PHYSICAL REVIEW D 100, 024005 (2019)

Well-posedness of cubic Horndeski theories

X z . P
Aron Daniel Kovacs

DAMTP, Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge CB3 OWA, United Kingdom

® (Received 3 April 2019; published 8 July 2019)

We study the local well-posedness of the initial value problem for cubic Horndeski theories. Three
different strongly hyperbolic modifications of the Arnowitt-Deser-Misner formulation of the Einstein
equations are extended to cubic Horndeski theories in the “weak field” regime. In the first one, the
equations of motion are rewritten as a coupled elliptic-hyperbolic system of partial differential equations.
The second one is based on the Baumgarte-Shapiro-Shibata-Nakamura formulation with a generalized
Bona-Masso slicing (covering the 1 + log slicing) and nondynamical shift vector. The third one is an
extension of the CCZ4 formulation with a generalized Bona-Massé slicing (also covering the 1 + log
slicing) and a gamma driver shift condition. This final formulation may be particularly suitable for

applications in nonlinear numerical simulations.
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I. INTRODUCTION

In the past few decades there has been a growing interest
in modifying general relativity (GR) and exploring various
properties of these modified theories. The most common
reason for this is that the cosmological constant problem
led some people to believe that GR may not be the correct
theory of gravity, even at large distance scales and low
energies. Investigating the properties of extensions of GR is
also relevant from an effective field theory (EFT) point of
view: since GR is nonrenormalizable, one expects that it is
only an EFT valid up to some energy scale. When
describing strong field phenomena, other operators (besides
the Einstein-Hilbert term) might become relevant in the
action of the underlying UV complete theory. Finally,
testing the rigidity of the predictions and mathematical
properties of GR to small deformations can also help us
better understand GR itself and discover new techniques.

Trying to modify GR with the purpose to cure one of its
shortcomings, however, typically introduces new unwanted
pathologies elsewhere. For example, theories with equa-
tions of motion containing higher than second derivatives
generically suffer from the so-called Ostrogradsky insta-
bilities.! To avoid such instabilities, investigations are
usually restricted to theories with second order equations
of motion. Examples of such theories include Horndeski
theories [2]. Horndeski theories are the most general
diffeomorphism-invariant scalar-tensor theories with an
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'However, in the EFT context it may be argued that such a
runaway behavior can be discarded as the mass of the ghost is
usually around the cutoff and solutions of this type fall beyond
the range of validity of the EFT (see e.g., [1]).
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action principle that has second order equations of motion.
The action for general Horndeski theory is

1
S = 162G d*x/=g(Ly + Lo+ L3+ L4+ Ls) (1)
with
‘Cl - R + X
Ly = Gy(¢, X)
L3 = G3(¢, X)0p
L4 = Gyl XIR + 0y Ga(h, X)3V, V4V, Vi
Ls = Gs(¢, X)Gup V'V’
1 i X
— 0K (o X)LV TPV, TGV

and X = —1(0¢)*, G; (i = 2, 3,4, 5) are freely specifiable
functions, R and G,, denote the Ricci scalar and the
Einstein tensor, respectively (corresponding to the space-
time metric g).

Even a theory with second order equations of motion
cannot automatically be considered as a viable physical
theory, unless it possesses a well-posed initial value
formulation (Cauchy problem). This means that the theory
can be formulated in terms of a system of time evolution
equations that satisfies the following two physically rea-
sonable properties. Given suitable initial data (that satisfies
certain constraints), (i) a unique solution must exist to the
evolution equations and (ii) the solution must depend
continuously on the initial data (in a suitable norm).
Apart from being a crucial mathematical criterion, the
problem of well-posedness is also interesting from a
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numerical and experimental point of view. Observations of
gravitational wave signatures from coalescing black holes
provide new possibilities to test general relativity and its
alternatives [3]. In order to do this, however, one needs a
stable numerical scheme to solve the equations of motion
which is not possible without a well-posed initial value
formulation of the theory. Ill-posed systems are unsuitable
for numerical computer simulations because initial numeri-
cal errors tend to grow drastically during the evolution.

In general, the equations of motion in these theories are a
nonlinear system of PDEs. A generic feature of these types
of equations is that there may not exist global in time
solutions for all data, solutions may blow up in a finite time.
The best one can hope for (at least for generic initial data) is
to establish local well-posedness, that is to say, the above
two criteria are only required to hold for a finite (but strictly
nonzero) time. To establish local well-posedness of the
nonlinear equations, it is sufficient to study the properties
of the highest derivative (principal) terms in the linearized
equations of motion in a generic background.

The set of algebraic conditions on the principal terms in a
system of PDEs that are relevant for well-posedness is
generally called hyperbolicity. There exist multiple notions
of hyperbolicity in the literature such as weak, strong, strict
and symmetric hyperbolicity. It can be shown [4] that
strongly hyperbolic equations possess a locally well-posed
initial value formulation, whereas weaker notions of hyper-
bolicity do not guarantee well-posedness (see definitions and
more precise statements in Appendix A). For this reason,
strong hyperbolicity is considered to be a minimal require-
ment to perform numerical simulations and in this paper, we
shall be primarily concerned with strong hyperbolicity.

The problem of well-posedness in theories of gravity is
exacerbated by the fact that most of these theories are
diffeomorphism-covariant. This implies that solutions to the
equations of motion are never unique in a mathematical
sense. This problem is usually solved by fixing the gauge.
This involves imposing a condition on the components of the
metric and/or its derivatives, and modifying the equations of
motion by terms that vanish when the gauge condition holds.
In general relativity the simplest gauge condition leading to a
well-posed formulation is provided by the harmonic gauge
[5,6] which reduces the Einstein equations to a system of
quasilinear wave equations on each component g,,, .

The question of well-posedness in modified theories is far
from settled. Local well-posedness has been established for
some scalar-tensor theories [7,8] and the Lorentz-violating
Einstein-ether theory [9]. In addition, there are some results
for dynamical Chern-Simons theory [10] as well as pro-
gress in numerical simulations in some Horndeski theories
[11-14] and in dynamical Chern-Simons theory [15,16].

In [17,18] Papallo and Reall studied the linearized
equations of motion of Lovelock [19] and Horndeski
theories in a generic “weak field” background and in
(generalized) harmonic gauge. Throughout this paper,

the weak field terminology refers to field configurations
in which the Horndeski terms are small compared to the
(minimally coupled) Einstein-scalar-field terms in the
equations of motion. [See Eq. (27) for a more precise
definition.] Note that this encompasses situations in which
the nonlinearities of general relativity are important, for
example, gravitational collapse to a black hole that is large
compared to the scale defined by coupling constants of the
Horndeski terms. The restriction to a weak field back-
ground in [17,18] is due to the fact that in these theories
well-posedness is known to break down when the back-
ground fields are strong [17,20-23]. However, one may still
hope that the theory does not lose its predictive power when
it is used to describe small deviations from GR. It turns out
that the only subclass of these theories that has a well-posed
Cauchy problem in a generalized harmonic gauge is the so-
called k-essence-type theories (G3 = 0yG4 = G5 = 0). It
should be noted that the linearized equations of motion in
theories with nontrivial G; were shown to be strongly
hyperbolic in a specific choice of generalized harmonic
gauge. However, this result does not extend to the non-
linear case in a generic background.

Despite this result, one cannot immediately conclude that
more general theories are useless. There exists several
different well-posed formulations of GR so one might hope
that some other formulation and a different choice of gauge
could be suitably extended to more general Horndeski
theories. In this paper, we focus on the cubic subclass (G, =
Gs = 0) of Horndeski theories® and study its initial value
formulation in more detail. Recently, bouncing cosmological
solutions have received some attention in the framework of
this particular class of theories [24-28]. Furthermore, cubic
Horndeski theories naturally arise as certain low energy
limits of massive gravity theories [29,30].

The main result of this paper is that cubic Horndeski
theories do possess a well-posed initial value formulation
(at least in the weak field regime) and we provide three
examples of strongly hyperbolic formulations. Since read-
ers with different backgrounds may find different parts of
this paper interesting, we intend to organize our results
accordingly.

We begin with a general discussion of the Arnowitt-
Deser-Misner (ADM) formulation of cubic Horndeski
theories in Sec. II. More specifically, we present the
standard ADM evolution and constraint equations of cubic
Horndeski theories and show that a suitable linear combi-
nation of these equations give a scalar evolution equation
which contains no second derivatives of the spacetime
metric. This observation has already been made in [24] but
we emphasize this fact here again, since it is a key step to
obtain well-posed formulations. The section is concluded
by a preliminary discussion of constraint propagation.

*This is related to the theory given by G, # 0, G5 = b(¢)X,
G4 = G4(¢p) and G5 = 0 by a field redefinition.
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Section III is mathematically more involved® so readers
interested in numerical applications may jump straight to
Sec. IV. In Sec. III we present an elliptic-hyperbolic
formulation of cubic Horndeski theories, using ideas put
forward by Andersson and Moncrief in [31] for vacuum
GR. After briefly reviewing [31], we show how a suitable
modification of the constant (or arbitrarily prescribed)
mean curvature and spatial harmonic gauge conditions
lead to second order elliptic equations for the lapse function
and the shift vector. In the weak field regime and on slices
with negative Ricci curvature, existence and uniqueness of
solutions to these elliptic equations are guaranteed. It is
finally shown that under these assumptions, the strong
well-posedness result of Andersson and Moncrief for GR
extends to cubic Horndeski theories.

In Sec. IV we consider a version of the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation [32,33]
with a generalized Bona-Massé slicing condition [34]
and nondynamical (i.e., arbitrary but a priori fixed) shift
vector. This formulation contains 2 free parameters: one
that describes the slicing condition and one that describes
how we modify the evolution system by the momentum
constraint. It is shown that when these parameters obey a
lower bound then the system of equations is strongly
hyperbolic in the weak field regime.

Finally, Sec. V is the most relevant to those with interests
in nonlinear numerical computer simulations. Here we
review the so-called covariant conformal Z4 (CCZ4)
formulation [35] which was constructed to enhance the
accuracy of numerical simulations in GR. This was
achieved by an appropriate modification of Einstein’s
equation so that constraint violations are damped away
during the evolution. Together with a 2-parameter family of
dynamical gauge conditions (generalized Bona-Massé
slicing and gamma driver conditions), a straightforward
generalization of the CCZ4 system to cubic Horndeski
theories constitutes a strongly hyperbolic system of PDEs
whenever a simple lower bound on these parameters is

|

imposed and the fields are sufficiently weak. In particular,
the slicing conditions selected by strong hyperbolicity
include the 1 4 log slicing which is used in many numerical
applications. We also comment on the issue of constraint
damping in cubic Horndeski theories.

II. SETTING UP THE PROBLEM

A. Equations of motion

In this section we provide the ideas that all three
formulations (presented in the subsequent sections) share.

We adapt the following notation. We are going to use the
Latin letters (a,b,c,...) for abstract indices and Greek
letters (u,v, p, ...) for coordinate indices. The Latin letters
(i,j,k,...) will be used for spatial indices. As mentioned
before, we use calligraphic letters (R, R,;, Gap, ctc.) for
spacetime curvature tensors, whereas curvature tensors
defined on spatial slices are denoted by regular (R, R,
etc.) letters. For a metric m, |- |,, denotes the pointwise
norm with respect to m (e.g., for a vector field v* we have
|v],, = ma,v°v"). Our convention on the metric signature
is (=, +,+,+).

As mentioned in the Introduction, the class of theories
under consideration can be described by the action

[X =—1(9¢)?]

d*x/=g(R+ X+ G1(¢, X) + G3(¢, X)Tp).

(2)

The reason for separating out X in this action is that we
are going to view Horndeski theories as small deformations
of Einstein’s theory with a minimally coupled scalar field
(referred to as the Einstein-scalar-field theory later, sim-
ilarly to [17]).

Varying the action (2) with respect to the metric yields
the equation of motion [18]

S=—
167G

1 1
Eyp=Gup — 5 (X + Gy +2X0,G3)gup — 3 (14 0xGy +20,G3)V, 9V,

2

1
+50xG3(=0gVhpVig + 2V (V) Veh Ve ~ V. VipVpVigg,,) = 0. (3)

In the ADM-type formulations of general relativity, it is often beneficial to use the linear combination E,;, — %Egab =
R, = 0 as equation of motion, rather than E,, = G,, = 0. In fact, it turns out that it is useful to consider the same
combination of the gravitational equations of motion in Horndeski theories:

1 1 1
Eub — _Egab = Rab + 5 (G2 - Xasz - X@XG3D¢)gab - 5 (1 + asz + 28¢G3)Va¢vb¢

2

1
+ §3XG3(—D¢Va¢vb¢ +2V, ¢V, V. pVgp) = 0. (4)

*Some additional information is provided on pseudodifferential calculus and its applications to hyperbolic and elliptic PDEs in

Appendix A.
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In the scalar evolution equation

E¢E - (1 + aXGz + 2X8%(G2 + 26¢G3 + 2X8§(¢G3)|:|¢ + 8XG3RabV“¢Vb¢
— (G + 203, (04)20p — VGV V) — G ((04)? = VY, V"V p)
+ BGVPVEH OV, Y, = V, VPV V,h) + 2X (93G5 + 8y Ga) — 0,Gy = 0 (5)

(obtained by varying the action (2) with respect to ¢) the only term involving second derivatives of the metric is
Rap ViVl . We will see that it is useful to express this from (E,,; — %Egcd)chﬁvdd;. In other words, instead of the

equation Ey = 0, we are going to use

5 1
E,=E, - 095G, <Ecd - 5Egcd> VepVigp = —(1 + 0xGy + 2X0%G, + 20,Gs + 2X0%,,G3)Ogp

— (%G +20%,G3) ((0¢)*0lp — VAV ¢V V) — 0xG3((Op)> — V,V,pV“VP )
+ 3GV P(OPV, Vyp = V VPV V) + 2X(05G5 + 95%,G2) — 046
+ 0xG3(2X* + XG, + X?0xGy + X?0xG30¢ + 4X20,G; + 2X0xG3 V¢V §V V) = 0 (6)

as the scalar evolution equation. The reason for this is that
this equation contains derivatives of the scalar field up to
second order and derivatives of the metric only up to first
order. (Some benefits of the use of this particular linear
combination were also noticed in [24].)

Now we assume that the spacetime manifold (M, g) is
globally hyperbolic M =R x X and h,, is the spatial
metric induced on the spacelike Cauchy surfaces ZX,.
Let n* be the future directed unit normal to X,. The
lapse function N and the shift vector N“ are then
defined by

a a
— ) = Nn“+ N“. 7
() )
The convention on the extrinsic curvature used here is

1 1
Kab = _E‘Cnhab = _5\7(8’ - ‘CN)hab' (8)
|

We also need ADM variables for the derivatives of the
scalar field, let

1
A=nV,¢ = N (0, =Ly )
and
A, = oV, . (10)

For convenience, we also introduce a fixed, smooth

background metric on the spatial slices & and denote the
corresponding covariant derivative and Christoffel symbol

by D and F;k, respectively.

Now we are ready to provide the standard ADM-type
equations of motion in cubic Horndeski theories. Taking
the spatial projection of (4) in both indices yields the tensor
evolution equation (some helpful formulas for carrying out
ADM decompositions are provided in Appendix B)

1

1 1
+5hij(Gy = X0xGs ~ X0xG3(D*A, + AK + A¥D, InN)) — 5 (14 0xGy +20,G3) A,

1
+ 5 0xGa(A*D(AiA) = A A DA — AAJAK — A A AD InN — 244D ,)A)}. (11)

Note that

X_1
2

(A2 — AFA). (12)

Similarly to general relativity, the projections E,,nn” and E ,hn” in Horndeski theories yield constraint equations: the

Hamiltonian constraint is
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. 1 1 i
2H = 2Eﬂbn”n” = R + K2 - Kl'jKU - <§A1Al +§A2 - G2 +A2axG2 + (AZ +A,Al)8¢G3>
— OxG3(AK + A2DIA; — K ;AIAJA — AIATD,A) = 0, (13)

while the momentum constraint reads as

. 1
Mi = Em-n” = DlK - DJKij - §<1 + 8xG2 + 28¢G3)AA1

1 .
~ 3 0xG3(AA K + AAD* A~ KyA*A'A; — AADA; ~ AAYDLA + AD;A) = 0. (14)

Even though we are not going to use the explicit form of the scalar evolution equation (6), only some of its properties, we
rewrite it in terms of the ADM variables, for reference. One obtains®

E,= @ (1 + OxGs + A20%G, +20,G3 + 3, G (A2 + AAhT) + 20,05 G his
+ % (0xG3)*(3A% = 2A;A ;A% W7 — A, A AL AR R') + 03 G5 (A?®;;h T — AL A hi*hI! ))
— 0yGy — ©;h'T = 20,;0,G3h'T + 0%,G(A* — A;A k')
+ 05,G5(A> = A,A;hY) + %G28XG3 (A2 = A;A;hY) 4 0% G (—2A,AD b + AL A /D, ;h*hiT)
+ 0xG, (—cp,- hi + %0)((;3 (A* —2A,A;A’h' 4+ A;A jAkA,h”‘hf’)>
+ 0%y G3 (—AAAD 1T + A2 0T + 24 A/ D ;A W' — AA @y bR

N N | N
+ 0xGs (E),/,G3 (A* = 24,A;A%h1U + A, A A AR RIT) + EA4 —20,®;h"

— A;A;A%hU + FAiA JAARTRIT — @y TR + q>,.jq>k,hl’<hﬂ>
+ 03G3(—A’®,®,;h — 2A,AD ) D h*h! + A,A ;DD kb
+ 24 AD; DR R — AA,, @, @ R IR 4 AL, A, @Dy R R R
1 N N o
+7 (0xG3)*(—8A,A3DhY + A*®,;hV + 4A A A’ D, ;h* !
— 2A,A, A2 kW + A A ALA D, hF I R — AAALA R R (<2A®; + A, @, k™)) = 0. (15)

In the modifications of the ADM formulation considered
in this paper, the system of evolution equations takes the

where we used the following auxiliary variables

1 ' general form
@Eﬁ(at_ﬁN)A—AlDllnN, (16)
Ou = Lyu+ Nv (19a)
a(u, Du, v, D*u, Dv)0,v
®;;=D;A; + AK;;. (18) = a(u, Du, U,DZM,DU)LND—FNI)(M,DM,U,DZM,DU)

(19b)

“The Mathematica package xAct [36] was of great help in the
derivation of the equations.

where u and v are both column vectors of size n,
corresponding to the dynamical variables; a and b are
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n X n matrices, depending on the fields u, » (and their
derivatives). We assume that the matrix a is invertible
so that the hypersurfaces X, are noncharacteristic and
spacelike.

In Horndeski theories, for example, the variables u
include fields like the components of the induced metric
h;; and the scalar field ¢, while the variables v are auxiliary
variables such as the extrinsic curvature K;; and the normal
derivative of the scalar field A. Since the formulations to be
discussed have different dynamical fields, this will be made
explicit later, on a case-by-case basis.

The hyperbolicity of the system of equations (19a) and
(19b) is found by analyzing its characteristic equation.
This is obtained by linearizing the evolution equations,
selecting the highest derivative (principal) terms and
replacing all the derivatives with 0, — i&, = i(&).&;).
Note that in Eq. (19a) the principal terms are the terms
proportional to v and first derivatives of u; whereas in
Eq. (19b) the principal terms are first derivatives of v and
second derivatives of u. The characteristic equations have
the general form

i&AU = L(&)U (20)

where A is a 2n x 2n matrix depending on the back-
ground fields, L(&;) is also a 2n x 2n matrix depending
on the background fields and the spatial Fourier variable
&, U is a size 2n column vector associated with the
dynamical fields (i.e., # and »). The condition that ¢ =
constant surfaces are noncharacteristic implies that A is
invertible.

Equation (20) can be regarded as the eigenvalue
problem for the matrix M(&,) = A~'L(&). The system
(19a), (19b) is called weakly hyperbolic if and only if the
eigenvalues of M(&;) are real for any &, of unit norm
&&= 1. When the matrix M(&,) (i) has real eigenvalues,
(i1) is diagonalizable and (iii) has a complete set of
eigenvectors that depend smoothly on &, for any &, of
unit norm, then the system (19a), (19b) is said to be
strongly hyperbolic. In order for the Cauchy problem of
(19a), (19b) to be well-posed, the system must be at least
strongly hyperbolic. For more precise definitions and
statements, see Appendix A and references cited therein.

In particular, for cubic Horndeski theon’es,5 we can
write U = (U,,U;,U,)" where U, is a size 2n—2
vector that corresponds to the gravitational variables
(e.g., h;j and Kj;;); the components U, and U, corre-
spond to the variables ¢ and A. Since the Egs. (9) and
(15) contain no principal terms associated with the
spacetime metric ¢, the matrices A and M have the
upper triangular form

SFor different formulations of the theory, the number of
dynamical variables may be different so we continue the
discussion with general n.

A(u, Du, v, D*u, Dv)
B (Agg(u,Du, v) Ay (e, Du, v) ) 21
0 Ayy(u, Du, v, D?u, Dv)

L(u, Du, v, D*u, Dv)

L, (u,Du,v L.,(u, Du,v
_ ( gg( ) g¢< ) ) (22)
0 I]_M(u,Du, v, D*u, Dv).

The matrix blocks labeled by subscripts gg, g¢ and ¢p¢p
have sizes (2n—2) x (2n—2), 2x (2n—2) and 2 x 2,
respectively. It is also worth noting that the matrices A,
Agps Lygs Ly depend only on the fields u, Du and v, that
is to say, the tensor (gravitational) evolution equations are
quasilinear [see e.g., Eq. (11)].

It will be useful (especially in Sec. V) to separate the
Einstein-scalar-field theory and the Horndeski (i.e., G, and
G5-dependent) parts in A and L:

A=Ay + A,
L=1o+6L (23)

where L, and M, correspond to the Einstein-scalar-field
theory, 0A and oL are the Horndeski terms. The specific
forms of these terms will also be given on a case-by-
case basis.

Let us consider in more detail the characteristic equation
corresponding to (6) [or (15)]. Selecting the second
derivatives of ¢ in the linearized version of (6) [recall that
there are no second derivatives of g in (6)] and substituting
the derivatives 0, — i&, =i(&).¢&;), the characteristic
equation for the scalar mode is given by

0= (P&,
= Pyy(&) — 0xG (Pf,;;@) - %gpggﬂ”Pg’:;(f)) V09,
(24)
with
PIA(&) = 505Gy VPV leL
-GV (ST - V0 09
and
P,/,,i,(f) =(1+0xG,+ 2X6§;G2 + 26¢G3 + 2X8§(¢G3) |§|§
T (RGy + 20, Gs) (992 T2 — (&,V")°)
+20xG5((Cg) |E[; — &8V, V )

- 8§G3vﬂ¢vb¢(m¢§p§v + |§|§vuvv¢
- 2§pé(yvu) vp¢) (26)
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The notations P, Py, and P:ﬁ " refer to the coefficients of

the second derivatives of ¢ in the linearized versions of
equations (3), (5) and (6), respectively.

The same characteristic equation corresponding to the
scalar degree of freedom (d.o.f.) has been previously found
in [17,24]. More precisely, to make a comparison with [17],
we note that with the preferred gauge choice H,, =
—-0xG3V,pV,¢ (and G4 = 0) made therein, Eq. (230)
of [17] agrees with (24).

In a regime in which the fields are sufficiently weak, Py,
is close to the spacetime metric g and therefore, it is a
Lorentzian metric. By “sufficiently weak fields” we mean
field configurations such that the Horndeski terms are
small compared to the Einstein-scalar-field terms. More
precisely, let E = max {|R,,,,|"/% |V,¢|. |V, V,$|'/?} in
all orthonormal bases. Then the weak field condition is
equivalent to

050G, | E* 2 < 1
|050/,G3| E* < 1k,

k=0,1,2;1=0,1;
1=0,1,2. (27)

Note that this condition can be satisfied when spacetime
is strongly curved with respect to standard terminology
but the function G5 contains small enough coupling
constants.

Regarding (24) as an equation for the characteristic
speeds &, for given &; # 0, this equation has two distinct
real solutions ég”i. Furthermore, the weak field assump-
tions (27) also ensure that the spacelike ¢ = constant
hypersurfaces are noncharacteristic.

B. Constraint propagation

In addition to studying the hyperbolicity of the equa-
tions of motion in different formulations, we need to
address the issue of constraint propagation. That is to say,
we need to check whether solutions to the equations used
in these formulations remain solutions of the original
Horndeski equations of motion during the evolution. Here
we present a fairly detailed derivation of the equations
governing the propagation of gauge conditions and con-
straints, even though the individual steps are quite stan-
dard. The purpose of this is to demonstrate that the
Bianchi identity (and its generalization) leads straightfor-
wardly to a homogeneous system of PDE for the con-
straint variables, without making any reference to a
specific form of the equations of motion. The only
assumption we make is that the equations of motion
are second order PDEs obtained by varying a diffeo-
morphism invariant action. This guarantees that the normal
projection of the equations of motion is a constraint
equation. Note that in this section we derive the equations
without gauge fixing, the effect of the gauge fixing terms
on the constraint propagation system will be discussed
later. Let E,;, = O be the equations of motion obtained by

varying the action with respect to the spacetime metric
Jap- Let us decompose it as

Eab = Eab - naMb - nbMa + naan (28)

with
E., = E.4h5hy, (29a)
H = E,,nn® (29b)
M, = E,,hén’. (29¢)

These variables denote the spatial evolution equation, the
Hamiltonian constraint and the momentum constraint,
respectively.

First, we consider

n*VeE,, = —E,,V¢n® — n®n, VM,
+V‘M, - n,V*H + KH, (30)

using E,n” = 0, M,n* = 0, n,n® = —1 and Vn, = —K.
Furthermore, the following identities hold:

VM, = DM, + M,n“V,n” (31a)
Eabvai’lb = —EabKab (3lb)

) , D’N
n naV“Mb = —Mbnavan = _Mb —N . (31(:)

We would like to use the spatial projection of the trace
reversed version of E_, as evolution equation,6 ie.,

i 1
Eup = h5h <Ecd - EgefEefgcd>

1 1
=E,—=-Eh —Hh,,.
ab D) ab+2 ab

Hence, we set
Eab = 5t/zb + Hhab - Ehab' (32)
With these identities we have

1
n’VeE,, = —(0,— Ly)H + 2NKH + ND’(N2M,-)

+ NE;;(KY — Kh'). (33)

®The reason why we prefer to use &, =0 as evolution
equation rather than E_, = 0 is that in general relativity the
latter approach yields only a weakly hyperbolic system of
equations for the constraint variables [37].
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Next, we consider the spatial projection

h?V“Eab = th“Eab — V“naMc - nah’c’V“Mb
— V, n,h®M, + Hhn,Ven,. (34)

In this case we use

htVE,, = D°E,. + E_.n’V,n° (35a)
n htVeM, = h2(L,M, — M, V,n%)  (35b)
REM,Vin, = h'M,V,n* = -M,K%  (35¢)
Hh2n,Ven, = Hn,Vn, (35d)

to obtain

V'MEIU' - —(a[ - ‘CN)MZ + NKMI + %DI(NZH)
+ DI[N(&;; — Ehy;) (36)

(cf. Egs. (103,104) in [37]).
Now we consider the generalized version of the Bianchi
identity, that is,

quab - E¢V,,¢ — 0 (37)

which is a consequence of the diffeomorphism invariance
of the Horndeski action. Recall that we wish to use E¢ =0
as the scalar evolution equation. For this reason we set

- 1
Ey = Ey+ 0xG; (Ecd - §E9cd> VepVip.  (38)

Putting together equations (33), (36), (37) and (38) gives
the equations governing the evolution of the momentum
and Hamiltonian constraints

1. y N
(0, — Ly)H = 2NKH + ND’(NzMi) + NE;;(K — Kh')

— EjA — NOxG;A(E,;ATA) + 2HA? + EA% - 2AMLAY) (39)

| .
(0, — Ly)M; = NKM; + ND’(NQH) + D/[N(&;; — Ehyy)]

— E4A; — NOxG3A;(E;ATAT + 2HA? + EA% — 2AMLAY). (40)

In both of these equations, the terms in the second line arise
due to the fact that we use Eq. (15) instead of (5) as the
scalar equation of motion. Note that in each of the
formulations studied in this paper, the tensor evolution
equation is modified with gauge fixing terms. In other
words, the equation &;; = 0 is replaced with a different
equation which introduces additional terms into equa-
tions (39)—(40). This will be analyzed on a case-by-case
basis.

III. ELLIPTIC-HYPERBOLIC FORMULATION

A. Review of Andersson and Moncrief’s results

In this subsection we briefly summarize the work done
by Andersson and Moncrief in [31] on the vacuum
Einsteins equations. First, we describe how they derived
a coupled elliptic-hyperbolic system equivalent to the
vacuum Einstein’s equations. Then we sketch their argu-
ments establishing local well-posedness.

We start from the ADM formulation in which the
vacuum Einstein equations

Rab - O (41)

[

are rewritten as two sets of first order in time evolution
equations

(8; - EN)KU - —DID]N + N(RU + KK” - 2KikK§)’

(42b)
complemented by the Hamiltonian constraint
2H =2E,,n*n" = R + K? - K;;K7=0 (42c)
and the momentum constraint
M, =E,n" = DK - DfKij =0. (42d)

Andersson and Moncrief consider a modified version of
the system (42) by imposing constant mean curvature
(CMC) slicing’

"We see that the mean curvature K is constant over the slices
X,, but not necessarily in time. As it is mentioned in [31], they
could also have considered a prescribed mean curvature slicing,
ie., K =s(t,x).
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K=hUK;; =1t (43)

and a spatial harmonic (SH) gauge condition
Vi= (T}, - Ty) = 0. (44)
The evolution equations are the defining equation of the

extrinsic curvature (42a) and (42b) modified by adding
—D;V ) to the right-hand side (RHS) of (42b):

+ KK — 2K4K"). (45b)

Equations (42c), (42d) are replaced by the modified
constraints which can be regarded as the equations which
determine the lapse function and the shift vector:

D*DyN' + RINT = Ly Vi = 2DEN!(T, = Ty)
— ONKH(IL, - Ty)
+2KYD,N - DINK.  (45d)

Equation (45c¢) can be obtained by taking the trace of (45b),
using the Hamiltonian constraint to trade in the Ricci
curvature R for lower order terms and using the CMC
condition to set (0, — Ly)K = 1.

Equation (45d) can be derived as follows. Taking the
time derivative of V/ and commuting 9, with h* and the
spatial derivatives, one easily obtains

0,Vi = D*D Vi + RINJ + (2NK¥ — 2D*N')(T, — Ty)
—2D;(NK') + D'(NK). (46)

Using the momentum constraint, the CMC slicing
condition (D;K = 0) and the spatial harmonic condition
(0, — Ly)Vi =0 to eliminate second derivatives of the
spatial metric and first derivatives of the extrinsic curvature
then yields (45d). It is worth emphasizing that the CMC
slicing condition was used to arrive at both Eq. (45c)
and (45d).

Now we move on to the question of well-posedness of
the system (45a)—(45d) in Sobolev spaces and consider
initial data h;;, N,N' € H* and K;; € H*"' (s>3 in
4-dimensional spacetime) that satisfies the Hamiltonian
and momentum constraints.

The modified constraints (45c), (45d) are equations
relating derivatives of N, N’ up to second order to deriv-
atives of h;; up to first order (including the extrinsic
curvature), when written in coordinates. This statement

is obvious for (45c) but one can check that the second
derivatives of h;; cancel each other out on the left-hand side
(LHS) of (45d). More precisely, the modified constraints
have the form

A(h, 0h, K)u = (é) (47)

with u = (N,N')T and A being a second order, linear
elliptic differential operator, with coefficients depending
only on the spatial metric, its first spatial derivatives and the
extrinsic curvature. Moreover, the elliptic operator A is
lower triangular:

<—DiDi+Kinij 0 > 48)
~\ Bi(h,0h,K)  Ci(h,0hK)

with
Cij(h, 6h, K)Nj = —DkaNi —_ R;Nj + LNVi
— 2D*N'(, ~ T). (49)

Standard results in the theory of elliptic PDEs (see
Appendix A 2) show that the scalar elliptic operator —D'D; +
K,;;K" is an isomorphism H® — H*~2. Furthermore, it is
proved in [31] that the elliptic operator C’ j is an isomorphism
HS - H 2 if (X, h) is a compact manifold with negative
Ricci curvature.® These results and the lower triangular
structure of A then implies that A is also an isomorphism
H*® — H*72. Therefore, if we a priori assume that h; ; EH’
and K;; € H*"! then the unique solutions N, N’ to the
modified constraints are in H**!, i.e., they have an extra
regularity compared to ;;. This is necessary because this way
the terms involving first derivatives of N in (45a) and second
derivatives of N in (45b) are nonprincipal.

It follows that by solving the modified constraints to
determine N and N', the evolution equations become a first
order quasilinear system of pseudodifferential equations. It
is easy to see now that this system of evolution equations is
strongly hyperbolic. Linearizing the evolution equations
and substituting the derivatives with the Fourier variables
(0;, 0r) = (i&y, i&y), the coefficients of the highest deriva-
tive (principal) terms define the principal symbol. Based
on the definitions and general arguments presented in
Appendix A 3, strong hyperbolicity means that the princi-
pal symbol has real eigenvalues with a complete set of
eigenvectors with smooth dependence on ¢;. Linearizing
(45a) and (45b) around a generic solution h;; — h;; +y;j,
K;j — K;;j + k;j, the eigenvalue problem of the principal
symbol reads as

¥Note that this formulation was ultimately used to prove a
global existence theorem for nonlinear perturbations of spatially
compact versions of FRW spacetimes with k = —1 [38].
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w(y ) =mey( ) o
ij

where M, is the 2 x 2 block matrix (recall that the terms

involving second derivatives of N and first derivatives of N’

are nonprincipal)

i(N" )R
Nf%;‘hg

kpl
~NhER!,

M, (&K = < ) 51
o gt )

It is easy to see that the principal symbol has eigenvalues

&8 = Nk + N|¢|, with a complete set of eigenvectors: for

any symmetric matrix u;;,

Vij Ujj
(2’@;) ( F i(”"@)“i,’) 52)

is an eigenvector with &, = (&.¢;). Note that this means
that &, is a null vector. Since all eigenvalues are real and the
|

eigenvectors can be chosen to be independent of &, the
system of evolution equations is strongly hyperbolic when
the modified constraints are solved. (In fact, it is symmetric
hyperbolic so one can demonstrate well-posedness by
standard energy methods in physical space, as was done
in [31].)

B. Equations of motion and gauge fixing
in cubic Horndeski theories

We will now show that the above formalism can be
extended to cubic Horndeski theories. For this, we first
discuss the generalization of the SH-CMC gauge condition.
Recall that the CMC condition in General Relativity was
used to set (0, — Ly)K to 1 in the trace of the evolution
equation. When taking the trace of (11), it is possible to get a
constraint equation by a choice of an appropriate slicing
condition which sets the terms involving (0, — Ly)K and
(0, — Ly)A to an a priori fixed function. For this reason, we
take an approach very similar to the one above: in the trace of
(11) we trade in R using the Hamiltonian constraint to get

1 , 1 .
(0, — Ly)K — ZaxG3(3AZ — A AN (D, — Ly)A = —D'D;N — Z(‘)XG3(3A2 — AKA)A'D;N

2 4

o1 1 1
+ N{KUK’J + §A2 + Gy 4+~ (A* + AFAL)0x G, + A?0,G,

1 . : -
+ 0xG; (Z (A% + A*A,)(D'A; — AK) — AA'D;A + AK,-J-A’AJ> } (53)

We are seeking a gauge condition of the form
K+ f(¢.A A hy) = s(x, 1) (54)

to eliminate the time derivatives in Eq. (53). Taking the
normal derivative of (54) gives

(0, = Ly)s(x,1) = (0, — Ly)K + NO4fA
+ 0sf (0, = Ly)A + 04 fDi(NA)

B
—2NKy Wi, . (55)

Therefore, the desired choice is an f satisfying

Ouf = —%8XG3(3A2 — A,AR). (56)

|
Note that this slicing condition has an interesting relation-
ship with the canonical momentum 7/ conjugate to h; o If
we switch to a Hamiltonian description, Eq. (53) [which is
the trace of (11)] is equivalent to the trace of

5H
Shy;

Ol = (57)
where H is the Hamiltonian. Hence, it is clear that the time
differentiated terms in (53) come from 9,(h;;z"), that is,
the preferred slicing condition is equivalent to 7 = s(x, 7).

Rewriting G3(¢, X) as a function depending on ¢, A, A;
and A%, the condition (56) can be integrated in A and so f
can be determined up to the addition of an arbitrary
function of ¢, h;; and A;. Hence, the elliptic equation
for N reads as

. 1 . o1
(at - ,CN)S(X, t) = —DlDiN - |:ZaxG3(3A2 —AkAk)Al —AaA’f:| DlN + N{KUKU + EAZ

d 1 1
+ 0,fA - 2K;; an + 04 fD;A + EG2 +7 (A% + AFAL)0x G, + A20,G,
)
1 . . -
+ 0xGs (Z (A2 + AFA,)(D'A; — AK) — AADA + AK,; jAlAf> } (58)
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Based on standard results in the theory of elliptic PDEs (see
Appendix A2 and the references cited therein), this
equation has a unique solution for N if the coefficient of
the zeroth order term (i.e., terms enclosed by the curly
brackets {}) is non-negative. This condition is satisfied if
the Horndeski terms are small corrections to GR, i.e., in the
weak field regime [see Eq. (27)]. Note that the weak field
requirements on f are

0L FIES <1 k=0,1:1=0,1
| fIEF <1 k=0,1
|8§uf|E"H <1  k=01; (59)

with £ = max {|R,,,,,|'/%, |V, ¢[.|V,V,$|'/?} in an ortho-
normal basis.

The generalization of the spatial harmonic gauge is more
straightforward: we require

Ji = Vi +Hi(hkl,¢,Ak) == O (60)

for some H' [V' is as in Eq. (44)]. Once again, we can
derive an elliptic equation for the shift vector by requiring

DEDN' + RiNT = Ly V!
+ (2NK¥ = 2DN')(T, — )
=2KD;N — D'NK — (0, — Ly)H' — ND'f
— N{(1 + 0xG, +20,4G;)A'A
+ 0xG5(AA'(D*A, — AK) + K AAlA!
+ A’D'A — A'AFD, A — AAFDAY)}.

Furthermore, using
OH'

(61)

(0, — Ly)H" = NOyH'A + 0,4 H'D;(NA) — 2NK

and

Dif = 04fA" + 0o fD'A + 04 fD'A;

1 . .
= 0pfA' = 1 0xG3 (347 = AAY)DIA + 0, [D'A,

(0, — Ly)J' = 0 and eliminating derivatives of the extrin- (62)
sic curvature by using the momentum constraint and the
generalized CMC condition. The result is gives
|
D*DyN' + RINT — Ly V' — (=2NKM + 2D*N')(T, - TY;) = 2K"D;N — D'NK — Ad, H'DN
‘ . . OH' . _
- N{(l + 0xG, +20,G;3)A'A + AD,H'A + 04 H'D A — 2Ky, e + OpfA' + 04 fD'Ay
Kl
, o1 . , ,
+ 0xG3 (AA’(D"Ak — AK) + K A*ATAT + 1 (A% + A*A)D'A — ATAKD A — AAkaA’) } (63)

The operator on the LHS acting on N’ is exactly the same as in GR [cf. (49)] which means that (63) has a unique solution for
N' on spatial slices with negative spatial Ricci curvature.

Finally, we need to decide how to use the generalized spatial harmonic condition in the evolution equations. As
mentioned before, we do not modify the scalar equation E¢, only the tensor equation in the most natural way, i.e., by
replacing &;; by E',»j =& — Dy

1
1 1
+§h,»j(G2 — X0xG, — X0xG5(D*A, + AK + A*D;InN)) — > (14 0xGy +20,G5)AA;
1

Therefore, the Cauchy problem for cubic Horndeski theories can be formulated as follows. Consider initial data
hij, N, N i,¢p € H and K; A€ H (s > %)9 that satisfies the Hamiltonian and momentum constraints. Then the system of
equations to be solved consists of the evolution equations (8), (9), (15) and (64), together with the elliptic
equations (58), (63).

*The lower bound on s is stronger than in vacuum GR due to the fact that the scalar evolution equation (15) is not quasilinear (see
Appendix A 3).
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C. Constraint propagation

Before moving on to the question of well-posedness, in
this section we explain how to get the equations describing
the propagation of the gauge conditions and the original
constraints using the gauge-fixed equations of motion. As
described in the previous section, we use g',- =& —
D(Jj =0 as tensor evolution equation. Following the
argument started in Sec. II B, we set E'ij = E¢ =0 and
switch to the new variables

F=K+ f—-s(x1), (65a)
Ji=V,+H, (65b)
H =2H - D"J, (65¢)
and
M, =2M, - D,F, (65d)

we have the following system of homogeneous linear
evolution equations

(0, - Ly)F = NH (66a)
(0, = Ly)J; = NM; (66b)
(0, — Ly)H = 2NKH + D'NM; + 2ND;J ;) K"/
+JD;(NK) + ND'D;F + 2D,ND'F
— 0xG;A(D;J;A'A) + HA?
+2D'J;,A> — AM A" — AA'D;F)  (66¢)

(0, — Ly)M; = NKM,; + NKD,F + D;NH
+2D/NDJ; + N(D*D.J; + R;;})
— 0xG3A; (D, J;A*AT + HA?
+ 2D*J A? — AMA* — AAKD,F). (66d)

The first two equations follow easily by recalling the steps
we used to get the elliptic equations (45c), (45d) from the
evolution equations and the constraints. To show that the
quantities (F, J;, H, M) remain zero during the evolution,
we first note that it follows from Egs. (66a), (66b) that if
(F,J;,H,M,) vanish initially then 9,F = 9,J; = 0 on the
initial surface. It turns out that one can obtain a simple
energy estimate for the system (66) without solving the
eigenvalue problem of the principal symbol. Consider the
energylo

The steps of the proof of constraint propagation, as well as
the expression for the energy, are the same as in [31]
(Lemma 4.1.), since the extra terms entering to the equations
due to the presence of a scalar field are nonprincipal. Never-
theless, we provide a sketch of the proof for completeness.

1
Econstraint[zt] = 5/2 dSX\/E(|F|2 + |DF|121 + |J‘%l
+[DJ[} + [H] + [M]7). (67)

Specifically, we want to show that |0,Eqqnsaind <
CE onsiraine TOr some constant C(h, K, N). Clearly, the
action of 0, on the volume form can be bounded by a
constant. When the time derivative acts on the gauge and
constraint quantities, we use (66) to exchange the time
derivatives. Since the energy (67) is invariant under spatial
diffeomorphisms, the terms involving Lie derivatives will
vanish.

The nonprincipal terms can be estimated by the energy
itself. For example,

(0; = Ly)|F|* = 2NFH < C(|F* + [HP)  (68)

(8, — Ly)[J} = 2NAIT M, + 2NKYLT,
< C(3f + M), (69)

The potentially problematic (principal) terms are
(0, — Ly)H]> ~2NHD'D,F ~ -2ND'HD,F  (70)

(8, — Ly)|DI|} ~2ND.J;D;M,;h’*h/!

~ —=2ND*D,J;M,h/! (71)
(0, — Ly)|DF > ~2ND,FD'H (72)
(0, — Ly)M[? ~2ND*D, V;M,h/! (73)

where ~ denotes equivalence up to principal terms and ~
denotes equivalence of the integrands up to integration by
parts. We see that the terms containing higher derivatives
cancel each other out, giving us the desired result. Therefore,
if E onsuaine Vanishes initially, then it remains zero during the

evolution as well, implying (F, J;, H, M;) = 0.

D. Proof of strong hyperbolicity
Now we linearize the equations of motion (8), (9), (15),
(64), (58), (63) around a generic weak field background [in
the sense of (27)] with negative spatial Ricci curvature. The
linearized quantities are as follows:
hij = hij +vij
Kij d K” + Kij
N-—->N+a
N' > N +p
¢—>P+y
A—->A+a
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Now we assume that the elliptic equations (58) and (63)
have unique solution for any (y,;.k;;.y,a) satisfying the
gauge conditions and constraint equations. Recall that this
is true for weak fields and when the background spacetime
has negative spatial Ricci curvature.

The important difference compared to GR is that in this
case the first derivatives of $ appearing in the defining
equation of the extrinsic curvature (8) and the second
derivatives of a appearing in the tensor evolution equa-
tion (64) are principal terms. To see how these terms affect
the hyperbolicity of the evolution equations, we have to
look at the principal terms in the linearized versions of the
elliptic equations (58), (63):

. 1 .
h’faiaja ~ ZNaxG:; (Az + AkAk)hUaiajl//

- N(—@Akf + 5'XG3AAk)5‘ka (74)

W00 = N | (=04 H' + 0xG3A'AT)

1 »
- Z axG3 (A2 + AkAk)hlj 8/-61
N[(—@Akf + BXG3AAk)h”
— OxG3AARX 0,0y
Solving the linearized elliptic equations for given v, a, y;;
and «;;, one obtains a (nonlocal) map (&, /) : (v, a,y,x) =

(a, /). This solution map is a pseudodifferential operator of
class OPZ* with principal symbol (see Appendix A)

AO)[h A 1 .
O, a8 = ZNaxG3 (A 4 A*A )ir

+ iN(=04 f + 0xG3AA )éf a (75)
h
ﬁ<0)i[¢, &,5] = —IN |:(—8AjHi + aXG:%AiAj)
1 2 aka \pii| S a
—ZaxG:;(A +A Ak)hl | |2
N {(—aAkf + axG3AAk) ¢ %
[
_mQM@w (76)

where the ~ on the fields w and a denotes the Fourier
transform. Note that the principal symbol of the solution
map does not depend on 7 and k.

By solving the elliptic equations, the evolution equations
take the form of a first order pseudodifferential system
of evolution equations. To determine the hyperbolicity of
this system, we consider the eigenvalue problem of the

principal symbol, c.f. (20). The vector U is now a column
vector of size 14

U= b?ij’A W, &]

The characteristic equation can be written as

2i A

i N N A
N (6o — N*&)7i; = —2R;; + Nhl(ié:j)ﬂ(oﬂ[u/» a¢l,  (77a)

(& = N = a (770)

i

5 (
- %aXGB(Xhij + AA;) (& — NF&)a

So — Nkfk)Zkij

2 O A
|§|hyt/ + Nfifja(m [Wv a; 5]
— 0xG3(—=(Xhy; + AiAj)|§|%l/A/
+ AREA G — 2iAA &)
+204,H &0,

i . PO .
AN (&0 — N*&)a = iB(&)a + iC(&)yr (77¢)
where the specific form of the linearized version of (15) is
quite long and unessential for our purposes. Nevertheless,
we note that substituting (77b) into (77c) gives [recall
Eq. (24)]

(P68, = 0. (78)

It follows from the upper triangular structure of the
characteristic equation (see Sec. II) that

(n E9)y;. 0, O (79)

[?ijvkij’l/}\/’a]T: 1]7_ ijs
is an eigenvector of (77a)—(77c)) with eigenvalues fgﬁ =
N*& £ N|¢|, for any symmetric f;;. (Recall that &, =

(Nk&, n &) is a null vector w1th respect to the

spacetime metric.) One can easily find 6 linearly indepen-
dent vectors i1;;. Taking into account the two sign choices in

g% and in (79), this gives 12 eigenvectors: a 6-dimensional
eigenspace for both eigenvalues & = N¥&, + N|¢|,. Note
that these include the 2 pairs of transverse-traceless modes
corresponding to the gravitational d.o.f., i.e.,

T = |aff iz (e 00| (80

[VU’ Kij. ¥, a ij > ij

with @]/ satisfying /@] = 0 and &a]" = 0.
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The remaining eigenvalues ég’i are found by solving
(P:/;qj)w‘fﬂé:u =0 (81)
(see Sec. II for notation). Recall that for weak fields, fg’ =

are distinct and real. The corresponding eigenvectors have
the form

i ki a]” = L.k 1 i(nee,)]”

with
7l = —0xG3(Xh;; + AA))
+ ﬁ (3XG3AkA(i§j) — Oa Hi&j))ér
- 2§|§|j% OxG1(A + AFA,) (82)
kY = i(n"El ) 0xGs (Xhy; + AA))
+2i | (=0, f + 0xG3AAY) ‘féé" — OxG3AA ;&) |-
(83)

These expressions are clearly smooth functions of &; for
any choice of H;, since h;; is a positive definite metric and
&; # 0 by assumption (&; has unit norm).

These two physical eigenvectors corresponding to the
scalar d.o.f. satisfy the high frequency limit of the
Hamiltonian and momentum constraints

2H = —2E2hip;; + 2887,
+ OxG3(A?|E]7 — (AF& )2y = 0,

M, = iER — i8T%, + 5 03 G(AA |ERD — ANE L
+ AAREia — A%iga) = 0.

To summarize, we have found that the principal symbol
[see Egs. (77a)—(77c)] has 14 real eigenvalues and the
corresponding eigenvectors are linearly independent and
have smooth dependence on & € S?. This implies that the
evolution equations are strongly hyperbolic when the
modified constraint equations have a unique solution for
arbitrary (¢, A, h, K). In particular, this is the case in a weak
field regime [in the sense of (27)] and in spacetimes that can
be foliated with generalized prescribed mean curvature
slices with negative Ricci curvature.

IV. BSSN-TYPE FORMULATION WITH
NON-DYNAMICAL SHIFT VECTOR
A. Equations of motion

The Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
mulation (together with its modifications) is a popular

method used to numerically integrate Einsteins equations.
Several versions of this approach give rise to a strongly
hyperbolic reformulation of the vacuum Einstein equations
[39-41]. Here, we extend this approach to cubic Horndeski
theories.

The equations of motion are obtained from the standard
ADM equations given in Sec. II as follows. First, we
introduce the conformal metric 7, j as a new variable,
defined by

ill] = €_4th‘j (84)

where the conformal factor € is

1 h
Q=—In- (85)
2

for an arbitrary smooth background metric 4;;. Note that
this implies that det/ = deth. The inverse conformal
metric, denoted by A is then

R = e*pi. (86)
Next, we define the quantity

Vi = W(Y, —Ty) = —D;h' (87)

where r and D denote the Christoffel symbol and the

covariant derivative corresponding to 4;;. Similarly, let D

be the covariant derivative corresponding to the metric /
and let

A= Di¢ (88)
and
Al=hUA;. (89)

Clearly, the definition of A; does not depend on / but the
index of the vector field A is raised and lowered with 7,
whereas the index of A is raised and lowered with 4. We
continue to use a similar convention in the further dis-
cussion: indices of tensor fields denoted by letters with a
tilde are raised and lowered with %, whereas indices of
tensor fields without a tilde are raised and lowered with A.

The extrinsic curvature is decomposed to its trace and
conformal traceless parts

~ 1-
KijEe4Q<Qij+3hin>, (90)

or alternatively,
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A —4Q
ij=€ (

The evolution equations for the variables 7, ; and € are

1
i —ghin) (91)

o

- - ~ 2. o
a()/’lij B _ZNQl] + 2hk(lDJ)Nk - ghijDka (92)
N 1e
0pQ = ——K +—DN* (93)
6 6
where 0, is given by
60 = at - Nklo)k. (94)

To write the remaining equations in a more compact way,
we use the conformal versions of the auxiliary variables
introduced in (16):

1 o

=0 = (8OA — e *hUADN), (95)

- o~ o~ 1 -
A+ QuA;R* + §KA,-, (96)

S
I
=

ij ij —

~ 1 -
+A€4Q <Q,j+§KhU> (97)

The evolution equation for K is the trace of the tensor
evolution equation, i.e., the same as (53), except that
the variables h;; and K;; (and the covariant derivatives)
are now replaced by the corresponding expressions
(84)—(90).

A,.A,ﬁffe—m)

Y e s 1 1 1 1 5 70
= —h'D;D;,N - 2h"D;,ND;Q +N{Q,-ij,h’/h” +§K2 + A%+ 0,G;A? +§G2 +18XG2(A2 AA R e

2
1 . - 1
+ Oy Gse2 (1A2c1>,-jhv — AAD R + A &, iR e —49) } (98)
The equation describing the evolution of Q,»j is obtained by taking the trace free part of (11)
N 40 Ak A
QOQ,j——e 8xG3 A —gh A Ak b
1~ - L. 1 -
:]\]e—4Q |:R11_ND1D/N+4D(IQD]) lnN—E(l +axG2 +28¢G3)A1Al
& i Pkl —4Q a0 )| A A Ok i) T 25 B Nk
+0xG3 | —AA;Dj)— 2AA D hke 2 LA, A iyh" e +NKQ;j—2NQyQ; +20;DjN —gQ,-jDkN . (99)

where TSF denotes the trace free part of a symmetric tensor T;,

~ 1.
ZFET” _nglh hij’ (100)
and the conformal decomposition of the spatial Ricci tensor is
1 ~ o o ~ o - 1 - o ~ ok ~ o] o - o~ ~ - -
R = —zhlekD,hij + hy;DjyV* - 3 VEDhy; + (T = Typ) (0 = Ty) = th, Djh" —2D,D;Q — 2h;;D*D,Q
+4D,QD;Q — 4h;D*QD,Q. (101)
Finally, the equation for V' is obtained by commuting 0, with D to get
. ° .. - L, o 2.0 ~, 0 o o l...0o o
V' = -2ND;0"7 = 2Q0"YD;N — V*D;N' + gV’DkN" + h"D,D,N + gh”DjDkN" (102)

and then adding the momentum constraint times 2mN to (102) gives
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. ~.. 0 ., O . 2.0 ~p0 o o ]l...0 o Y e
V' = =20"D;N — VED,N' + 3 VIDN* + h*'D,D,N" + §hUD DNk + N{2(m — 1)D,QF

dm - . ~..[1 ~ 1 - e~
- TleK + 2mh' [5 (1+ 0xG, +20,G3)AA; — 5<9XG3 <—A2q>j + AAD i e

- AjAchlilkle_4Q + AkAj[Dlilkle_49> :| }

(103)

where m is arbitrary. We will show that for a range of values for the parameter m, the system is strongly hyperbolic. Finally,
once again we use E¢ = 0 as the scalar evolution equation [defined in (6)] which can also be rewritten in terms of the

variables introduced here:

(90¢ - NA

¢

(104)

(I)(l + 0xGy + A203G + 204G5 + 0%,G3(A? + A;A R e™42) 4 20,04 G3hV e ™42

1 - o~ o . m m . o~ . mm me
+7 (0xG3)?(3A* = 2A,A;A%h e~ — A, A AL AR W e732) + 93G5 (A*D;jh e — A A, D, jhlkhﬂe_m)>

- 8{/,G2 - (i)ij/jlije_“g - 2fi>ij3,/,G3f~zije_4Q + 8§(¢G2 (Az

— A e )

o~ o~ 1 o~ o~ . e~ . e e
+ 95G3(A? — AjA R e~ + 5G26XG3 (A2 — A AT e™2) + 3Gy (-2A,ADh e + AL A /D, hi!e=82)

- o~ 1 -~ .. o~ e e
+ 04G, (-@ijhlfe—49 +0xG(A* = 28,4, A% + A, jAkA,h”‘hﬂe‘m)>

+ (i)g((/)G:; (—4Al’A(~Djilij€_4Q ‘I‘ Azéijilije_4g + ZAkAl(i)ijilikiljle_gg - AiAj(NDklilijilkle_89>

~ ~ o o~~~ e 1 SRR
+ 0xG3(9,G3(A* —24,A;A% W' e~ + A, A ;A AR RITe=82) + EA4 — 20, ;7" e~

~ o~ o 1~ v o o o~ N a mim " e e~
—AAjAM R e 4 SAiA AAR R e — & By h T RN e 782 4 B, Dy hF R e5R)

+ 8§G3(—A2&)i¢~)jilij€_4g - ZAiAcbjlékI:likilﬂe_SQ + AiAj(i)qu)lilikI:lﬂe_gg

+ 2AkAd~)ijq~)liliki"lﬂ€_SQ — AlAmd)m(i)jkﬁ”iljmilk"e_129 ‘l‘ AmAnq)ij(i)klljlimljljnl‘:lkle_129)

+7 (0xG3)*(—8AA3D 1T e™2 + AYD;hT e~ + 4A A A D F R e=82 — DA AL A2D i * ! e

Equations (92), (93), (98), (99), (103) and (105) must be
complemented with the evolution equations for the lapse
function and the shift vector. This can be done by choosing
an appropriate slicing condition and a spatial coordinate
condition. A popular choice for the slicing condition is
harmonic slicing and its generalizations. Harmonic slicing
means that the harmonic coordinate condition is imposed
only on the time coordinate

O, = 0.

Writing this out in terms of the ADM variables gives an
evolution equation for the lapse function:

9oN = —NK. (106)

(105)

I
Sometimes it is more convenient to consider a generaliza-
tion of this condition, called the Bona-Massé slicing
condition
OyN = —=N?F(N)K (107)
for a suitable function F. The choice F(N) = 2 called the
1 4+ log slicing is the most widely used in numerical
applications. We will generalize this condition even further
for cubic Horndeski theories
OoN = —2N?F(t,x,N, ¢, A, A, K). (108)

To simplify the discussion of the linearized equations,
we introduce
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OF 1 OF .1 OF
; —; P —.
9xG 04,

(109)

There are a number of ways to impose a dynamical
gauge condition on the shift vector in general relativity.
However, it has also been demonstrated that it is possible to
write Einsteins equations in a strongly (even symmetric)
hyperbolic form by choosing an arbitrary (but a priori
fixed) shift vector [40]. In these latter formulations, the shift
vector is only a source term. In this section we take this
latter approach and show that the equations of motion of the
subclass of Horndeski theories under consideration can be
written in a strongly hyperbolic form with arbitrarily fixed
shift vector.

B. Proof of strong hyperbolicity

In this section, we are going to show that the BSSN
equations of motion [consisting of Egs. (92), (93), (98),
(99), (103), (108), (104), (105)] is a strongly hyperbolic
system for the dynamical variables. Our strategy will be
as follows. First, we linearize the equations and select
the highest derivative (principal) terms in the equations.
(The list of the variables and their linearized versions is
summarized in Table 1.) These are the terms that are at the
first derivative level in Egs. (92), (93), (108), (104) and
the ones at the second derivative level in Eqgs. (98), (99),
(103), (105). The second step is to convert the principal
terms in the equations to the eigenvalue problem of the
principal symbol. This involves switching to Fourier
variables:

(0, Ok) — (i&o, i&;)

A

(a7 w, K, 771]1 ql‘/y f}” l//s a) - (&’ d)s K,

S

ij>4ijs Vi> W, a).

b

Note that in this section our choice of basis is slightly
different from the one used in Sec. IIl: here we use
Jy = 0, — N¥Oy, rather than 9, = J,. Clearly, this only
amounts to a shift in the variable &, — & — N¥&,.
Nevertheless, from now on, we will denote the eigenvalues
of the principal symbol by &; in this basis. This includes the

solutions §§ ? to the scalar characteristic equation (24).

Next, we solve the eigenvalue problem, by determining
the eigenvalues &, and the corresponding eigenvectors
explicitly. Finally, we show that the conditions of strong
hyperbolicity are met for an appropriate choice of the
parameters m and o: the principal symbol has real eigen-
values and a complete set of eigenvectors with smooth
dependence on &;.

Since the linearization is straightforward, we simply just
state the eigenvalue problem for the 20 variables

(0, @, R, ¥ijs @ijs V0 W, @):

ifyd = —2N?(ok + OxG3p a +0xG3pri&y)  (110a)

TABLE I. The list of variables used in the BSSN formulation.
Linearized
Quantity/Definition Notation version
Conformal factor Q 0]
Conformal metric ilij 7ij
Lapse function N a
Scalar field ¢ v
A=L,¢p A a
Trace of the extrinsic curvature K K
Conformal traceless extrinsic 0;; dij
curvature
Vi =D v v

1
iEgk — 1 0xG5(3A2 — A AR ig

I, 1 n
= e e 10,6147 + AN

— 8XG3AAki§k&} (110b)
N
igg = =k (110c)
i&y = Na (110d)
lfoJ’U - 2N‘~1U (1106)
1 4Q AA 1 Ak A ~
lgoql] - Ee axG?, AlAj - §hUA Ak léoa
= Ne™4Q l|§|2~ +é:'° —lf Qk,fl
= e 3 /717/” l (l’l)]) 31 ¥V ij

(s
+ 6_493XG3l// <§ (AIA] -

o~ 1., -~ -
- AkA(ifj)fk + gAkAlfkflhij) } (110f)

~: s 4 . .
&' =N <2(m —1)i&g" —Tmié’fc—i— mOyG-A%iE a
+ ¢ mOy G (AR £ — ARy —A"Akifka>> -
(110g)
iy Aa = iBa + Cy (110h)
where the coefficients .4, B and C depend on the back-

ground fields and &; and their explicit form is not important
for our purposes [although it is straightforward to obtain
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them by linearizing (105)]. Substituting (77b) into (77c)
gives

(P68, = 0, (111)

that is to say, Eq. (24). In the discussion of the eigenvalues
and eigenvectors it is simpler to use the variable

E = 50 _ 50
07T Ne2lgl;  NIE,

(112)

instead of &.

We can identify a subset of eigenvalues and eigenvectors
of (110) by setting y = a = 0. These 18 eigenvalues and
eigenvectors are the same as in the formulation described in
Sec. IV of [40] for vacuum GR:

(I) Transverse-traceless (physical) modes with null
characteristics & = =1. Since there are two linearly
1ndependent transverse-traceless symmetric tensors
y, ; » the eigenvectors span a 4-dimensional space.

(IT) Transverse modes with null characteristics, spanning
a 2-dimensional space.

(IIl) A 4-dimensional space of modes with 7; i = Euej)
for any e; orthogonal to &; with respect to l~1,-j

and & = +y/m. A
(IV) Zero speed modes (&; = O) with y;; = ~Fe (le v hEa
2&.& jc?)) where & and ?; are arbitrary, spanning a

space with dimension 4. B
(V) A two-dimensional space of modes with &, =

+v20.

(VI) A two-dimensional space of modes with &, =

4m—1
4, fAnel,

The expressions for the eigenvectors are listed in
Table II. These eigenvalues are real and the eigenvectors
are smooth functions of their arguments when ¢ > 0
and m > J.

For strong hyperbolicity, we need 20 linearly independent
eigenvectors with real eigenvalues and smooth dependence
on &;. Since we have already found 18, this amounts to
finding two additional eigenvalues and eigenvectors with
nontrivial ¢ and a. The eigenvalues corresponding to these
eigenvectors are found by solving the system consisting of
Egs. (110d) and (110h), or equivalently, (24). As mentioned

before, this equation has two distinct real solutions fgi
when the Horndeski terms are much smaller than the
Einstein-scalar-field terms [see the end of Sec. II and
Eq. (27)]. Therefore, in a weak field background, there
mustindeed be 2 additional eigenvectors. The only thing that
needs to be shown is the condition on smooth dependence.

The easiest way to obtain the corresponding eigenvectors
is to derive a closed equation containing ¥, a% = - zaf¢ =
and the Fourier transform of the linearized extrms1c
curvature

TABLE II. The list of eigenvalues and eigenvectors of the
principal symbol with @ = a = 0.
a o K }:’ij i &
L 0 0 0 77,T,T 0 +1
1L 0 O 0 B =S 0 +1
ANH
. o 0 Eaej —i’”T*I\ﬂ%ei +vm
+28;8;0)™
Voo Ne g o-R T i34 +V26
$i¢i\TF i(m — .
VL 0 0 0 (W) 21(m 1)5, + @
. s L
KI 4QQI]+3Khlj (113)

Equations (110) imply

|2 (fﬁj - %3XG3 (Xhi; + AA)a? + iaszAA(i?iW)
= (2m =20 — 1)§ER = 2(m — 1)ER;):
-2 (m = 1)1~ &),
+ 3XG3{(m - I)A(ifj) (Ak‘fkfl'/’ - iA|‘f|ﬁ‘/A’)
— & ((mA? +2p)af - 2pM)iEap)

5 (m = 141 - (4467, |

— (mAA*

(114)

—(&}7)? + N3

Note that in (114) we raise and lower indices with #.

It follows from (113) and (110) that if the solutions fcf;i
of (114) are smooth functions of £;, then the same is true for
the auxiliary variables §; s K, Vi s ?;, @ and &. Based on the
tensorial structure of (114), we look for an eigenvector of
the form

A2 =
|§¢ |g_

KZ/j = leifj+Cz|§|%]’lij+C3AiAj+2C4A(i§j). (115)

Note that

k?ig = ((c1+ )IEl} + ca(A*E))E + (c3(AREL) 4 calél}) A,
(116)

and

R = (c1 +3¢)) 8]} + e3A AL + 2¢,4%¢,. (117)
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Plugging this into (114) we get the following system of
linear equations for the coefficients

(o] |f|§ =(2m=20-1)((c; + 302)|5|/21 + ;A% A, +2C4Ak§k)
—2(m—1)((c; 4 c2)[&]} + ca(A*E))
—0xG3((mA* +2p)a? — (mAA* =2p")i&ip)

(118)

1 .
€12 (Cz|§|%, - EGXG3Xa>

2
=73 (m = 1)(2colél} + c3(AFALIER — (A*&)?))

1 .
+3m = D@0, Gy (AR - (k&) (119)
2 1 ~
|§|g C3 — §8XG3a¢ =0 (120)
(ER(2eq + i0xGsA)
= =2(m —1)(c3(A*&) + culél})
+ 0xGs(m — 1)(Afga? —iAleffy) - (121)
The solution is
! Py
C3 = §8XG3a (122)
1 N
Cqy = —liaxc:;Al// (123)
= lia G;Xa? (124)
C2 - 2 |§|%l XY3 a
1 60 + 1
| = 0G5 | [ — A?
L@ 2N K 4

20— 1

AkA, — 25) a? + (20AA% — 2ﬁk)i§k¢/]
(125)

In order for ¢; to be smooth for any & € S%, —(£7%)2 +
26N?|&|> must be nonzero for any &;. This can be achieved
by choosing ¢ to be large enough. To see why this is true,
we first note that the zeros of the function

Folb0:&i) = = (&) + 20N?I£5 (126)

define a cone for any o, &,. In the weak field regime [in the
sense of (27)], the null cone of P;ﬁqﬁ is close to the null cone

of the spacetime metric g for any &; € S?, they might even
intersect for special values of &;. Recall that

e, = —(80) + N2E = Fomip(éos &) (127)

Since Py, (&o; &) and F /2(&0; &;) may intersect for some

&, and fg‘i are the solutions of P}, (y; &;) = 0, this means
that the expression on the RHS of (125) could blow up for
some ¢; if o is close to (or equal to) % To avoid this, we can
just choose o to be large enough (i.e., larger than %), so that
the cones given by F,(&;¢&;) lie entirely inside the null

cones of g and P, In other words, for an appropriate 6 > 1

F 5(§§‘i; &;) vanishes for no choice of ;. Choosing larger
values of ¢ makes it possible to deal with stronger back-
ground fields.

To summarize, we have shown that the equations of
motion for cubic Horndeski theories form a strongly
hyperbolic system in a version of the BSSN formulation,
under the assumption that the Horndeski terms are suffi-
ciently small compared to the Einstein-scalar-field terms
[i.e., in the weak field regime defined in (27)]. The system
was obtained using a generalization of the harmonic slicing
condition and an arbitrary but (nondynamically) fixed shift
vector. The system is strongly hyperbolic for any m > %and
for suitable o = OxF > % regardless of how the source
function F depends on the scalar field and its derivatives. (In
weak field backgrounds, choosing a large enough constant,
e.g.,o = lisenough.) This means that the original harmonic
slicing ¢ = % does not work for cubic Horndeski theories."'
On the other hand, the so-called 1 + log slicing often used in
numerical general relativity, corresponds to the choice 6 = %
and hence remains a good slicing condition as long as
N < 2. Note that for GR the condition for strong hyper-
bolicity is m >% and o > 0, whereas the condition for

symmetric hyperbolicity is 66 = 4m — 1 > 0.

C. Propagation of constraints

To show that the solutions of the BSSN system are also
solutions of the original Horndeski equations of motion, we
derive a system of evolution equations for the Hamiltonian
constraint, the momentum constraint and the variable

Wk = Vk 4 DAk, (128)
and show that the system of equations is strongly hyperbolic.
By uniqueness of the solutions to strongly hyperbolic
systems, it follows that if the constraints are satisfied initially
then they continue to hold throughout the evolution.

Starting from Egs. (39) and (40) and setting
(129)

- ~ 2
gij g Eij - N(hk(iaj)wk)TF +§NHI’ZU,

the constraint evolution equations become

"One might wonder if ¢; could be set to 0 in (125) by an
appropriate choice of p and p,, even for o = % However, this
particular choice of p and p, fails to satisfy the integrability
condition 9,p* = 04,p a similar issue to the one encountered in
[17] [see Egs. (237-241) and the corresponding discussion].
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2 1.
(0, — Ly)H ==NKH + ND’(NZMi) -

3

- - 2 . .
— NOxG;A K—(hk<,-aj>wk)TF + Hhij)A’A«’ + 4HA? - 2AM,~A’]

3
(6, - 'CN)Mi = NKMI - N?DI(N_ZH> -

Ne™ 200, W*

3 (130a)
DIIN (hy;0,) WH)TF]
- ~ 2 - .
— NOyG1A; K—(hk(ia WA 1 3 Hh, j>A’A/ + 4HA? — 2AM,-A’] (130b)
—2Nmh'/M,;. (130c)

(at - EN)Wi

We remind the reader that indices of tensors denoted with
letters with tilde are raised and lowered with the conformal
metric A, indices of tensors without a tilde are raised and
lowered with the original induced metric A.

Note that we have two additional constraints: the trace-

lessness of O, ; and deth = det h. Introducing the constraint
variables

T=h0, (131)
and
D= (132)
deth
it follows easily that
1 ~..0 o©

30T = - E 6_4th]DiDjD (133)
0gD = -2T. (134)

Substituting (133) into the time derivative of (134)
implies a wave equation for D, decoupled from the rest
of the constraint propagation system (130):

RD = e *hD,D;D. (135)

Therefore, it is clear that starting from initial data that
satisfies D = 0 and T = 0, these conditions will continue
to hold throughout the evolution. For this reason, now we
only need to deal with the system (130).

The eigenvalue problem of the principal symbol of (130)
can be written as

iEH = iNEM, (136a)
S 1. 1 Py 1 2
i&,W, = —2NmMI,. (136c)

The eigenvalues and eigenvectors of the principal symbol
are as follows

H —2iN|¢[}
& =0; Wi = N¢; , (137)
M, 0
H —iN|&?
4m — 1 2
== 3 N|&| W, | = | 2Nm¢; (138)
M, —i&o&;
and finally,
H 0
£y = £/mN|E|,: W, | = | 2Nme; | (139)
M, —idoe;

for any vector e; orthogonal to &; with respect to /;;.
Therefore, the principal symbol of the system describing
the evolution of the constraints possesses a complete set of
smooth eigenvectors with real eigenvalues, provided that
m > %. Hence, the system (130) is strongly hyperbolic.

V. CCZ4-TYPE FORMULATION

A. Constraints

In this section we discuss how the so-called covariant
conformal Z4 (CCZ4) [35,42-45] formulation extends to
the class of theories under consideration. This formulation
is currently one of the most widely used numerical schemes
due to its favorable stability properties [42,43].

The idea behind the CCZ4 formulation is to introduce a
4-vector field Z¢ that measures the deviations from the
actual tensor equations of motion E,;, [see (3)] and add
terms containing Z“ and its first derivatives to the equations
so that Z, = 0 is an attractor of the modified equations.
The modification is carried out in the following way:
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Eab =0- Eab + vaZb + vbza - gabvczc

- kl (naZb + nbza + kanZCgab) = 0, (140)

or in the trace reversed version
1 1
Ey _EEgab =0-E, _EEgab +V,2,+V,Z,
- kl (nazb + ana - (1 + kZ)nCchab) =0.
(141)

The parameters k; and k, here are real constants.
Splitting the four vector Z¢ as Z¢ = Z* + n*® with Z¢ =
thb and ® = —n“Z,, one can write the normal-normal
and normal-spatial projections of (140) as

(0,— Ly)® = NH — NOK + ND,ZF

— D{NZF — (2 + ky)k| NO, (142)

(0,—Ly)Z;=—-NM,;+ND,®—D;,N® 2K, ZFK -k, Z,
(143)

where the expressions for the Hamiltonian and momentum
constraints (H and M;) are given by Eqgs. (13) and (14).

When the generalized Bianchi-identity (37) holds, the
evolution equations for the Hamiltonian and momentum
constraints are

1
(9, = Ly)H =2NKH + D' (N*M;) = 2Nk, (1+ k) KO + 2N (Kh! =~ KM) (D1Z, ~ OK )

— NOxG3A[-2A'AID,Z; — DXZ) A + 24 ATK ;0 + 2KOA2+ky (1 + ky) (3A2 + A*A, )@ + 2HA? —2AM,A']

(0, — Ly)M; = NKM, + 2D/[N(D*Zh;;

(144)

1 . .
+ D(N?H) = NOxG3A,[-2A'A/D,Z; — D'Z,A” + 2ATAVK ;0 + 2KOA®

+ky (14 ky)(3A% + A*A,)© + 2HA? — 2AMA].

Once again, the system (142)—(145) describing the propa-
gation of constraint violations has the same principal symbol
as in general relativity, cf. Egs. (7), (8), (11), (12) of [46].
Therefore, the hyperbolicity and the high frequency behavior
of that system is not altered by the Horndeski terms. This has
the following implications for constraint damping. Similarly
to [46], one can carry out a preliminary mode analysis by
linearizing around a generic weak field configuration and
studying the high frequency limit of (142)—(145). For large
frequencies, the Horndeski terms become insignificant.
Making a plane wave ansatz for the constraint variables
then reduces the high frequency limit of (142)—(145) to the
same eigenvalue problem as in [46] [see Eq. (19)]. Hence, we
come to the same conclusion as in vacuum GR: the real parts
of all eigenfrequencies are negative if k; > 0 and k, > —1.
This suggests that with such choice of the parameters k; and
k,, large frequency constraint violating modes will be
damped away in cubic Horndeski theories.

B. Equations of motion
Next, we provide the full system of evolution equations,
in the conformal decomposition. We introduce Z; = Z;,
7i=hiZ, and

U= WM(T, —Ty) +220 = Vi 4270, (146)

(145)

|
Similarly to the BSSN case, we use auxiliary variables

~ _ ~ o~ ~ o~ ~ o~ = s R
~ 1 -
+A€4Q<Qij+§Kl’lij>
2

p= e (R + §K2 _ QaCdeEzth;lcd>

to write the equations more compactly. (For a more
complete list of formulas for the ADM and conformal
decompositions, see Appendix B.)

We use a natural generalization of the harmonic slicing

condition (recall 9y = 9, — N kﬁk)
BoN = —2N?6(K — 20), (147a)

the shift vector is evolved using the standard “Gamma
driver” condition [47]

OyN' = fN?e B! (147b)
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8OBi = 8iji - I/IBI (1470) (90f~1ij = _2NQij -+ 2]71/((,' b l’l DkN (147(1)
The parameters f and 7 are to be chosen and B’ is an N i
auxiliary variable. The evolution equations for the variables 0pQ = — 3 K+ 3 D N*. (147e)
h;; and Q are just defining equations and hence left
unaltered compared to (92) and (93): The evolution equation for © is the same as (142) (using the

expression of the Hamiltonian constraint)

1

3 e AA MY + Gy — A20xGy — 05G3(A? + e *A,A hY)

0 = (pe L
- Oy Ga(—A2e= 0B, + e‘m;\kﬁl&)ijizikﬁﬂo
£ Ne™ D, Zi + 2Ne™ZID,Q — NOK — e~*2ZiD,N — Nk, (2 + k,)©. (147¢)
Equation (145) is no longer kept as a separate equation, instead, it is added to the evolution equation for V':
. 2 .. s o - <. 2 .. s L o
9,0 = 2N (— 3K + 0% +60"D;Q+ D'®—-0D' InN - 51<Zl> ~20VD;N — U*DN
+ % {D Nk + MDD, D,N' + 1%’75 DNk — 2Nk, Z! + 2k, ( ZiD,N* — Zkf)kNi>

1-. 1
- 2N{—§A’A SAAOXG, — AAD,Gs + 5 8XG3 <—A26D’ + A AD ;R T e~
_ AAG e +Ak;v&>,ilkfe—4ﬂ>} (147¢)

This is equivalent to adding the momentum constraint times 2N to (102).
The evolution equations for K and Q;; are the same as before, except for the constraint damping terms.

1 S
aoK - NzaxG:; (3A2 - €_4QAkAk)CD

~ o~ o~ 1 ~
= N{R +2e749D, 28 + 477D Q + K~ 20K + e (h’fD DN + 20 D;ND Q) =3k (1 +k,)®

| 3 3 |
—5AiA; h'ie=4 — 0,G3A,A b e~ +5G:+ 8XG2<—ZA2 + Al h’/e‘m)
3 . - | R o
+ 0y Gse™@ (—ZAZ(I)ijh” — A AD ;R + - 1 AA DRI RM e + AA Dy h”‘h-’le“‘g)} (147h)

) 1 I T
80Qij_N§€_4anG3 <AA gh A A )d)

. 1 1 -

—N€‘4Q[Rij+2D<iZ> 82D;)@ = DiD;N +4D QD) InN =3 (1+ 0xGs +20,G3)Ai,

TF
AA1.& —4Q 7kl —49
AA @yt e + A A D) M e )]

I |
+8XG3<—AA(,-<1>) 54

~ o~ - © 2. e .
+ N(K —20)0;; — 2N Q0% + 20D, N* - 3 0;;DiN*. (147i)

Finally, we also have a pair of scalar evolution equations: (104) and (105).
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We conclude this section with a technical remark. For
general relativity, it has been noted that the CCZ4 equations
of motion can be derived from an action principle [44] (at
least if we ignore the lower order terms with k| and k,). If we
insisted on a similar action principle for cubic Horndeski
theories, then upon taking the linear combination (6) of the
gravitational and scalar equations of motion, the resulting
equation would contain principal terms from the ADM
decomposition of VZ. However, for cubic Horndeski
theories, it is more beneficial to keep Eq. (105) as the scalar
evolution equation. It appears that for these theories, it is
more useful to introduce the Z-terms at the level of the
equations, rather than at the level of the action.

C. Strong hyperbolicity

Now we linearize the system of equations (147),(104),
(105) and study its hyperbolicity. The linearly small
quantities corresponding to the new variables are

N = N +p
B' — B 4 b
O-0+0
U =0+
The eigenvalue problem of the principal symbol for the

27 variables U = (&, @, 6, &
written as follows.

AsoA

T 7,,,é,j,w,a) can be

iEodt = —2N26(k — 20) (148a)
igf' = fN?e™ b (148b)
iEob' = i&yit’ (148c)
L1 .
i£00 = E1\/e-4ﬂ{i§ka’< + 8|2 o
— OxGyip (=A% |E]7 + e (AMg %)) (148d)
. A 1 2 k . A
iEgk — 18XG3(3A — A AN)igya
_ Ne—4ﬂ{ 626+ i ¥ + 8126
1 .
+ 15XG3(3A2 — AFAL) €
— 0xG5(AARiEa + (ék;\k)zlf/)} (148e)
N. 1. .
iEg = ——R + —i&f* (148f)
6 6
iofr = Na (148g)

i&7i; = _2N§1ij + Zi(f(iﬁj))TF (148h)
e R i _ L ok 4o £ )
i&ou' = —|&|;p —gfikﬂ +N —§l§K+2l§9
+OxGyA%iE'a + e Oy (AAYGE Y — AATIEY
_AfAkigkm). (148)
1 T
i%03;j -3¢ 429G <AA 5h,jAkAk) i&ya
o) 23 2 L. a7
|5| 7;, u/) —glfk” hij
. SRR D I B
+ 2¢,;w §|§|;,60hij+N§i§ja—§ﬁ|§|gahz]
-, -
—A@XG3a< (i lfj) - §Akl§khij>
20, Gy (L (A4 —Li 444, ) e
X 3W 2 J 3 ij k h
o~ 1~ ~ ~ .
— ARA & & + gAkAléfkfzhij> } (148j)
iEyAa = iBa + Cy (148Kk)

where, again, we do not need to deal with the precise
expressions of the coefficients A, B and C, we only need to
keep in mind that substituting (77b) into (77c) yields

(P68, =0, (149)
ie., Eq. (24).

Our strategy is analogous to the one described in Sec. I'V:
it is easy to find 25 eigenvalues and eigenvectors of the
system (148) with y = a = 0. For a more compact nota-
tion, we use &, [see Eq. (112)] instead of &, to list the
eigenvalues:

(I) A 12-dimensional space of modes for arbitrary 7; ;and

a=é=p =i’ =0, with eigenvalues & = +1.

(II) A 2-dimensional space of modes for arbitrary ;and

nontrivial &, @, Bi, it', with eigenvalues Eo = +1.
(IIT) A 3-dimensional space of zero speed modes (&, = 0)
for arbitrary o'
(IV) A 2-dimensional space of modes with eigenval-
ues &, = +v/20.

(V) A 4-dimensional space of modes with & = %/,

for arbitrary e’ orthogonal to & (with respect to ;).

(VI) A 2-dimensional space of modes with &, = =+ %.

The full expressions of the corresponding eigenvectors

are given in Table III. Clearly, these expressions depend
smoothly on &; if f > 0 and ¢ > 0.
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TABLE III. The list of eigenvalues and eigenvectors of the principal symbol with yr = a = 0.
(a)
a @ :Bi 7‘31/ EO
L 0 0 0 a +1
1L - 20(4f=3)¢];e*® gz (f~1-20) Tad .. +1
I TG o &
g Sk i iSj 2
III. 0 —W}:‘Elfky 0 _éﬁ(é(ivj) _%ékyk)TF 0
V. |y Vaoe |§|fh<3a 2f) iiﬁ;} f\f\n i +i3) ﬂ%;"a (&&)™ +v26
V. 0 0 iel +i \/m &uej) VT
VL 0 - el P&l \fcm £ \TF m
(b)
0 ¢ p G,
L 0 0 0 Fl 51Elqe —2977” 0
) E2(4f-3)(20—1) 2 gh ; —29 & 2@
1 % Nf 6(;+1 &1 F B g |§|h 7ij—w (&)™ ¥ ! ‘If,f &
1. 0 0 O 0 b,
V. 0 ’g;}\z/ |§‘;% \/—\5\/, g +i ;;Né‘f (&&)™T \/—\6% 13
V. 0 0 €€ i 0 “f‘hem
+ N\/f e + N\/‘ €;
VL 0 0 2\5\/, 51 0 2\5\116295
e W7
To show that the system consisting of Eqs. (147), (104), (ig(f’fﬁ,% — Lo(&)) U+
(105) is strongly hyperbolic, it remains to be shown that o -
(148) has two eigenvectors corresponding to the eigenval- = —(i&y"6A — SLo(&x) ) U™
ues ng’i [obtained by solving (24)], with smooth depend- = —(i&, =, (/’5/% —8Lo(&))(0ns, yr, a?)T. (150)
1 - 7 A¢ =L ¢’i 7
ence on &; and with non-zero y and a? =&y [see
Eq. (148g)]. These eigenvectors can be found as follows. Thus we have:
Recall the general form of the characteristic equation (20)
from Sec. II. When grouping the terms in the charactf:ristic Ut+ = —(iéat"ﬁAo — I]_O(fk))_l (iiat"ﬁ(SA —6L(&))
equations (148) to Einstein-scalar-field and Horndeski parts
(terms containing a factor JxGs) as in (23), we see that the 025
Horndeski terms onl}{ act on the v, @ components (?f U .In % W (151)
other words, the matrices A and oL in (23) are projections e
to the subspace associated with the scalar variables: N

SAU = A (&, @, 0.8, B, b il 7,1, G . @)7
= 0A(0z5. . a)",

SLU = 81(&, @, 0,8, B, b, i, 517, o, @)
= 8L (0ps, 0, @)

The eigenvectors U%*+
&9 then satisfy

corresponding to the eigenvalues

A straightforward but lengthy calculation gives the
following result:

& _ 8xG3NO'l/A/
P (67 - 20N e e )
% [(3A2 _ AkAke—AtQ)(é:at,(/’))z
+ N2e™9((A% + AMAge™1) g2 — ANARM &5 7))
(152a)
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Ops=0 (152b)
bpam NG g qu3 o) (s N (42 4 AR e —ANAREE)]  (152¢)
AN((&")? —20N?|E[5 ™)
N2 FEEPE20 O Gae 39
St I |§|hl// xUsée 2 a0 Tk + o
pe = L.\2 2(£12 —4Q T0\2 1 4 o2 £2 —40 [B(Aze™ = A"AL)(&,")
3((&0")° = 20N7|E[7e™ ) (—(&) )" + 3/ N?|El;e7)
— ANAALS? + NP (60 + 1)A? + AFA e — 6oe~32A2)] (152d)
s A N0 G (-NAJE? + Aeky ) (1520)
+, —
(=(& ") + FN?|g2e2)
spk  rpE i( §’¢)2|§|%‘/75XG33_4Q <o a0 KA s eEd
e =09 = =42 21 £12 —4Q E0\2 | 4 2| £[2 40 [3(Aze™ = ATAL)(&, ")
3((&0")° = 20N7|&[7e™) (=(&) )" + 5 fN?|El5e7)
— ANAALS? + NER (60 + 1)A? + AFA e — 6oe~32A2)] (152f)
G0k _ poE Are gy "oy Gs(-NAIER + Aggy ) (152g)
b (=(&")? + fN?[ERe )
so _ Lo Gighd AA; lAkAiz i — 0xG5A L3
qij —% 3150 iT3 ij |[W— 0xU3 fj §
OxGs (&€ —L|E12h, 3 ;
X %/(5 é:J |§| ] |:< 0+1 2 lAkA e_4g>l§ (/)+2i6AA§e_4Q (152h)
— (&) + 20N?|EP3 4
7= < £ 2iplt - ﬂ?i> (152i)
N _ A . (ﬁ.i .
Wy = —5 (=NRy 1 +iff; ™) (152j)

6ics

where the notation T{: stands for the contraction T ;& jfzij
and / is an index for the subspace orthogonal to &'.

Interestingly, the & components of these two eigenvec-
tors are 0. However, this is not surprising at all: this variable
measures the constraint violations but these two eigenvec-
tors correspond to a physical d.o.f. and as such, they must
satisfy the high frequency version of the constraints.

In order to avoid singularities in the expressions (152)
we need to choose the parameters ¢ and f in such a way that
the expressions appearing in the denominators

(@R 4 3 IVl —

= (

05) + fN?|E e

,E£\2 —
07) + 20N?|gffee

are nonzero for all & € S?. In a generic weak field
background [in the sense of (27)], the null cone of sznﬁ

[
is a slightly distorted version of the null cone of the
spacetime metric g which means that for specific &; they
may intersect. Comparing the critical expressions to

gﬂbfyé:u = _(50)2 + N2|§|%z’ (153)

and by similar considerations as in the end of Sec. IV B, we
see that smooth dependence on &; might be violated for
some & € S? if 6 =1, f =2 and/or f = 1. This can be
easily avoided: choosing suitable ¢ > % and f > 1 resolves
this issue, larger values of ¢ and f allows stronger back-
ground fields. Therefore, we arrive at a similar conclusion
as in the previous section: choosing the gauge parameters ¢
and f large enough ensures strong hyperbolicity of the
CCZA4 system, as long as the fields are sufficiently weak. In

particular, the combination of the 1 + log slicing (¢ = %
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N < 2) and a Gamma driver shift condition with f > 1
appears to be a good candidate for numerical applications.

VI. DISCUSSION

In this paper we have provided three locally well-posed
formulations of weak field, cubic Horndeski theories by
generalizing an elliptic-hyperbolic, a BSSN-type and the
CCZA formulation of general relativity. (The weak field
assumption refers to field configurations in which the
Horndeski terms are small deformations of the Einstein-
scalar-field theory terms in the equations of motion.) The
elliptic-hyperbolic formulation was obtained by generaliz-
ing a combination of the constant mean curvature slicing
and spatial harmonic gauge condition. In the weak field
regime, on spatial slices with negative Ricci curvature, the
elliptic equations can be uniquely solved for the lapse
function and the shift vector. Under these assumptions, the
evolution equations are strongly hyperbolic in any gener-
alized spatial harmonic gauge. The 2-parameter family of
BSSN-type and CCZ4-type formulations are also strongly
hyperbolic when the parameters describing the slicing and
shift conditions obey suitable bounds. Two important steps
in the proofs of these results were noticing that first, the
gravitational equation of motion (3) is quasilinear and
second, that the second derivatives of the metric disappear
in a linear combination of the gravitational and scalar
equations of motion.

One may be concerned whether the weak field
assumption (27) could be violated dynamically. In other
words: in principle, it is possible that the nonlinear
evolution of the equations would drive the fields out of
the regime where the Horndeski terms are small compared
to the Einstein-scalar-field theory terms, even if one starts
with weak field initial data. This is certainly a real concern
since the results presented in this paper only guarantee
local well-posedness. The long time behavior of the
system, however, is a question of global well-posedness
which is a very subtle and complicated problem to solve
rigorously even in general relativity (see e.g., [6] and
references therein).

Analyzing the hyperbolicity of the evolution equations in
the elliptic-hyperbolic, BSSN-type or the CCZ4-type for-
mulations of more general Horndeski theories is more
difficult. The root of the problem lies in the degeneracy of
the principal symbol. In any formulation of GR the
principal symbol of the equations of motion has one or
more degenerate eigenspaces. This may continue to hold
even when small perturbing operators are added to the
equations of motion such as Horndeski terms in a weak
field regime, especially if the perturbing terms have some
special structure. This may lead to the failure of diago-
nalizability of the principal symbol and hence the failure of
strong (or even weak) hyperbolicity. An upcoming paper on
this issue is currently under preparation.

Of course, it is possible that more general Horndeski
theories do not admit a well-posed initial value formulation
at all. However, these theories may still be valid as effective
field theories.'> A common feature of the classical equa-
tions of motion of EFTs is that they admit runaway
solutions. These solutions are typically artifacts of the
truncation process and cannot be considered physical.
Several techniques have been developed to deal with such
pathologies by modifying the equations of motion, some of
them are listed in [1]. An example of such methods is the
so-called reduction of order process that can be explained
as follows. Given an EFT with higher order equations of
motion such that the higher derivative terms are subleading
in a mass dimension expansion. To any perturbative order,
it is possible to derive an alternative equation of motion
which is equally accurate up to the given order and contains
time derivatives of the fields only up to second order."* The
advantage of this method is that under certain assumptions
(see e.g., [48]) the modified equation no longer has run-
away solutions. On the other hand, the procedure breaks
Lorentz covariance. Although Horndeski theories are not
higher order, the above described process may still be
carried out and the reduced order equations of motion may
have a well-posed initial value problem. Another method is
based on the Israel-Stewart process [49] which is widely
used in relativistic hydrodynamics to deal with the ill-
posedness of the Navier-Stokes equation. Roughly speak-
ing, consider equations of motion of the form L(¢) =
€S(¢) for a collection of fields denoted by ¢, [50,51]. Here
L is a differential operator such that the zeroth order
equation of motion is L(¢) = 0; S(¢) is another differential
operator playing the role of a correction term, suppressed
with a small parameter ¢. In this procedure, one introduces
an auxiliary variable IT for L(¢) which is forced to satisfy a
time evolution equation of the form 70,I1 = —I1+ €S
where 7 is a suitable timescale. The solution to this
modified equation asymptotically approaches the solution
to the original equation in a timescale z. This procedure
also restricts solutions to the infrared and it may also fix the
hyperbolicity of the equations of motion [50,51].

As a final remark, we point out another (mathematical)
issue which may also lead to an interesting research
direction. In general, for genuinely higher order EFTs,
one might have to rethink what a well-posed initial value
formulation means. For example, classically, well-
posedness is defined in a suitable function space which
is typically a Sobolev space. However, for theories that are
only meant to be valid up to some finite energy scale,

In fact, it was shown recently [1], that scalar-tensor EFTs can
be written in a Horndeski form up to a fairly high order in the
mass dimension expansion since higher derivative operators can
be removed by appropriate field redefinitions.

In general, it is not possible to get rid of the higher order
spatial derivatives.
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finding a suitable function space for solutions is far from
obvious.
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APPENDIX A: BACKGROUND INFORMATION

In this section we provide some general information
regarding pseudodifferential calculus, elliptic PDEs and
hyperbolic PDEs in a self-contained manner.

First, we define the norms and function spaces used in
these notes. Sobolev spaces on a manifold (X, ) will be
denoted by W*?(X) and H*(X) = W*%(Z). The notation
F(R, W#?) stands for the space of curves of class F with
values in W*?, ie., if u(t,x) € L*(R, H*) then u(z,-) €
H* and u(-,x) € L*. When discussing pseudodifferential
operators, we will briefly mention Schwartz spaces,
denoted by S(R"). This is the space of smooth functions
f satisfying

sup [x?0 f] < oo
x€R”

(A1)

for any multi-indices a, f. The Fourier transform of a
function or tensor field A will be denoted by A.

1. Basics of pseudodifferential calculus

We briefly summarize the basic results from pseudodif-
ferential calculus, based on [4].
For m € R, let §” be the space of symbols, that is, the
space of smooth functions p(x, &) satisfying
|r02p(x.8)| < Cgym, (A2)
for multi-indices a and f, some constant C depending only
on a; (&) = (1 + |&)Y/2. Given a symbol p(x,&) € S,
one can define a corresponding pseudodifferential operator

p(x,0,) as an operator acting on S(R") in the following
way: for u € S(R")

p(x, d,)u = / e ivepoa(e). (A3

(277:)11

It is easy to verify that for any ue€ S(R"),
p(x,0,)u € S(R"), ie., p(x,9,):S(R") - S(R"). The
space of such operators p(x,d,) is denoted by OP™.

In fact, it can be shown that if p(x,d,) € OP™,
then p(x,0,):H**" — H*.

It is also possible to define the spaces S* and S~ by
S®°=U,,cg 8" and ™= N,,cg . It can be shown that
pseudodifferential operators with symbols in the class S
are smoothing operators.

An important subspace of $” called classical symbols and
denoted by S} is the one consisting of symbols p(x, &) € S™
which admit an asymptotic expansion in the following
sense. We say that p(x,&) € §% (and p(x,0,) € OP%) if
there exists a sequence of symbols p,,_;(x,£) € $"7, j =
0,1,2, ..., oo that are homogeneous in & of degree m — j for
|€] > 1 such that

P = puj(x§) €8N (Ad)

for all N > 1. The asymptotic expansion is denoted by

p<xv 5) ~ me—j(x7 é)

>0

(AS)

where the notation ~ means equality up to a smoothing
operator. Indeed, by definition, the operator

p(x, ax) - zpm—j(x’ 8)5) € Op~

=

(A6)

is a smoothing operator. The first term in the expansion (AS5)
(i.e., the one with j = 0) is called the principal symbol of p
and will be denoted by p©) = p,..

In this paper, we deal with classical pseudodifferential
operators. A useful property of operators in this class is that
for py € OP)' and p, € OP.?, the product g(x,d,) =
p1(x,0,)pa(x,d,) is also a pseudodifferential operator in
OP2 ™ such that ¢ (x, &) = pgo) (x, f)pgo) (x,&),i.e.,the

cl

principal symbol of the product is the product of the
principal symbols.

2. Elliptic equations

Now we consider some results regarding elliptic equa-
tions based on [4,6,52]. An elliptic operator p(x,d,) €
OP is such that |p(x, £)| > C(&)™ for |€] > 1. Let us first
consider a basic result for second order, linear elliptic
operators defined by

P(x,0,)u = a’(x)0;0;u+ b'(x)O;u + c(x)u, (A7)
with  coefficients a € H*(R"), b € H*'(R") and
ceH?(R"), s>4% and a” is a positive definite
metric. Then

(i) P is a map H*® — H*™? with finite dimensional

kernel ker P C C*.
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(i1) Furthermore, if ¢ < 0 then ker P is empty and hence
P is an isomorphism H* — H*72.

Part (i) of the theorem holds for higher order elliptic
operators, whereas (ii) generally fails. The operator
q(x,0,) € OP;" is said to be a parametrix for p if it
satisfies g(x, ;) p(x,d,) ~ p(x,0,)q(x,d,) ~ I (see nota-
tion in previous subsection). Given an equation p(x, 0, )u =
fforu e H*(R") and f € H*"(R"), the formal solution to
this equationis u = ¢(x, d,)f mod C*.In other words, one
can say that the solution map ¢: f — u is a pseudodiffer-
ential operator of class OP~2. For the present purposes, it
will suffice to find the principal symbol of the parametrix (or
solution map) corresponding to a linear elliptic differential
operator of the form (A7). Using the product identity, it is
easy to see that the principal symbol of the parametrix of P

is 00 (x, &) = (a&&))"

3. Hyperbolic equations
We conclude this section by discussing the initial value
problem for hyperbolic equations [4]. Consider, first, a first
order linear equation of the form
O = L(t,x,0,)u+ g(t,x),u(0) = f, (A8)
where u, g € C(R,H*(R")) and f € H*(R") (s >5+ 1)
are N-component column vectors; L(¢,x,0,) € (“)73;1 is an
N x N matrix valued function with smooth dependence on
t, satisfying

K(t,x,E)L(t,x,&) + L (t,x,&)K(t,x,€) € S*  (A9)

and

C'1<K(t,x,&) <CI (A10)
for £ € S"7!, with some constant C > 0 and a positive
definite, Hermitian matrix K(z, x, £) that depends smoothly
on its arguments. Such equations are called strongly
hyperbolic and the N x N matrix K is called a symmetrizer.
It can be proved that this problem is locally well-posed in
Sobolev spaces HY, i.e., there exists a unique solution

ue C(0,T),H) n CY([0,T), H")

to (A8) with T > 0 depending only on ||f]| .
The proof of this result is based on an inequality of the
form

Oy(u,u)x < c(D(w,u)g + (u, 9)x]  (Al1)

where (-, -)x is a scalar product constructed in terms of the
symmetrizer K, that is equivalent to the L2-product. This
leads to an energy estimate (after an application of the
Gronwall inequality) of the form

Julz. < € (11 + sup lglR,]- (A12)
t€[0.T)

The above result can be extended to first order pseudo-
differential equations, obtained by a reduction of second
(or higher) order equations. This is usually done by
introducing v = O,u (or the new variable » could also be
a linear combination v = d,u — X'O;u for some X’). A
second order equation can be rewritten in a form similar to
(A8) but the operator L(t, x, d,, %) is now a 2 x 2 block
matrix with N x N matrix blocks, acting on column vectors
U= (u,v)T € H* = H* x H*~'. Then the above result
holds with initial data U(0) = F € H* and the solution
will be in

UeC(0,T),H)nC([0,T), H).

It can be shown that the existence of a smooth symmetr-
izer implies that L(f,x,&;) is diagonalizable with real
eigenvalues but it is not always true the other way around.
However, if § is the matrix whose columns are the
eigenvectors of L, i.e., S7ILS is diagonal, then a positive
definite symmetrizer is given by K = (§7')7S~!. One
therefore needs to check if the smoothness and bounded-
ness conditions are also met. If the eigenvectors have
a smooth dependence on these variables then so does S.
Since the entries of S~! are rational functions of the entries
of S, 7! and hence K is also smooth in (t,x,&;). The
boundedness condition follows straightforwardly from
smoothness in a compact spacetime. (&; takes values in a
compact set so no additional assumptions are required for
the &; dependence). In practice, to demonstrate strong
hyperbolicity, it is easiest to show that the matrix L is
diagonalizable, has real eigenvalues and the eigenvectors
depend smoothly on (t, x,&;).

The notion of strong hyperbolicity and the above well-
posedness result can be extended to quasilinear or even
fully nonlinear PDEs. More precisely, the following the-
orems are proved in Chapter 5 of [4].

The initial value problem

O = L(t,x,u, 0 )u+g(t.x,u), u(0)=f, (Al3)
for the quasilinear equation with u, g € C(R, H*(R"))
and fe€ H'(R") (s>%+1) size-N column vectors;
L(t,x,u,0,) € OP! an N x N matrix valued function that
satisfies the above properties of strong (symmetrizable)
hyperbolicity for any (z,x,u,&;), then a unique local
solution u € C([0,T), H*) exists with T > 0.

For the nonlinear system

Ou = B(t,x,u,0u), u(0)=7f
with data f € H*(R") (s > 54 2), [4] shows that if the
matrix

(A14)
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L(t,x,u,0u,&) = (09,,B)(t, x,u,0u)é; (A15) ®, = D,A+ K, A (BY)
possesses a symmetrizer K (¢, x, u, 0.u, ) with the above B
properties, then the Cauchy problem (A14) is locally well- Doy = DoAp + AK (B10)
posed with a unique solution u € C([0,T),H*), T > 0.
These results suggest that to check whether the conditions Pavbed = Rapea + 2K g K g (B11)
of strong hyperbolicity are met for quasilinear and non-
linear equations, it is sufficient to study the linearized Par =Ryp + KK, — K, K6, (B12)
equations in a generic background.
/)ER+K2—KabKab (B13)
APPENDIX B: ADM AND CONFORMAL
DECOMPOSITION Gape = 2D1uK e (B14)
Here we provide a list of formulas used during the ADM
decgmposition of the equat'ions of motion. The decom- 6,=2(D"K,, — D,K) (B15)
position rules for the derivatives of the scalar field and the
curvature tensors: 1
TubEEnKah +NDaDhN+KacKCh (B16)
V.p=—-An,+ A, (BI1)
— 1 a ab
V.V, =, — 211, Dy + 14, ® (B2) t=L,K+ ND D,N — K ,,K. (B17)
Rabed =Pabea + 26 apjea) + 26 caalp] — 4 Th) [Ny (B3) The conformal versions of these auxiliary variables are
given by the following formulas
Rab = Pab — Tab T 26(anb) + Tngn <B4) y o
Od=0=L,A—e*h"A,D,InN (B18)
R=p-2t (B5)
~ - o o~ o~ |
— _ be
where the definitions of the auxiliary variables are P, =@, = DA+ QucAph™ + §KAa (B19)
A = nava¢ (B6) (’i)aqu)ab :DaAb—2(AbDaQ+Aabe—ilabilCdAchQ)
~ 1 -
A, =D, =hiV,p (B7) +Ae*? <Qa,, +3Khab> (B20)
d=L,A-AD,InN (B8)
|
~ _ 40 ~ 1 ~ 2 ~ Zab A ~ 1 ~ )
Ty=1tu=¢€ Eanl+§hkl£nK_§Kle+h Q1 Q1a _§hk1K
1/~ - e L L
+ N (DleN + 2h,h**D,ND,Q — 2D, QDN — 2DkND,Q). (B21)
SO 1 1/~ = [
7 =164 = 49 <£n1< — 04 0pah®™he? — §K2> +5 (h“bDanN + 2h“”DaNDbQ> : (B22)
~ 40 —4Q oA A |, 1~ = 1o,
Pabed = Pabea€” = Rapeae™ + 27 QueQapp + gKha[(er]h + gKQu[chd]h + §K haichap (B23)
~ s (2 a7 1 A A Fed
Pab = Pab = Rap + € §K hap + gKQub = QucQpah (B24)
~_ 40 4Q 2005 & Fabjed
p=pe— =e R+zK _Qachdh h (BZS)
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) O
tim = Oame ™ = 2Dy Oy + gD[kKhl]m + 4D QQy,, — 4h" D;QQ jjihy

~ e o~ - e~ 2 .
&k = O = 6hakabDaQ + habDkaa - ngK

(B26)

(B27)

Finally, we also provide the conversion rules between curvature tensors, used in the conformal decomposition:

Rupea =" *(Rupea+ 4hgqDyy D Q= 4h, 1Dy D 4Q + 8D, Qhy 4D Q — 8D, Qhy D yQ — 8h . 1y’ D,QD . Q),
Ry, = R,y —2D,DyQ — 20, hD D ,Q + 4D ,QD,Q — 4h,,hD QD Q.

R = ¢ **(R - 8h°D.D,Q - 8h“D QD Q).

(B28)
(B29)

(B30)
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