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The study of long-wavelength scalar perturbations, in particular the existence of conserved quantities
when the perturbations are adiabatic, plays an important role in e.g., inflationary cosmology. In this paper
we present some new conserved quantities at second order and relate them to the curvature perturbation in
the uniform density gauge, ζ, and the comoving curvature perturbation,R. We also, for the first time, derive
the general solution of the perturbed Einstein equations at second order, which thereby contains both
growing and decaying modes, for adiabatic long-wavelength perturbations for a stress-energy tensor with
zero anisotropic stresses and zero heat flux. The derivation uses the total matter gauge, but results are
subsequently translated to the uniform curvature and Poisson (longitudinal, zero shear) gauges.
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I. INTRODUCTION

In this paper we consider first and second-order scalar
perturbations of Friedmann-Lemaître (FL) universes sub-
ject to the following assumptions: (i) the spatial back-
ground is flat; (ii) the stress-energy tensor can be written in
the form

Ta
b ¼ ðρþ pÞuaub þ pδab; uaua ¼ −1; ð1Þ

thereby describing perfect fluids and scalar fields; (iii) the
linear perturbation is purely scalar. This paper, which
deals with perturbations on super-horizon scales, relies
heavily on two previous papers which we shall refer to as
UW1 [1] (a unified and simplified formulation of change
of gauge formulas at second order) and UW2 [2] (five
ready-to-use systems of governing equations for second-
order perturbations).
Two gauge invariants that are conserved for adiabatic

long-wavelength perturbations at first and second order
play an important role in e.g., inflationary cosmology,
namely, the curvature perturbation in the uniform density
gauge, labeled ζ, and the curvature perturbation in the total
matter gauge, labeled R, also often referred to as the
comoving curvature perturbation. We briefly discuss the
history of these conserved quantities and give references at
the beginning of Sec. IV. In this paper we present some new
conserved quantities that in contrast are associated with the

uniform curvature gauge. In particular, writing the per-
turbed Einstein equations in the super-horizon regime in
that gauge suggests consideration of a gauge invariant
which we denote by χc, defined in terms of ϕc, the purely
temporal metric perturbation (see the next section) in the
uniform curvature gauge according to

ð1Þχc ¼ ð1þ qÞ−1ð1Þϕc; ð2Þχc ¼ ð1þ qÞ−1ðð2Þϕc − 4ð1Þϕ2
cÞ;
ð2Þ

where q is the background deceleration parameter. At first
order one of the perturbed Einstein equations shows that χc
is a conserved quantity, while the two constraint equations
relate the density and velocity perturbations algebraically to
χc, thereby providing two more conserved quantities. In
addition these equations show that χc in fact coincides with
R at first order.
UnlikeR and ζ these new quantities are not conserved at

second order. However, new conserved quantities can be
constructed at second order by adding a certain quadratic
source term to the perturbations. In particular, we use
“source compensated” second-order perturbation variables
of the form that we introduced in an earlier paper UW1 [1]
in order to simplify the change of gauge formulas, which,
moreover, are used to relate the new conserved quantities to
ζ and R at second order.
We then derive the general solution of the governing

equations for adiabatic long-wavelength perturbations at
first and second order subject to the restrictions (i)–(iii)
above. We have found that the governing equations in the
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total matter gauge are particularly simple to solve, even
when keeping both modes (growing and decaying). The
time dependence of the growing mode of the first order
perturbations is governed by a function gðaÞ, defined by1

gðaÞ ¼ 1 −
H
a2

Z
a

0

ā
HðāÞ dā; ð3Þ

where H ¼ aH, with H being the background Hubble
parameter, and a is the background scale factor. A main
result of this paper is to show that the simple form of
the first order solution in the total matter gauge extends
to second order. The conserved quantities referred to
above emerge naturally in the solution process as temporal
constants of integration (arbitrary spatial functions).
Because of the central role played by the function gðaÞ
we shall refer to it as the perturbation evolution function.
The outline of the paper is as follows. In Sec. II, we

introduce the notation for the metric and matter variables
from UW1 [1] and UW2 [2]. In Sec. III we specialize the
governing equations to second order given in UW2 [2] to
long-wavelength perturbations. In Sec. IV we derive the
new conserved quantities at second order and relate them to
the previously known ones. In Sec. V we derive the general
solution of the governing equations up to second order in
the total matter gauge, and subsequently transform the
results to the uniform curvature and Poisson gauges by
means of gauge transformation rules, followed by some
illustrative applications in Sec. VI. In Sec. VII we give a
brief discussion of the history and properties of the
perturbation evolution function gðaÞ. Section VIII contains
the concluding remarks. In the Appendixes we give some
background material from UW1 [1] and UW2 [2].

II. PERTURBATION VARIABLES

We describe scalar perturbations of a flat Robertson-
Walker geometry by writing the metric in the form2

ds2¼a2ð−ð1þ2ϕÞdη2þDiBdηdxiþð1−2ψÞδijdxidxjÞ;
ð4Þ

where η is conformal time, the xi are Cartesian background
coordinates and Di ¼ ∂=∂xi. The background geometry is
described by the scale factor a which determines the
conformal Hubble scalar and the deceleration parameter

according to H ¼ a0=a and q ¼ −H0=H2, where 0 denotes
differentiation with respect to η. By expanding the func-
tions ϕ, B, ψ in a perturbation series3 we obtain the
following metric perturbations up to second order:

ðrÞϕ;HðrÞB; ðrÞψ ; r ¼ 1; 2; ð5Þ

where the factor of H ensures that the B perturbation is
dimensionless (see UW1 [1] and UW2 [2]).
The background matter content is described by the

matter density and pressure, ρ0 and p0, with associated
scalars w ¼ p0=ρ0 and c2s ¼ p0

0=ρ
0
0. We will need the fact

that the background Einstein equations relate w and q
according to

3ð1þ wÞ ¼ 2ð1þ qÞ; ð6Þ

(see UW2 [2]). The scalar matter perturbations are defined
by expanding ρ, p, V in a perturbation series, where the
scalar velocity potential V is defined in terms of the spatial
covariant 4-velocity components by ui ¼ aDiV. As in
UW2 [2], Sec. II C, we scale the density perturbations
according to ðrÞδ ¼ ðrÞρ=ðρ0 þ p0Þ, r ¼ 1, 2, and replace
the pressure perturbations ðrÞp by the nonadiabatic pressure
perturbations ðrÞΓ, r ¼ 1, 2, which are defined to be gauge
invariants with the property that they are zero for adiabatic
perturbations.4 Thus the scalar matter perturbations are
described up to second order by the variables

HðrÞV; ðrÞδ; ðrÞΓ; r ¼ 1; 2; ð7Þ

where the factor of H ensures that the V perturbation is
dimensionless. In keeping with this approach we also use
the background e-fold time variable N ¼ lnða=a0Þ, where
a0 denotes some reference epoch. For changing to con-
formal time, note that ∂η ¼ H∂N , ∂2

η ¼ H2ð∂2
N − q∂NÞ.

In this paper we will show that when studying
perturbations on super-horizon scale significant simplifi-
cations arise when one makes use of the so-called source-
compensated second-order perturbation variables, labeled
by a hat on the kernel, that we introduced in our earlier
paper UW1 [1]:

ð2Þϕ̂ ¼ ð2Þϕ − 2ð1Þϕ2; ð8aÞ
ð2Þψ̂ ¼ ð2Þψ þ 2ð1Þψ2; ð8bÞ

1The integral in (3) has a lengthy history in linear perturbation
theory, but a standard symbol for it has not been introduced.
Because of the importance of the function gðaÞ in cosmological
perturbation theory, we digress in Sec. VII to describe some of its
history and properties.

2The scalar perturbations at first order will generate vector and
tensor perturbations at second order, but we do not give these
perturbation variables since we will not consider these modes in
this paper.

3A perturbation series for a variable f is a Taylor series in a
perturbation parameter ϵ, of the form f¼f0þϵð1Þfþ1

2
ϵ2ð2Þfþ���.

4See UW2 [2], Sec. II C, for the definitions. The details are not
needed in this paper: since we are working exclusively with
adiabatic perturbations, the terms in the perturbation equations
that involve ðrÞΓ, r ¼ 1, 2, will be set to zero.
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Hð2ÞB̂ ¼ Hð2ÞBþ ð1þ qÞðHð1ÞBÞ2; ð8cÞ

Hð2ÞV̂ ¼ Hð2ÞV þ ð1þ qÞðHð1ÞVÞ2; ð8dÞ

ð2Þδ̂ ¼ ð2Þδ − ð1þ c2sÞð1Þδ2: ð8eÞ

As regards gauge freedom, in using the line element (4)
we have fixed the spatial gauge following UW1 [1]. The
remaining gauge freedom is the choice of temporal gauge
which we can fix to second order by setting to zero the first
and second perturbations of one of the variables ψ , B, V, δ.
We use the following terminology and subscripts to label
the gauges as in UW1 [1]:

(i) B ¼ 0, Poisson (longitudinal, zero shear) gauge,
subscript p, e.g., ψp,

(ii) ψ ¼ 0, uniform curvature (flat) gauge, subscript
c, e.g., Bc,

(iii) V ¼ 0, total matter gauge, subscript v, e.g., ψv,
(iv) δ ¼ 0, uniform density gauge, subscript ρ, e.g., ψρ.

We note in passing that on super-horizon scales the uniform
density gauge is equivalent to the total matter gauge to
second order (see Appendix C).

III. GOVERNING EQUATIONS IN THE
SUPER-HORIZON REGIME

In this section we obtain the governing equations for
perturbations at second order that we need in this paper
by specializing the general equations in UW2 [2] to
super-horizon scales. This is accomplished by dropping
terms of degree two and higher in the dimensionless spatial
differential operator H−1Di. We will use the symbol ≈ to
indicate that two expressions are equal once such terms
have been dropped.
Before continuing we digress briefly in order to

clarify the meaning of the approximation symbol ≈ in
the present context, by making the transition to Fourier
space. For linear perturbations the spatial derivatives occur
in the perturbation equations as the spatial Laplacian
H−2D2, which is represented by −H−2k2 in Fourier space,
where k is the wave number. The super-horizon regime is
defined by the requirement that the wave number satisfies
H−2k2 ≪ 1, and we form the super-horizon limit of the
equations by dropping terms in H−2k2. Thus when using
the super-horizon limit we expect that errors will be of
order H−2k2:

H−2D2A → −ðH−2k2ÞAk ¼ OðH−2k2Þ for H−2k2 ≪ 1;

ð9Þ

where AðN; xiÞ is any linear perturbation and AkðNÞ
is its Fourier coefficient. It should be noted that in writing
the above equality we are assuming that AkðNÞ is bounded

as k → 0, and for some range of values of N.5 Thus, subject
to this boundedness restriction,6 a relation of the form
A ≈ B in real space means that Ak ¼ Bk þOðH−2k2Þ as
k → 0 in Fourier space. For second-order perturbations the
process is more complicated since one has to use the
convolution theorem to take the Fourier transform of
products of first order perturbations that appear in the
source terms of the second-order perturbation equations.
The spatial derivative operator H−1Di, which appears
quadratically in the source terms, is represented by
−iH−1ki in Fourier space, where ki is the wave vector.
For the leading order terms an analysis similar to Eq. (9) is
valid, but we are not aware of analogous results for the
quadratic source terms.7

A. The energy conservation equation

The perturbed energy conservation equation on super-
horizon scales plays a central role in deriving conserved
quantities in cosmological perturbation theory. By special-
izing the general perturbed energy conservation equation in
UW2 [2] (see Sec. IV) to super-horizon scales we obtain at
first order

∂Nðð1Þδ − 3ð1ÞψÞ þ 3ð1ÞΓ ≈ 0; ð10Þ

and at second order,

∂Nðð2Þδ − 3ð2ÞψÞ þ 3ð2ÞΓþ E ≈ 0; ð11aÞ

where the source term is given by

E ≈ −∂Nð6ψ2 þ ð1þ c2sÞδ2 þ 2δΓÞ − 6Γ2; ð11bÞ

after simplifying them using the first order equation. Here
and elsewhere, in the interests of notational simplicity, we
will drop the superscript ð1Þ on first order perturbations,
when there is no risk of confusion. This applies in particular
to expressions for source terms. On introducing the hatted
variables given in (8), Eq. (11a) takes the simpler form

∂Nðð2Þδ̂ − 3ð2Þψ̂Þ þ 3ðð2ÞΓ − 2Γ2Þ − 2∂NðδΓÞ ≈ 0: ð12Þ

When specialized to the uniform density gauge (ðrÞδ ¼ 0,
r ¼ 1, 2) we obtain

5For example, if A ¼ ψp and the decaying mode is present,
then A will be unbounded as N → −∞ða → 0Þ. See Eq. (44) and
the paragraph following Eq. (35).

6We note that this restriction is not satisfied in the ultra-
slow-roll model of inflation. See e.g., Romano et al. [3], who
show that ψρ and ψv do not coincide on super-horizon scales. See
the end of Sec. VII and our Eq. (25).

7Some references that use the convolution theorem to analyze
second-order source terms are Malik [4], Huston and Malik [5]
and Tram et al. [6].
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∂N
ð1Þψρ ≈ ð1ÞΓ; ∂N

ð2Þψ̂ρ ≈ ð2ÞΓ − 2Γ2: ð13Þ

These equations are a concise form of well-known equa-
tions in the literature [see Malik and Wands [7], Eqs. (5.34)
and (5.35), and Bartolo et al. [8], Eqs. (144) and (147)].

B. Governing equations in the total matter gauge

We use the governing equations as given in UW2 [2] (see
Sec. V C 1). At first order we have

ð1Þϕv ¼ −c2s ð1Þδv − ð1ÞΓ; ð14aÞ

∂N
ð1Þψv ¼ −ð1Þϕv; ð14bÞ

∂Nða2ð1ÞBvÞ ¼ a2H−1ðð1Þψv − ð1ÞϕvÞ; ð14cÞ

while the second-order equations can be written as

ð2Þϕv ¼ −c2s ð2Þδv − ð2ÞΓ −Mv; ð15aÞ

∂N
ð2Þψv ¼ −ð2Þϕv þ

1

2
Gq
v; ð15bÞ

∂Nða2ð2ÞBvÞ ¼ a2H−1ðð2Þψv − ð2Þϕv þ Gπ
vÞ; ð15cÞ

where the source terms can be obtained from UW2 [2], the
Einstein terms Gq

v and Gπ
v from Appendix A1 and Mv from

Appendix A3. In the super-horizon regime Eq. (29) below
gives ðrÞδv ≈ 0, r ¼ 1, 2, which for adiabatic perturbations,
ðrÞΓ ¼ 0, r ¼ 1, 2, implies ð1Þϕv ≈ 0 and ∂N

ð1Þψv ≈ 0 by
(14). With these restrictions the source terms reduce to

Mv ≈ 0; Gq
v ≈ 0; Gπ

v ≈ 2ψ2
v − 2D0ðψvÞ: ð16Þ

The differential operator D0 in (16), which we refer to as
the general relativity spatial operator, is defined by8

D0ðCÞ ≔ SijðDiCÞðDjCÞ: ð17Þ

The scalar mode extraction operator Sij is given by
Sij ¼ 3

2
ðD−2Þ2Dij, where Dij ≔ DðiDjÞ − 1

3
γijD2 and D−2

is the inverse Laplacian operator. The operator D0 satisfies
the identity

Sij½CDijC� ¼
1

2
C2 − D0ðCÞ; ð18Þ

which is needed in simplifying the source terms to get (16).
With (16) it follows that for long-wavelength adiabatic

perturbations Eqs. (14) and (15) reduce to the very simple
form:

∂N
ðrÞψv ≈ 0; ðrÞϕv ≈ 0; ðrÞδv ≈ 0; r¼ 1;2; ð19aÞ

with Bv determined by

∂Nða2ð1ÞBvÞ ≈ a2H−1ð1Þψv; ð19bÞ

∂Nða2ð2ÞBvÞ ≈ a2H−1ðð2Þψ̂v − 2D0ðð1ÞψvÞÞ: ð19cÞ

For convenience we have incorporated part of the source
term in (19c) into ð2Þψv to give ð2Þψ̂v.

C. Governing equations in the uniform curvature gauge

In this section we make use of the governing equations in
the uniform curvature gauge, given in UW2 [2] (see Sec. V
B 1). In Appendix A we specialize these equations to the
super-horizon regime [see Eqs. (A1) and (A2)]. The form of
these equations suggest that we introduce the new variable
χc defined by (2), which at first order leads to

∂N
ð1Þχc ≈ 0; Hð1ÞVc ¼ −ð1Þχc; ð1Þδc ≈−3ð1Þχc: ð20Þ

After using these first order equations to write the source
terms (A5) in terms of χc the equations at second order
assume the form

∂N
ð2Þχc ≈ ∂N ½−3ð1þ c2sÞχ2c �; ð21aÞ

Hð2ÞVc ≈ −ð2Þχc − ½3ð1þ c2sÞ þ ð1þ qÞ�χ2c ; ð21bÞ

ð2Þδc ≈ −3ð2Þχc: ð21cÞ

The form of these equations suggests that we define a
hatted variable for χc according to

ð2Þχ̂c ¼ ð2Þχc þ 3ð1þ c2sÞχc2; ð22Þ

in analogy with the hatted variables defined in (8). On
introducing these hatted variables Eq. (21) assumes the
following concise form:

∂N
ð2Þχ̂c≈0; Hð2ÞV̂c≈−ð2Þχ̂c;

ð2Þδ̂c≈−3ð2Þχ̂c: ð23Þ

8The general relativity spatial operator D0ðCÞ plays a central
role in determining the spatial dependence of second-order
perturbations at super-horizon scale, a general relativistic phe-
nomenon (see, e.g., Bartolo et al. [9]). Usually it is written out in
full which makes the source terms look unnecessarily compli-
cated. See Appendix B of our paper UW1 [1] for some history
and properties of D0ðCÞ.
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IV. CONSERVED QUANTITIES FOR
ADIABATIC PERTURBATIONS

There are two well-known conserved quantities for long-
wavelength adiabatic perturbations, the curvature pertur-
bation in the uniform density gauge, usually denoted by ζ
and the comoving curvature perturbation, usually denoted
by R. These conserved quantities were first introduced in
the 1980s for linear perturbations, ζ by Bardeen et al. [10]
[see Eqs. (2.43) and (2.45)], and R by Bardeen [11] [see
Eqs. (5.19) and (5.21)]. They are defined in terms of the
metric perturbations according to9

ð1Þζ ¼ −ð1Þψρ; ð1ÞR ¼ ð1Þψv: ð24Þ

These conserved quantities were subsequently generalized
to second order. In an important paper Malik andWands [7]
showed that ð2Þψρ is such a conserved quantity at second
order, and moreover the conservation property depends
only on the perturbed conservation of energy equation.10 It
is also known that the gauge invariant ð2Þψv is another
conserved quantity of this type, although in this case one
has to in addition use the perturbed Einstein equations in
order to establish conservation.11

In this section we give three new conserved quantities at
second order that are associated with the uniform curvature
gauge and relate them to the twowell-known quantities. We
also derive the conservation properties in a simple, unified
manner. We begin by reviewing the results at first order,
most of which are known.12 At first order the five gauge
invariants ψρ, ψv, χc, −HVc, − 1

3
δc, are conserved for

adiabatic perturbations on super-horizon scales, and all are
equal on super-horizon scales,

ð1Þψρ ≈ ð1Þψv ≈ ð1Þχc ≈ −Hð1ÞVc ≈ −
1

3
ð1Þδc; ð25Þ

the common value being the spatial function ð1ÞC in the
solutions in Sec. V below.13

At second order we have an analogous result provided
one uses the gauge invariants that correspond to the hatted
variables defined in Eq. (8). Specifically, the following
gauge invariants are conserved and have the same value for
adiabatic perturbations on super-horizon scales:

ð2Þψ̂ρ ≈ ð2Þψ̂v ≈ ð2Þχ̂c ≈ −Hð2ÞV̂c ≈ −
1

3
ð2Þδ̂c; ð26Þ

the common value being the spatial function ð2ÞC in the
solutions in Sec. V below. This statement is one of the main
results of this paper.
We now give a derivation of the conservation property of

these quantities, and establish the relations between them.
First, we need the perturbed energy conservation equation
in the super-horizon regime, Eqs. (10) and (12), which we
specialize to adiabatic perturbations (ðrÞΓ ≈ 0, r ¼ 1, 2):

∂Nðð1Þδ − 3ð1ÞψÞ ≈ 0; ∂Nðð2Þδ̂ − 3ð2Þψ̂Þ ≈ 0: ð27Þ

Second, in the uniform curvature gauge two of the
perturbed Einstein equations are constraint equations for
Hð2ÞVc and ð2Þδc given in the super-horizon regime for
adiabatic perturbations by Eq. (23), which we repeat here:

Hð2ÞV̂c ≈ −ð2Þχ̂c;
ð2Þδ̂c ≈ −3ð2Þχ̂c: ð28Þ

Third, we specialize the constraint equation (B3) in
Appendix B for ðrÞδ, r ¼ 1, 2, in the super-horizon regime,
to the total matter gauge (ðrÞV ¼ 0, r ¼ 1, 2), which
leads to

ð1Þδv ≈ 0; ð2Þδv ≈ 0: ð29Þ

In other words, in the super-horizon regime the density
perturbations to second order in the total matter gauge are
negligible14 (irrespective of whether the perturbations are
adiabatic).
We begin by specializing Eq. (27) successively to the

uniform density gauge, δ ¼ 0, the uniform curvature gauge,
ψ ¼ 0, the total matter gauge, V ¼ 0, and conclude that
ð2Þψ̂ρ,

ð2Þδ̂c and ð2Þψ̂v are conserved, where the last result
also requires the property (29). It now follows from (23)
that ð2Þχ̂c and Hð2ÞV̂c are also conserved. We note that
conservation of the gauge invariants ψρ and δc depends
only on conservation of energy while conservation of the
other gauge invariants in (26) also requires the Einstein
equations. Continuing, the previous manipulations also
establish the approximate equality of ð2Þχ̂c, −Hð2ÞV̂c and
− 1

3
ð2Þδ̂c. Finally we can establish that ð2Þψ̂ρ is equal to these

variables and to ð2Þψ̂v by using a change of gauge formula
in the super-horizon regime, which reads15

9See, e.g., Malik and Wands [12], Eqs. (7.61) and (7.46), and
Vernizzi [13], Eq. (14).

10See Eqs. (4.17), (4.18), (5.34) and (5.35) in [7].
11See, e.g., Noh and Hwang [14], Eqs. (281) and (362), and

Pitrou et al. [15], Eq. (3.6b).
12An early work that considered conserved quantities in a

variety of gauges is Hwang [16] [see Eqs. (92) and (93)]. In
addition to the gauges in this paper he also uses the uniform
expansion gauge, but he does not include the gauge invariants χc
and HVc.

13Some pairs are in fact equal on all scales as indicated by ¼
rather than ≈, as follows ψv¼χc¼−HVc, ψρ ¼ − 1

3
δc ≈ −HVc.

14In accordance with the discussion prior to Sec. III A, we note
that ð1Þδv ≈ 0 can be written more precisely as ð1Þδv ¼ OðH−2k2Þ
as k → 0 in Fourier space.

15Specialize Eq. (49) in UW1 [1] to adiabatic perturbations in
the super-horizon regime, and use ∂N

ð1Þψρ ≈ 0 to obtain the
second order formula.
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ð1Þψρ ¼ ð1Þψ −
1

3
ð1Þδ; ð2Þψ̂ρ ≈ ð2Þψ̂ −

1

3
ð2Þδ̂: ð30Þ

Choose the gauge on the right side of these equations to be
successively the uniform curvature gauge and the total
matter gauge and use (29) to obtain

ð2Þψ̂ρ ≈ −
1

3
ð2Þδ̂c ≈ ð2Þψ̂v: ð31Þ

It should be noted that if ð1Þψρ and ð2Þψ̂ρ are conserved
then so is the unhatted variable ð2Þψρ, because the coef-
ficient in the definition (8b) of ð2Þψ̂ is constant. The same
remark applies to ð2Þψv. However, for the other variables in
(26) conservation of the hatted variable does not imply
conservation of the unhatted variable unless q and c2s are
constant.
We end this section by pointing out that there is a special

class of perturbed FL cosmologies, namely the Lambda
cold dark matter (ΛCDM) universes, which admit
linear conserved quantities on super-horizon scale that
remain conserved on all scales. Specifically, the linear
comoving curvature perturbation ð1ÞR ¼ ð1Þψv is conserved
on all scales, as are the related gauge invariants ð1Þχc ¼
−Hð1ÞVc ¼ ð1Þψv. This conservation property follows from
the fact that for a perturbed ΛCDM universe the governing
equation (14a) reduces to the exact equation ∂N

ð1Þψv ¼ 0,
since c2s ¼ 0 and ð1ÞΓ ¼ 0. On the other hand the linear
curvature perturbation in the uniform density gauge ð1Þζ ¼
−ð1Þψρ does not have this property, and neither do any of
the second-order conserved quantities.

V. THE GENERAL SOLUTION FOR
ADIABATIC PERTURBATIONS

In this section we derive the general solution of the
governing equations for adiabatic perturbations in the
super-horizon regime using the total matter gauge. We
then obtain the solution in the uniform curvature gauge and
the Poisson gauge by using the change of gauge formulas
given in UW1 [1]. The conserved quantities described in
Sec. IVemerge naturally in the solution process, beginning
with ð1Þψv and ð2Þψ̂v, and continuing with Eq. (42a).

A. Solving in the total matter gauge

The governing equations for linear perturbations in the
total matter gauge when specialized to adiabatic perturba-
tions in the super-horizon regime assume the simple form
(19), which we repeat here but with N replaced by the
background scale factor a as time variable. Using ∂N ¼
a∂a we obtain

∂a
ð1Þψv ≈ 0; ð32aÞ

∂aða2ð1ÞBvÞ ≈ aH−1ð1Þψv; ð32bÞ

with

ð1Þϕv ≈ 0; ð1Þδv ≈ 0: ð33aÞ

It follows immediately from (32a) that

ð1Þψv ≈ ð1ÞC; ð33bÞ

where we identify the spatial function ð1ÞCðxiÞ as the
conserved quantity at first order. Solving (32b) for ð1ÞBv
gives

Hð1ÞBv ≈
�
H
a2

Z
a

0

ā
HðāÞ dā

�
ð1ÞCþ H

a2
ð1ÞC�; ð34Þ

where ð1ÞC� ¼ lima→0a2ð1ÞBv is a second arbitrary spatial
function. In terms of the perturbation growth function gðaÞ
defined in Eq. (3) we obtain

Hð1ÞBv ≈ ð1 − gÞð1ÞCþ H
a2

ð1ÞC�; ð35Þ

which with (33) gives the general solution at first order.
We make a brief remark on the physical viability of the

solution. We assume that the deceleration parameter sat-
isfies the weak restriction q > −2, which implies thatH=a2

is a decreasing function and that H=a2 → ∞ as a → 0.
We thus refer to term ðH=a2Þð1ÞC� in the solution as the
decaying mode. If the decaying mode is present (ð1ÞC� ≠ 0)
we impose a restriction of the form a > a� > 0 on
the time evolution in order to ensure that the decaying
mode is sufficiently small in the time period under
consideration.16

At second order the governing equations for adiabatic
perturbations on super-horizon scales in the total matter
gauge are given by Eq. (19), which we repeat here:

∂a
ð2Þψ̂v ≈ 0; ð36aÞ

∂aða2ð2ÞBvÞ ≈ aH−1ðð2Þψ̂v − 2D0ðð1ÞψvÞÞ; ð36bÞ

with

ð2Þϕv ≈ 0; ð2Þδv ≈ 0; ð37aÞ

where D0 is defined in (17). We write the solution of (36a)
as

ð2Þψ̂v ≈ ð2ÞC; ð37bÞ

where we identify the spatial function ð2ÞCðxiÞ as the
conserved quantity at second order. Observe that the

16Martin and Schwarz [17] do not impose a restriction of the
form a > a� and hence argue that the decaying mode has to be
excluded [see the remark following their Eq. (4.10)].
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differential equation (36b) for ð2ÞBv is essentially the same
as Eq. (32b) for ð1ÞBv, with the spatial function ð1ÞC on the
right side replaced by the spatial function ð2ÞC − 2D0ðð1ÞCÞ.
It follows immediately on taking note of Eq. (35) that the
solution for ð2ÞBv is

Hð2ÞBv ≈ ð1 − gÞðð2ÞC − 2D0ðð1ÞCÞÞ þ
H
a2

ð2ÞC�; ð37cÞ

where ð2ÞC� represents the decaying mode at second order.
Equation (37) gives the general solution at second order,
including the decaying mode, in the total matter gauge. If
ð2ÞC� ≠ 0 a restriction of the form a > a� > 0 is again
needed.

B. Transforming to the uniform curvature gauge

The link with the uniform curvature gauge at first order is
provided by the following change of gauge formulas UW1
[1]:

HVc ¼ −ψv; HBc ¼ HBv − ψv; ð38aÞ

where we are dropping the superscript ð1Þ on the linear
solution. We also need the density and velocity constraints
(20) at first order which read

HVc ¼ −χc; δc ≈ 3HVc: ð38bÞ

It follows from (33b) and (35) using (38) that

χc ≈ C; HVc ≈ −C;

δc ≈ −3C; HBc ≈ −gCþ H
a2

C�; ð39aÞ

while by (2) we obtain

ϕc ¼ ð1þ qÞχc ≈ ð1þ qÞC; ð39bÞ

which give the linear perturbations in the uniform curva-
ture gauge.
The link with the uniform curvature gauge at second

order is provided by the following change of gauge
formulas:

Hð2ÞV̂c ≈ −ð2Þψ̂v; ð40aÞ

Hð2ÞB̂c ≈Hð2ÞB̂v − ð2Þψ̂v þ 2∂NðHBvÞψv −HBrem;v;c;

ð40bÞ

given by Eqs. (C2a) and (C3) in Appendix C. We also need
the density and velocity constraints (23) which read

Hð2ÞV̂c ≈ −ð2Þχ̂c;
ð2Þδ̂c ≈ −3ð2Þχ̂c: ð41Þ

It immediately follows from (37b), (40a) and (41) that

ð2Þχ̂c≈ ð2ÞC; Hð2ÞV̂c≈−ð2ÞC; ð2Þδ̂c≈−3ð2ÞC; ð42aÞ

where the spatial function ð2ÞCðxiÞ is the conserved
quantity at second order. The metric perturbation ð2Þϕc is
determined by first finding ð2Þχc using (22) and then using
the definition (2), which leads to

ð2Þϕc ≈ ð1þ qÞðð2ÞCþ ð2ð1þ qÞ þ 3ðw− c2sÞÞC2Þ: ð42bÞ

Note that the decaying mode does not enter into the
expressions (42a) and (42b).
We finally use (40b) in conjunction with (37b) and (37c)

and the definitions of the hatted variables (8) to obtain an
expression for Hð2ÞBc. This necessitates using the first
order solution that is given by (33), (35), (39) and (43) to
evaluate the complicated source term HBrem;v;c given by
Eq. (C3b) in Appendix C. At this stage, in the interests of
simplicity, we drop the decaying mode. The final result is

Hð2ÞBc≈−gð2ÞCþðg−ð1þqÞðgþ1ÞÞC2þ2ðq−1ÞgD0ðCÞ:
ð42cÞ

In summary Eq. (42) gives the solution at second order in
the uniform curvature gauge, with the decaying mode set to
zero in (42c). If needed the decaying mode terms can be
worked out without difficulty.

C. Transforming to the Poisson gauge

It turns out that the super-horizon solution has its most
complicated form when expressed in the Poisson gauge. At
first order the link with the Poisson gauge is provided by the
following change of gauge formulas (UW1 [1], Sec. III):

ψp ¼ ψv −HBv; HVp ¼ −HBv; δp ¼ δv − 3HBv;

ð43aÞ

and the perturbed Einstein equations give

ϕp ¼ ψp: ð43bÞ

It follows from (33) and (35) using (43) that

ψp ≈ gC −
H
a2

C�; HVp ≈ −ð1 − gÞC −
H
a2

C�;

δp ≈ −3ð1 − gÞC − 3
H
a2

C�; ð44Þ

which give the linear perturbations in the Poisson gauge.
The link with the Poisson gauge at second order is

obtained by generalizing the change of gauge formu-
las (43a) to second order, as in Eqs. (C4), (C2b) and
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(C2c). We use (C4) to first calculate ð2Þψ̂p in terms of ð2Þψ̂v

and ð2ÞB̂v, and then set ϕv ¼ 0 in (C2b) and (C2c) to get
Hð2ÞV̂p ≈ ð2Þψ̂p − ð2ÞC and ð2Þδ̂p ≈ 3Hð2ÞV̂p. The only use

of the perturbed Einstein equations is to relate ð2Þϕ̂p to ð2Þψ̂p

as in Eq. (C5). The results for the unhatted variables,
obtained using (8), are as follows:

ð2Þψp≈gð2ÞCþðð1þqÞð1−gÞ2−g2−gÞC2

þ4gð1−gÞD0ðCÞ; ð45aÞ
ð2Þϕp ≈ ð2Þψp þ 4g2C2 − 4ðð1þ qÞð1 − gÞ2 þ g2ÞD0ðCÞ;

ð45bÞ

Hð2ÞVp ≈ −ð1 − gÞð2ÞC − gð1 − gÞðC2 − 4D0ðCÞÞ; ð45cÞ
ð2Þδp ≈ 3Hð2ÞVp þ 3½3ð1þ c2sÞ þ ð1þ qÞ�ð1 − gÞ2C2;

ð45dÞ

with the decaying mode set to zero (ðrÞC� ¼ 0, r ¼ 1, 2) in
the interest of simplicity. Note that the decaying mode
would appear in each of these expressions.

VI. APPLICATIONS

The solution of the governing equations for adiabatic
long-wavelength perturbations given in Sec. VA using the
total matter gauge [see Eq. (37)] is general in the sense that
it is valid for any stress-energy tensor of the form (1) (zero
anisotropic stress and heat flux), and also includes the
decaying mode. The spatial dependence of the solution is
determined by four spatial functions, the two functions ð1ÞC
and ð2ÞC, which determine the growing mode and represent
the conserved quantities, and the two functions ð1ÞC� and
ð2ÞC�, which determine the decaying mode. The depend-
ence in time of the growing mode at first and second order
is determined solely by the perturbation growth function
gðaÞ. Indeed the solution as derived in the total matter
gauge has a remarkably simple form. In the uniform
curvature gauge [see Eq. (42)] and Poisson gauge [see
Eq. (45)], however, the perturbations at second order also
depend on the matter variables w and c2s .
Before giving some examples we briefly digress to relate

the arbitrary functions ðrÞC, r ¼ 1, 2, to the usual conserved
quantities ðrÞζ ≡ −ðrÞψρ and ðrÞR≡ ðrÞψv, which are
approximately equal but opposite in sign for adiabatic
perturbations in the super horizon regime. In our derivation
of the solutions we introduced ð1ÞC as ð1Þψv, and ð2ÞC as
ð2Þψ̂v. It follows that

ð1ÞC≡ ð1ÞR ≈ −ð1Þζ; ð46aÞ
ð2ÞC≡ ð2ÞRþ 2ð1ÞR2 ≈ −ðð2Þζ − 2ð1Þζ2Þ; ð46bÞ

since ð2Þψ̂ ¼ ð2Þψ þ 2ð1Þψ2. We mention that in inflationary
cosmology it is customary to parametrize the primordial
non-Gaussianity level in terms of the conserved curvature
perturbation ζ according to

ð2Þζ ¼ 2aNLð1Þζ2; ð47Þ

where the parameter aNL depends on the physics of the type
of inflation [see, e.g., Bartolo et al. [18], Eq. (38)]. In terms
of our conserved quantity C the relation (47) reads

ð2ÞC ¼ 2ð1 − aNLÞð1ÞC2: ð48Þ

For standard single field inflation aNL ≈ 1 and hence
ð2ÞC ¼ 0.
The general solution that we derived in Sec. VA applies

to the case of a perfect fluid with a barotropic equation of
state p ¼ pðρÞ since then the adiabaticity conditions
ðrÞΓ ¼ 0, r ¼ 1, 2, are satisfied. In this case the scalars
w and c2s are determined by the equation of state. In the
special case of a linear equation of state p ¼ wρ with w
constant andw > − 5

3
, it follows that q > −2 is constant and

integrating a∂aH ¼ −qH gives

HðaÞ ¼ H0ða=a0Þ−q; ð49Þ

where H0 ¼ Hða0Þ, where a0 is a fixed reference epoch.17

On substituting this expression in the definition (3) of the
perturbation growth function gðaÞ we obtain

gðaÞ ¼ 1þ q
2þ q

¼ 3ð1þ wÞ
5þ 3w

; ð50Þ

i.e., gðaÞ is constant. Note that gðaÞ ¼ 3
5
for dust and

gðaÞ ¼ 2
3
for radiation. In this case the solution in the

Poisson gauge given by (45a) and (45b) simplifies con-
siderably, resulting in

ð2Þψ̂p ≈ gð2ÞCþ 4gð1 − gÞD0ðð1ÞCÞ; ð51aÞ
ð2Þϕ̂p ≈ gð2ÞC − 4g2D0ðð1ÞCÞ: ð51bÞ

The general solution also applies to long-wavelength
perturbations in a two-fluid universe with the matter
described as a single fluid with barotropic equation of
state, so that the perturbations are adiabatic. The two fluids
are assumed to be noninteracting, each with a linear
equation of state, with parameters w1, w2 satisfying
w2 < w1. Two cases of particular interest are the

17Here and in the rest of this section we are temporarily
suspending our convention of using 0 to denote a background
quantity and are instead using it to refer to the value of some
quantity at a fixed reference epoch denoted by a0.
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radiation-matter universe with w2 ¼ 0, w1 ¼ 1
3
and the

ΛCDM universe with w2 ¼ −1, w1 ¼ 0. The former case
arises when deriving an expression for the second-order
early integrated Sachs-Wolfe effect in the anisotropy of the
CMB on large scales ([9] Eqs. (3.9)–(3.10), Sec. III C, and
Appendix C.)
In order to calculate gðaÞ we need an expression for

HðaÞ. Conservation of energy for each fluid leads to
ρA=ρA;0 ¼ x−3ð1þwAÞ, x ¼ a=a0, A ¼ 1, 2, where ρA,
A ¼ 1, 2 are the background densities of the fluids and
ρA;0 ¼ ρAða0Þ. It follows that the individual density param-
eters ΩA ¼ ρA=ð3H2Þ, A ¼ 1, 2 are given by

ΩA ¼ ΩA;0x−ð1þ3wAÞ
�
H0

H

�
2

; ð52Þ

where ΩA;0 ¼ ρA;0=ð3H0Þ2, A ¼ 1, 2. Since the back-
ground is flat, we have Ω1 þ Ω2 ¼ 1 and (52) leads to

�
H
H0

�
2

¼ Ω1;0x−ð1þ3w1Þ þ Ω2;0x−ð1þ3w2Þ; x ¼ a=a0;

ð53Þ

whereΩ1;0 þΩ2;0 ¼ 1. We can now substitute (53) in (3) to
obtain an explicit expression for gðaÞ which determines all
the first order perturbations, and in the case of the total
matter gauge, also the second-order perturbations. The
matter parameters w and c2s for the combined fluid are
given by

w¼w1Ω1þw2Ω2; c2s ¼
w1ð1þw1ÞΩ1þw2ð1þw2ÞΩ2

1þw
;

ð54Þ

where the ΩA are given by (52). As an example the
curvature perturbation ψp in the Poisson gauge is given
by Eqs. (45a) and (8b):

ð1Þψp ≈ gð1ÞC; ð55aÞ

ð2Þψp ≈ gð2ÞCþ
�
3

2
ð1þ wÞð1 − gÞ2 − g2 − g

�
ð1ÞC2

þ 4gð1 − gÞD0ðð1ÞCÞ: ð55bÞ

At second order the leading order term is determined by g
alone while the source terms depend also on w.
For all values of w1 and w2 it has been shown by Hu and

Eisenstein [19] that the integral in (3) that determines g for
these two-fluid models can be expressed in terms of the
incomplete beta function, and that if ð5þ 3w1Þ=3ðw1 − w2Þ
is an integer then gðaÞ can be expressed in elementary form
(see page 12 in [19]). We now consider a radiation-matter
universe (w1 ¼ 1

3
, w2 ¼ 0), which satisfies this condition.

In this case it is convenient to choose a0 ¼ aeq, the epoch
of matter-radiation equality. It follows thatΩ1;0 ¼ Ω2;0 ¼ 1

2
,

and (53) simplifies to give

HðaÞ ¼ Heq

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
ffiffiffi
2

p
x

; x ¼ a=aeq: ð56Þ

It is a simple matter to evaluate the integral (3) for gðaÞ to
obtain

gðaÞ ¼ 1

15
x−3ð9x3 þ 2x2 − 8x − 16þ 16

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p Þ;
x ¼ a=aeq: ð57aÞ

In addition (53) and (52) lead directly to

w ¼ 1

3ð1þ xÞ 3c2s ¼
4

3xþ 4
: ð57bÞ

As expected it follows that lima→0gðaÞ ¼ 2
3
(radiation) and

lima→∞gðaÞ ¼ 3
5
(pressure-free matter). The curvature per-

turbation ψp in the Poisson gauge, given by (55), can now
be calculated using (57). The first order expression has
been given, e.g., by Hu and Eisenstein [19] [see Eq. (67)].18

To the best of our knowledge the second-order expression
is new.19

The second special case of importance is the perturbed
ΛCDM universe given by w2 ¼ −1, w1 ¼ 0. It follows
from (53) that

H2 ¼ H2
0ðΩm;0x−1 þΩΛ;0x2Þ x ¼ a=a0; ð58Þ

which when substituted into (3) gives gðaÞ for the ΛCDM
universe.20 From (52) and (54) we obtain

1þ w ¼ Ωm ¼ Ωm;0x−1
�
H0

H

�
2

: ð59Þ

With these expressions one can use (55) to calculate the
long-wavelength curvature perturbation ψp in the Poisson
gauge, and any other perturbations for the ΛCDM universe
using the results of Sec. V. In this case, however, one can do
more: since c2s ¼ 0 and Γ ¼ 0 for the perturbed ΛCDM
universe the full (i.e., nontruncated) equations (14) at linear

18This expression for gðaÞ has also been given by Kodama and
Sasaki [20] [see Eqs. (IV.4.11) and (IV.4.14) with z ¼ 1þ x],
Dodelson [21] [see Eq. (7.32), up to a constant multiplicative
factor], and Bartolo et al. [9] [see Eq. (5.19)]. Mukhanov [22]
gives an expression for gðηÞ, see Eq. (7.71).

19An expression for ð2Þψp for the radiation-matter universe has
been given by Bartolo et al. [9] [see Eq. (3.48)], but the source
term was left as a complicated integral.

20We note that the function gðaÞ for ΛCDM can be represented
in different ways and has been studied extensively, as described in
Sec. VII [see Eqs. (74) and (78)].
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order in the total matter gauge can be solved explicitly as in
the super-horizon case, giving the exact expressions

ψv ¼ ð1ÞC; ϕv ¼ 0; HBv ¼ ð1 − gÞð1ÞC; ð60Þ
where ð1ÞC is the conserved quantity. The new feature is the
exact expression for the density perturbation which we can
calculate using

δv ¼
2

3
ð1þ wÞ−1H−2D2ðψv −HBvÞ: ð61Þ

It follows from (59) and (60) that

δv ¼
2

3
m−2xgD2ð1ÞC; x ¼ a=a0; ð62Þ

where m2 is a constant given by m2 ¼ H2
0Ωm;0.

Furthermore, the full (nontruncated) equations (15) at
second order in the total matter gauge can likewise be
solved explicitly, and one finds that the evolution of the
perturbations ð2Þψv, ð2Þϕv, Hð2ÞBv and ð2Þδv is again
determined by gðaÞ, partly algebraically and partly through
an integral involving gðaÞ. We will give details elsewhere.
We note, however, that the density perturbation ð2Þδv has
been previously determined in an indirect way and this
expression shows the role played by gðaÞ [see Uggla and
Wainwright [23], Eqs. (10), (13) and (16)]. Our simple
method of integration using the total matter gauge confirms
the earlier result.

VII. THE PERTURBATION EVOLUTION
FUNCTION

The function gðaÞ is defined by Eq. (3), which we repeat
here:

gðaÞ ¼ 1 −
H
a2

Z
a

0

ā
HðāÞ dā: ð63Þ

This function first emerged in this paper when we solved
the governing equations in the total matter gauge at first
order to obtain the metric perturbation Bv. We subsequently
showed that it determines the evolution of the perturbations
at first order in all the standard gauges. In particular, in the
Poisson gauge which plays an important role in applica-
tions, g determines the growing mode of the curvature
perturbation ψp at first order in the long-wavelength limit
according to21

ψp=R ≈ g: ð64Þ
In other words g represents the growth of the nonconserved
Poisson curvature perturbation ψp relative to the conserved
comoving curvature perturbation R. We note that the ratio
ψp=R has been emphasized by Hu and Eisenstein [19],

who derived the following expression for long-wavelength
adiabatic perturbations with negligible anisotropic stress:22

ψp=R ≈ 1 −
ffiffiffi
ρ

p
a

Z
a

0

dāffiffiffiffiffiffiffiffiffi
ρðāÞp ; ð65Þ

where ρ denotes the background matter density. The
relation ρ ¼ 3H2, valid in a flat background, shows that
the integral in (65) is equal to the integral in (63).
We now derive some properties of g, first noting that g

can also be expressed as a function of t or of η by making a
change of variable in the integral, leading to

gðtÞ ¼ 1 −
H
a

Z
t

0

aðt̄Þdt̄; gðηÞ ¼ 1 −
H
a2

Z
η

0

aðη̄Þ2dη̄:

ð66Þ
The initial singularity is given by a ¼ 0, with the clock time
translated so that t ¼ 0when a ¼ 0. We assume thatH > 0
and that q > −2 for all t > 0. It follows from the first of
Eq. (66) that gðtÞ < 1 for t > 0.
As regards asymptotic behavior, if H=a → ∞, q → qsing

as t → 0 and H=a → 0, q → q∞ as t → ∞, where
qsing; q∞ > −2, then it follows from the first of Eq. (66)
that23

lim
t→0

gðtÞ ¼ 1þ qsing
2þ qsing

¼ 3ð1þ wsingÞ
5þ 3wsing

;

lim
t→∞

gðtÞ ¼ 1þ q∞
2þ q∞

¼ 3ð1þ w∞Þ
5þ 3w∞

; ð67Þ

are finite. By integrating the identity

∂t

�
a
H

�
− a ¼ að1þ qÞ; ð68Þ

we can write gðtÞ in the alternate form

gðtÞ ¼ H
a

Z
t

0

aðt̄Þð1þ qðt̄ÞÞdt̄; ð69Þ

which implies that if 1þ q > 0 then gðtÞ > 0 for t > 0. A
final property that follows from (63) is

∂aðagÞ ¼ ð1þ qÞð1 − gÞ: ð70Þ
Thus if q > −1 then agðaÞ is an increasing function.
Since 1985 the integrals that appear in the expressions

(63) and (66) for the function g have appeared in many
papers on linear perturbation theory, usually giving
the Bardeen potential ψp for adiabatic long-wavelength

21This follows from (33b) and (44), noting that ψv ¼ R.

22See Eq. (59) in [19], dropping the decaying mode, neglecting
the second term and noting that Φ and ζ correspond to our ψp
and R.

23Write gðtÞ ¼ 1 −
R

t

0
aðt̄Þdt̄
a=H and apply l’Hôpital’s rule to the

indeterminate ratio using (68).
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perturbations. However, a notation for the function g has
not been introduced. We have already mentioned that Hu
and Eisenstein [19] effectively introduced the integral
expression for gðaÞ in this context. In order to relate our
function g to other work we consider our expression (44)
for ψp for adiabatic long-wavelength perturbations, which
we write here using t as follows:24

ψpðtÞ ≈ CgðtÞ − C�
H
a
¼ C

�
1 −

H
a

Z
t

0

aðt̄Þdt̄
�
− C�

H
a
:

ð71Þ

Here C and C� are arbitrary spatial functions. The solution
with C� ¼ 0 is the growing mode, and is the unique
solution which is bounded as a → 0. The solution with
C ¼ 0 is the decaying mode and is unbounded as a → 0.
If C ≠ 0 then one can incorporate C� into the lower

bound of the integral as follows:

ψpðtÞ ≈ C

�
1 −

H
a

Z
t

t�
aðt̄Þdt̄

�
; ð72Þ

where t� is a spatial function. This is the form in which the
expression for ψp is usually given in the literature. In some
references the expression (72) is derived by assuming a
particular matter content, e.g., a perfect fluid with an
arbitrary equation of state [Hwang [25], see Eq. (55),
Mukhanov [22], see Eq. (7.69)] or a minimally coupled
scalar field [Mukhanov [26], Eq. (13), Mukhanov et al.
[27], see Eq. (6.56), Hwang [16], see Eq. (94)]. It is known,
however, that one can derive (71) or (72) without speci-
fying the matter content in detail, as we have done. We refer
to Hu and Eisenstein [19], Eq. (59), Bertschinger [28],
Eq. (24) with (10) and (11), noting that his κ corresponds to
our R, and Weinberg [29], Eqs. (5.4.16) and (5.4.20). We
note that these authors identify the arbitrary function C in
(71) with the comoving curvature perturbation R, thereby
completing the solution.
We showed in Sec. VI that the function g as defined by

(63) or (69) also arises in a perturbed ΛCDM cosmology, in
which case it describes the perturbations exactly and on all
scales. In this context, however, it was introduced in a
completely different way, namely, by finding the function
DðaÞ, called the growth factor, that is the appropriately
normalized growing solution of the evolution equation for
the linear density perturbation:

�
∂η

2 þH∂η −
3

2
ΩmH2

�
δv ¼ 0: ð73Þ

This function has the following integral expression:25

DðaÞ ¼ 5

2
H2

0Ωm;0
H
a

Z
a

0

1

HðāÞ3 dā; ð74Þ

where H2 is given by (58). The numerical factor 5
2
was

determined by requiring that

lim
a→0

�
DðaÞ
a=a0

�
¼ 1: ð75Þ

We now relate DðaÞ to gðaÞ. We begin by writing the
general expression (69) for gðtÞ in terms of a, obtaining:

gðaÞ ¼ H
a2

Z
a

0

āð1þ qðāÞÞ
HðāÞ dā: ð76Þ

In a ΛCDM universe it follows from (59) using 1þ q ¼
3
2
ð1þ wÞ that

ða=a0Þð1þ qÞ ¼ 3

2
H2

0Ωm;0H−2: ð77Þ

We now specialize the expression (76) to the ΛCDM
universe by substituting (77). On comparing the result
with (74) we obtain

gðaÞ ¼ 3

5

�
DðaÞ
a=a0

�
: ð78Þ

In the ΛCDM context the function g was first defined in
terms of D in this way, i.e., gðaÞ is proportional to DðaÞ=a.
The function g then determines the Bardeen potential
according to ψp ¼ gðaÞψ0ðxiÞ where ψ0ðxiÞ is an arbitrary
spatial function. See, e.g, Bartolo et al. [9] [in the text
following Eq. (2.3)] and Villa and Rampf [32] [in the text
following Eq. (5.12)]. The factor 3

5
in (78) implies that

ψ0 ¼ R. In the above references this factor is omitted,
which implies that ψ0 ¼ 3

5
R.

VIII. DISCUSSION

In this paper we have considered scalar perturbations of
flat FL cosmologies up to second order, subject to the
assumption that at first order the vector and tensor modes
are zero. The metric perturbations are described by the
spatially gauge fixed variables ϕ, ψ ,HB. The perturbations
of the stress-energy tensor, which is assumed to have zero
anisotropic stresses and zero heat flux, are described by the

24Several authors have used the expression (69) with 1þ q ¼
− _H=H2 for gðtÞ in (71), e.g., Martin and Schwarz [17], Eq. (4.26)
and Malik and Wands [24] Eq. (3.38).

25See Eisenstein [30], Eqs. (3) and (4). Note that his a and H
correspond to our a=a0 and H=H0. This result was first given by
Heath [31] using unfamiliar notation. See also Villa and Rampf
[32] Eqs. (5.7) and (5.12)–(5.13), where their a corresponds to
our a=a0. Matsubara [33] gives a different representation of D,
see Eqs. (8) and (10).
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variables δ,HV, Γ. The background stress-energy tensor is
characterized by the scalars w, c2s and the background
dynamics by H, q, where 1þ q ¼ 3

2
ð1þ wÞ.

Within this framework we have given for the first time
the general explicit solution of the governing equations up
to second order for adiabatic perturbations on super-
horizon scales [see Eq. (37)]. We showed that in the total
matter gauge the governing equations can be integrated
very easily, leading to a solution that has a remarkably
simple form: the three matter perturbations are zero and of
the three metric perturbations, one is zero, one is constant in
time and the remaining one has an increasing mode and a
decreasing mode26 with time dependence proportional to
1 − gðaÞ and H=a2, respectively, at both first and second
order. In other words, the perturbation evolution function
gðaÞ, which is determined by the background dynamics
through Eq. (3), completely determines the evolution of the
growing mode up to second order for adiabatic perturba-
tions on super-horizon scale. Going beyond the initial
scope of this paper we showed in addition that the function
gðaÞ for ΛCDM determines the growing mode of pertur-
bations of these models on all scales to second order.
Having derived the solutions using the total matter gauge

we also obtained the solution in the uniform curvature
gauge and the Poisson gauge by using the change of gauge
formulas. There is an increasing complexity in the solution
as one progresses to the uniform curvature gauge and then
to the Poisson gauge, with the decaying mode adding
significantly to the complexity. Moreover, in these gauges
the background scalars w (or q) and c2s also play a role in
determining the evolution.
In a subsequent related paper [35] we consider second-

order perturbations of a flat Friedmann-Lemaître universe
whose stress-energy content is a single minimally coupled
scalar field with an arbitrary potential. We apply the
methods used in this paper to derive the general solution
of the perturbed Einstein equations in explicit form for this
class of models when the perturbations are in the super-
horizon regime. As a by-product we obtain a new con-
served quantity for long-wavelength perturbations of a
single scalar field at second order.
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APPENDIX A: GOVERNING EQUATIONS IN THE
UNIFORM CURVATURE GAUGE

On super-horizon scale the governing equations in the
uniform curvature gauge simplify significantly: the source

terms are independent of Bc and hence the evolution
equation for Bc decouples from the other equations. This
equation will, however, not be needed in this paper. The
remaining equations, assuming that the perturbations are
adiabatic (ðrÞΓ ≈ 0, r ¼ 1, 2), have the following form
(specialize the equations in UW2 [2], Sec. V B 1):

ð1þ qÞ∂Nðð1þ qÞ−1ð1ÞϕcÞ ≈ 0; ðA1aÞ

Hð1ÞVc ¼ −ð1þ qÞ−1ð1Þϕc; ðA1bÞ
ð1Þδc ≈ 3Hð1ÞVc; ðA1cÞ

while at second order we obtain

ð1þ qÞ∂Nðð1þ qÞ−1ð2ÞϕcÞ ≈ −
1

2
SΓ
c ; ðA2aÞ

Hð2ÞVc ≈ −ð1þ qÞ−1
�

ð2Þϕc −
1

2
Sq
c

�
; ðA2bÞ

ð2Þδc ≈ 3Hð2ÞVc þ
1

2
ð1þ qÞ−1ðSρ

c − 3Sq
c Þ: ðA2cÞ

The source terms with kernel Sc are given by (see UW2 [2],
Sec. V B 1)

Sc ¼ Gc − 3ð1þ wÞT c; ðA3Þ
where the Einstein tensor source terms are

GΓ
c ≈ −8L1ϕ

2
c ¼ −8ð1þ qÞ∂Nðð1þ qÞ−1ϕ2

cÞ;
Gq
c ≈ 8ϕ2

c ; Gρ
c ≈ 24ϕ2

c ; ðA4Þ
[see Eq. (34a) in UW2 [2] for the definition of the
differential operator L1] and the stress-energy source terms
are

TΓ
c ≈ −

1

3
ð∂Nc2sÞδ2c ; ðA5aÞ

Tq
c ≈ 2Si½ðð1þ c2sÞδc − ϕcÞDiðHVcÞ�; ðA5bÞ

T ρ
c ≈ 0: ðA5cÞ

The scalar mode extraction operator Si in (A5b) is given by
Si ¼ D−2Di, where D−2 is the inverse spatial Laplacian.
Here and elsewhere in this Appendix, in order to simplify

the notation we have dropped the superscript ð1Þ on the
linear perturbations in the source terms.

APPENDIX B: THE DENSITY PERTURBATION
CONSTRAINT

We restrict the general expression for the density
perturbations ðrÞδ, r ¼ 1, 2, valid in any temporal gauge,
given in UW2 [2] [see Eq. (40)] to super-horizon scales:

26In cosmological perturbation theory at second order the
decaying mode is usually set to zero. One exception is Chris-
topherson et al. [34].
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ð1Þδ ≈ 3Hð1ÞV; ðB1aÞ
ð2Þδ ≈ 3Hð2ÞV þ Sρ − 3Sq; ðB1bÞ

where

Sρ¼Gρ−3ð1þwÞTρ; Sq¼Gq−3ð1þwÞTq: ðB1cÞ

On specializing the source terms G and T to super-horizon
scales and using the equation ð1þ qÞHð1ÞV ¼ −ð∂N

ð1Þψ þ
ð1ÞϕÞ we obtain

Sρ−3Sq≈3ð1þqÞðHVÞ2þð1þc2sÞδ2þ6SiðΓDiðHVÞÞ:
ðB2Þ

On introducing the hatted variables as defined by Eq. (8),
Eq. (B1b) assumes the concise form

ð2Þδ̂ ≈ 3Hð2ÞV̂ þ 6SiðΓDiðHVÞÞ; ðB3Þ

valid for any temporal gauge, where Si is defined following
(A5) in Appendix A.

APPENDIX C: CHANGE OF GAUGE FORMULAS

We require the following change of gauge formulas for
long-wavelength perturbations that can be obtained from
UW1 [1] (specialize the formulas at the end of Sec. III by
dropping terms of order two or higher in Di):

ð2Þ
□̂v ¼ ð2Þ

□̂ −Hð2ÞV̂ þ 2ð∂N□vÞHV þ□rem;v

þ 2Si½ϕvðDiHVÞ�; ðC1aÞ

ð2Þ
□̂p ¼ ð2Þ

□̂ −Hð2ÞB̂þ 2ð∂N□pÞHBþ□rem;p −HBrem;p;

ðC1bÞ

where the kernel□ can be one of ψ ,HB,HV or 1
3
δ, and the

gauge on the right side can be one of the standard choices.
The quantities □rem are given by Eq. (32) in UW1 [1], and
the operator Si is defined following (A5) in Appendix A.
Equation (C1a) can be specialized to give the following
generalizations of some of the first order gauge formulas27:

ð2Þψ̂v ≈ −Hð2ÞV̂c − 2Si½ðDiϕvÞHVc�; ðC2aÞ
ð2Þψ̂v ≈ ð2Þψ̂p −Hð2ÞV̂p − 2Si½ðDiϕvÞHVp�; ðC2bÞ

ð2Þδ̂p ≈ 3Hð2ÞV̂p − 6Si½ϕvðDiHVpÞ�: ðC2cÞ

These formulas simplify further and match the correspond-
ing first order formulas if the perturbations are also
adiabatic and the Einstein equations hold since then
ð1Þϕv ≈ 0.
Next choose □ ¼ HB in (C1a) with the uniform

curvature gauge on the right side. On using (C2a), the
relation ð1Þψv ¼ −Hð1ÞVc and the first order solution (33)
we obtain the following more complicated relation:

Hð2ÞB̂c ≈Hð2ÞB̂v − ð2Þψ̂v þ 2∂NðHBvÞψv −HBrem;v;c;

ðC3aÞ

where

HBrem;v;c ≈ ð∂N þ 2qÞðD0ðHBvÞ − D0ðHBcÞÞ
þ 2Si½ðϕv þ ϕpÞDiHBv − ðϕc þ ϕpÞDiHBc�:

ðC3bÞ

We recall that the differential operator D0 is defined in (17).
Next choose□ ¼ ψ in (C1b) and use the total matter gauge
on the right side to obtain

ð2Þψ̂p≈ ð2Þψ̂v−Hð2ÞB̂vþ2ð∂NψpÞHBvþð∂Nþ2qÞD0ðHBvÞ
þ2Si½ðϕpþϕvÞDiðHBvÞ�: ðC4Þ

In addition the perturbed Einstein equations in the Poisson
gauge UW2 [2] [introduce hatted variables in Eq. (48b) in
[2] ] yield

ð2Þϕ̂p ≈ ð2Þψ̂p − 4½D0ðψpÞ þ ð1þ qÞD0ðHVpÞ�: ðC5Þ

The source terms in Eqs. (C3) and (C4) can be evaluated
using the first order solutions in Secs. VA–VC, and the
derivative ∂Ng ¼ ð1þ qÞð1 − gÞ − g which follows
from (70).
Finally we show that the uniform density gauge is

equivalent to the total matter gauge on super-horizon scales
to second order. This is a consequence of the relations (29),
(B1a) and (B3), which imply that ðrÞVρ ≈ 0, r ¼ 1, 2, and
the fact that the metric perturbations f ¼ ðϕ;ψ ; BÞ satisfy
ðrÞfρ ≈ ðrÞfv for r ¼ 1, 2, on super-horizon scales when the
perturbed Einstein equations at linear order hold, where the
latter result follows from UW1 [1].28

27Choose□ ¼ ψ with first the uniform curvature gauge on the
right side and then the Poisson gauge and use (14b)
(∂Nψv ¼ −ϕv). Then choose □ ¼ 1

3
δ with the Poisson gauge

on the right side and use (29) (δv ≈ 0).

28Choose the total matter gauge in Eq. (41d) which yields
ξNρ;v ≈ 0, and then use (39a), (39b) and (40b).
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