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Following up on earlier work on the regularization of the singular Schwarzschild solution, we now
apply the same procedure to the singular Friedmann solution. Specifically, we are able to remove the
divergences of the big bang singularity, at the price of introducing a 3-dimensional spacetime defect
with a vanishing determinant of the metric. This particular regularization also suggests the existence of a
“pre-big-bang” phase.

DOI: 10.1103/PhysRevD.100.023536

I. INTRODUCTION

The Friedmann solution [1,2] of an expanding universe
has the so-called big bang singularity with diverging
curvature, energy density, and temperature [the cosmic
scale factor aðtÞ drops to zero at cosmic time coordinate
t ¼ tbb ¼ 0]. Quantum mechanical effects may temper
these divergences; see, e.g., Refs. [3,4] for two general
discussions from different perspectives (loop quantum
gravity and string theory, respectively).
Awaiting the definitive theory of “quantum gravity,” we

propose to remain within the domain of 4-dimensional
general relativity but to allow for degenerate metrics.
In fact, a particular degenerate metric has already provided
a “regularization” of the Schwarzschild singularity [5–10],
removing the divergent behavior at the center (radial coor-
dinate r ¼ 0) at the price of introducing a spatial 2-surface
(r ¼ b > 0)with avanishingdeterminant of themetric. In the
present article, we propose doing something similar with the
big bang singularity (at cosmic time coordinate τ ¼ 0, in a
notation that will be explained later), by the introduction of a
spatial 3-surface (at jτj ¼ b=c > 0) with a vanishing deter-
minant of the metric. We emphasize, right from the start, that
it is the differential structure (rather than the topology) which
plays a crucial role for the regularization of the big bang
singularity. Incidentally, the length scale bmay ormay not be
related to the Planck length [11].
With a suitable cosmic time coordinate T ¼ TðτÞ ∈ R

and an appropriate Ansatz for a degenerate metric, we
obtain an odd solution for the cosmic scale factor aðTÞ,
which “jumps” over the value a ¼ 0 and, thereby, avoids
the big bang singularity. This particular T-odd solution may
be of interest to the recent proposal for a CPT-symmetric
universe [12]. There is also a T-even solution aðTÞ, which
is strictly positive definite and, thus, stays away from the
value a ¼ 0.

At this moment, it may be helpful to clarify what we
mean by “general relativity.” Standard general relativity is
simply the theory as exposed by Einstein in his seminal
1916 article [13] and elaborated upon by various textbooks
such as Refs. [2,14]. In practical terms, the crucial element
of general relativity is the Einstein gravitational field
equation for the metric tensor gμνðxÞ. But Einstein makes
the further assumption (in Part B, Sec. 8 of Ref. [13]) that
the determinant of the metric vanishes nowhere, gðxÞ≡
det gμνðxÞ ≠ 0, and the metric is said to be nondegenerate
(see also Sec. 2.6 of Ref. [14]). All of this defines standard
general relativity.
Einstein’s nondegeneracy assumption is certainly rea-

sonable under “normal” circumstances (with a metric “not
too far away” from the Minkowski metric) but perhaps not
under “unusual” circumstances, such as when spacetime
singularities appear. We propose to consider, under these
unusual circumstances, metrics which obey the standard
Einstein equation but have a vanishing determinant over a
submanifold of the spacetime manifold. (This submanifold
may be considered to correspond to a “spacetime defect”
[6–10], as will be explained in Sec. III.) In this sense,
we use an extended version of general relativity by keeping
the Einstein gravitational field equation but allowing for
degenerate metrics. General relativity with degenerate
metrics has been considered before; see, e.g., Ref. [15].
Degenerate effective metrics also appear in the context of
condensed matter physics and are perhaps accessible by
experiment [16,17].

II. STANDARD FLRW UNIVERSE

Let us, first, review the main points of the standard
spatially flat radiation-dominated Friedmann-Lemaître-
Robertson-Walker (FLRW) universe. Details and further
references can be found in, e.g., Ref. [2]. Greek indices run
over f0; 1; 2; 3g and Latin indices over f1; 2; 3g. Unless
stated otherwise, we set c ¼ 1 and ℏ ¼ 1.*frans.klinkhamer@kit.edu
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The line element of the standard spatially flat FLRW
universe in comoving coordinates reads

ds2jstand:FLRW ≡ gμνðxÞdxμdxνjstand:FLRW
¼ −dt2 þ a2ðtÞδkldxkdxl; ð2:1aÞ

t ∈ ð0;∞Þ; ð2:1bÞ

xk ∈ ð−∞;∞Þ; ð2:1cÞ

where the restricted range of the cosmic time coordinate t
will be explained shortly. The real function aðtÞ corre-
sponds to the cosmic scale factor. As far as the metric is
concerned, the sign of aðtÞ is irrelevant.
With this metric and the energy-momentum tensor of a

homogeneous perfect fluid [energy density ρðtÞ and pres-
sure PðtÞ], the Einstein equation without a cosmological
constant Λ gives the spatially flat Friedmann equation [1]
and the energy-conservation equation:�

1

aðtÞ
daðtÞ
dt

�
2

¼ 8π

3
GNρðtÞ; ð2:2aÞ

d
da

½a3ρðaÞ� þ 3a2PðaÞ ¼ 0; ð2:2bÞ

to which is added the equation of state,

P ¼ PðρÞ: ð2:2cÞ
Consider, for definiteness, relativistic matter,

P ¼ 1

3
ρ; ð2:3Þ

so that (2.2b) implies ρ ∝ 1=a4. The resulting cosmic scale
factor from (2.2a) is then

aðtÞ
���ðrel-mat: sol:Þ
stand: FLRW

¼
ffiffiffiffiffiffiffiffi
t=t0

p
: ð2:4Þ

For the particular solution (2.4), the zero point of the
cosmic time coordinate t has been shifted, so that

lim
t→0þ

aðtÞ
���ðrel-mat: sol:Þ
stand:FLRW

¼ 0; ð2:5Þ

and t ¼ 0 corresponds to the big bang singularity.
In addition, the cosmic scale factor (2.4) has been
normalized to 1 at a given time t ¼ t0 > 0 for which
the Hubble constant is assumed to be positive, H0≡
½ðda=dtÞ=a�t¼t0 > 0.
The standard FLRW spacetime manifold with metric

(2.1a) and cosmic scale factor (2.4) has the line element

ds2
���ðrel-mat: sol:Þ
stand: FLRW

¼ −dt2 þ
ffiffiffiffiffiffiffiffiffiffi
t2=t20

q
δkldxkdxl; ð2:6Þ

where the metric component
ffiffiffiffiffiffiffiffiffiffi
t2=t20

p
can be simplified to

t=t0, because both t and t0 are positive. The metric of this
spacetime manifold solves the Einstein equation for a
homogeneous perfect fluid of relativistic matter, but the
manifold is geodesically incomplete. Indeed, there is a big
bang singularity at t ¼ 0 with diverging curvature (as
shown by, for example, the Kretschmann curvature scalar
K ≡ RμνρσRμνρσ) and diverging matter energy density ρ and
temperature T . Recall that, for the special case of relativ-
istic matter, the Ricci curvature scalar R≡ gμνRμν vanishes
identically. Specifically, these quantities are given by the
following expressions:

RðtÞ
���ðrel-mat: sol:Þ
stand:FLRW

¼ 6

��
1

aðtÞ
daðtÞ
dt

�
2

þ 1

aðtÞ
d2aðtÞ
dt2

�
¼ 0;

ð2:7aÞ

KðtÞ
���ðrel-mat: sol:Þ
stand: FLRW

¼ 12

��
1

aðtÞ
daðtÞ
dt

�
4

þ
�

1

aðtÞ
d2aðtÞ
dt2

�
2
�

∝ 1=t4; ð2:7bÞ

ρðtÞ
���ðrel-mat: sol:Þ
stand:FLRW

∝ 1=a4ðtÞ ∝ 1=t2; ð2:7cÞ

T ðtÞ
���ðrel-mat: sol:Þ
stand:FLRW

∝ 1=
ffiffiffiffiffiffiffiffiffiffi
a4ðtÞ4

q
∝ 1=

ffiffiffiffi
t2

4
p

; ð2:7dÞ

where the final expression for the temperature can be
simplified to 1=

ffiffi
t

p
, because t is positive. Observe that the

temperature expression T ðaÞ ∝ ½a4�−1=4 in (2.7d) follows
directly from (2.7c) and the Stefan-Boltzmann law ρ ∝ T 4

(see also the discussion in the last paragraph of Box. 29.2
on p. 779 of Ref. [2]).
In view of the results (2.4) and (2.7), it is clear that this

particular solution of the Einstein equation is only well
behaved if the range of the cosmic time coordinate t is
restricted to the open half-line Rþ.

III. MODIFIED FLRW UNIVERSE

As mentioned in Sec. I, it is possible to obtain a
regularized version [5] of the singular Schwarzschild
solution [2] by a simple procedure. The first step is to
perform local surgery on Euclidean 3-space: the interior of
a ball with radius b is removed, and antipodal points on the
boundary of the ball are identified. The resulting 3-space
M̃3 is topologically nontrivial: M̃3 ≃ RP3 − fpointg, where
RP3 is the 3-dimensional real-projective plane. A proper
solution of the Einstein equation requires suitable coor-
dinates over M̃3 and an appropriate Ansatz for the metric.
The obtained regularized Schwarzschild solution has a

spatial 2-surface (with topology RP2) over which the
determinant of the metric vanishes. This spatial 2-surface
embedded in spacetime may be interpreted as a (2þ 1)-
dimensional “defect” of spacetime with topologyRP2 ×R.
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At the location of the “spacetime defect,” the standard
elementary-flatness condition does not apply, and the equiv-
alence principle is violated (cf. Appendix D in Ref. [5]).
The appearance of this spacetime defect is, apparently, the
price to pay for the absence of the Schwarzschild curvature
singularity (having a degenerate metric evades certain
singularity theorems; cf. Sec. III .1.5 in Ref. [8]). The
technical details of this regularization procedure can be
found in Ref. [5], with further discussion of the differential
structure in Ref. [7] and further discussion of the physics of
this particular type of spacetime defect in Refs. [6,9,10].
Some details on the mathematics of general relativity with
degenerate metrics appear in Chap. 3 of Ref. [8] (different
mathematical aspects are discussed in Ref. [15]).
The idea, now, is to apply the same procedure to the

singular FLRW solution of Sec. II, where the surgery will
concern the cosmic time axis. First, the standard cosmic
time coordinate t > 0 is replaced by an extended coordinate
τ ∈ R. Then, surgery on this 1-space removes the open τ
interval ð−b; bÞ, for b > 0, and identifies the antipodal
points τ ¼ −b and τ ¼ b. In this case, the resulting 1-space
M̃1 is topologically trivial: M̃1 ≃RP1 − fpointg ≃R.
A sketch is given in Fig. 1, which may be considered to be
the 1-dimensional analog of Fig. 1 in Ref. [5] for the
3-dimensional Schwarzschild construction. Note that we
will use the same symbol b for the parameter of the
Schwarzschild solution and the one of the Friedmann
solution, but these length scales can, in principle, be
different. Remember that we have set c ¼ 1.
Next, define a suitable cosmic time coordinate T (not to

be confused with the temperature T of matter):

T ≡
(
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ4 − b44

p
for τ ≥ b

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ4 − b44

p
for τ ≤ −b;

ð3:1aÞ

τ ∈ ð−∞;−b� ∪ ½b;∞Þ; ð3:1bÞ

where b is assumed to be positive. The coordinate T from
(3.1a) covers the cosmic time axis (3.1b), with a unique

value ofT for each point of the axis (cf. Fig. 1). Furthermore,
the expression (3.1a) has the samemathematical structure as
the Schwarzschild-construction expression (2.26) in
Ref. [7], where y must be replaced by T and �r by τ and
where, following Endnote 18 of Ref. [7], the squares are
replaced by quartic powers and the square roots by fourth
roots. It is, in principle, also possible to use T̃ ≡�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − b2

p
,

but the choice (3.1a) has an advantage for the T-odd scale
factor solution, as will be explained later.
With this new cosmic time coordinate T ∈ R, we make

the following Ansatz for the line element:

ds2jmod: FLRW ¼ −
T6

ðb4 þ T4Þ3=2 dT
2 þ a2ðτÞδkldxkdxl;

ð3:2aÞ

a2ðτÞjτ¼−b ¼ a2ðτÞjτ¼b; ð3:2bÞ

T ∈ ð−∞;∞Þ; ð3:2cÞ

xk ∈ ð−∞;∞Þ; ð3:2dÞ

τðTÞ ¼
(
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ T44

p
for T ≥ 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ T44

p
for T ≤ 0;

ð3:2eÞ

where the auxiliary coordinates τ ¼ −b and τ ¼ b corre-
spond to the single point T ¼ 0 on the cosmic time axis
(cf. Fig. 1). The particular form of the metric Ansatz (3.2a) is
inspired by the metric of the modified Schwarzschild
solution [5]. We notice that the coordinate transformation
(3.2e) is not a diffeomorphism, which is defined to be an
invertible C∞ function [14]. We also remark that, even for
aðτÞ ≠ 0, the metric from (3.2a) is degenerate: det gμν ¼ 0 at
T ¼ 0. The corresponding T ¼ 0 spacetime slice may be
interpreted as a 3-dimensional “defect” of spacetime with
topologyR3. (Formodified FLRWuniverses with positive or
negative spatial curvature, the 3-dimensional defect of
spacetime has topology S3 or H3.)
It is straightforward to calculate the dynamic equations

by evaluating the Einstein equation without a cosmologi-
cal constant Λ for the metric (3.2a) with coordinates
fT; x1; x2; x3g and the energy-momentum tensor of a
homogeneous perfect fluid [energy density ρðTÞ and
pressure PðTÞ ¼ ρðTÞ=3 for the case of relativistic mat-
ter]. But the result also follows from the observation that
the new metric (3.2a) written in terms of τ takes the same
form as the standard metric (2.1a) in terms of t. The
dynamic equations are, then, obtained if we replace t with
τ in (2.2) and change to the T coordinate from (3.1a),�

1þ b4

T4

�
3=2

�
1

aðTÞ
daðTÞ
dT

�
2

¼ 8π

3
GNρðTÞ; ð3:3aÞ

d
da

½a3ρðaÞ� þ 3a2PðaÞ ¼ 0; ð3:3bÞ

3b 2b b b 2b 3b

FIG. 1. Cosmic time axis τ ∈ ð−∞;−b� ∪ ½b;∞Þ, where the
points τ ¼ −b and τ ¼ b are identified (as indicated by the dots).
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PðTÞ ¼ 1

3
ρðTÞ; ð3:3cÞ

where we have, again, considered relativistic matter.
Compared to the standard FLRW equations (2.2a),
(2.2b), and (2.3), the only difference in (3.3) is the
Jacobian factor ðdT=dτÞ2 ¼ ð1þ b4=T4Þ3=2 on the left-
hand side of the modified Friedmann equation (3.3a). This
particular prefactor in (3.3a) allows for a solution aðTÞ
with að0Þ ≠ 0 and ½daðTÞ=dT�2 ∼ T6 near T ¼ 0. The
modified Friedmann equation (3.3a) is, in fact, a singular
differential equation (the singularity appears at T ¼ 0)
with a nonsingular solution to be given shortly, whereas
the standard Friedmann equation (2.2a) is a nonsingular
differential equation with a singular solution (2.4).
The solutions aðTÞ of (3.3) can be even or odd in T.

In view of the recent interest [12] in a T-odd solution, we
explicitly give our modified T-odd relativistic-matter sol-
ution aðTÞ from (3.3),

aðTÞ
���ðT-odd rel-mat: sol:Þ
mod:FLRW

¼
(
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb4 þ T4Þ=ðb4 þ T4

0Þ8
p

for T > 0

− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb4 þ T4Þ=ðb4 þ T4

0Þ8
p

for T ≤ 0;
ð3:4Þ

with normalization aðT0Þ ¼ 1 for T0 > 0. Note that the
solution (3.4) for T > 0 reproduces, in the limit b → 0þ
and with the identification T0 ¼ t0, the positive-t branch of
the standard solution (2.4).
The solution (3.4) is discontinuous at T ¼ 0 but still has

a monotonic behavior, daðTÞ=dT ≥ 0. Observe also that
the T-odd solution (3.4) has continuous first-, second-, and
third-order derivatives at T ¼ 0 and a discontinuous fourth-
order derivative at T ¼ 0 (the derivatives must be defined
appropriately). If the T definition (3.1a) were replaced by
T̃ ≡�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − b2

p
, the corresponding T̃-odd solution aðT̃Þ

would already have a discontinuous second-order deriva-
tive at T̃ ¼ 0.
With a nonvanishing parameter b, the solution (3.4) gives

finite values at T ¼ 0 for the Ricci curvature scalar R
(identically zero, in fact) and the Kretschmann curvature
scalar K,

RðTÞ
���ðrel-mat: sol:Þ
mod: FLRW

¼ 0; ð3:5aÞ

KðTÞ
���ðrel-mat: sol:Þ
mod: FLRW

¼ 3

2

1

b4 þ T4
; ð3:5bÞ

and also for the matter energy density ρ and the matter
temperature T ,

ρðTÞ
���ðrel-mat: sol:Þ
mod:FLRW

¼ ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ T4

0

b4 þ T4

s
; ð3:5cÞ

T ðTÞ
���ðrel-mat: sol:Þ
mod:FLRW

¼ T 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ T4

0

b4 þ T4

8

s
; ð3:5dÞ

for finite boundary conditions ρ0 > 0 and T 0 > 0 at T ¼
T0 > 0 [the actual value of ρ0, for given T0, follows from
(3.3a) and (3.4)]. The last result (3.5d) relies on the relation
T ðaÞ ∝ ½a4�−1=4, as explained in the text below (2.7d).
The maximum value of the Kretschmann scalar (3.5b)

occurs at T¼0 and is given by Kð0Þ¼ð3=2Þb−4, which
allows for the interpretation of theparameterb from themetric
Ansatz (3.2a) as the minimum curvature length scale of the
resulting spacetime manifold. The maximum value
of the matter density also occurs at T ¼ 0 and, from (3.3a)
and (3.4), is given by ρð0Þ ¼ ð3=4ÞE2

planckb
−2, in terms of the

reduced Planck energy Eplanck≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð8πGNÞ

p
≈2.44×

1018GeV. Similar results hold for a modified FLRWuniverse
with nonrelativistic matter, as discussed in the Appendix A.
For completeness, we also present, in Appendix B, a
particular modified FLRW universe with a positive cosmo-
logical constant Λ.
For the record, we mention that the T-even relativistic-

matter solution aðTÞ has the same eighth roots as in (3.4)
but now with a plus sign before both roots. This T-even
solution is perfectly smooth at T ¼ 0. The results (3.5) hold
also for the T-even solution.
We remark that it is possible to get the T-even solution in

a somewhat simpler form if we start from the definition
T̃ðτÞ≡ sgnðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − b2

p
(cf. Endnote 18 in Ref. [7]), where

the sign function is defined by sgnðxÞ ¼ x=
ffiffiffiffiffi
x2

p
for x ≠ 0

and sgnðxÞ ¼ 0 for x ¼ 0. We then use the metric

ds2
���ðT̃−coord:Þ
mod: FLRW

¼ −
T̃2

b2 þ T̃2
dT̃2 þ a2ðτÞδkldxkdxl: ð3:6Þ

The corresponding modified Friedmann equation with
relativistic matter now has the following T̃-even solution:

aðT̃Þ
���ðT̃-even rel-mat: sol:Þ
mod:FLRW

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 þ T̃2Þ=ðb2 þ T̃2

0Þ4

q
: ð3:7Þ

For the rest of the discussion, we again focus on the T-odd
solution (3.4).

IV. DISCUSSION

In this article, we compare two spacetime manifolds.
The first spacetime manifold corresponds to the standard
FLRW universe with metric (2.1a) for an extended cosmic
time coordinate T ∈ R and the following cosmic scale
factor solution for the case of relativistic matter:

aðTÞ
���rel-mat: sol:

stand: FLRW
¼ sgnðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=T2

0
4

q
; ð4:1Þ

which extends the previous solution (2.4) for positive
cosmic time coordinate t. The line element of this first
spacetime manifold is then given by
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ds2
���ðrel-mat: sol:Þ
stand:FLRW

¼ −dT2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=T2

0

q
δkldxkdxl; ð4:2Þ

with all spacetime coordinates fT; x1; x2; x3g ranging over
R. The Kretschmann curvature scalar KðTÞ, the matter
energy density ρðTÞ, and the matter temperature T ðTÞ
obtained from (4.1) are given by (2.7b)–(2.7d) with t
replaced by T, and they are seen to diverge as T → 0.
The Einstein equation for the metric (4.2) is invalid at
T ¼ 0 or, at least, ill defined.
With the definition η≡�2½T2�1=4, the line element (4.2)

becomes conformally flat, ds2 ¼ ð1=4Þη2½dη2 þ δkldxkdxl�,
and corresponds to the background metric used in Ref. [12]
with a slightly different notation. In terms of the conformal
time η, the Kretschmann curvature scalar is given by
KðηÞ ∝ 1=η8, which diverges at η ¼ 0.
The second spacetime manifold corresponds to a modi-

fied FLRW universe with metric (3.2a) and cosmic scale
factor solution (3.4). The line element of this second
spacetime manifold is given by

ds2jðrel-mat:sol:Þ
mod:FLRW ¼−

T6

ðb4þT4Þ3=2dT
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4þT4

b4þT4
0

4

s
δkldxkdxl;

ð4:3Þ

with all spacetime coordinates ranging over R. The metric
(4.3) solves the Einstein equation with relativistic matter.
The corresponding quantities KðTÞ, ρðTÞ, and T ðTÞ are
given by (3.5) and remain finite as T → 0, provided the
length parameter b is nonvanishing.
Both of the above metrics are degenerate, det gμν ¼ 0 at

each spacetime point with T ¼ 0. Observe, however, that
the metric from (4.3) at each spacetime point with T ¼ 0
has a single vanishing eigenvalue (provided b ≠ 0),
whereas the metric from (4.2) at the same spacetime point
has three vanishing eigenvalues. Related to this last obser-
vation is the result that theKretschmann curvature scalarK is
finite at T ¼ 0 for the metric (4.3) with nonzero b but is
singular at T ¼ 0 for the metric (4.2) [these results can be
seen explicitly in (3.5b) for b ≠ 0 and b ¼ 0, respectively].
Hence, the spacetime manifold (4.3), with a nonzero length
parameter b and a particular differential structure, may be
considered to be a “regularized” version of the spacetime
manifold (4.2). Corresponding results for a modified FLRW
universewith a nonrelativisticmatter component or a positive
cosmological constant are given in Appendixes A and B.
We remark that, in general, a regularized theory may

temporarily lose certain desirable properties, which are
only recovered as the regulator is removed. An example is
given by the lattice regularization of flat-spacetime quan-
tum field theory, where the full Poincaré-invariance group
is recovered in the continuum limit as the lattice spacing is
taken to zero. Our regularized Friedmann solution is also
far from perfect: the standard elementary-flatness condition

breaks down atT ¼ 0, the location of the “spacetime defect”
(cf. Appendix D in Ref. [5]). In addition, there is the T ¼ 0
discontinuity in theT-odd cosmic scale factor solution (3.4).
This discontinuity disappears in the corresponding metric
(4.3), so that scalar, vector, and tensor fields are unaffected
by the aðTÞ discontinuity at T ¼ 0. The spinor-field boun-
dary conditions at T ¼ 0þ and T ¼ 0− may require an
appropriate CP transformation. In any case, the metric
(4.3) provides a spacetime manifold without curvature
singularities, which allows for a meaningful study of the
behavior of relativistic matter in the very early universe.
The previously considered spacetime defect of

Refs. [5–10] resulted from surgery on space. Here, we have
considered surgery on cosmic time. But it is also possible to
skip the surgery discussion. The new metric Ansatz (3.2a)
simply replaces the FLRW Ansatz (2.1a), and the resulting
modified Friedmann equation (3.3a) gives a universe with-
out a curvature singularity but with a 3-dimensional space-
time defect, which appears to be the “lesser evil.”
It may be the case that the length parameter b entering

the classical metric (4.3) is not just a mathematical artifact
(“regulator”) but that it traces back to the underlying theory
of “quantum spacetime.” Even so, it is unclear whether or
not the length scale b is determined by the Planck length
lplanck ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πℏGN=c3

p
≈ 8.10 × 10−35 m, as the definitive

quantum-spacetime theory has not yet been established.
See Ref. [11] for a general discussion of a possible
fundamental length scale that is different from the Planck
length.
Leaving aside a possible physical origin of the non-

vanishing length parameter b in the metric (4.3), we observe
that the corresponding spacetime manifold is geodesically
complete, as long as the cosmic time coordinate T has an
extended range, T ∈ R. This manifold, then, has a pre-
bounce phase forT ≤ 0 (a “pre-big-bang” phase, in standard
terminology), whichmay ormay not have produced relics in
the present post-bounce universe for T > 0 (the present
“post-big-bang” universe, in standard terminology).
In closing, we return to the condensed-matter-physics

analogymentioned in the last sentence of Sec. I. In superfluid
3He experiments, there occur phase transitions between
different topological phases [16,17]. In one of these
phases—the polar phase—the determinant of the effective
tetrad field vanishes. This allows for a transition between two
effective spacetimes with opposite chirality if the system
starts in the polar distorted A-phase, moves into the polar
phase, and then returns back (cf. Fig. 1 in Ref. [17]). The
combined process in superfluid 3He (two phase transitions
and the intermediate polar phase) is analogous to the
spacetime defect of the regularized big bang singularity,
which has a vanishing determinant of the spacetime metric.
In superfluid 3He, the system passes between the

effective spacetimes via two subsequent phase transitions
and an intermediate phase, as the temperature is changed by
hand. In cosmology, the universe passes from one phase
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(pre-bounce) to another phase (post-bounce) via the space-
time defect, as the universe evolves forward by the reduced
Einstein equations with appropriate initial conditions in the
pre-bounce phase.
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APPENDIX A: MODIFIED FLRW UNIVERSE
WITH NONRELATIVISTIC MATTER

In this Appendix, we give some results for the modified
spatially flat FLRW universe with nonrelativistic matter
instead of the relativistic matter considered in Sec. III.
Specifically, the equation of state (3.3c) is replaced by

PðTÞ ¼ 0; ðA1Þ
where T is the cosmic time coordinate from (3.1).
The modified T-odd nonrelativistic-matter solution aðTÞ

from (3.3a), (3.3b), and (A1) is given by

aðTÞ
���ðT-odd nonrel-mat: sol:Þ
mod: FLRW

¼
(
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb4 þ T4Þ=ðb4 þ T4

0Þ6
p

for T > 0

− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb4 þ T4Þ=ðb4 þ T4

0Þ6
p

for T ≤ 0;
ðA2Þ

with normalization aðT0Þ ¼ 1 for T0 > 0. The correspond-
ing expressions for the Ricci curvature scalar R and the
Kretschmann curvature scalar K are

RðTÞ
���ðnonrel-mat: sol:Þ
mod:FLRW

¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b4 þ T4

r
; ðA3aÞ

KðTÞ
���ðnonrel-mat: sol:Þ
mod: FLRW

¼ 80

27

1

b4 þ T4
: ðA3bÞ

Both curvature scalars are nonsingular at T ¼ 0 for b ≠ 0
and singular at T ¼ 0 for b → 0.
Finally, the modified FLRW spacetime manifold with

metric (3.2a) and cosmic scale factor solution (A2) has the
following line element:

ds2
���ðnonrel-mat: sol:Þ
mod: FLRW

¼ −
T6

ðb4 þ T4Þ3=2 dT
2 þ

�
b4 þ T4

b4 þ T4
0

�
1=3

δkldxkdxl; ðA4Þ

with all spacetime coordinates ranging over R.
For completeness, the T-even solution aðTÞ has the

same sixth roots as in (A2) but now with a plus sign before
both roots. This T-even solution is perfectly smooth at
T ¼ 0. The results (A3) and (A4) hold also for the T-even

solution. Again, it is possible to get the T-even solution in
a somewhat simpler form if we start from the definition
T̃ ≡ sgnðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − b2

p
.

APPENDIX B: MODIFIED FLRW UNIVERSE
WITH A POSITIVE COSMOLOGICAL

CONSTANT

In this Appendix, we give some results for the modified
spatially flat FLRW universe with a positive cosmological
constant Λ, which corresponds to a perfect fluid with
constant vacuum energy density ρV ¼ Λ and pressure
PV ¼ −Λ. The metric is again taken as (3.2a) for the
cosmic time coordinate T ∈ R.
The dynamic equations are now given by�

1þ b4

T4

�
3=2

�
1

aðTÞ
daðTÞ
dT

�
2

¼ 8π

3
GNρV; ðB1aÞ

d
da

½a3ρV � þ 3a2PV ¼ 0; ðB1bÞ

PV ¼ −ρV ¼ −Λ < 0; ðB1cÞ
where (B1b) is satisfied automatically for the equation of
state (B1c). With the following boundary conditions at
T0 > 0:

aðT0Þ ¼ 1; ðB2aÞ
½ðda=dTÞ=a�T¼T0

> 0; ðB2bÞ
the T-even solution of (B1a) reads

aðTÞ
���ðT-evenCC sol.Þ
mod: FLRW

¼ exp
h
HdS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ T44

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ T4

0
4

q 	i
;

ðB3aÞ
HdS ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGNΛ=3

p
: ðB3bÞ

We remark that the standard FLRW solution from a
positive cosmological constant, with aðTÞ ∝ exp½HdST� for
T ∈ ð−∞;∞Þ, has no big bang singularity at a finite value
of T and, hence, no need for regularization. Still, solution
(B3a) may be of interest in that it joins an expanding de
Sitter–type phase to a contracting de Sitter–type phase,
with a spacetime defect in between. In fact, it is known that
the complete de Sitter spacetime [14] contains a patch with
an expanding spatially flat FLRW universe and another
patch with a contracting spatially flat FLRW universe and
that the quantum fields in one phase may have unexpected
interactions with those in the other phase [18]. These two
FLRW patches of the standard de Sitter spacetime have
a ¼ 0 where they meet (the de Sitter manifold is, never-
theless, perfectly smooth everywhere), whereas the solution
(B3) has an exponentially small but nonzero value of aðTÞ
at T ¼ 0, corresponding to the position of the spacetime
defect.
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