from Eqs. (39) and (40) and setting

Eij → Eij − Nðh̃kði∂jÞW̃kÞTF þ 2

3
NHhij; ð129Þ

the constraint evolution equations become

11One might wonder if c1 could be set to 0 in (125) by an
appropriate choice of ρ and ρk, even for σ ¼ 1

2
. However, this

particular choice of ρ and ρk fails to satisfy the integrability
condition ∂Aρ

k ¼ ∂Ak
ρ, a similar issue to the one encountered in

[17] [see Eqs. (237–241) and the corresponding discussion].
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ð∂t − LNÞH ¼ 2

3
NKHþ 1

N
DiðN2MiÞ − Ne−4ΩQ̃ijh̃kði∂jÞW̃k

− N∂XG3A

	�
−ðh̃kði∂jÞW̃kÞTF þ 2

3
Hhij

�
AiAj þ 4HA2 − 2AMiAi



ð130aÞ

ð∂t − LNÞMi ¼ NKMi −
N3

3
DiðN−2HÞ −Dj½Nðh̃kði∂jÞW̃kÞTF�

− N∂XG3Ai

	�
−ðh̃kði∂jÞW̃kÞTF þ 2

3
Hhij

�
AiAj þ 4HA2 − 2AMiAi



ð130bÞ

ð∂t − LNÞW̃i ¼ −2Nmh̃ijMj: ð130cÞ

We remind the reader that indices of tensors denoted with
letters with tilde are raised and lowered with the conformal
metric h̃, indices of tensors without a tilde are raised and
lowered with the original induced metric h.
Note that we have two additional constraints: the trace-

lessness of Q̃ij and det h
∘
¼ det h̃. Introducing the constraint

variables

T≡ h̃ijQ̃ij ð131Þ

and

D≡ ln
det h̃

det h
∘ ; ð132Þ

it follows easily that

∂0T ¼ −
1

2
e−4Ωh̃ijD

∘
iD
∘
jD ð133Þ

∂0D ¼ −2T: ð134Þ

Substituting (133) into the time derivative of (134)
implies a wave equation for D, decoupled from the rest
of the constraint propagation system (130):

∂2
0D ¼ e−4Ωh̃ijD

∘
iD
∘
jD: ð135Þ

Therefore, it is clear that starting from initial data that
satisfies D ¼ 0 and T ¼ 0, these conditions will continue
to hold throughout the evolution. For this reason, now we
only need to deal with the system (130).
The eigenvalue problem of the principal symbol of (130)

can be written as

iξ0Ĥ ¼ iNξiM̂i ð136aÞ

iξ0M̂i ¼ −
1

3
NiξiHþ 1

2
Njξj2

h̃
ˆ̃Wi þ

1

6
Nξiξj

ˆ̃W
j ð136bÞ

iξ0
ˆ̃Wi ¼ −2NmM̂i: ð136cÞ

The eigenvalues and eigenvectors of the principal symbol
are as follows

ξ0 ¼ 0;

0
B@

Ĥ
ˆ̃Wi

M̂i

1
CA ¼

0
B@

−2iNjξj2h
Nξi

0

1
CA; ð137Þ

ξ0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m − 1

3

r
Njξjh;

0
B@

Ĥ
ˆ̃Wi

M̂i

1
CA ¼

0
B@

−iNjξj2h
2Nmξi

−iξ0ξi

1
CA ð138Þ

and finally,

ξ0 ¼ � ffiffiffiffi
m

p
Njξjh;

0
B@

Ĥ
ˆ̃Wi

M̂i

1
CA ¼

0
B@

0

2Nmei
−iξ0ei

1
CA ð139Þ

for any vector ei orthogonal to ξi with respect to hij.
Therefore, the principal symbol of the system describing
the evolution of the constraints possesses a complete set of
smooth eigenvectors with real eigenvalues, provided that
m > 1

4
. Hence, the system (130) is strongly hyperbolic.

V. CCZ4-TYPE FORMULATION

A. Constraints

In this section we discuss how the so-called covariant
conformal Z4 (CCZ4) [35,42–45] formulation extends to
the class of theories under consideration. This formulation
is currently one of the most widely used numerical schemes
due to its favorable stability properties [42,43].
The idea behind the CCZ4 formulation is to introduce a

4-vector field Za that measures the deviations from the
actual tensor equations of motion Eab [see (3)] and add
terms containingZa and its first derivatives to the equations
so that Za ¼ 0 is an attractor of the modified equations.
The modification is carried out in the following way:
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Eab ¼ 0 → Eab þ∇aZb þ∇bZa − gab∇cZc

− k1ðnaZb þ nbZa þ k2ncZcgabÞ ¼ 0; ð140Þ

or in the trace reversed version

Eab−
1

2
Egab ¼ 0→Eab−

1

2
Egabþ∇aZbþ∇bZa

−k1ðnaZbþnbZa− ð1þk2ÞncZcgabÞ¼ 0:

ð141Þ
The parameters k1 and k2 here are real constants.

Splitting the four vector Za as Za ≡ Za þ naΘ with Za ≡
habZ

b and Θ≡ −naZa, one can write the normal-normal
and normal-spatial projections of (140) as

ð∂t − LNÞΘ ¼ NH − NΘK þ NDkZk

−DkNZk − ð2þ k2Þk1NΘ; ð142Þ

ð∂t−LNÞZi¼−NMiþNDiΘ−DiNΘ−2KikZk−k1Zi

ð143Þ

where the expressions for the Hamiltonian and momentum
constraints (H and Mi) are given by Eqs. (13) and (14).
When the generalized Bianchi-identity (37) holds, the

evolution equations for the Hamiltonian and momentum
constraints are

ð∂t−LNÞH¼ 2NKHþ 1

N
DiðN2MiÞ−2Nk1ð1þk2ÞKΘþ2NðKhkl−KklÞðDlZk−ΘKklÞ

−N∂XG3A½−2AiAjDiZj−DkZkA2þ2AiAjKijΘþ2KΘA2þk1ð1þk2Þð3A2þAkAkÞΘþ2HA2−2AMiAi�
ð144Þ

ð∂t − LNÞMi ¼ NKMi þ 2Dj½NðDkZkhij −DðiZjÞ þ ΘðKij − KhijÞ − k1ð1þ k2ÞΘhijÞ�

þ 1

N
DiðN2HÞ − N∂XG3Ai½−2AiAjDiZj −DkZkA2 þ 2AiAjKijΘþ 2KΘA2

þk1ð1þ k2Þð3A2 þ AkAkÞΘþ 2HA2 − 2AMiAi�: ð145Þ

Once again, the system (142)–(145) describing the propa-
gation of constraint violations has the same principal symbol
as in general relativity, cf. Eqs. (7), (8), (11), (12) of [46].
Therefore, the hyperbolicity and the high frequency behavior
of that system is not altered by the Horndeski terms. This has
the following implications for constraint damping. Similarly
to [46], one can carry out a preliminary mode analysis by
linearizing around a generic weak field configuration and
studying the high frequency limit of (142)–(145). For large
frequencies, the Horndeski terms become insignificant.
Making a plane wave ansatz for the constraint variables
then reduces the high frequency limit of (142)–(145) to the
same eigenvalue problem as in [46] [see Eq. (19)]. Hence, we
come to the same conclusion as in vacuumGR: the real parts
of all eigenfrequencies are negative if k1 > 0 and k2 > −1.
This suggests that with such choice of the parameters k1 and
k2, large frequency constraint violating modes will be
damped away in cubic Horndeski theories.

B. Equations of motion

Next, we provide the full system of evolution equations,
in the conformal decomposition. We introduce Z̃i ≡ Zi,
Z̃i ≡ h̃ijZ̃j and

Ũi ≡ hklðΓ̃i
kl − Γ

∘ i
klÞ þ 2Z̃i ¼ Ṽi þ 2Z̃i: ð146Þ

Similarly to the BSSN case, we use auxiliary variables

Φ̃≡Φ ¼ 1

N
ð∂0A − e−4Ωh̃ijÃiD̃jNÞ;

Φ̃i ≡Φi ¼ D̃iAþ Q̃ikÃjh̃
jk þ 1

3
KÃi;

Φ̃ij ≡Φij ¼ D̃iÃj − 2ðÃjD̃iΩþ ÃiD̃jΩ − h̃ijh̃
klÃkD̃lΩÞ

þ Ae4Ω
�
Q̃ij þ

1

3
Kh̃ij

�

ρ̃ ¼ e4Ω
�
Rþ 2

3
K2 − Q̃acQ̃bdh̃

abh̃cd
�

to write the equations more compactly. (For a more
complete list of formulas for the ADM and conformal
decompositions, see Appendix B.)
We use a natural generalization of the harmonic slicing

condition (recall ∂0 ≡ ∂t − NkD
∘
k)

∂0N ¼ −2N2σðK − 2ΘÞ; ð147aÞ

the shift vector is evolved using the standard “Gamma
driver” condition [47]

∂0Ni ¼ fN2e−4ΩBi ð147bÞ
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∂0Bi ¼ ∂0Ũi − ηBi: ð147cÞ
The parameters f and η are to be chosen and Bi is an
auxiliary variable. The evolution equations for the variables
h̃ij and Ω are just defining equations and hence left
unaltered compared to (92) and (93):

∂0h̃ij ¼ −2NQ̃ij þ 2h̃kðiD
∘
jÞNk −

2

3
h̃ijD

∘
kNk ð147dÞ

∂0Ω ¼ −
N
6
K þ 1

6
D
∘
kNk: ð147eÞ

The evolution equation forΘ is the same as (142) (using the
expression of the Hamiltonian constraint)

∂0Θ ¼ 1

2
N

�
ρ̃e−4Ω −

1

2
A2 −

1

2
e−4ΩÃiÃjh̃

ij þ G2 − A2∂XG2 − ∂ϕG3ðA2 þ e−4ΩÃiÃjh̃
ijÞ

þ ∂XG3ð−A2e−4ΩΦ̃ijh̃
ij þ e−8ΩÃkÃlΦ̃ijh̃

ikh̃jlÞ
�

þ Ne−4ΩD̃iZ̃i þ 2Ne−4ΩZ̃iD̃iΩ − NΘK − e−4ΩZ̃iD
∘
iN − Nk1ð2þ k2ÞΘ: ð147fÞ

Equation (145) is no longer kept as a separate equation, instead, it is added to the evolution equation for Ṽi:

∂0Ũi ¼ 2N

�
−
2

3
D̃iK þ Γ̃i

jkQ̃
jk þ 6Q̃ijD̃jΩþ D̃iΘ − ΘD̃i lnN −

2

3
KZ̃i

�
− 2Q̃ijD̃jN − ŨkD

∘
kNi

þ 2

3
ŨiD

∘
kNk þ h̃klD

∘
kD
∘
lNi þ 1

3
h̃ijD

∘
jD
∘
kNk − 2Nk1Z̃i þ 2k3

�
2

3
Z̃iD

∘
kNk − Z̃kD

∘
kNi

�

− 2N

�
−
1

2
ÃiA −

1

2
ÃiA∂XG2 − ÃiA∂ϕG3 þ

1

2
∂XG3

�
−A2Φ̃i þ ÃkAΦ̃jlh̃

klh̃ije−4Ω

− ÃiAΦ̃klh̃
kle−4Ω þ ÃkÃ

iΦ̃lh̃
kle−4Ω

��
ð147gÞ

This is equivalent to adding the momentum constraint times 2N to (102).
The evolution equations for K and Q̃ij are the same as before, except for the constraint damping terms.

∂0K − N
1

4
∂XG3ð3A2 − e−4ΩÃkÃkÞΦ

¼ N

�
Rþ 2e−4ΩD̃kZ̃k þ 4e−4ΩZ̃kD̃kΩþ K2 − 2ΘK þ 1

N
e−4Ω

�
h̃ijD̃iD̃jN þ 2h̃ijD̃iND̃jΩ

�
− 3k1ð1þ k2ÞΘ

−
1

2
ÃiÃjh̃

ije−4Ω − ∂ϕG3ÃiÃjh̃
ije−4Ω þ 3

2
G2 þ ∂XG2

�
−
3

4
A2 þ 1

4
ÃiÃjh̃

ije−4Ω
�

þ ∂XG3e−4Ω
�
−
3

4
A2Φ̃ijh̃

ij − ÃiAΦ̃jh̃
ij þ 1

4
ÃiÃjΦ̃klh̃

ijh̃kle−4Ω þ ÃiÃjΦ̃klh̃
ikh̃jle−4Ω

��
ð147hÞ

∂0Q̃ij − N
1

2
e−4Ω∂XG3

�
ÃiÃj −

1

3
h̃ijÃ

kÃk

�
Φ

¼ Ne−4Ω
	
Rij þ 2D̃ðiZ̃jÞ − 8Z̃ðiD̃jÞΩ −

1

N
D̃iD̃jN þ 4D̃ðiΩD̃jÞ lnN −

1

2
ð1þ ∂XG2 þ 2∂ϕG3ÞÃiÃj

þ ∂XG3

�
−AÃðiΦ̃jÞ −

1

2
ÃiÃjΦ̃klh̃

kle−4Ω þ ÃkÃðiΦ̃jÞlh̃kle−4Ω
�


TF

þ NðK − 2ΘÞQ̃ij − 2NQ̃ikQ̃
k
j þ 2Q̃kðiD

∘
jÞNk −

2

3
Q̃ijD

∘
kNk: ð147iÞ

Finally, we also have a pair of scalar evolution equations: (104) and (105).
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We conclude this section with a technical remark. For
general relativity, it has been noted that the CCZ4 equations
of motion can be derived from an action principle [44] (at
least if we ignore the lower order termswith k1 and k2). If we
insisted on a similar action principle for cubic Horndeski
theories, then upon taking the linear combination (6) of the
gravitational and scalar equations of motion, the resulting
equation would contain principal terms from the ADM
decomposition of ∇Z. However, for cubic Horndeski
theories, it is more beneficial to keep Eq. (105) as the scalar
evolution equation. It appears that for these theories, it is
more useful to introduce the Z-terms at the level of the
equations, rather than at the level of the action.

C. Strong hyperbolicity

Now we linearize the system of equations (147),(104),
(105) and study its hyperbolicity. The linearly small
quantities corresponding to the new variables are

Ni → Ni þ βi

Bi → Bi þ bi

Θ → Θþ θ

Ũi → Ũi þ ũi

The eigenvalue problem of the principal symbol for the
27 variables U ¼ ðα̂; ω̂; θ̂; κ̂; β̂i; b̂i; ˆ̃ui; ˆ̃γij; ˆ̃qij; ψ̂ ; âÞ can be
written as follows.

iξ0α̂ ¼ −2N2σðκ̂ − 2θ̂Þ ð148aÞ

iξ0β̂
i ¼ fN2e−4Ωb̂i ð148bÞ

iξ0b̂
i ¼ iξ0 ˆ̃u

i ð148cÞ

iξ0θ̂ ¼ 1

2
Ne−4Ωfiξk ˆ̃uk þ 8jξj2

h̃
ω̂

− ∂XG3ψ̂ð−A2jξj2
h̃
þ e−4ΩðÃkξkÞ2Þg ð148dÞ

iξ0κ̂ −
1

4
∂XG3ð3A2 − AkAkÞiξ0â

¼ Ne−4Ω
�
1

N
jξj2

h̃
α̂þ iξk ˆ̃u

k þ 8jξj2
h̃
ω̂

þ 1

4
∂XG3ð3A2 − AkAkÞjξj2h̃ψ̂

− ∂XG3ðAÃkiξkâþ ðξkÃkÞ2ψ̂Þ
�

ð148eÞ

iξ0ω̂ ¼ −
N
6
κ̂ þ 1

6
iξkβ̂

k ð148fÞ

iξ0ψ̂ ¼ Nâ ð148gÞ

iξ0 ˆ̃γij ¼ −2N ˆ̃qij þ 2iðξðiβ̂jÞÞTF ð148hÞ

iξ0 ˆ̃u
i ¼ −jξj2

h̃
β̂i −

1

3
ξiξkβ̂

k þ N

�
−
4

3
iξiκ̂ þ 2iξiθ̂

þ ∂XG3A2iξiâþ e−4Ω∂XG3ðAÃkξkξ
iψ̂ − AÃijξj2

h̃
ψ̂

− ÃiÃkiξkâÞ
�
: ð148iÞ

iξ0 ˆ̃qij −
1

2
e−4Ω∂XG3

�
ÃiÃj −

1

3
h̃ijÃ

kÃk

�
iξ0â

¼ Ne−4Ω
�
1

2
jξj2

h̃
ˆ̃γij þ iξði ˆ̃ujÞ −

1

3
iξk ˆ̃u

kh̃ij

þ 2ξiξjω̂ −
2

3
jξj2

h̃
ω̂h̃ij þ

1

N
ξiξjα̂ −

1

3

1

N
jξj2

h̃
α̂h̃ij

− A∂XG3â

�
ÃðiiξjÞ −

1

3
Ãkiξkh̃ij

�

þ e−4Ω∂XG3ψ̂

�
1

2

�
ÃiÃj −

1

3
h̃ijÃ

kÃk

�
jξj2

h̃

− ÃkÃðiξjÞξk þ
1

3
ÃkÃlξkξlh̃ij

��
ð148jÞ

iξ0Aâ ¼ iBâþ Cψ̂ ð148kÞ

where, again, we do not need to deal with the precise
expressions of the coefficients A, B and C, we only need to
keep in mind that substituting (77b) into (77c) yields

ψ̂ðP0
ϕϕÞμνξμξν ¼ 0; ð149Þ

i.e., Eq. (24).
Our strategy is analogous to the one described in Sec. IV:

it is easy to find 25 eigenvalues and eigenvectors of the
system (148) with ψ̂ ¼ â ¼ 0. For a more compact nota-
tion, we use ξ̄0 [see Eq. (112)] instead of ξ0 to list the
eigenvalues:

(I) A12-dimensional space ofmodes for arbitrary ˆ̃γij and
α̂ ¼ ω̂ ¼ β̂i ¼ ˆ̃ui ¼ 0, with eigenvalues ξ̄0 ¼ �1.

(II) A 2-dimensional space of modes for arbitrary ˆ̃γij and
nontrivial α̂, ω̂, β̂i, ˆ̃ui, with eigenvalues ξ̄0 ¼ �1.

(III) A 3-dimensional space of zero speed modes (ξ̄0 ¼ 0)
for arbitrary ˆ̃vi.

(IV) A 2-dimensional space of modes with eigenval-
ues ξ̄0 ¼ � ffiffiffiffiffi

2σ
p

.
(V) A 4-dimensional space of modes with ξ̄0 ¼ � ffiffiffi

f
p

,
for arbitrary ei orthogonal to ξi (with respect to h̃ij).

(VI) A 2-dimensional space of modes with ξ̄0 ¼ �
ffiffiffiffi
4f
3

q
.

The full expressions of the corresponding eigenvectors
are given in Table III. Clearly, these expressions depend
smoothly on ξi if f > 0 and σ > 0.
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To show that the system consisting of Eqs. (147), (104),
(105) is strongly hyperbolic, it remains to be shown that
(148) has two eigenvectors corresponding to the eigenval-
ues ξϕ;�0 [obtained by solving (24)], with smooth depend-
ence on ξi and with non-zero ψ̂ and âϕ ≡ i

N ξ
ϕ;�
0 ψ̂ [see

Eq. (148g)]. These eigenvectors can be found as follows.
Recall the general form of the characteristic equation (20)
from Sec. II. When grouping the terms in the characteristic
equations (148) to Einstein-scalar-field and Horndeski parts
(terms containing a factor ∂XG3) as in (23), we see that the
Horndeski terms only act on the ψ̂ , â components of U. In
other words, the matrices δA and δL in (23) are projections
to the subspace associated with the scalar variables:

δAU≡ δAðα̂; ω̂; θ̂; κ̂; β̂i; b̂i; ˆ̃ui; ˆ̃γij; ˆ̃qij; ψ̂ ; âÞT
¼ δAð025; ψ̂ ; âÞT;

δLU≡ δLðα̂; ω̂; θ̂; κ̂; β̂i; b̂i; ˆ̃ui; ˆ̃γij; ˆ̃qij; ψ̂ ; âÞT
¼ δLð025; ψ̂ ; âÞT:

The eigenvectors Uϕ;� corresponding to the eigenvalues
ξ�;ϕ then satisfy

ðiξ�;ϕ
0 A0 − L0ðξkÞÞUϕ;�

¼ −ðiξ�;ϕ
0 δA0 − δL0ðξkÞÞUϕ;�

¼ −ðiξ�;ϕ
0 δA0 − δL0ðξkÞÞð025; ψ̂ ; âϕÞT: ð150Þ

Thus we have:

Uϕ;� ¼ −ðiξ�;ϕ
0 A0 − L0ðξkÞÞ−1ðiξ�;ϕ

0 δA − δLðξkÞÞ

×

0
BBB@

025

ψ̂

iξ�;ϕ
0

N ψ̂

1
CCCA: ð151Þ

A straightforward but lengthy calculation gives the
following result:

α̂ϕ;� ¼ −
∂XG3Nσψ̂

2ððξ�;ϕ
0 Þ2 − 2σN2jξj2

h̃
e−4ΩÞ

× ½ð3A2 − ÃkÃke−4ΩÞðξ�;ϕ
0 Þ2

þ N2e−4ΩððA2 þ ÃkÃke−4ΩÞjξj2h̃ − 4NAÃkξkξ
�;ϕ
0 Þ�
ð152aÞ

TABLE III. The list of eigenvalues and eigenvectors of the principal symbol with ψ̂ ¼ â ¼ 0.

(a)

α̂ ω̂ β̂i ˆ̃γij ξ̄0

I. 0 0 0 ˆ̃γij �1

II. ∓ i 2σð4f−3Þjξjh̃e
2Ω

fð6σþ1Þ ∓ i jξjh̃e
2Ωðf−1−2σfÞ

2fNð6σþ1Þ
iξi ˆ̃γij �1

III. 0 − 1
8jξj2

h̃

iξk ˆ̃v
k 0 − 2i

jξj2
h̃

ðξðivjÞ − ξiξj
4jξj2

h̃

ξk ˆ̃v
kÞTF 0

IV. �i
ffiffiffiffi
2σ

p
e2Ωjξjh̃ð3σ−2fÞ

2f �i
ffiffiffiffi
2σ

p
e2Ωjξjh̃
8Nf

iξi �i 3
ffiffiffiffi
2σ

p
e2Ω

2fNjξjh̃ ðξiξjÞ
TF � ffiffiffiffiffi

2σ
p

V. 0 0 iei �i 2e2Ω

N
ffiffi
f

p
jξjh̃

ξðiejÞ � ffiffiffi
f

p

VI. 0 �i e2Ωjξjh̃
4

ffiffiffiffi
3f

p
N

iξi �i
ffiffi
3

p
e2Ω

N
ffiffi
f

p
jξjh̃

ðξiξjÞTF �
ffiffiffiffi
4f
3

q

(b)

θ̂ κ̂ b̂i ˆ̃qij ˆ̃ui

I. 0 0 0 ∓ 1
2
jξjh̃e−2Ω ˆ̃γij 0

II. jξj2
h̃
ð4f−3Þð2σ−1Þ
2fNð6σþ1Þ

3−4f
Nfð6σþ1Þ jξj2h̃ ∓ jξjh̃e2Ω

Nf ξi ∓ 1
2
jξjh̃e−2Ω ˆ̃γij − 1

N ðξiξjÞTF ∓ jξjh̃e2Ω
Nf ξi

III. 0 0 0 0 ˆ̃vi

IV. 0 3σ−2f
2fN jξj2

h̃ ∓ ffiffiffiffiffi
2σ

p jξjh̃e2Ω
Nf ξi �i 3σ−2f

2fNjξjh̃ ðξiξjÞ
TF ∓ ffiffiffiffiffi

2σ
p jξjh̃e2Ω

Nf ξi

V. 0 0 ∓ jξjh̃e2Ω
N

ffiffi
f

p ei 0 ∓ jξjh̃e2Ω
N

ffiffi
f

p ei

VI. 0 0 ∓ 2jξjh̃e2Ω
N

ffiffiffiffi
3f

p ξi 0 ∓ 2jξjh̃e2Ω
N

ffiffiffiffi
3f

p ξi
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θ̂ϕ;� ¼ 0 ð152bÞ

κ̂ϕ;� ¼ ∂XG3iξ
�;ϕ
0 ψ̂

4Nððξ�;ϕ
0 Þ2−2σN2jξj2

h̃
e−4ΩÞ ½ð3A

2− ÃkÃke−4ΩÞðξ�;ϕ
0 Þ2þN2e−4ΩððA2þ ÃkÃke−4ΩÞjξj2h̃−4NAÃkξkξ

�;ϕ
0 Þ� ð152cÞ

β̂ϕ;�ξ ¼ N2fξ�;ϕ
0 jξj2

h̃
ψ̂∂XG3e−8Ω

3ððξ�;ϕ
0 Þ2 − 2σN2jξj2

h̃
e−4ΩÞð−ðξ�;ϕ

0 Þ2 þ 4
3
fN2jξj2

h̃
e−4ΩÞ ½3ðÃ

2
ξe

−4Ω − ÃkÃkÞðξ�;ϕ
0 Þ2

− 4NAÃξξ
�;ϕ
0 þ N2jξj2

h̃
ðð6σ þ 1ÞA2 þ ÃkÃke−4Ω − 6σe−8ΩÃ2

ξÞ� ð152dÞ

β̂ϕ;�I ¼ ÃIe−8ΩfN2ψ̂∂XG3ð−NAjξj2
h̃
þ Ãξξ

�;ϕ
0 Þ

ð−ðξ�;ϕ
0 Þ2 þ fN2jξj2

h̃
e−4ΩÞ ð152eÞ

ˆ̃uϕ;�ξ ¼ b̂ϕ;�ξ ¼ iðξ�;ϕ
0 Þ2jξj2

h̃
ψ̂∂XG3e−4Ω

3ððξ�;ϕ
0 Þ2 − 2σN2jξj2

h̃
e−4ΩÞð−ðξ�;ϕ

0 Þ2 þ 4
3
fN2jξj2

h̃
e−4ΩÞ ½3ðÃ

2
ξe

−4Ω − ÃkÃkÞðξ�;ϕ
0 Þ2

− 4NAÃξξ
�;ϕ
0 þ N2jξj2

h̃
ðð6σ þ 1ÞA2 þ ÃkÃke−4Ω − 6σe−8ΩÃ2

ξÞ� ð152fÞ

ˆ̃uϕ;�I ¼ b̂ϕ;�I ¼ ÃIe−4Ωiξ
�;ϕ
0 ψ̂∂XG3ð−NAjξj2

h̃
þ Ãξξ

�;ϕ
0 Þ

ð−ðξ�;ϕ
0 Þ2 þ fN2jξj2

h̃
e−4ΩÞ ð152gÞ

ˆ̃qϕ;�ij ¼ 1

2
∂XG3iξ

�;ϕ
0

�
ÃiÃj −

1

3
ÃkÃkh̃ij

�
ψ̂ − ∂XG3A

�
ÃðiξjÞ −

1

3
Ãξh̃ij

�
ψ̂

þ ∂XG3ðξiξj − 1
3
jξj2

h̃
h̃ijÞψ̂

−ðξϕ;�0 Þ2 þ 2σN2jξj2h

	�
−
6σ þ 1

4
A2 þ 2σ − 1

4
ÃkÃke−4Ω

�
iξ�;ϕ

0 þ 2iσAÃξe−4Ω



ð152hÞ

ˆ̃γϕ;�ij ¼ 1

iξ�;ϕ
0

�
−2N ˆ̃qϕ;�ij þ 2iξðiβ

ϕ;�
jÞ −

2i
3
βϕ;�ξ

�
ð152iÞ

ω̂ϕ;� ¼ 1

6iξ�;ϕ
0

ð−Nκ̂ϕ;� þ iβϕ;�ξ Þ ð152jÞ

where the notation T̃:ξ stands for the contraction T̃:iξjh̃
ij

and I is an index for the subspace orthogonal to ξi.
Interestingly, the θ components of these two eigenvec-

tors are 0. However, this is not surprising at all: this variable
measures the constraint violations but these two eigenvec-
tors correspond to a physical d.o.f. and as such, they must
satisfy the high frequency version of the constraints.
In order to avoid singularities in the expressions (152)

we need to choose the parameters σ and f in such a way that
the expressions appearing in the denominators

− ðξϕ;�0 Þ2 þ 4

3
fN2jξj2

h̃
e−4Ω − ðξϕ;�0 Þ2 þ fN2jξj2

h̃
e−4Ω

− ðξϕ;�0 Þ2 þ 2σN2jξj2
h̃
e−4Ω

are nonzero for all ξi ∈ S2. In a generic weak field
background [in the sense of (27)], the null cone of P0

ϕϕ

is a slightly distorted version of the null cone of the
spacetime metric g which means that for specific ξi they
may intersect. Comparing the critical expressions to

gμνξμξν ¼ −ðξ0Þ2 þ N2jξj2h; ð153Þ

and by similar considerations as in the end of Sec. IV B, we
see that smooth dependence on ξi might be violated for
some ξi ∈ S2 if σ ¼ 1

2
, f ¼ 3

4
and/or f ¼ 1. This can be

easily avoided: choosing suitable σ > 1
2
and f > 1 resolves

this issue, larger values of σ and f allows stronger back-
ground fields. Therefore, we arrive at a similar conclusion
as in the previous section: choosing the gauge parameters σ
and f large enough ensures strong hyperbolicity of the
CCZ4 system, as long as the fields are sufficiently weak. In
particular, the combination of the 1þ log slicing (σ ¼ 1

N,
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N < 2) and a Gamma driver shift condition with f > 1
appears to be a good candidate for numerical applications.

VI. DISCUSSION

In this paper we have provided three locally well-posed
formulations of weak field, cubic Horndeski theories by
generalizing an elliptic-hyperbolic, a BSSN-type and the
CCZ4 formulation of general relativity. (The weak field
assumption refers to field configurations in which the
Horndeski terms are small deformations of the Einstein-
scalar-field theory terms in the equations of motion.) The
elliptic-hyperbolic formulation was obtained by generaliz-
ing a combination of the constant mean curvature slicing
and spatial harmonic gauge condition. In the weak field
regime, on spatial slices with negative Ricci curvature, the
elliptic equations can be uniquely solved for the lapse
function and the shift vector. Under these assumptions, the
evolution equations are strongly hyperbolic in any gener-
alized spatial harmonic gauge. The 2-parameter family of
BSSN-type and CCZ4-type formulations are also strongly
hyperbolic when the parameters describing the slicing and
shift conditions obey suitable bounds. Two important steps
in the proofs of these results were noticing that first, the
gravitational equation of motion (3) is quasilinear and
second, that the second derivatives of the metric disappear
in a linear combination of the gravitational and scalar
equations of motion.
One may be concerned whether the weak field

assumption (27) could be violated dynamically. In other
words: in principle, it is possible that the nonlinear
evolution of the equations would drive the fields out of
the regime where the Horndeski terms are small compared
to the Einstein-scalar-field theory terms, even if one starts
with weak field initial data. This is certainly a real concern
since the results presented in this paper only guarantee
local well-posedness. The long time behavior of the
system, however, is a question of global well-posedness
which is a very subtle and complicated problem to solve
rigorously even in general relativity (see e.g., [6] and
references therein).
Analyzing the hyperbolicity of the evolution equations in

the elliptic-hyperbolic, BSSN-type or the CCZ4-type for-
mulations of more general Horndeski theories is more
difficult. The root of the problem lies in the degeneracy of
the principal symbol. In any formulation of GR the
principal symbol of the equations of motion has one or
more degenerate eigenspaces. This may continue to hold
even when small perturbing operators are added to the
equations of motion such as Horndeski terms in a weak
field regime, especially if the perturbing terms have some
special structure. This may lead to the failure of diago-
nalizability of the principal symbol and hence the failure of
strong (or even weak) hyperbolicity. An upcoming paper on
this issue is currently under preparation.

Of course, it is possible that more general Horndeski
theories do not admit a well-posed initial value formulation
at all. However, these theories may still be valid as effective
field theories.12 A common feature of the classical equa-
tions of motion of EFTs is that they admit runaway
solutions. These solutions are typically artifacts of the
truncation process and cannot be considered physical.
Several techniques have been developed to deal with such
pathologies by modifying the equations of motion, some of
them are listed in [1]. An example of such methods is the
so-called reduction of order process that can be explained
as follows. Given an EFT with higher order equations of
motion such that the higher derivative terms are subleading
in a mass dimension expansion. To any perturbative order,
it is possible to derive an alternative equation of motion
which is equally accurate up to the given order and contains
time derivatives of the fields only up to second order.13 The
advantage of this method is that under certain assumptions
(see e.g., [48]) the modified equation no longer has run-
away solutions. On the other hand, the procedure breaks
Lorentz covariance. Although Horndeski theories are not
higher order, the above described process may still be
carried out and the reduced order equations of motion may
have a well-posed initial value problem. Another method is
based on the Israel-Stewart process [49] which is widely
used in relativistic hydrodynamics to deal with the ill-
posedness of the Navier-Stokes equation. Roughly speak-
ing, consider equations of motion of the form LðϕÞ ¼
ϵSðϕÞ for a collection of fields denoted by ϕ, [50,51]. Here
L is a differential operator such that the zeroth order
equation of motion is LðϕÞ ¼ 0; SðϕÞ is another differential
operator playing the role of a correction term, suppressed
with a small parameter ϵ. In this procedure, one introduces
an auxiliary variable Π for LðϕÞ which is forced to satisfy a
time evolution equation of the form τ∂tΠ ¼ −Πþ ϵS
where τ is a suitable timescale. The solution to this
modified equation asymptotically approaches the solution
to the original equation in a timescale τ. This procedure
also restricts solutions to the infrared and it may also fix the
hyperbolicity of the equations of motion [50,51].
As a final remark, we point out another (mathematical)

issue which may also lead to an interesting research
direction. In general, for genuinely higher order EFTs,
one might have to rethink what a well-posed initial value
formulation means. For example, classically, well-
posedness is defined in a suitable function space which
is typically a Sobolev space. However, for theories that are
only meant to be valid up to some finite energy scale,

12In fact, it was shown recently [1], that scalar-tensor EFTs can
be written in a Horndeski form up to a fairly high order in the
mass dimension expansion since higher derivative operators can
be removed by appropriate field redefinitions.

13In general, it is not possible to get rid of the higher order
spatial derivatives.
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finding a suitable function space for solutions is far from
obvious.
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APPENDIX A: BACKGROUND INFORMATION

In this section we provide some general information
regarding pseudodifferential calculus, elliptic PDEs and
hyperbolic PDEs in a self-contained manner.
First, we define the norms and function spaces used in

these notes. Sobolev spaces on a manifold ðΣ; hÞ will be
denoted by Ws;pðΣÞ and HsðΣÞ≡Ws;2ðΣÞ. The notation
FðR;Ws;pÞ stands for the space of curves of class F with
values in Ws;p, i.e., if uðt; xÞ ∈ L∞ðR; HsÞ then uðt; ·Þ ∈
Hs and uð·; xÞ ∈ L∞. When discussing pseudodifferential
operators, we will briefly mention Schwartz spaces,
denoted by SðRnÞ. This is the space of smooth functions
f satisfying

sup
x∈Rn

jxα∂βfj < ∞ ðA1Þ

for any multi-indices α, β. The Fourier transform of a
function or tensor field A will be denoted by Â.

1. Basics of pseudodifferential calculus

We briefly summarize the basic results from pseudodif-
ferential calculus, based on [4].
For m ∈ R, let Sm be the space of symbols, that is, the

space of smooth functions pðx; ξÞ satisfying

j∂β
x∂α

ξpðx; ξÞj ≤ Chξim−jαj; ðA2Þ

for multi-indices α and β, some constant C depending only
on α; hξi≡ ð1þ jξj2Þ1=2. Given a symbol pðx; ξÞ ∈ Sm,
one can define a corresponding pseudodifferential operator
pðx; ∂xÞ as an operator acting on SðRnÞ in the following
way: for u ∈ SðRnÞ

pðx; ∂xÞu ¼
Z

dnξ
ð2πÞn e

ix·ξpðx; ξÞûðξÞ: ðA3Þ

It is easy to verify that for any u ∈ SðRnÞ,
pðx; ∂xÞu ∈ SðRnÞ, i.e., pðx; ∂xÞ∶SðRnÞ → SðRnÞ. The
space of such operators pðx; ∂xÞ is denoted by OPm.

In fact, it can be shown that if pðx; ∂xÞ ∈ OPm,
then pðx; ∂xÞ∶Hsþm → Hs.
It is also possible to define the spaces S∞ and S−∞ by

S∞≡ ∪m∈R Sm and S−∞≡ ∩m∈R Sm. It can be shown that
pseudodifferential operators with symbols in the class S−∞

are smoothing operators.
An important subspace of Sm called classical symbols and

denoted by Smcl is the one consisting of symbolspðx; ξÞ ∈ Sm

which admit an asymptotic expansion in the following
sense. We say that pðx; ξÞ ∈ Smcl (and pðx; ∂xÞ ∈ OPm

cl ) if
there exists a sequence of symbols pm−jðx; ξÞ ∈ Sm−j, j ¼
0; 1; 2;…;∞ that are homogeneous in ξ of degreem − j for
jξj ≥ 1 such that

pðx; ξÞ −
XN
j¼0

pm−jðx; ξÞ ∈ Sm−N ðA4Þ

for all N ≥ 1. The asymptotic expansion is denoted by

pðx; ξÞ ∼
X
j≥0

pm−jðx; ξÞ ðA5Þ

where the notation ∼ means equality up to a smoothing
operator. Indeed, by definition, the operator

pðx; ∂xÞ −
X
j≥0

pm−jðx; ∂xÞ ∈ OP−∞ ðA6Þ

is a smoothing operator. The first term in the expansion (A5)
(i.e., the one with j ¼ 0) is called the principal symbol of p
and will be denoted by pð0Þ ≡ pm.
In this paper, we deal with classical pseudodifferential

operators. A useful property of operators in this class is that
for p1 ∈ OPm1

cl and p2 ∈ OPm2

cl , the product qðx; ∂xÞ≡
p1ðx; ∂xÞp2ðx; ∂xÞ is also a pseudodifferential operator in

OPm1þm2

cl such that qð0Þðx; ξÞ ¼ pð0Þ
1 ðx; ξÞpð0Þ

2 ðx; ξÞ, i.e., the
principal symbol of the product is the product of the
principal symbols.

2. Elliptic equations

Now we consider some results regarding elliptic equa-
tions based on [4,6,52]. An elliptic operator pðx; ∂xÞ ∈
OPm

cl is such that jpðx; ξÞj ≥ Chξim for jξj ≥ 1. Let us first
consider a basic result for second order, linear elliptic
operators defined by

Pðx; ∂xÞu≡ aijðxÞ∂i∂juþ biðxÞ∂iuþ cðxÞu; ðA7Þ

with coefficients a ∈ HsðRnÞ, b ∈ Hs−1ðRnÞ and
c∈Hs−2ðRnÞ, s > n

2
and aij is a positive definite

metric. Then
(i) P is a map Hs → Hs−2 with finite dimensional

kernel ker P ⊂ C∞.

WELL-POSEDNESS OF CUBIC HORNDESKI THEORIES PHYS. REV. D 100, 024005 (2019)

024005-27



(ii) Furthermore, if c ≤ 0 then ker P is empty and hence
P is an isomorphism Hs → Hs−2.

Part (i) of the theorem holds for higher order elliptic
operators, whereas (ii) generally fails. The operator
qðx; ∂xÞ ∈ OP−m

cl is said to be a parametrix for p if it
satisfies qðx; ∂xÞpðx; ∂xÞ ∼ pðx; ∂xÞqðx; ∂xÞ ∼ I (see nota-
tion in previous subsection). Given an equationpðx; ∂xÞu ¼
f for u ∈ HsðRnÞ and f ∈ Hs−mðRnÞ, the formal solution to
this equation is u ¼ qðx; ∂xÞf mod C∞. In other words, one
can say that the solution map q∶f → u is a pseudodiffer-
ential operator of class OP−2. For the present purposes, it
will suffice to find the principal symbol of the parametrix (or
solution map) corresponding to a linear elliptic differential
operator of the form (A7). Using the product identity, it is
easy to see that the principal symbol of the parametrix of P
is Qð0Þðx; ξÞ ¼ ðaijξiξjÞ−1.

3. Hyperbolic equations

We conclude this section by discussing the initial value
problem for hyperbolic equations [4]. Consider, first, a first
order linear equation of the form

∂tu ¼ Lðt; x; ∂xÞuþ gðt; xÞ; uð0Þ ¼ f; ðA8Þ

where u, g ∈ CðR; HsðRnÞÞ and f ∈ HsðRnÞ (s > n
2
þ 1)

are N-component column vectors; Lðt; x; ∂xÞ ∈ OP1
cl is an

N × N matrix valued function with smooth dependence on
t, satisfying

Kðt; x; ξÞLðt; x; ξÞ þ L†ðt; x; ξÞKðt; x; ξÞ ∈ S0 ðA9Þ

and

C−1I ≤ Kðt; x; ξÞ ≤ CI ðA10Þ

for ξ ∈ Sn−1, with some constant C > 0 and a positive
definite, Hermitian matrix Kðt; x; ξÞ that depends smoothly
on its arguments. Such equations are called strongly
hyperbolic and the N × N matrix K is called a symmetrizer.
It can be proved that this problem is locally well-posed in
Sobolev spaces Hs, i.e., there exists a unique solution

u ∈ Cð½0; TÞ; HsÞ ∩ C1ð½0; TÞ; Hs−1Þ

to (A8) with T > 0 depending only on kfkHs
.

The proof of this result is based on an inequality of the
form

∂tðu; uÞK ≤ cðTÞ½ðu; uÞK þ ðu; gÞK� ðA11Þ

where ð·; ·ÞK is a scalar product constructed in terms of the
symmetrizer K, that is equivalent to the L2-product. This
leads to an energy estimate (after an application of the
Gronwall inequality) of the form

kuk2L2 ≤ CðtÞ
h
kfk2L2 þ sup

t∈½0;TÞ
kgk2L2

i
: ðA12Þ

The above result can be extended to first order pseudo-
differential equations, obtained by a reduction of second
(or higher) order equations. This is usually done by
introducing v ¼ ∂tu (or the new variable v could also be
a linear combination v≡ ∂tu − Xi∂iu for some Xi). A
second order equation can be rewritten in a form similar to
(A8) but the operator Lðt; x; ∂x; ∂2

xÞ is now a 2 × 2 block
matrix with N × N matrix blocks, acting on column vectors
U ¼ ðu; vÞT ∈ Hs ≡Hs ×Hs−1. Then the above result
holds with initial data Uð0Þ ¼ F ∈ Hs and the solution
will be in

U ∈ Cð½0; TÞ;HsÞ ∩ C1ð½0; TÞ;Hs−1Þ:

It can be shown that the existence of a smooth symmetr-
izer implies that Lðt; x; ξiÞ is diagonalizable with real
eigenvalues but it is not always true the other way around.
However, if S is the matrix whose columns are the
eigenvectors of L, i.e., S−1LS is diagonal, then a positive
definite symmetrizer is given by K ¼ ðS−1Þ†S−1. One
therefore needs to check if the smoothness and bounded-
ness conditions are also met. If the eigenvectors have
a smooth dependence on these variables then so does S.
Since the entries of S−1 are rational functions of the entries
of S, S−1 and hence K is also smooth in ðt; x; ξiÞ. The
boundedness condition follows straightforwardly from
smoothness in a compact spacetime. (ξi takes values in a
compact set so no additional assumptions are required for
the ξi dependence). In practice, to demonstrate strong
hyperbolicity, it is easiest to show that the matrix L is
diagonalizable, has real eigenvalues and the eigenvectors
depend smoothly on ðt; x; ξiÞ.
The notion of strong hyperbolicity and the above well-

posedness result can be extended to quasilinear or even
fully nonlinear PDEs. More precisely, the following the-
orems are proved in Chapter 5 of [4].
The initial value problem

∂tu ¼ Lðt; x; u; ∂xÞuþ gðt; x; uÞ; uð0Þ ¼ f; ðA13Þ

for the quasilinear equation with u, g ∈ CðR; HsðRnÞÞ
and f ∈ HsðRnÞ (s > n

2
þ 1) size-N column vectors;

Lðt; x; u; ∂xÞ ∈ OP1
cl an N × N matrix valued function that

satisfies the above properties of strong (symmetrizable)
hyperbolicity for any ðt; x; u; ξiÞ, then a unique local
solution u ∈ Cð½0; TÞ; HsÞ exists with T > 0.
For the nonlinear system

∂tu ¼ Bðt; x; u; ∂xuÞ; uð0Þ ¼ f ðA14Þ

with data f ∈ HsðRnÞ (s > n
2
þ 2), [4] shows that if the

matrix
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Lðt; x; u; ∂xu; ξÞ ¼ ð∂∂iuBÞðt; x; u; ∂xuÞξi ðA15Þ

possesses a symmetrizer Kðt; x; u; ∂xu; ξÞ with the above
properties, then the Cauchy problem (A14) is locally well-
posed with a unique solution u ∈ Cð½0; TÞ; HsÞ, T > 0.
These results suggest that to check whether the conditions
of strong hyperbolicity are met for quasilinear and non-
linear equations, it is sufficient to study the linearized
equations in a generic background.

APPENDIX B: ADM AND CONFORMAL
DECOMPOSITION

Here we provide a list of formulas used during the ADM
decomposition of the equations of motion. The decom-
position rules for the derivatives of the scalar field and the
curvature tensors:

∇aϕ ¼ −Ana þ Aa ðB1Þ

∇a∇bϕ ¼ Φab − 2nðaΦbÞ þ nanbΦ ðB2Þ

Rabcd¼ ρabcdþ2σab½cnd� þ2σcd½anb�−4n½aτb�½cnd� ðB3Þ

Rab ¼ ρab − τab þ 2σðanbÞ þ τnanb ðB4Þ

R ¼ ρ − 2τ ðB5Þ

where the definitions of the auxiliary variables are

A≡ na∇aϕ ðB6Þ

Aa ≡Daϕ≡ hba∇bϕ ðB7Þ

Φ≡ LnA − AaDa lnN ðB8Þ

Φa ≡DaAþ KacAc ðB9Þ

Φab ≡DaAb þ AKab ðB10Þ

ρabcd ≡ Rabcd þ 2Ka½cKd�b ðB11Þ

ρab ≡ Rab þ KKab − KacKc
b ðB12Þ

ρ≡ Rþ K2 − KabKab ðB13Þ

σabc ≡ 2D½aKb�c ðB14Þ

σa ≡ 2ðDbKab −DaKÞ ðB15Þ

τab ≡ LnKab þ
1

N
DaDbN þ KacKc

b ðB16Þ

τ≡ LnK þ 1

N
DaDaN − KabKab: ðB17Þ

The conformal versions of these auxiliary variables are
given by the following formulas

Φ̃≡Φ ¼ LnA − e−4Ωh̃abÃaD̃b lnN ðB18Þ

Φ̃a ≡Φa ¼ D̃aAþ Q̃acÃbh̃
bc þ 1

3
KÃa ðB19Þ

Φ̃ab≡Φab ¼ D̃aÃb−2ðÃbD̃aΩþ ÃaD̃bΩ− h̃abh̃
cdÃcD̃dΩÞ

þAe4Ω
�
Q̃abþ

1

3
Kh̃ab

�
ðB20Þ

τ̃kl ≡ τkl ¼ e4Ω
�
LnQ̃kl þ

1

3
h̃klLnK −

2

3
KQ̃kl þ h̃abQ̃kbQ̃la −

1

9
h̃klK2

�

þ 1

N

�
D̃lD̃kN þ 2h̃lkh̃

abD̃aND̃bΩ − 2D̃kΩD̃lN − 2D̃kND̃lΩ
�
: ðB21Þ

τ̃≡ τe4Ω ¼ e4Ω
�
LnK − Q̃acQ̃bdh̃

abh̃cd −
1

3
K2

�
þ 1

N

�
h̃abD̃aD̃bN þ 2h̃abD̃aND̃bΩ

�
: ðB22Þ

ρ̃abcd ≡ ρabcde−4Ω ¼ Rabcde−4Ω þ 2e8Ω
�
Q̃a½cQ̃d�b þ

1

3
Kh̃a½cQ̃d�b þ

1

3
KQ̃a½ch̃d�b þ

1

9
K2h̃a½ch̃d�b

�
ðB23Þ

ρ̃ab ≡ ρab ¼ Rab þ e4Ω
�
2

9
K2h̃ab þ

1

3
KQ̃ab − Q̃acQ̃bdh̃

cd

�
ðB24Þ

ρ̃≡ ρe4Ω ¼ e4Ω
�
Rþ 2

3
K2 − Q̃acQ̃bdh̃

abh̃cd
�

ðB25Þ
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σ̃klm ≡ σklme−4Ω ¼ 2D̃½kQ̃l�m þ 2

3
D̃½kKh̃l�m þ 4D̃½kΩQ̃l�m − 4h̃ijD̃iΩQ̃j½kh̃l�m ðB26Þ

σ̃k ≡ σk ¼ 6h̃abQ̃kbD̃aΩþ h̃abD̃bQ̃ka −
2

3
D̃kK: ðB27Þ

Finally, we also provide the conversion rules between curvature tensors, used in the conformal decomposition:

Rabcd¼ e4ΩðR̃abcdþ4h̃d½aD̃b�D̃cΩ−4h̃c½aD̃b�D̃dΩþ8D̃½aΩh̃b�dD̃cΩ−8D̃½aΩh̃b�cD̃dΩ−8h̃c½ah̃b�dh̃efD̃eΩD̃cΩÞ; ðB28Þ

Rab ¼ R̃ab − 2D̃aD̃bΩ − 2h̃abh̃
cdD̃cD̃dΩþ 4D̃aΩD̃bΩ − 4h̃abh̃

cdD̃cΩD̃dΩ; ðB29Þ

R ¼ e−4ΩðR̃ − 8h̃cdD̃cD̃dΩ − 8h̃cdD̃cΩD̃dΩÞ: ðB30Þ
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