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We discuss black hole solutions in (2þ 1)-dimensions with a scalar field nonminimally coupled to
Einstein’s gravity in the presence of a cosmological constant and a self-interacting scalar potential. Without
specifying the form of the potential, we find a general solution of the field equations, which includes all the
known asymptotically anti–de Sitter (AdS) black hole solutions in (2þ 1)-dimensions as special cases once
values of the coupling constants are chosen appropriately. In addition, we obtain numerically new black
hole solutions and for some specific choices of the coupling constants we derive new exact AdS black hole
solutions. We also discuss the possibility of obtaining asymptotically de Sitter black hole solutions with or
without an electromagnetic field.
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I. INTRODUCTION

Despite the wide application of the AdS/CFT correspon-
dence (and more generally the gauge/gravity duality) in a
variety of settings, such as quark gluon plasma and
condensed matter systems, the properties of asymptotically
anti–de Sitter (AdS) spacetimes are still far from being
completely understood, even at the classical level. A good
example of our lack of understanding is the stability
issue of asymptotically AdS spacetimes. It came as a
surprise that—unlike Minkowski spacetime—AdS space-
time is generically unstable under small perturbations. For
Minkowski spacetime, small perturbations eventually dis-
perse to infinity and thus the spacetime is stable [1]. In the
case of AdS spacetime, however, due to the presence of
timelike boundary at infinity, perturbations can bounce off
and return to the bulk (recall that null rays can bounce back
in a finite time), which in turn can focus enough energy to
cause black hole formation. The stability of D-dimensional
AdS spacetime, here denoted AdSD, for D ≥ 4 was studied
in [2,3]. It was found that for arbitrarily small perturbations
of a massless scalar field minimally coupled to AdS gravity,
the AdSD spacetime is unstable and finally results in black

hole formation. To be more specific, this instability was
understood to be the result of resonant transfer of energy
from low to high frequencies [4]. In (2þ 1)-dimensions,
however, AdS gravity has a different behavior. It was found
[5] that for a large class of perturbations, a turbulent cascade
of energy to high frequencies still occurs, which entails
instability of AdS3, but cannot be terminated by black hole
formation because small perturbations have energy below
the black hole threshold (due to mass gap of the black hole).
As is well known, in (2þ 1)-dimensions the local

geometry without the presence of any matter field remains
trivial even if a cosmological term is introduced, since the
Einstein space is a space of constant curvature in (2þ 1)-
dimensions. Surprisingly, the presence of the cosmological
constant introduces a scale which allows one to find a black
hole solution in the absence of any scalar field. This three
dimensional black hole discovered by Bañados, Teitelboim,
and Zanelli is known as the BTZ black hole [6]. It is
obtained by identifying certain points of the anti–de Sitter
spacetime. The BTZ black hole is characterized by the
mass, angular momentum and a negative cosmological
constant, and has almost all the features of the Kerr-AdS
black hole in four-dimensional Einstein gravity.
In the context of gauge/gravity duality, one could

construct black hole solutions in the gravity sector that
acquires hair below a critical temperature. Even a static and
spherically symmetric black hole with scalar hair requires a
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deep understanding of the matter field near the black hole
horizon, as it should satisfy some physical requirements,
e.g., being regular on the horizon, and decays sufficiently
fast towards infinity, so that the black hole shows its
presence as (primary or secondary) hair in the boundary
field theory with finite temperature.
The early attempts to couple a scalar field to gravity were

first carried out in asymptotically flat spacetimes. Black
hole solutions were found [7] but the scalar field was
divergent on the horizon and they were unstable under
scalar perturbations [8]. Introducing a cosmological con-
stant we expect the scalar field to have regular behavior on
the resulting black hole horizon, while all possible diver-
gences are hidden behind the horizon. Hairy black hole
solutions were found in asymptotically de Sitter spacetime
with either a minimally or a nonminimally coupled scalar
field but they were unstable [9–13]. In the case of AdS
spacetime with a negative cosmological constant, stable
solutions were found numerically for spherical geometries
[14–16] and an exact solution in asymptotically AdS
spacetime with hyperbolic geometry was presented in
[17] and generalized later to include charge [18]. In all
the above solutions the scalar field is conformally coupled
to gravity. A generalization to nonconformal solutions was
discussed in [19]. Besides, three-dimensional black holes in
dilatonic gravity were also studied in [20–23].
A scale can also be introduced in the scalar sector of the

theory. This can be done if in the Einstein-Hilbert action
there is a coupling of a scalar field to the Einstein tensor.
The derivative coupling has the dimension of length
squared and it was shown to act as an effective cosmo-
logical constant [24,25]. Spherically symmetric black hole
solutions which are asymptotically anti–de Sitter were
found [26–32], thus evading the no-hair theorem for
Horndeski theory [33].
In (2þ 1)-dimensions black holes with scalar field non-

minimally coupled to gravity are known to exist [34,35].
Furthermore, both static [36] and rotating [37–39] hairy
(2þ 1)-dimensional black holes were constructed by speci-
fying some suitable forms of the potential. An exact dynami-
cal and inhomogeneous solution that represents gravitational
collapse was presented in [40]. If an electromagnetic field
is introduced then it is possible to find hairy charged black
hole solutions in (2þ 1)-dimensions [41]. More recently
exact dynamical and inhomogeneous solutions in (2þ 1)-
dimensional AdS gravity with a conformally coupled scalar
field were discussed in [42].
Gravity in (2þ 1)-dimensions is interesting in many

ways. One of the principal advantages of working in
(2þ 1)-dimensions is that for simple enough topologies,
this space can be characterized completely and explicitly,
which can help to gain important insights into black hole
physics and the structure of quantum gravity. Hairy black
hole solutions in the presence of a cosmological constant
and conformally coupled matter are good theoretical

laboratories to examine further the gauge/gravity corre-
spondence [43] by connecting the three-dimensional grav-
ity bulk with the two-dimensional boundary field theory
and holographically relating to, e.g., condensed matter
systems of two-dimensional materials and superfluids.
In this work we study general relativity in (2þ 1)-

dimensions with a scalar field nonminimally coupled to the
gravity sector, with a general potential in the presence of a
cosmological constant. Our aim is—without specifying the
form of the potential a priori—to find a general solution of
the field equations in the coupled Einstein-scalar field
system, which can give a general hairy black hole solution.
To this end, we solve the Einstein-scalar field equations
with a static and spherically symmetric metric ansatz. The
general solution we found can be reduced to the known
black hole solutions [6,34,40,41,44] depending on the
value of the coupling constant. Going beyond the known
solutions in the literature, we can also derive other new
solutions. We also investigate the possibility of finding
asymptotically dS black hole solutions in (2þ 1)-dimen-
sions and we show that no such black hole exists, consistent
with previous no-go results. However, surprisingly, we note
that in the presence of an electromagnetic field the solution
found in [41] can give an asymptotically de Sitter black
hole solution for a specific choice of parameters.
This work is organized as follows: in Sec. II we

discuss the general solution of a scalar field nonminimally
coupled to gravity, in Sec. III we show some explicit—
exact solutions—of asymptotically AdS black holes, in
Sec. IV we discuss the possibility of finding dS black hole
solutions and finally in the last section we present our
conclusions.

II. GENERAL SOLUTION WITH A SCALAR
FIELD NONMINIMALLY COUPLED

TO EINSTEIN’S GRAVITY

In this section we consider a scalar field nonminimally
coupled to (2þ 1)-dimensional Einstein’s gravity with a
self-interacting scalar potential. The action is

I ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
gμν∇μΦ∇νΦ −

1

2
ξRΦ2 −UðΦÞ

�
;

ð1Þ

where ξ is a coupling constant and UðΦÞ is the self-
interacting potential of the scalar field in which the
cosmological constant is included via UðΦ ¼ 0Þ ¼ Λ
(see details below). The Einstein equations and the
Klein-Gordon equation read, respectively,

ð1− ξΦ2ÞGμν ¼∇μΦ∇νΦ− gμν

�
1

2
gαβ∇αΦ∇βΦþUðΦÞ

�

þ ξðgμν□−∇μ∇νÞΦ2; ð2Þ

TANG, ONG, WANG, and PAPANTONOPOULOS PHYS. REV. D 100, 024003 (2019)

024003-2



□Φ ¼ ξRΦþ dUðΦÞ
dΦ

; ð3Þ

where Gμν denotes the Einstein’s tensor. We consider a
spherically symmetric ansatz for the metric

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2: ð4Þ

Then, the t�t and r�r components of the Einstein
equations give

ΦðrÞ ¼
�

A
rþ B

�δ
2

; ð5Þ

where δ≡ 4ξ=ð1 − 4ξÞ, with A and B being some con-
stants. We first consider A > 0, B > 0 and δ > 0, corre-
sponding to 0 < ξ < 1=4. Note that δ ≠ −1, since δ ¼ −1
would correspond to unphysical value of ξ ¼ ∞.

The r�r component of the Einstein equations then gives
the metric function

fðrÞ ¼ ðrþ BÞ1þδ½C0 − 8ð1þ δÞ R UðrÞrdr�
Aδδ½δr − ðrþ BÞ� þ 4ð1þ δÞðrþ BÞ1þδ ; ð6Þ

where C0 is an integration constant. (In our notation,
the integration constant is written explicitly; i.e., the
integral

R
UðrÞrdr itself is understood to be without a

constant term.)
If we substitute the scalar field (5) and the metric

function (6) into the θ�θ component of the Einstein
equations, we would obtain an integral equation of the
potential UðrÞ,

C0 − 8ð1þ δÞ
Z

UðrÞrdr ¼ aðrÞUðrÞ þ bðrÞU0ðrÞ; ð7Þ

where

aðrÞ ¼ cðrÞ½Aδδð3B − δrþ rÞ − 4ðδþ 1ÞðBþ rÞδð3B − 2δrþ rÞ�; ð8Þ

bðrÞ ¼ cðrÞðBþ rÞA−δδ−2½A2δδ2ðB − δrþ rÞ þ 4Aδδðδþ 1Þðδr − 2ðBþ rÞÞðBþ rÞδþ16ðδþ 1Þ2ðBþ rÞ2δþ1�; ð9Þ

cðrÞ ¼ −4ðδþ 1ÞrðBþ rÞ½4ðδþ 1ÞðBþ rÞδþ1 − AδδðB − δrþ rÞ�=fA2δBðδ − 1Þδ2ðBþ rÞ
− 2Aδδðδþ 1Þ½−4B2 þ Bð−3δ2 þ δ − 4Þrþ ðδ − 1Þ2δr2�ðBþ rÞδþ8ðδþ 1Þ3ðδr − 2BÞðBþ rÞ2δþ1g: ð10Þ

By Eq. (7), the metric function (6) becomes

fðrÞ ¼ ðrþ BÞ1þδ½aðrÞUðrÞ þ bðrÞU0ðrÞ�
Aδδ½δr − ðrþ BÞ� þ 4ð1þ δÞðrþ BÞ1þδ ; ð11Þ

which can be reduced to the solutions in [34,44] when
UðrÞ ¼ Λ ¼ −l−2 and δ ¼ 1. Moreover, when δ ¼ 0, we
get the BTZ black hole solution [6].
Taking the derivative of Eq. (7) we obtain, with prime

denoting derivative with respect to r, the second order
differential equation

U00ðrÞ þ PðrÞU0ðrÞ þQðrÞUðrÞ ¼ 0; ð12Þ

where

PðrÞ ¼ aðrÞ þ b0ðrÞ
bðrÞ ; QðrÞ ¼ a0ðrÞ þ 8ðδþ 1Þr

bðrÞ :

ð13Þ

A particular solution of Eq. (12) is

U1ðrÞ ¼
8ðδþ 1Þðrþ BÞ2þδ − δðδ − 1Þðδ − 2ÞAδr2 þ 4δðδ − 1ÞAδBr − 2δAδB2

8ðδþ 1Þðrþ BÞ2þδ : ð14Þ

Using Eq. (5) for Φ and introducing the ratio γ ≡ B=A, we have

U1ðΦÞ ¼ δ½Φ2ð−δðγΦ2=δ − 1Þðγðδþ 1ÞΦ2=δ − δþ 3Þ − 2Þ þ 8� þ 8

8ðδþ 1Þ : ð15Þ

In the following we discuss various solutions for the potential UðrÞ.
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A. AdS spacetimes with a stealth structure

If we choose UðrÞ ¼ C1U1ðrÞ as the potential, then the
cosmological constant is simply

Λ ¼ UðΦ ¼ 0Þ ¼ C1; ð16Þ

and the metric function becomes

fðrÞ ¼ ðrþ BÞ1þδ½aðrÞC1U1ðrÞ þ bðrÞC1U0
1ðrÞ�

Aδδ½δr − ðrþ BÞ� þ 4ð1þ δÞðrþ BÞ1þδ

¼ −r2C1 ¼ −r2Λ; ð17Þ

with constant curvature RðrÞ≡ 6C1 ¼ 6Λ. It describes
AdS spacetimes when Λ ¼ −l−2 < 0, where l is the
length of the AdS space. In fact, this solution has what
is known in the literature as a “stealth structure”—this kind
of matter configuration has no influence on the geometry.
Black holes with stealth scalar field in (2þ 1)-dimensions
have been studied in [45]; their potential, which is obtained
from the vanishing of energy momentum, is the same as our
solutions.

B. General AdS black hole solution

Using Liouville’s formula, we can obtain the other
linearly independent particular solution to Eq. (12),

U2ðrÞ ¼ U1ðrÞ
Z

U1ðrÞ−2e−
R

PðrÞdrdr: ð18Þ

We define

PðrÞ ≔ e−
R

PðrÞdr

¼ Bð1− δÞ
2rðBþ rÞδþ3

þ Aδδ3ðδþ 1Þ½ðδ− 3Þr− 4B�
ðBþ rÞ4½Aδδ− 4ðδþ 1ÞðBþ rÞδ�2

−
δðδþ 1Þð−4Bþ δrþ rÞ

rðBþ rÞ3½4ðδþ 1ÞðBþ rÞδ − Aδδ� ; ð19Þ

so that

U2ðrÞ ¼ U1ðrÞ
Z

U1ðrÞ−2PðrÞdr: ð20Þ

The general solution of Eq. (12) is

UðrÞ ¼ C1U1ðrÞ þ C2U2ðrÞ

¼ U1ðrÞ
�
C1 þ C2

Z
U1ðrÞ−2PðrÞdr

�
; ð21Þ

where C1 and C2 are constants. The constant of integration
coming from PðrÞ can be absorbed into C2.
The potential has been determined from the Einstein

equations without using the Klein-Gordon equation (3).

Considering the Bianchi identity ∇νGν
μ ¼ 0 the Einstein

equations are equivalent to the on-shell condition
∇νTν

μ ¼ 0, which ensures that our potential is valid under
the on-shell condition. We have also checked that the
Klein-Gordon equation is always satisfied.
The potential can be written as a function of the scalar

field Φ,

UðΦÞ ¼ U1ðΦÞ
�
C1 þ C2

Z
U1ðΦÞ−2PðΦÞ 2

Aδ
Φ1=δ−1dΦ

�
;

ð22Þ

where

PðΦÞ ¼ γðδ − 1ÞA−δ−3Φ8
δþ2

2ðγΦ2=δ − 1Þ

þ δðδþ 1ÞΦ6=δð5γΦ2=δ þ δðγΦ2=δ − 1Þ − 1Þ
A3ðA2δ − 4ðδþ1ÞAδ

Φ2 ÞðγΦ2=δ − 1Þ

−
δ3ðδþ 1ÞΦ6=δðγΦ2=δ þ δðγΦ2=δ − 1Þ þ 3Þ

AðA2δ − 4ðδþ1ÞAδ

Φ2 Þ2
:

ð23Þ

In the above expression an integral remains but all
functions in the integrand are known. This general form
with arbitrary coupling constants and free integration
constants contains all the potentials we can take in this
system and it has not appeared in the literature before. This
general form of potential enables us to obtain the exact
solution for metric function (11), which gives the relation
for metric and potential functions. From (11) we can see
that once we know the expression of potential the metric
function is known.
Since the integral in U2ðrÞ cannot be integrated

analytically, special attention should be given to the
continuity of the potential and the metric function for
further analysis.
We start our consideration with negative values of δ.

For −1 < δ < 0, PðrÞ and U1ðrÞ−2 are both continuous.
The potential UðrÞ is also continuous because U1ðrÞ is
continuous. For other cases, namely δ > 0 and δ < −1,
the continuity conditions for PðrÞ and U1ðrÞ−2 are
identical,

δAδ ≤ 4Bδð1þ δÞ i:e: 4ð1þ δÞγδ ≥ δ: ð24Þ

From Eq. (6), we can see that if the potential is
continuous, then so is the metric function. Therefore
the continuity condition (24) can ensure the continuity of
the potential and the metric.
Then we begin to analyze the asymptotic behavior of the

potential at the leading order
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Uðr→∞Þ
¼C1U1ðr→∞ÞþC2U2ðr→∞Þ

¼C1U1ðr→∞ÞþC2U1ðr→∞Þ lim
r→∞

Z
U1ðrÞ−2PðrÞdr

¼U1ðr→∞Þ
�
C1þC2 lim

r→∞

Z
U1ðrÞ−2PðrÞdr

�
; ð25Þ

where

lim
r→∞

Z
U1ðrÞ−2PðrÞdr

¼

8>>><
>>>:

δðδþ1Þr−δ−2
4ðδþ2Þ → 0 δ > 0

32ðδþ1Þ3A−3δr2δ−2

ðδ−2Þ2ðδ−1Þδ2 → 0 −1 < δ < 0

− 32Bðδþ1Þ2A−2δrδ−3

ðδ−3Þðδ−2Þ2ðδ−1Þδ2 → 0 δ < −1

: ð26Þ

So we have

Uðr → ∞Þ ¼ C1U1ðr → ∞Þ

¼

8>>><
>>>:

C1 ¼ Λ δ > 0

− C1δðδ−1Þðδ−2ÞAδ

8ðδþ1Þ r−δ → SgnðC1Þ∞ −1 < δ < 0

− C1δðδ−1Þðδ−2ÞAδ

8ðδþ1Þ r−δ → −SgnðC1Þ∞ δ < −1

; ð27Þ

from which we can see that for positive δ the constant of
integration C1 is the effective cosmological constant
Λ ¼ UðΦ ¼ 0Þ ¼ Uðr → ∞Þ ¼ C1, but for negative δ
the cosmological constant is difficult to define from the
knowledge of the potential. The asymptotic behavior of the
potential at r → 0 is

Uðr → 0Þ
¼ C1U1ðr → 0Þ þ C2U2ðr → 0Þ

¼ C1U1ðr → 0Þ þ C2U1ðr → 0Þlim
r→0

Z
U1ðrÞ−2PðrÞdr

¼ U1ðr → 0Þ
�
C1 þ C2lim

r→0

Z
U1ðrÞ−2PðrÞdr

�
; ð28Þ

where

U1ðr → 0Þ ¼ 1 −
δ

4ðδþ 1Þγδ ð29Þ

is a constant while

lim
r→0

Z
U1ðrÞ−2PðrÞdr

¼ 8ðδþ 1Þ2Bδ−2ððδ − 1ÞδAδ þ 4ðδþ 1Þ2BδÞ
rð4ðδþ 1ÞBδ − δAδÞ3 → þ∞

ð30Þ

is going to infinity. Using the continuity condition
4ð1þ δÞγδ > δ we finally get

Uðr → 0Þ ¼ C2U1ðr → 0Þlim
r→0

Z
U1ðrÞ−2PðrÞdr

→

8>><
>>:

SgnðC2Þ∞ δ > 0

SgnðC2Þ∞ −1 < δ < 0

−SgnðC2Þ∞ δ < −1
; ð31Þ

so the potential goes to infinity at both r → ∞ and r → 0.
Therefore we rely on the metric function to find out the
asympotic behavior of the spacetime.
The asymptotic behavior of the metric function at r → ∞

and r → 0 is

fðr → ∞Þ ¼ −C1r2 ¼ −Λr2; ð32Þ

fðr → 0Þ ¼ −
8C2ðδþ 1Þ2γδ

δ2A2δðδ − 4ðδþ 1ÞγδÞ ¼ const; ð33Þ

from which we can see that for all values of δ the constant
C1 plays the role of cosmological constant. Under the
continuity condition 4ð1þ δÞγδ > δ, the sign of fðr → 0Þ
is sgnðfðr → 0ÞÞ ¼ sgnðC2Þ. For δ ¼ 1, we recover the
BTZ black hole [6].
We now consider the case where the continuity condition

is 4ð1þ δÞγδ ¼ δ. At r → 0 the asymptotic expressions of
potential and metric functions are same,

Uðr → 0Þ ¼ −
C2ðδ2 − 6δ − 7ÞB−δ−2

72δ
¼ const; ð34Þ

fðr → 0Þ ¼ C2B1−δ

3δ2r
→ SgnðC2Þ∞: ð35Þ

At r → ∞ we have
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Uðr → ∞Þ ¼

8>>><
>>>:

C1 δ > 0

− C1δðδ−1Þðδ−2ÞAδ

8ðδþ1Þ r−δ −1 < δ < 0

− C1δðδ−1Þðδ−2ÞAδ

8ðδþ1Þ r−δ δ < −1

; ð36Þ

fðr → ∞Þ ¼ −C1r2 ¼ −Λr2: ð37Þ

Therefore the asymptotic expressions are exactly the same
as the case for 4ð1þ δÞγδ > δ.
Another way to see the properties of the spacetime at

large distances is to consider the perturbations of a neutral
massless scalar field in the spacetime of a black hole.
Consider the equation of the scalar field ϕ0,

□ϕ0 ¼ 0: ð38Þ

If we transform the scalar field as ϕ0 ¼ r−1=2φ0e−iω0t, then
with the use of the tortoise coordinate r� ¼

R
dr
fðrÞ the scalar

equation can be written in a Schrodinger-like form as

d2φ0

dr2�
þ ðω2

0 − VeffÞφ0 ¼ 0; ð39Þ

where the effective potential in the background of the
spherically symmetric metric (4) is

Veff ¼ −
fðrÞðfðrÞ − 2rf0ðrÞÞ

4r2
: ð40Þ

The asymptotic behavior of the effective potential is
Veffðr → ∞Þ ¼ 3Λ2r2=4. Therefore, for all cases and
independently of the sign of δ we have a potential barrier
at AdS boundary that can constrain the matter fields.
Since the integral in U2ðrÞ cannot be solved with all

parameters being free, we need to fix some parameters and
confirm our solution by consistency check. We set δ ¼ 1,
A ¼ 1=q, B ¼ 1=ð8qÞ, C1 ¼ − 1

l2 and C2 ¼ 6144αq where
the additional free parameter q characterizes the strength
of the scalar field. We find that the potential and metric
function become

UðrÞ ¼ −
813qrþ 24q2r2 þ 64q3r3 þ 32αl2

l2ð1þ 8qrÞ3 ; ð41Þ

UðΦÞ ¼ −
1

l2
þ
�

1

512l2
−
α

2

�
Φ6; ð42Þ

fðrÞ ¼ r2

l2
−
12α

q2
−

α

q3r
; ð43Þ

which can reduce to the static limit of the black hole
solution in [40]. This potential form has been widely

studied in static exact black hole solutions dressed with
nonminimally coupled scalar field [34,40,46]. In [47] a
random potential V was introduced, but the purpose of that
work was not to find the most general solution for a given
scalar potential VðφÞ.
Let us now discuss the general solution. If C1 < 0 and

C2 < 0, the relation (32) and (33) can lead to fðr → 0Þ < 0
and fðr → ∞Þ > 0. Then there must be a 0 in the metric
function, which corresponds to the event horizon of an AdS
black hole. Note that what really has physical meaning is
the coupling constant ξ rather than δ, so we first plot the
relation ξðδÞ ¼ δ

4ð1þδÞ in Fig. 1.

From the figure we can see that positive δ corresponds to
0 < ξ < 1=8, δ < −1 corresponds to ξ > 1=8 and −1 <
δ < 0 corresponds to negative ξ. We plot the potential and
metric functions with different ranges of δ respectively in
Figs. 2–5, in all of which we have fixed the other
parameters as A¼1, B¼2, Λ¼C1¼−1 and C2 ¼ −10.
Table I shows the influence of the coupling constant ξ
and δ.
From the figures we can see that for 0 < ξ < 1=4, large

coupling constants ξ correspond to black holes with small
radius of event horizons while for ξ < 0 and ξ > 1=4, large
coupling constants ξ correspond to large radius of event
horizons. (For ξ < 0, to be larger means its absolute value is
smaller.) Also note that this change of behavior corre-
sponds to the sign reversal of δ, so there is a consistent
influence from δ: large absolute values of δ correspond to
black holes with small radius of event horizon, and the
gradient of self-potential of the scalar field becomes steeper
at the origin. Finally, when δ → �∞, the curve corresponds
to ξ ¼ 1=4. Note that in all of our plots, we have fixed
B ¼ 2 and A ¼ 1, i.e., γ ¼ 2. With this value of γ, an
arbitrary value of δ can satisfy the continuity condition
4ð1þ δÞγδ ≥ δ.
Lastly we check for the curvature singularity of the

solutions. The Ricci scalar and the Kretschmann scalar are
given by

0.5

FIG. 1. The coupling constant ξ always rises with δ. Note that
δ ≠ −1 and ξ ≠ 1=4, the former corresponds to ξ ≠ �∞.
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(a) (b)

FIG. 2. The black curve, black dashed curve, pink curve and pink dashed curve correspond to δ ¼ 1, 2, 3, 4, i.e., ξ ¼ 1=8, 1=6, 3=16,
1=5, respectively. Large coupling constant ξ corresponds to black holes with small event horizon when 1=8 ≤ ξ < 1=4.

(a) (b)

FIG. 3. The black curve, black dashed curve, pink curve and pink dashed curve correspond to δ ¼ 1, 1=2, 1=3, 1=4, i.e., ξ ¼ 1=8,
1=12, 1=16, 1=20, respectively. Large coupling constant ξ corresponds to black holes with small event horizon when 0 < ξ ≤ 1=8.

(a) (b)

FIG. 4. The black dashed curve, pink curve and pink dashed curve correspond to δ ¼ −2, −3, −4, i.e., ξ ¼ 1=2, 3=8, 1=3 respectively.
Large coupling constant ξ corresponds to black holes with large event horizon when ξ > 1=4.
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RðrÞ ¼ −f00ðrÞ − 2f0ðrÞ
r

; and

KðrÞ ¼ f00ðrÞ2 þ 2f0ðrÞ2
r2

; ð44Þ

respectively. We note that

f0ðr → 0Þ ¼
8<
:

− 24ðC2ðδþ1Þ2Bδ−1 ln rÞ
ðδAδ−4ðδþ1ÞBδÞ2 ; 4ð1þ δÞγδ > δ

− C2B1−δ

3δ2r2 ; 4ð1þ δÞγδ ¼ δ

ð45Þ

f00ðr → 0Þ ¼
8<
:

− 24C2ðδþ1Þ2Bδ−1

rðδAδ−4ðδþ1ÞBδÞ2 ; 4ð1þ δÞγδ > δ

2C2B1−δ

3δ2r3 ; 4ð1þ δÞγδ ¼ δ:

ð46Þ

Since f0ðr → 0Þ → ∞ and f00ðr → 0Þ → ∞, there must be
a curvature singularity at r ¼ 0.

III. SPECIAL EXACT SOLUTIONS

Since the integral in U2ðrÞ cannot be solved with δ
unspecified, let us fix δ to find some special solutions. In
fact, for δ ¼ n;−n; 1=n;−1=n with n ¼ 1; 2; 3…, we can
always—in principle—obtain the corresponding exact
black hole solutions; however this becomes more compli-
cated with increasing n. So we only present the solutions
with δ ¼ 1, δ ¼ 2, δ ¼ −2, δ ¼ 1=2 and δ ¼ −1=2 to
illustrate the different properties of spacetimes for δ ≥ 1,
δ < −1, −1 < δ < 0 and 0 < δ < 1.

A. δ= 1

When δ ¼ 1 the scalar field, the metric and the potential
functions are

ΦðrÞ ¼ Aðrþ BÞ−1=2; ð47Þ

fðrÞ ¼ 8A2C2ðBþ 2rÞ − A2C1r2ðA4 − 16A2Bþ 64B2Þ − 64B2C2

A2ðA2 − 8BÞ2 −
128A2C2r2

A2ðA2 − 8BÞ3 ln
r

8ðBþ rÞ − A2
; ð48Þ

UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð49Þ

U1ðΦÞ ¼ 1 −
γ2Φ6

8
; ð50Þ

(b)(a)

FIG. 5. The black dashed curve, pink curve and pink dashed curve correspond to δ ¼ −1=2, −1=3, −1=4, i.e., ξ ¼ −1=4, −1=8,
−1=12 respectively. Large coupling constant ξ corresponds to black holes with large event horizon when ξ < 0.

TABLE I. The influence of the coupling constant ξ and δ.

0 < δ ≤ 1 δ ≥ 1 −1 < δ < 1 δ < −1
0 < ξ ≤ 1=8 1=8 ≤ ξ < 1=4 ξ < 0 ξ > 1=4

Large ξ leads to small event horizon. Large ξ leads to large event horizon.

Large absolute values of δ correspond to small radius of event horizon.
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U2ðΦÞ ¼ 32

A3γð8γ − 1Þ3ðΦ2 − 8Þ
�
16γ3ðΦ2 − 4ÞΦ4 þ 2γðΦ2 − 8Þðγ2Φ6 − 8Þ ln Φ2 − 8

1 − γΦ2

− 2γ2ðΦ6 − 8Φ4 þ 32Φ2 þ 256Þ − γðΦ2 − 16ÞΦ2 −Φ2 þ 8

�
; ð51Þ

which agree with the black hole solution presented in [47] except for a clerical error in that paper.
The continuity condition becomes A ≤ 8B. In fact this solution only describes the case when A < 8B. If we choose

A ¼ 8B, then the solution reduces to the solution [40] as mentioned before.

B. δ= 2

We can obtain a new exact black hole solution when δ ¼ 2, with

ΦðrÞ ¼ A
rþ B

; ð52Þ

fðrÞ ¼ 1

A2ðA2 − 6B2Þ3
�
−ðA2 − 6B2Þ½A6C1r2 − 12A4B2C1r2 þ 9A2Bð4B3C1r2 þ BC2 þ 4C2rÞ

− 54B4C2� þ 9A2C2r2ðA2 þ 18B2Þ ln 6r2

6ðBþ rÞ2 − A2
þ27

ffiffiffi
6

p
ABC2r2ðA2 þ 2B2Þ ln

ffiffiffi
6

p ðBþ rÞ þ Affiffiffi
6

p ðBþ rÞ − A

�
; ð53Þ

UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð54Þ

U1ðΦÞ ¼ 1

6
ð−3γ2Φ4 þ 2γΦ3 þ 6Þ; ð55Þ

U2ðΦÞ ¼ 3ð3γ2Φ4 − 2γΦ3 − 6Þ
2A4ð6γ2 − 1Þ3

�
12ð6γ2 − 1Þð18γ3Φþ 30γ2 þ γΦ − 1Þ

ð54γ2 − 1ÞðΦ2 − 6Þ þ ð6γ2 − 1Þ
ð54γ2 − 1Þð3γ2Φ4 − 2γΦ3 − 6Þ

× ð1296γ5Φ3 þ 972γ4ðΦ2 þ 2Þ þ 36γ3Φð7Φ2 þ 30Þ − 24γ2ðΦ2 − 24Þ − 6γΦðΦ2 þ 6Þ þΦ2 − 6Þ

þ ð18γ2 þ 1Þ ln 6 −Φ2

ð1 − γΦÞ2 − 6
ffiffiffi
6

p
ð2γ3 þ γÞtanh−1

�
Φffiffiffi
6

p
��

; ð56Þ

where A2 < 6B2 agrees with our continuity condition (24). If we choose B ¼ 0, A ¼ ffiffiffi
6

p
a, C1 ¼ − 1

l2 and C2 ¼ −4αa4, it
will reduce to the black hole solution [48] when dimension is 3. When A2 ¼ 6B2, the solution can be simplified as

ΦðrÞ ¼
ffiffiffi
6

p
B

Bþ r
; ð57Þ

fðrÞ ¼ C2r2

32B4
ln

r
2Bþ r

þ C2r
16B3

þ 3C2

16B2
þ C2

12Br
− C1r2; ð58Þ

UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð59Þ

U1ðΦÞ ¼ 1

36
ð−3Φ4 þ 2

ffiffiffi
6

p
Φ3 þ 36Þ; ð60Þ

U2ðΦÞ ¼ −
�
ðΦ2 − 6Þð3Φ3 þ

ffiffiffi
6

p
Φ2 þ 6Φþ 6

ffiffiffi
6

p
Þ ln

ffiffiffi
6

p
−Φ

Φþ ffiffiffi
6

p þ 6ð
ffiffiffi
6

p
Φ4 þ 2Φ3 − 2

ffiffiffi
6

p
Φ2 − 4Φþ 8

ffiffiffi
6

p
Þ
�

×
ð−3Φ4 þ 2

ffiffiffi
6

p
Φ3 þ 36Þð ffiffiffi

6
p

Φ5 − 36Φ4 þ 54
ffiffiffi
6

p
Φ3 − 36Φ2 − 216

ffiffiffi
6

p
Φþ 648Þ

32A4ð ffiffiffi
6

p
−ΦÞ4ðΦþ ffiffiffi

6
p Þð ffiffiffi

6
p

Φ2 − 18Φ − 18
ffiffiffi
6

p Þð3Φ3 þ ffiffiffi
6

p
Φ2 þ 6Φþ 6

ffiffiffi
6

p Þ : ð61Þ
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C. δ= − 2
For negative δ, we can obtain an exact solution when δ ¼ −2, with

ΦðrÞ ¼ rþ B
A

; ð62Þ

fðrÞ ¼ 1

2ð2A2 − B2Þ3 ð−2ð2A
2 − B2Þð2A6C2 þ A4ð−B2C2 þ 4BC2rþ 4C1r2Þ − 4A2B2C1r2 þ B4C1r2Þ

þ 2A4C2r2ð2A2 þ 3B2Þ ln r2

ðBþ rÞ2 − 2A2
þ

ffiffiffi
2

p
A3BC2r2ð6A2 þ B2Þ ln

ffiffiffi
2

p ðBþ rÞ − 2Affiffiffi
2

p ðBþ rÞ − 2A

�
; ð63Þ

UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð64Þ

U1ðΦÞ ¼ −
γ2

2
þ 3γΦ − 3Φ2 þ 1; ð65Þ

U2ðΦÞ ¼ γ2 − 6γΦþ 6Φ2 − 2

2ðγ2 − 2Þ3
�
ð3γ2 þ 2Þ ln 2 −Φ2

ðΦ − γÞ2 −
ffiffiffi
2

p
γðγ2 þ 6Þtanh−1

�
Φffiffiffi
2

p
�

þ 2ðγ2 − 2Þðγ3Φþ 14γ2 þ 22γΦþ 20Þ
ðγ2 − 50ÞðΦ2 − 2Þ þ 18ðγ2 − 2Þðγ4 − 2γ3Φ − 12γ2 þ 52γΦþ 20Þ

ðγ2 − 50Þðγ2 − 6γΦþ 6Φ2 − 2Þ
�
; ð66Þ

which is the solution for 2A2 < B2.
When A2 ¼ B2=2 we have

ΦðrÞ ¼
ffiffiffi
2

p ðBþ rÞ
B

; ð67Þ

fðrÞ ¼ 8B3C2 − 6B2C2rþ 3C2r3 ln r
2Bþr þ 6BC2r2 − 96C1r3

96r
; ð68Þ

UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð69Þ

U1ðΦÞ ¼ 3ð
ffiffiffi
2

p
−ΦÞΦ; ð70Þ

U2ðΦÞ ¼
ð ffiffiffi

2
p

Φ3 − 6Φ2 þ 6
ffiffiffi
2

p
Φ − 4Þ

	
4ð3Φ2 − 4Þ þ 3

ffiffiffi
2

p
ΦðΦ2 − 2Þ ln

ffiffi
2

p
−Φ

Φþ ffiffi
2

p



64ð ffiffiffi
2

p
−ΦÞ2ðΦ2 − 2Þ : ð71Þ

D. δ = 1=2

We can also obtain an exact black hole solution with δ ¼ 1=2, with

ΦðrÞ ¼
�

A
rþ B

�
1=4

; ð72Þ

fðrÞ ¼ 1ffiffiffiffi
A

p
B3=2ðA − 2432BÞ3

� ffiffiffiffi
B

p
ð2432B − AÞ½72A3=2ð−4B2C1r2 þ C2r

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p þ 2BC2

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p Þ

þ A5=2BC1r2 þ 2734
ffiffiffiffi
A

p
Bð2B2C1r2 þ 3C2r

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p
− 2BC2

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p Þ þ 2633ABC2ðBþ 2rÞ

− 21035B3C2� þ 36

� ffiffiffiffi
A

p
C2r2ðA2 − 2533AB − 2835B2Þ ln 2

ffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p þ 2Bþ r
r

þ 2933AB3=2C2r2 ln
r

2432ðBþ rÞ − A
þ 2933AB3=2C2r2 ln

2432ð ffiffiffiffi
A

p þ 12
ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p Þ
12

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p
−

ffiffiffiffi
A

p
��

; ð73Þ
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UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð74Þ

U1ðΦÞ ¼ 1

96
ð−3γ2Φ10 − 2γΦ6 − 3Φ2 þ 96Þ; ð75Þ

U2ðΦÞ ¼ −
3ð3γ2Φ10 þ 2γΦ6 þ 3Φ2 − 96Þ

8A5=2ð2432γ − 1Þ3
�ð2835γ2 þ 2533γ − 1Þtanh−1ð ffiffiffi

γ
p Φ2Þ

γ3=2
− 2833 ln

1 − γΦ4

ðΦ2 − 12Þ2

þ 21134ð2432γ − 1Þ
ð2433γ þ 5ÞðΦ2 − 12Þ þ

2433γ − 3

γð2433γ þ 5Þð3γ2Φ10 þ 2γΦ6 þ 3Φ2 − 253Þ ð2
834γ3ð7Φ2 þ 48ÞΦ6

þ 2532γ2ð11Φ8 þ 120Φ6 þ 233223Φ4 þ 2635Φ2 þ 21134Þ

þ γð−5Φ8 þ 253211Φ4 þ 29327Φ2 þ 21433Þ − 5ðΦ4 − 8Φ2 − 283ÞÞ
�
; ð76Þ

where
ffiffiffiffi
A

p
< 12

ffiffiffiffi
B

p
agrees with the continuity condition (24).

For
ffiffiffiffi
A

p ¼ 12
ffiffiffiffi
B

p
the solution becomes much simpler,

ΦðrÞ ¼ 2
ffiffiffi
3

p �
B

Bþ r

�
1=4

; ð77Þ

fðrÞ ¼ C2r2 ln
2
ffiffiffi
B

p ffiffiffiffiffiffiffi
Bþr

p þ2Bþr
r

8B5=2 þ
�

1

6B
−

r
4B2

þ 2

3r

�
C2

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p þ C2ffiffiffiffi
B

p þ 2
ffiffiffiffi
B

p
C2

3r
− C1r2; ð78Þ

UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð79Þ

U1ðΦÞ ¼ −
Φ10

21334
−

Φ6

2833
−
Φ2

25
þ 1; ð80Þ

U2ðΦÞ ¼ −
3ðΦ10 þ 2531Φ6 þ 2834Φ2 − 21334Þ ln 12−Φ2

Φ2þ12
þ 2332ðΦ8 þ 2432Φ4 − 2834Φ2 − 21332Þ

64A5=2 : ð81Þ

E. δ= − 1=2
To show the effects for negative ξ we present the solution with δ ¼ −1=2 as well,

ΦðrÞ ¼
�
rþ B
A

�
1=4

; ð82Þ

fðrÞ ¼ 1

B3=2ðB − 16AÞ3
�
−

ffiffiffiffi
B

p
B − 16Að64A3=2BC2ðB − 2rÞ − 1024A5=2BC2 − 8AB

× ð4BC1r2 − 3C2r
ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p þ 2BC2

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p Þþ128A2ð2BðC2

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p þ C1r2Þ þ C2r
ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p ÞÞ
þ B3C1r2 þ 128A3=2B3=2C2r2 ln

r

8
ffiffiffiffi
A

p ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p þ 16Aþ Bþ r

þ 4AC2r2ð−256A2 þ 96ABþ 3B2Þ ln 2
ffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r

p þ 2Bþ r
r

�
; ð83Þ

UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð84Þ

U1ðΦÞ ¼ −
γ2 þ 6γΦ4 − 15Φ8 − 32Φ6

32Φ6
; ð85Þ
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U2ðΦÞ ¼ −
γ2 þ 6γΦ4 − 15Φ8 − 32Φ6

4A3=2ðγ − 16Þ3Φ6

�
−
ð3γ2 þ 96γ − 256Þtanh−1

	
Φ2ffiffi
γ

p



γ3=2
− 16 ln

Φ4 − γ

ðΦ2 þ 4Þ2

þ 128ðγ − 16Þ
ðγ þ 112ÞðΦ2 þ 4Þ þ

γ − 16

γðγ þ 112Þðγ2 þ 6γΦ4 − 15Φ8 − 32Φ6Þ
× ðγ3ð3Φ2 − 8Þ þ γ2ð−45Φ6 þ 144Φ4 − 544Φ2 þ 2560Þ − 32γð105Φ6 − 376Φ4 − 56Φ2 þ 448Þ

− 1792ð15Φ2 þ 32ÞΦ4Þ
�
; ð86Þ

where 16A ≠ B. When −δAδ ¼ 4Bδð1þ δÞ, i.e., 16A ¼ B, the solution is simpler,

ΦðrÞ ¼ 2

�
B

Bþ r

�
−1=4

; ð87Þ

fðrÞ ¼ −
C2ð8B3=2 þ ð3r2B − 8B − 2rÞ ffiffiffiffiffiffiffiffiffiffiffiffi

Bþ r
p Þ

12r
þ C2r2 ln

2
ffiffiffi
B

p ffiffiffiffiffiffiffi
Bþr

p þ2Bþr
r

8B3=2 − C1r2; ð88Þ

UðΦÞ ¼ C1U1ðΦÞ þ C2U2ðΦÞ; ð89Þ

U1ðΦÞ ¼ −
8

Φ6
þ 15Φ2

32
−

3

Φ2
þ 1; ð90Þ

U2ðΦÞ ¼ 8ð45Φ6 þ 96Φ4 − 48Φ2 þ 512Þ þ 3ð15Φ8 þ 32Φ6 − 96Φ4 − 256Þ ln 4−Φ2

Φ2þ4

21431A3=2Φ6
: ð91Þ

IV. DE SITTER BLACK HOLE SOLUTIONS IN (2 + 1) DIMENSIONS

To study the possibility of the de Sitter black hole, we study the 0’s of the metric function. The equivalent equation for
fðrhÞ ¼ 0 is aðrhÞUðrhÞ þ bðrhÞU0ðrhÞ ¼ 0, where the roots rh correspond to the horizons. After substituting in the
concrete expressions we obtain a rather complicated equation,

RðrhÞ≡
Z

rh
U1ðrÞ−2PðrÞdr − f16C2ðδþ 1Þ2r2hðBþ rhÞδðAδðδ − 1Þδþ 4ðδþ 1ÞðBþ rhÞδÞ

þ 2B2ð4ðδþ 1ÞðBþ rhÞδ − AδδÞ½AδC1δ
2r2hðAδδ − 4ðδþ 1ÞðBþ rhÞδÞ þ 8C2ðδþ 1Þ2ðBþ rhÞδ�

− AδC1δ
2r4hðA4δ2ðδ2 − 3δþ 2Þ − 4Aδδðδ3 − 2δ2 þ δþ 4ÞðBþ rhÞδ þ 32ðδþ 1Þ2ðBþ rhÞ2δÞ

− 4Brh½AδC1δ
2r2hð−A4ðδ − 1Þδ2 þ 4Aδδðδ2 − δ − 2ÞðBþ rhÞδ þ 16ðδþ 1Þ2ðBþ rhÞ2δÞ

− 4C2ðδþ 1Þ2ðBþ rhÞδðAδðδ − 2Þδþ 8ðδþ 1ÞðBþ rhÞδÞ�g=fAδC2δ
2r2hð4ðδþ 1ÞðBþ rhÞδ − AδδÞ

× ½B2ð8ðδþ 1ÞðBþ rhÞδ − 2AδδÞ þ rh2ð8ðδþ 1ÞðBþ rhÞδ − Aδδðδ2 − 3δþ 2ÞÞ
þ 4BrhðAδðδ − 1Þδþ 4ðδþ 1ÞðBþ rhÞδÞ�g ¼ 0; ð92Þ

where we have defined the root function RðrhÞ. It monotonically increases for positive rh,

R0ðrhÞ ¼
16ðδþ 1Þ2ðBþ rhÞδ

Aδδ2r3hð4ðδþ 1ÞðBþ rhÞδ − AδδÞ > 0; Rð∞Þ ¼ C1

C2

; ð93Þ

which is valid for all values of δ. If C1 and C2 have the same signs, then Rð∞Þ > 0means there is one horizon. While if C1

and C2 have opposite signs, then Rð∞Þ < 0means there is no horizon. If we want a dS black hole, at least two horizons are
required, so there cannot exist dS black holes.
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If we consider negative A and B, the scalar field is
restricted to the region 0 ≤ r < −B. Because of the con-
tinuity condition 4ð1þ δÞγδ ≥ δ, the function RðrhÞ is
divided into two monotonic pieces by the line rh ¼ −B.
For 0 ≤ r < −B, there is at most one horizon, but no
asymptotically de Sitter black hole.
If we consider a metric function containing divergent

points, then the continuity condition is not valid and in
this case the metric function is divided into three parts
by the two divergent points (we only consider the non-
negative rh),

rh ¼ �
�

δ

4ðδþ 1Þ
�
1=δ

− B; rh ¼ −B: ð94Þ

The function RðrhÞ is still monotonic in the region without
divergence but there is still no dS black hole.

On the other hand, an asymptotically flat spacetime
requires C1 ¼ 0, UðrÞ ¼ C2U2ðrÞ and the metric function
becomes

fðrÞ ¼ C2ðrþ BÞ1þδ½aðrÞU2ðrÞ þ bðrÞU0
2ðrÞ�

Aδδ½δr − ðrþ BÞ� þ 4ð1þ δÞðrþ BÞ1þδ : ð95Þ

At infinity we have

Uðr → ∞Þ ¼ −
C2

ðδþ 2Þrδþ2
; ð96Þ

f∞ ≡ fðr → ∞Þ ¼ 2C2ðδþ 1Þ
Aδδ2

; ð97Þ

which imply sgnðfðr → 0ÞÞ ¼ sgnðC2Þ ¼ sgnðf∞Þ.
In this case, the function RðrhÞ becomes simpler,

RðrhÞ ¼
Z

rh
U1ðrÞ−2IPðrÞdr − 16ðδþ 1Þ2ðBþ rhÞδþ1½−AδBδþ Aδðδ − 1Þδrh

þ 4Bðδþ 1ÞðBþ rhÞδ þ 4ðδþ 1ÞrhðBþ rhÞδ�=fAδδ2r2hð4ðδþ 1ÞðBþ rhÞδ − AδδÞ
× ½B2ð8ðδþ 1ÞðBþ rhÞδ − 2AδδÞ þ r2hð8ðδþ 1ÞðBþ rhÞδ − Aδδðδ2 − 3δþ 2ÞÞ
þ 4BrhðAδðδ − 1Þδþ 4ðδþ 1ÞðBþ rhÞδÞ�g; ð98Þ

whose derivative is the same as Eq. (93).

R0ðrhÞ¼
16ðδþ1Þ2ðBþrhÞδ

Aδδ2r3hð4ðδþ1ÞðBþrhÞδ−AδδÞ>0; Rð∞Þ¼0:

ð99Þ

We observe that we have neither a cosmological horizon
nor a black hole horizon. When C2 > 0 the spacetime is
asymptotically flat without black hole solutions.
Therefore, we conclude that there is only asymptotically

AdS (2þ 1)-dimensional black hole in nonminimally
coupled theory without electromagnetic field, at least under
our metric ansatz assumption.

A. Charged de Sitter black hole solution

In [41], under the action

I ¼ 1

2

Z
d3x

ffiffiffiffiffiffi
−g

p �
R − gμν∇μϕ∇νϕ − ξRΦ2

− 2VðϕÞ − 1

4
FμνFμν

�
; ð100Þ

a charged scalar black hole solution is obtained,

ϕðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
8B

rþ B

r
; ð101Þ

fðrÞ ¼
�
3β −

Q2

4

�
þ
�
2β −

Q2

9

�
B
r

−Q2

�
1

2
þ B
3r

�
ln rþ r2

l2
; ð102Þ

VðϕÞ¼−
1

l2
þ 1

512

�
1

l2
þ β

B2

�
ϕ6

−
Q2

18432B2
ð192ϕ2þ48ϕ4þ5ϕ6Þ

þ Q2

3B2

�
2ϕ2

ð8−ϕ2Þ2−
1

1024
ϕ6 ln

Bð8−ϕ2Þ
ϕ2

�
; ð103Þ

where β is an integral constant and the maxwell field
is Aμdxμ ¼ −Q lnð rr0Þdt.
We discuss the possibility of obtaining an asymptotically

de Sitter black hole solution from this metric. Here Λ ¼
−l−2 appears in VðϕÞ as a constant term, which plays the
role of the cosmological constant. In [41] only negative Λ is
considered, and so Λ is set to be −l−2. However, the
constant Λ can either be positive, 0 or negative. So we
rewrite their solution with general Λ,

ϕðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
8B

rþ B

r
; ð104Þ
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fðrÞ ¼
�
3β −

Q2

4

�
þ
�
2β −

Q2

9

�
B
r

−Q2

�
1

2
þ B
3r

�
ln r − Λr2; ð105Þ

VðϕÞ ¼ Λþ 1

512

�
−Λþ β

B2

�
ϕ6

−
Q2

18432B2
ð192ϕ2 þ 48ϕ4 þ 5ϕ6Þ

þ Q2

3B2

�
2ϕ2

ð8 − ϕ2Þ2 −
1

1024
ϕ6 ln

Bð8 − ϕ2Þ
ϕ2

�
:

ð106Þ

If B > 0, then there is no black hole for non-negative Λ.
However, once B < 0, it is possible to have a black hole
solution with positive Λ, which is a de Sitter black hole
solution. The scalar field and the metric functions are
shown in Fig. 6. Note that the scalar field is divergent at
r ¼ −B ¼ 5, but this does not matter because it lies outside
the cosmological horizon. The metric function and the
curvature are both not divergent at this point.
To check the stability of the spacetime, we study the

perturbations of a massless scalar field ϕ1 and a massive
scalar field ϕ2 respectively,

□ϕ1 ¼ 0; ð107Þ

□ϕ2 ¼ m2ϕ2; ð108Þ

where m is the mass of the scalar field ϕ2. The trans-
formations ϕ1 ¼ r−1=2φ1e−iω1t and ϕ2 ¼ r−1=2φ2e−iω2t lead
to the differential equations

d2φ1

dr2�
þ ðω2

1 − VmlÞφ1 ¼ 0; ð109Þ

d2φ2

dr2�
þ ðω2

2 − VmsÞφ2 ¼ 0; ð110Þ

where r� ¼
R

dr
fðrÞ is the tortoise coordinate and

Vml ¼ −
fðrÞðfðrÞ − 2rf0ðrÞÞ

4r2
; ð111Þ

Vms ¼ fðrÞm2 −
fðrÞðfðrÞ − 2rf0ðrÞÞ

4r2
; ð112Þ

are the effective potentials of the massless scalar field and
the massive scalar field, respectively.
We plot these two effective potentials in Fig. 7. From

the figures we can see that there is a negative potential well
outside the black hole event horizon. Therefore this dS
black hole spacetime is maybe unstable under the mass-
less scalar perturbations and massive scalar perturbations
within some ranges of parameters. But this does not
mean that the three-dimensional charged dS black hole
we found is definitely unstable. This behavior is similar to
that of the four-dimensional Reissner-Nordström dS black
hole under neutral scalar perturbation (see Fig. 8), where
the potential is negative outside the black hole horizon.
Possible instabilities of the quasinormal and super-radiant
spectrum usually appear in such regions in four dimensions
with negative potential; see e.g., [49].
For comparison, we also plot the simplest BTZ and

charged BTZ cases in Figs. 9 and 10.
From these plots we see that the spacetime is more stable

with larger mass of the scalar field in BTZ and charged
BTZ backgrounds, while it becomes less stable with the
increase of the mass in the (2þ 1)-charged dS black hole
spacetime.

(a) (b)

FIG. 6. A (2þ 1)-dimensional asymptotically de Sitter charged black hole. In this example we take Λ ¼ 1, B ¼ −5, Q ¼ 2 and
β ¼ −1.
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(a) (b)

FIG. 8. For comparison, the metric function of the Reissner-Nordström-dS black hole is fðrÞ ¼ − 2M
r þ Q2

r2 −
Λr2
3
þ 1. Here we take

Λ ¼ 0.1, M ¼ 0.7 and Q ¼ 0.5, which give Cauchy horizon r ¼ 0.21, event horizon r ¼ 1.27 and cosmological horizon r ¼ 4.61.
Figure (a) corresponds to the effective potential of a massless scalar field, while figure (b) depicts effective potential for massive scalar
fields: the black curve, black dashed curve, pink curve and pink dashed curve represent scalar mass m ¼ 1, 2, 3, 4 respectively.

(a) (b)

FIG. 9. The metric function of BTZ black hole is fðrÞ ¼ r2

l2 −M. Here we take l ¼ 1 and M ¼ 1. In figure (a), we have the effective
potential of a massless scalar field. In figure (b), we have the effective potential for massive scalar fields. The black curve, black dashed
curve, pink curve and pink dashed curve represent scalar mass m ¼ 1, 2, 3, 4 respectively.

(a) (b)

FIG. 7. The effective potentials for (a) massless scalar field, (b) massive scalar field, with the black curve, black dashed curve, pink
curve and pink dashed curve represent scalar mass m ¼ 1, 2, 3, 4 respectively. Here we take Λ ¼ 1, B ¼ −5, Q ¼ 2 and β ¼ −1.

GENERAL BLACK HOLE SOLUTIONS IN (2þ 1)-DIMENSIONS … PHYS. REV. D 100, 024003 (2019)

024003-15



V. CONCLUSIONS

The main purpose of our manuscript is to find a general
black hole solution from the field equations when a scalar
field is nonminimally coupled to Einstein’s gravity in the
presence of a cosmological constant. As it is well known that
in 2þ 1-dimensional gravity only AdS black hole solutions
are known. Our motivation was to make a systematic study
of black hole solutions in 2þ 1 dimensions with as few
assumptions as possible. We found a solution of the Einstein
equations and the Klein-Gordon equation with a general
scalar potential for arbitrary coupling constants and integra-
tion parameters. This solution is new in the literature and
based on the form of this potential we reproduced all the
known black hole solutions in 2þ 1 dimensions and also we
produced new solutions which were not found previously.
It was argued in [47] that it is very unlikely to find an

exact solution for a random potential V. Fortunately we
obtained the general potential with arbitrary coupling
constant and four free integration constants, and based
on this general potential we found exact solutions of the
metric function. Starting from this general potential we
reproduced all the known black hole solutions in 2þ 1
dimensions; besides we have also got some new solutions
in our formalism. Considering that the integral in the
expression of potential may bring divergent points, we
also proved the continuity condition (24) for the potential
and metric function with arbitrary coupling constant. We
analyzed the asymptotic behaviors of potential and metric
functions for different ranges of δ. We found that for any
range of values of δ the asymptotic behavior of metric
is fðr → ∞Þ ¼ −C1r2 ¼ −Λr2.
Further, we discussed the influence of the coupling

constant on the sizes of the event horizon and the form
of the resulting scalar potential by plotting the figures of the
metric and potential functions. Although not all integrals of
potential V can be integrated out explicitly, a list of exact

analytic solutions can be obtained for δ ¼ n; 1=n;−n;
−1=nwhere n ¼ 1; 2; 3; 4…. These solutions have a simple
form of the scalar field, but the metric function and the
scalar potential are complicated functions with arbitrary
parameters. However, an appropriate choice of parameters
involved can bring these solutions to a simpler form. The
properties of these black holes will be interesting to study in
future works.
We also attempted in this general framework to find

asymptotically de Sitter black hole solutions. We showed
the requirement that the parameters of our theory should
satisfy appropriate constraint conditions, which does not
allow dS black hole solutions in (2þ 1)-dimensions.
Likewise, we found that there cannot exist asymptotically
flat black holes. As is well known in (2þ 1)-dimensions
there are strong constraints coming from the energy
conditions [50] for the existence of black holes, so this
is to be expected, though it is still interesting to see how our
construction fails explicitly. However, when an electro-
magnetic field is introduced, surprisingly it is possible to
find a charged-dS black hole solution in some ranges of
parameters. Nevertheless, this dS black hole solution is
maybe unstable under scalar perturbations. It would be
interesting to further explore the energy conditions, and see
how such a black hole evades the previous no-go results.
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(a) (b)

FIG. 10. The metric function of charged BTZ black hole is fðrÞ ¼ r2

l2 −M − 2q2 ln r
l. Here we take l ¼ 1,M ¼ 1 and q ¼ 2. Figures

(a) and (b) show, respectively, the effective potential for massless and massive scalar fields. In figure (b), the black curve, black dashed
curve, pink curve and pink dashed curve represent scalar mass m ¼ 1, 2, 3, 4 respectively.
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