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We present the results of computational gravitational backreaction on simple models of cosmic string
loops. These results give us insight into the general behavior of cusps and kinks on loops, in addition to
other features of evolution. Kinks are rounded off via an asymmetric and divergent correction to the string
direction. The result is that cusps emerge in the place of kinks, but the resulting smooth string section has a
small amount of energy. Existing cusps persist, but quickly lose strength as backreaction removes energy
from the string surrounding the cusp. Both kinks and cusps have their location in space shifted slightly with
each oscillation.
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I. INTRODUCTION

Cosmic strings may arise in our Universe as topological
defects in spontaneous symmetry breaking with a non-
simply connected vacuum manifold [1,2]. Although they
have not been detected by any experiment, cosmic strings
are a generic feature of many particle physics models,
typically forming after the inflationary epoch in super-
symmetric grand unified field theory models [3]. They may
also result from several string theory scenarios [4–6]. We
expect cosmic strings to be found either as infinite strings
or as closed, oscillating loops. It is the character of these
loops which will be most important to us in the follow-
ing work.
Because cosmic strings are massive objects which

typically move with relativistic velocities, they will produce
gravitational waves. Particularly because we are now in the
era of gravitational-wave astronomy, it is very viable to
detect (or at least further constrain) cosmic strings by
observations (or nonobservations) of these waves. We
might be able to observe a stochastic gravitational wave
background due to the oscillations of loops, or individual
bursts from points on the loops known as cusps, which
momentarily develop extremely large Lorentz factors and
thus emit a strong, narrow beam of gravitational radiation.

The stochastic background and cusp signals are both
discussed in the literature [7–30] and sought after in
detectors [31–33]. However, the picture is not yet
complete. As cosmic strings are massive, extended
objects, they are expected to interact with themselves
via their own gravitational field—gravitational backreac-
tion—which may serve to change the shapes of loops and
thus some character of their gravitational spectrum.
Investigations into how loops change under backreaction
up to this point have been limited by the computational
power available at the time [34] or have used approx-
imations to the effects of backreaction in place of exact
calculations on each loop [25].
In this paper, we present the results of exact calculations

of backreaction on four simple models of loops. In Sec. II,
we review cosmic strings, explain our formalism, and
demonstrate how our approach recovers the correct results
for some cases in which the analytic answers are known. In
Sec. III, we show the effects of backreaction for specific
loops from each of our models, and compare with theo-
retical predictions [35,36]. In Sec. IV, we use our results to
make general predictions and observations about how loop
features change in the presence of backreaction, and predict
how these results might apply to realistic loops and thus the
gravitational wave signals we might observe. We conclude
in Sec. V.
We work in linearized gravity, which is valid because the

string’s coupling to gravity is small. We set c ¼ 1.
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II. A MODEL OF GRAVITATIONAL
BACKREACTION ON LOOPS

Because the ratio of length to thickness of a cosmic
string is typically of order 1040 or more, it is a good
approximation to treat it as a one-dimensional object. Thus,
a string sweeps out a worldsheet in spacetime, and its
motion can be described by a timelike τ and a spacelike σ
parameter. As usual, we will choose these parameters so
that the metric on the worldsheet is conformally flat,
γτσ ¼ 0, γττ ¼ −γσσ. In that case, the general solution to
the Nambu-Goto equations of motion describing the
position of the string’s worldsheet in flat space is

Xðσ; τÞ ¼ 1

2
½Aðτ − σÞ þ Bðτ þ σÞ� ð1Þ

where A and B are 4-vector functions whose tangent
vectors A0 and B0 are null. We may also use the null
parametrization u ¼ τ þ σ and v ¼ τ − σ, which we
choose for the majority of this work.
In flat space, we can further choose the timelike

parameter to be the coordinate time, τ ¼ t, in which case
σ parametrizes string energy (equivalently, the string’s
invariant length), A0 and B0 have unit time components,
and the corresponding spatial vectors A0 and B0 have unit
length. We may represent A0ðvÞ and B0ðuÞ as curves on the
unit sphere, which will be useful when we want to identify
cusps and kinks.
A kink is formed whenever there is a discontinuous jump

in either A0 or B0, which manifests itself as a discontinuous
change in direction of the string in space. The discontinuity
propagates around the loop at the speed of light.
A cusp is formed by the crossing of theA0 andB0 curves,

that is, at a point in spacetime where A0 ¼ B0. As a
consequence, at the cusp, jdX=dtj ¼ 1 and dX=dσ ¼ 0,
and thus the string doubles back on itself there and
(formally) moves momentarily at the speed of light.
Now we consider how a string’s trajectory is changed by

gravitational backreaction, i.e., the change to the motion of
the string due to the spacetime curvature induced by the
stress-energy tensor of the string itself. This curvature is
always small, being of order Gμ, with G Newton’s constant
and μ the string mass per unit length, and observations limit
Gμ to not much more than 10−11 (e.g., see [26]). Even
though this effect is very small, it accumulates over many
oscillations, and this enables us to distinguish gauge
artifacts, which would oscillate with the changing metric,
from real effects that accumulate over time [37].
Thus, we consider the string to move in flat space for one

oscillation. We interpret the changes to the flat-space
motion as an acceleration, given by [34]

Xλ
;uv ¼ −

1

4
Γλ
αβA

0αB0β; ð2Þ

where the A0 and B0 here are those of the point we are
investigating (the observation point), and Γλ

αβ is the
Christoffel symbol there. In addition to spatial changes,
Eq. (2) gives a change to the time components of A0 and B0.
This disturbs the choice of τ ¼ t, but we undo this
disturbance by reparametrization, as discussed below in
Sec. II B.
Thus, we compute the acceleration from the metric

perturbations (and their derivatives), which we can find
by a Green’s function integral over all gravitational sources
on the past light cone of the observation point. See
Refs. [35,37] for details. The corrections to the tangent
vectors A0 and B0 are then found by integrating the
acceleration for one period of oscillation in the appropriate
null direction [34,35,37],

ΔA0ðvÞ ¼ 2

Z
L

0

X;uvðu; vÞdu; ð3aÞ

ΔB0ðuÞ ¼ 2

Z
L

0

X;uvðu; vÞdv; ð3bÞ

where L is the invariant length of the string loop.
These corrections to the tangent vectors contain the

information about how A0 and B0 move on the unit sphere,
as well as how energy (σ) is lost from each part of the
worldsheet. From this information, we may construct the
worldsheet of the backreacted loop.
Equation (3) gives the first-order changes to A0ðvÞ and

B0ðuÞ, meaning that we accumulate the effect for the entire
oscillation before applying it [34]. Moreover, sinceGμ is so
small, we can allow ΔA0ðvÞ and ΔB0ðuÞ to grow for N ≫ 1
oscillations, as long as we keepNGμ ≪ 1. ThusNGμ is the
fundamental parameter in the simulation; N and Gμ will
appear only in this combination.

A. The discretized worldsheet

We expect realistic cosmic string loops to form initially
with many kinks and no cusps, with smooth curves
connecting kinks [38]. These loops may or may not self-
intersect, but those which do will quickly (within a single
oscillation) reach this self-intersection point and therefore
split into two loops. Again, these two child loops may or
may not self-intersect, but within a few oscillation times,
we expect loops to reach non-self-intersecting trajectories.
We now wish to represent such a loop numerically, so we

can compute the effect of backreaction on its evolution. We
choose a representation where AðvÞ and BðuÞ are piecewise
linear with many segments, so A0 and B0 are piecewise
constant. We put Na such segments in A and Nb in B.
This process creates a loop with two kinds of kinks: the

true kinks, which are the discontinuous changes in the
string’s tangent vectors seen in the real loops; and the false
kinks, which are the discontinuous changes introduced as a
result of discretizing a smooth curve. When we discuss
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kinks, the change to kinks, and the location (or former
location) of kinks, we will always mean true kinks.
Now taking our worldsheet functions and assembling the

string loop as in Eq. (1), we see that each period of the
string worldsheet is made of NaNb patches, each of which
is the surface created by sweeping one segment of A across
one segment of B (or vice versa). We call these patches
diamonds.1 Consequentially, the edges of these diamonds
represent lines along which u (for an edge parallel to some
segment of A) or v (for B) are constant, so all lines parallel
to a diamond’s edge are null.2 For more details on the
representation and evolution of piecewise-linear strings,
see Ref. [39].
Consider a point on the discretized worldsheet, i.e.,

inside some diamond. We call this diamond the observer
diamond. All diamonds which intersect the backward light
cone of this point will be sources of metric perturbations
which can contribute to its acceleration. We call such
diamonds the source diamonds. The intersection of the
past light cone with the string worldsheet will be a closed
line, which is non-self-intersecting if the worldsheet
is also non-self-intersecting. We call this closed line the
intersection line.
We may place restrictions on the intersection line via

causality arguments. First, we give some terminology. Each
diamond has four tips: one at the largest time coordinate
(future tip), one at the smallest time coordinate (past tip),
and two which are at intermediate time coordinates (side
tips) as determined by the segments of A and B that form
that diamond. The two diamond edges which connect the
side tips to the future tip are the future edges, and those
connecting side to past are the past edges.
A diamond is a region of a timelike plane. Such a plane

contains two null directions, and the edges of the diamond
lie in these directions. The intersection of a plane with a
cone is a conic section. Since the two null directions on the
plane are parallel to two lines on the light cone, the conic
section is a hyperbola, and the intersection line is a segment
of that hyperbola. The asymptotes of the hyperbola are
parallel to the edges of the diamond, and since we are
considering the past light cone, the hyperbola opens into
the past. In the observer diamond, the intersection line is a
degenerate hyperbola whose vertex is the observation point
itself.
The hyperbola segment within each diamond is a space-

like path (with the limiting degenerate case being a null
path). Now consider a future and past edge of a diamond
with a common side tip. These edges are causally

connected, so the hyperbola cannot connect them. Thus,
the intersection line may only cross a diamond in one of
four ways: connecting the two future edges; connecting the
two past edges; or one of the two ways to connect a future
edge to its parallel past edge. As a consequence of this
restriction, the intersection line will always pass through
Na þ Nb diamonds, so we may create an intersection line
for any observation point by considering the causal
relationship of the tips of the worldsheet diamonds to that
observation point. For more details see Ref. [37].

B. Changes to the discretized loop

Now that we have a discretized loop, we want to find the
effect of gravitational backreaction on it. To prevent rapid
growth in the amount of data representing the string, we
keep it piecewise linear, with the same pieces as before.
Thus we will compute one ΔA0 for each segment of A, and
likewise for B. We will choose this single ΔA0 to be the one
computed at the midpoint of the segment and treat it as
representative. This is accurate provided that the number of
segments is sufficiently large. To find the correction to a
particular segment of A, we will travel in the u direction
through the diamonds formed by combining all segments of
B with our particular segment of A (and identically with
A ↔ B, u ↔ v).
Our problem reduces to one of finding the corrections

along the null lines which bisect each diamond. So, we
allow the observation point to move through the obser-
vation diamond and consider how the intersection line
changes in response. Because diamonds are timelike
surfaces, if a source diamond’s future tip is timelike
separated from the observation point, the entire source
diamond must lie inside the past light cone of the
observation point. So, it cannot be on the intersection line
and cannot contribute to backreaction.3

We therefore say that a diamond is “on the intersection
line” if its future tip is spacelike separated from the
observer and its past tip timelike separated. Each future
tip is also a past tip of some other diamond, so the number
of diamonds on the worldsheet is conserved: as soon as
some diamond drops off (due to its future tip now being
timelike separated), some other diamond is added on (due
to its past tip—the same point—now being timelike
separated). In this way, we may easily evolve the inter-
section line as the observation point evolves by keeping
track of where on the observation point’s trajectory it will
be null-separated from the future tip of each of its source
diamonds.
For keeping track of how the crossings of each source

diamond change as the observation point moves, we note
that the future tip of one diamond is also one of the side

1Because the segments may be of different lengths, these
patches are, properly speaking, parallelograms. Calling them
diamonds is equal parts history and artistic license.

2This relates to the earlier point that all kinks move at the speed
of light. At the edges of the diamonds, the worldsheet jumps
between segments of A or B, and thus there are discontinuities in
A0 or B0.

3Conversely, if the past tip is spacelike separated, the entire
diamond is again outside the past light cone and will not
contribute.
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points for the two diamonds which border the first diamond
on its future edges. So, whenever a source diamond is
removed from the intersection line, this is also when the
types of crossings for those two neighboring diamonds
change. All possible evolutions are shown in Fig. 1.
We have the general form of the metric perturbation (and

its derivatives) for the four crossing types from Ref. [37],
and thus the general form of the accelerations for each
source diamond. These expressions are analytic; in
Appendix A we integrate them with respect to u or v to
find the contribution of any source diamond to the tangent
vector correction from the parameters of the source and
observer diamonds, plus the range in u or v along the
observer diamond’s line of motion for which the source
diamond contributes. The above procedure for evolving the
intersection line gives us all of this information.
Once we find the tangent vector corrections, we have one

more step before we can construct the new worldsheet.
Consider a particular segment of B, with tangent vector

B0ð0Þ ¼ ð1;B0ð0ÞÞ ð4Þ
applying over parameter range δσ. The correction, given
by ΔB0, allows us to define a perturbed tangent vector
B0ð1Þ ¼ B0ð0Þ þ ΔB0. This vector is still null to first order
but generally no longer has a unit time component.
Consequently, where we previously had τ ¼ t, this is no
longer true (and, similarly, σ no longer parametrizes
energy). So, we use the correction to the time component
of B0 to reparametrize σ, defining a new null vector

B̄0ð1Þ ¼ B0ð1Þ

1þ ΔB0t ¼
�
1;

B0ð1Þ

1þ ΔB0t

�
: ð5Þ

Whereas before we had B0ð0Þ ¼ dBð0Þ=dσ, this new null
vector obeys B̄0ð1Þ ¼ dBð1Þ=dσ̄, where σ̄ is a reparametri-
zation of σ which depends on the correction. The old time
component of Bð0Þ ranged over an interval of length δσ, and
the new time component of Bð1Þ ranges over δσ̄, so

δσ̄ ¼ ð1þ ΔB0tÞδσ: ð6Þ

UsuallyΔB0t < 0, so δσ̄ < δσ, representing a loss of energy
in backreaction.
The spatial part of Eq. (5) gives the new point on the unit

sphere for this segment, and Eq. (6) gives its new length.
We remove the overbars, and this reparametrized σ once
again represents the energy of the loop. By fixing t, we may
create snapshots of the loop at a particular time [34].
The procedure for any segment of A is analogous, but

with A0 ¼ −dA=dσ.

C. Testing our approach

Before proceeding to our results, let us apply our
approach to a well-studied case and verify that we recover
the expected (analytical) result. To do this, we will consider
the Garfinkle-Vachaspati class of degenerate loops [40],
whose worldsheet functions are lines which go straight out
and back in space and have some angle θ between them.
The resulting loop is planar (and thus pathological), and the
loop frozen at any point in its oscillation is a rectangle
(including the degenerate double line cases).
The energy radiated in one oscillation for these loops can

be found by taking the average gravitational radiation
power from Ref. [40] and multiplying by the oscillation
period, L=2. Dividing by the initial loop energy, μL gives
the fractional loss of length in one oscillation,

ΔL
L

¼ 16Gμ
sin2θ

�
ð1þ cos θÞ ln

�
2

1þ cos θ

�

þ ð1 − cos θÞ ln
�

2

1 − cos θ

��
: ð7Þ

For our test, we will perform gravitational backreaction
on the Garfinkle-Vachaspati loops with θ ¼ fπ=2; π=3;
π=4; π=5g, and at each θ for f100; 200; 300; 400g segments
in each of A and B, for a single oscillation. Then we will

FIG. 1. Drawings of how the intersection line (thick blue) must change how it crosses the diamonds (bordered in black) as it moves
forward in time (upward on the page) over some small part of the loop worldsheet.
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determine the fraction of length lost by these loops using
the numerical code that computes the backreaction and
divide this by the expected analytic value. The plots of
these results are in Fig. 2. Because our code accumulates
the effect of backreaction over one oscillation before
changing the loop, the loss of length it predicts for a
pristine Garfinkle-Vachaspati loop should be exactly that of
Eq. (7). We can therefore compare the numerical result,
from the first oscillation only, to the analytic predic-
tion above.
In all cases, we see that as the number of segments

increases, the accuracy of our calculation improves. By the
time we are at 400 segments in each of A and B, all results
are within about 0.1% of the analytic value.

III. RESULTS FOR SIMPLE MODELS

We now present our results for the simple models which
we studied. We defer a detailed interpretation and dis-
cussion of these results to Sec. IV.

A. Simulation parameters

For all the loops studied in this section, we kept certain
simulation parameters constant. First, we discretized all
loops with 400 segments in each of A and B, yielding
160,000 diamonds for the section of the worldsheet that
includes a complete oscillation of a loop. We gave all
segments the same initial length, because the A00 and B00 of
the loops studied have almost (for B, exactly) the same
magnitude everywhere. In general, when discretizing A

and B, one should put in more segments where the rates of
change of the tangent vectors are higher, but this is not a
concern until they are much higher at one place than at
another.
Second, we evolved all loops for 200 iterations with a

step of NGμ ¼ 10−4 per iteration. These values were
chosen so that by the end of the evolution, the loops
would be roughly halfway dissipated, per the following.
The energy lost per oscillation of the loop to gravitational
radiation is [2]

ΔE ¼ ΓGμ2
�
L
2

�
; ð8Þ

where Γ is a dimensionless constant that depends only
on the loop’s geometry. The fraction of the loop which
has dissipated after some number of iterations n is then
roughly

fdiss ∼
nΓNGμ

2
: ð9Þ

We pick Γ ¼ 50 because the distribution of Γ for smoothed
loops from simulations has a strong peak at this value [38].
With the choices above, we then obtain fdiss ∼ 1=2, which
means that in our simulations we will follow the loops for
roughly half of their lifetimes. This is only a rough
approximation because the actual Γ may not be 50, we
have neglected the fact that the loop oscillates more rapidly
as it loses energy, and Γ itself will change due to back-
reaction. This final effect is discussed in more detail in
Sec. IV C.
Finally, we give all loops an initial length of 2π in

arbitrary length units.

B. Model loops

Our goal in this paper is to simulate loops with cusps and
loops with kinks (and some with both) to see how these
features evolve. We need to start with loops that have no
self-intersections or other pathological features.
We start with a loop with cusps. The simplest such loop

would be the 1,1 Burden [41] loop, whose A and B are just
circles. However, this loop collapses into a double line. To
prevent that, we perturb A with a third-harmonic term,
giving the Kibble-Turok loop [42]

A0ðvÞ ¼ ½ð1 − αÞ cosðvÞ þ α cosð3vÞ�x̂
þ ½ð1 − αÞ sinðvÞ þ α sinð3vÞ�ŷ
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1 − αÞ

p
sinðvÞẑ; ð10aÞ

B0ðuÞ ¼ cosðuÞx̂þ sinðuÞðcosϕŷþ sinϕẑÞ; ð10bÞ

where α ∈ ð0; 1Þ gives the magnitude of the perturbation
and ϕ sets the angle between the planes of the tangent
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FIG. 2. The numerical energy loss to gravitational radiation for
a single oscillation of the Garfinkle-Vachaspati loop depends on
the number of segments in the worldsheet functions A and B. The
value reported is the ratio of the numerical result to its analytically
predicted result. As the number of segments increases, the ratio
asymptotes towards unity, with the numerical result being within
∼0.1% of the analytical result when there are 400 segments in
each of A and B. We consider four different values for the angle
between A and B, but find that this does not greatly impact the
accuracy of the result.
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vectors before perturbation.4 This loop has no self-inter-
sections, and for α < sin2ðϕ=2Þ, it has two cusps. We will
choose the parameters ϕ ¼ π=2 and α ¼ 0.1. Our results
are qualitatively unchanged by some variation in these

values; however, for α much smaller the loop is nearly self-
intersecting, and for α much larger it has a very different
character from the original Burden loop.
As this is the loop that we will then modify to

produce the other loops, we refer to it as the canonical
Kibble-Turok loop. Our motivation for studying this
loop is to examine how cusps change as a result of
backreaction.
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FIG. 3. The motion of A0 (red, þ) and B0 (green, ×) of the canonical loop about the unit sphere as a consequence of gravitational
backreaction. The rows are, from top to bottom, 0, 100 and 200 iterations. In the left column we have chosen the projection so that the
initial A0 lies mostly on the equator, and in the right columns so that the initial B0 lies on the equator. The three pictures in each column
use the same projection. The two pictures in each row show the same data with different projections. Arrows show the location of
segment 0 and the directions in which u and v increase (i.e., the directions of A00 and B00). Note that the cusps are “dragged” about the
unit sphere.

4Another possibility would be the 1,2 Burden loop, where B
goes around its circle twice. But this is very unlike loops that one
would expect to form naturally.
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Any loop with cusps may be converted into one with
kinks by identifying where on the unit sphere the tangent
vectors A0 and B0 overlap, then removing some of A0 and/
or B0 around the cusp location (and reparametrizing the
worldsheet functions so as not to change the overall length).
For each such surgery performed, we introduce a kink.
We will construct our second loop by removing angle

π=2 in two places from the path of B0 in the canonical
Kibble-Turok loop, so that B0 skips over A0 instead of
intersecting. Thus we replace two cusps with two kinks.
(We could vary the amount of angle removed, but the
results are qualitatively similar.) The expression for A0 is
unchanged, but now we replace u by ũ in our expression for
B0, where

ũ ¼
� ð2u=LÞðπ − ψÞ þ ψ=2 0 < u ≤ L=2

ð2u=LÞðπ − ψÞ þ 3ψ=2 L=2 < u ≤ L:
ð11Þ

We will call this the broken Kibble-Turok loop. Our
motivation for studying it is to examine the ways in which
kink evolution under backreaction differs from cusp evo-
lution under backreaction.
Our third loop is the twice-broken Kibble-Turok loop.

Now, we remove wedges of angle π=2 from both A0 and B0
around each cusp point. Again the tangent vectors no
longer intersect on the unit sphere, but now we have
replaced the two cusps with four kinks. Our motivation
for studying this loop is that the scenario in which both
tangent vectors jump over the same point is one generic to
realistic loops. Such structures form from self-intersections,
such as when the loops are produced from long strings or
existing loops.
Our fourth and final loop is the cuspy broken Kibble-

Turok loop. Here,A0 is untouched andB0 is broken, but the
jump in the latter does not avoid the crossing with A0. This
loop therefore has two cusps and two kinks. Our motivation
for studying it is to see if the existence of cusps influences
the evolution of kinks, and vice versa.

For brevity’s sake, wewill refer to these four loops, in the
order presented above, as the canonical, broken, twice-
broken, and cuspy broken loops.

C. Canonical Kibble-Turok results

We present the basic results for the canonical loop in
Figs. 3 and 4. Similar plots for the other scenarios will
follow in later sections. To show how the tangent vectors
evolve under gravitational backreaction, we plot A0 and B0
on the unit sphere under the Mollweide projection in Fig. 3.
The left panels have A0 set to lie mostly on the equator,
while the right panels do the same for B0. This is because
the Mollweide projection is less distorted around the
equator, so using both projections lets us better understand
how each of the tangent vectors changes, and thus how
kinks and cusps evolve. We show iterations 0, 100, and
200, with the last corresponding to a loop of roughly half its
initial length.
The most striking effect we see in Fig. 3 is that the cusp

locations are dragged about the unit sphere. The segments
of A0 and B0 are rotated, primarily in the direction of
X00 ¼ ðA00 þB00Þ=2. This moves the point of the cusp in
that direction. It also moves the individual segments, so the
part of the string involved in successive cusps changes very
little.5

To show how energy is lost due to gravitational
backreaction, we plot the length of all of the segments
of both A and B for the same three iterations as before in
Fig. 4. This allows us to see which parts of the string lose
more energy during the backreaction process. The energy
loss is preferentially around the cusp locations in both A
and B. In Fig. 5, we look closely at the loss of energy
near the cusp in just one iteration. It appears to be
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FIG. 4. The energy per segment for the canonical loop worldsheet functions changing as a consequence of gravitational backreaction.
We have plotted the energies for 0, 100 and 200 iterations, with higher iterations having lower energies/darker colors. The energy loss is
preferentially around the cusps and is of the same order on both sides.

5Only the small parameter α ¼ 0.1 distinguishes the canonical
Kibble-Turok from the 1,1 Burden [41] loop. In that loop, the
A0 and B0 that are equal at the cusp would be rotated in exactly
the same way, so the part of the string contributing to the cusp
would be unchanged.
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symmetrical and to diverge as the cusp is reached.
References [35,36] predicted a logarithmic divergence
in the energy emission. The total acceleration felt by any
worldsheet point which is not at the cusp goes as the
inverse of the distance to the cusp, and integrating along
a line on the worldsheet gives the logarithm. Following
Sec. V of Ref. [35], working in the approximation that we
are very near the cusp, we can analytically compute the
effect of each source point and numerically integrate to
obtain the acceleration on each observation point. To
compare this result to the acceleration reported by our
code, we take a canonical loop and discretize it to 5 × 105

diamonds, draw a straight line on the worldsheet which
passes through the cusp, and find the acceleration at points
along this line. This comparison is shown in Fig. 6, where
we see that the two approaches are converging up until
a distance from the cusp of ≈10−4L. This is as close as
we can get because of numerical errors, presumably
arising from the high Lorentz factors of the segments near
he cusp.

D. Broken Kibble-Turok results

We present the results for the broken loop in Figs. 7 and
8. Now, the cusps have been removed and replaced by
kinks by removing sections of B around the cusps, but
keeping the overall length of B the same.
There is still a preferential loss of energy around the

place where the cusp would be—the “jumping-over
point”—for both A and B. However, it is much more
pronounced in B. Closer examination in Fig. 9 shows that
the corrections to the energy and direction of the string
diverge as u approaches the kink position uk from below,
but not when u approaches uk from above. This divergent
behavior was predicted in Refs. [35,36].
From Eq. (71) of Ref. [35], we can calculate analytically

the acceleration felt by a point below a kink. We work to
leading order as we approach the kink, meaning that we
include only the term that diverges as ðuk − uÞ−1=3 and not
a subleading logarithmic divergence that was predicted but
not calculated in Refs. [35,36]. To compare the theoretical
approximation to the value reported by our code, we take a
broken loop and discretize it to 5 × 105 diamonds, fix the v
index at some arbitrary value, and calculate the transverse
acceleration for varying u index values from a diamond far
below the kink up to the diamond just below the kink. We
plot these results in Fig. 10. As the distance to the kink goes
to zero, the leading effect in the numerical acceleration is
the predicted ðuk − uÞ−1=3 divergence, and the coefficient
agrees with the theoretical prediction. The difference
between the numerical and theoretical results shows the
additional effect logarithmic in the distance to the kink.
Is it possible that this divergence could be an artifact,

rather than a real, physical effect? First of all, it cannot be
an artifact of the choice of spacetime gauge because the
perturbation of the spacetime metric around Minkowski
space is always of order Gμ and does not grow with time,
while the effect of the gravitational backreaction on the
string shape has secular growth. It also is not an artifact of
the worldsheet gauge, i.e., the choice of the parameters τ
and σ. These can be chosen to satisfy the conformal gauge
conditions, thus defining the functions AðvÞ and BðuÞ and
their tangent vectors A0 and B0, from which we see that B0
has rapid variation over a small range of u. Finally, the

 0.984

 0.988

 0.992

 0.996

-0.2 -0.1  0  0.1  0.2

R
at

io
 o

f l
en

gt
hs

Distance from cusp
-0.2 -0.1  0  0.1  0.2A

ng
ul

ar
 c

ha
ng

e 
(r

ad
s)

Distance from cusp

 0.0034

 0.0038

 0.0042

 0.0046

 0.005

FIG. 5. The change of the 2% of overall points in A nearest the cusp due to the first iteration of backreaction. The length loss (left) is
divergent and mostly symmetric, while the angular change (right) is bounded and is greater above the cusp (at v > vcusp).
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mation near the cusp on the canonical loop. The theoretical and
numerical accelerations both go like the inverse of the distance to
the cusp. The theoretical approximation gets closer and closer to
the numerical value as the observation point approaches the cusp.
For numerical reasons we have not been able to get closer than
about 10−4L.
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rapid change in B0 is not an artifact of which B0 at later
times we compare with which B0 at earlier times. The
directions in which B0 points after backreaction are novel:
no element of B0 pointed close to these directions before, so
we can see that these changes are large in a real sense and
do not depend on any gauge or parameter choices.
How does this divergent correction arise? While there is

no divergence in the metric perturbation at a point near the
kink, there is a divergence in the derivatives in the null
direction of the kink’s propagation (i.e., in v for a kink in
B). This divergence is as the inverse cube root of the null
distance from the observation point to the kink [i.e., as

ðuk − uÞ−1=3 for a kink in B], which explains why we see a
divergence in B but not A for the broken case. The
divergence is integrable, so when we integrate the accel-
eration with respect to u to find ΔA0, it becomes a finite
correction. But to find ΔB0 we integrate with respect to v.
Instead of crossing the kink as we integrate and thus
removing the divergence, we travel around the worldsheet
parallel to the kink, so the divergence persists. However, as
with the cusps, the total correction to the worldsheet (ΔA or
ΔB) will always be nondivergent regardless of which
worldsheet function contains the kink, as finding these
corrections requires integrating with respect to both u and v.
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FIG. 7. The motion of A0 (red, þ) and B0 (green, ×) of the broken loop about the unit sphere.
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As discussed in Ref. [35], the correction to B diverges as
one approaches the kink from one side. The kink will be
rounded off by backreaction, so we expect cusps to form.
This is not the same, however, as the cusps which form due
to the toy model of backreaction of Ref. [38]. There, the
authors smoothed the string by convolving the functions A0
and B0 with a Lorentzian,6 which replaces a sharp kink by a

smooth curve. For the rounding off discussed here, as can
be seen in Figs. 7 and 8, the curvature happens over a very
short amount of length (due to the energy near the kink
being preferentially depleted). The effect seen here leads
to a much higher A00 or B00 over a much shorter range
compared to the convolution procedure of Ref. [38].
The cusps which actually form due to backreaction will
therefore be weaker than previously predicted.
In the canonical loop, we expect the preferential loss of

energy around the cusp to lead to the weakening of cusps.
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FIG. 8. The energy per segment for the broken loop worldsheet functions changing as a consequence of gravitational backreaction.
The energy loss is preferentially around the kinks in B and is greater on the side with a lower null parameter, while the energy loss in A is
less, but happens preferentially around where B jumps over A.
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6The reason for this choice and the details of the implementa-
tion are discussed in Ref. [38].
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For the broken loop, we anticipate backreaction to lead to
the formation of cusps, but because the string has already
lost a good amount of energy modifying the kinks, the
created cusps will be very weak.

E. Twice-broken Kibble-Turok results

We present the results for the twice-broken loop in
Figs. 11 and 12. As with the broken loop, we see a
preferential loss of energy for the segments around the
kinks, although now it affects both A and B because both
contain kinks. Moreover, we see the same change to the

kinks as observed in the singly broken case, both in
rounding and in dragging.

F. Cuspy broken Kibble-Turok results

Lastly, we present the results for the cuspy broken loop
in Figs. 13 and 14. Now, we see that the preferential loss of
energy at the kinks and cusps happens at slightly different
rates and with quite different behaviors. The depletion of
energy and curving of the string near the kink happens
preferentially on one side, whereas the depletion and
curving near the cusp happen with roughly the same
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FIG. 11. The motion of A0 (red, þ) and B0 (green, ×) of the twice-broken loop about the unit sphere.
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FIG. 12. The energy per segment for the twice-broken loop worldsheet functions changing as a consequence of gravitational
backreaction. The energy loss is preferentially around the kinks and is greater on the side with a lower null parameter.
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FIG. 13. The motion of A0 (red, þ) and B0 (green, ×) of the cuspy broken loop about the unit sphere.
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magnitude on both sides (although the process is not
symmetric). Both the cusps and the kinks are dragged
around the unit sphere, with the kinks being dragged faster.
The changes to the cusps and kinks in the cuspy

broken case appear to be noninterfering, or at most weakly
interfering. By this we mean that the cuspy broken loop
behaves more or less like the superposition of the canonical
and broken loops. This suggests that cusps and kinks only
significantly change the parts of the string very close to
them, and also that the evolution of the kink does not
depend strongly on whether or not it is avoiding a cusp.

IV. GENERAL BEHAVIOR UNDER
BACKREACTION

A. Changes to cusps

The locations of the cusps on the unit sphere are changed
in a process we have referred to as dragging. So, each time
the cusp reappears, the direction in which it points is
slightly different. This behavior was noted in Ref. [34],
where the cusps were said to be delayed. For example, in
Fig. 3 we can clearly see that A0 is dragged in the direction
of B00, and looking closer, we see that B0 is dragged in the
direction of A00 also. When we decide to describe the string
in terms of A and B, there is an arbitrary choice of the
direction of σ, which determines which is A and which is B,
and similarly which is u and which is v. It does not,
however, affect the direction of advance of u and v, because
this is always toward the future. Thus the directions of the
derivatives of A and B are not reversed. Since the dragging
effect is symmetrical under exchange of A and B, it does not
depend on the choice of direction of σ.
The energy removed from the string by backreaction is

preferentially taken from the string around the cusps, which
leads to the cusps becoming weaker. The angular power
density due to a cusp diverges as one approaches the cusp
direction, but the total power radiated is finite. We model
the cusp by expanding the string near the cusp in a Taylor
series and following Appendix A of Ref. [25]. Let us define

ΓcuspðθÞ as the contribution to Γ coming from radiation into
the cone of directions within angle θ ≪ 1 of the cusp
direction. We compute this quantity in Appendix B below.
We find that ΓcuspðθÞ is proportional to θ, so ΓcuspðθÞ=θ
does not depend on θ and it characterizes the strength of the
cusp. In Fig. 15, we plot this strength as a function of the
amount of backreaction.
Our measure, ΓcuspðθÞ=θ, is based on average power due

to the cusp, not the energy of each burst. If a loop were to
shrink without changing shape, this quantity would be
constant. We found this measure useful for understanding
changes in loop shape, but if one is interested in the
observability of bursts, one should multiply by L=2 to get
the burst energy per unit θ. That measure would see an
additional drop in energy due to the shrinkage of the loop.
Cusps which are initially present weaken over time, with

the contribution to Γ after iteration 200 being roughly half
of what it was initially. The cuspy broken loop has a
stronger cusp than the canonical loop, but this is due to how
we constructed the loops. Recall that all loops start with the
same length. Thus the wedge removed from the cuspy
broken loop’s B0 means that the same amount of energy as
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FIG. 14. The energy per segment for the cuspy broken loop worldsheet functions changing as a consequence of gravitational
backreaction. The energy loss is preferentially around the kinks and cusps; in the former case, the loss is greater on the side which has a
lower null parameter. The cusps are near segments 200 and 400 for A, and 100 and 300 for B. The kinks are shifted by 100 segments
from the cusps for both A and B.
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in the canonical case is spread across less angular distance;
thus the B00 at the cusp is smaller in the cuspy broken case,
so the radiation is stronger.
Cusps that develop on loops which lacked them initially

start out weak and never grow as strong as the cusps that
were there from the beginning. In the case of the broken
loop, backreaction on the kink produces a somewhat
smooth segment of B0 that crosses the preexisting smooth
A0 to form a cusp. In the case of the twice-broken loop, both
A0 andB0 start with kinks. Thus in this case there is initially
much less string involved in the cusp (i.e., both A00 and B00
are much larger), and thus the cusp radiation is much
weaker than in the singly broken case.
Since the weak cusps are getting stronger and the strong

cusps weaker, there may be a convergence to a single
strength of cusps in all cases, but it is hard to tell. Even so,
this would happen only after most of the loop’s energy had
been lost.

B. Changes to kinks

The locations of the kinks on the unit sphere are dragged,
again in the general direction ofX00. As far as we know this
behavior has not been discussed before. We cannot com-
ment extensively on the relative rates of cusp and kink
dragging, but they appear to differ by less than an order of
magnitude.
The energy removed from the string by backreaction is

also preferentially taken from the string around the kinks—
more strongly for whichever of A or B contains the
discontinuity, but both are affected. While the cusps lose
energy roughly equally on both sides, the kinks lose energy
in a very asymmetric fashion, with the side above the kink
being almost unaffected and the side below being quickly
depleted [35].
The kink is rounded off, also in an asymmetrical fashion,

as we see, for example, in Fig. 7. In the bottom panels,
several of the original segments now fill the gap seen in the
top panels. However, we also see from Fig. 8 that little of
the energy associated with each of these segments still
remains. Thus backreaction replaces the kink by a curved
section, but this curvature is confined to a quite small
region of the string. While the kink has been rounded off,
and so is no longer completely preventing cusps, any cusps
which do form will be weak compared to the cusps we
studied which were present at a loop’s creation. We can see
this behavior in Fig. 15.

C. Changes in Γ
In Fig. 16, we show the evolution of the Γ factors for all

loops discussed above. Loops that start with cusps have
higher Γ, which is not surprising. Such loops preferentially
lose energy from the region around the cusp. This leads to a
decline in the cusp radiation and contributes to a decline in
the overall Γ.

Loops without cusps initially start with lower Γ, and
there is little change in Γ over time. Backreaction intro-
duces cusps, but the emission from them is always weaker
than that of cusps present initially. The production of
cusps does not increase the overall Γ, so the (fairly small)
emission from the cusps must be offset by decreases in
emission elsewhere.
We further observe that the changes to the Γ values is in a

rough correspondence to the changes to the cusp strengths
seen in Fig. 15.
In the end, all loops appear to evolve towards a Γ in the

high 40 s or low 50 s, although there does not appear to be a
single asymptotic value. This is similar to the Γ ≈ 50 for
loops taken from simulations and smoothed [38], although
this does not explain why a simple model loop would move
towards a configuration similar to a loop generated by a
stochastic process.
Note that the change in Γ is due to a change in the shape

of the string and not to its decreasing length. This change in
shape should also change the power spectrum Pn of the
string, particularly in the high-n regime where the differ-
ence between kinks and cusps dominates.

D. Self-intersections

One of the important questions one would like to address
is how robust non-self-intersecting trajectories are to the
effects of backreaction. This was studied in detail for
realistic loops obtained from a large scale simulation in [38]
using a toy model for backreaction based on smoothing.
This led to the conclusion that backreaction usually did not
deform non-self-intersecting loops into self-intersecting
trajectories. Here we revisit this issue, but with explicit
backreaction in place of a toy model.
We check for self-intersections by taking the backreacted

loops at various points in their evolution and letting them
undergo one full oscillation in flat space. During this
motion, we are sensitive to any crossing of segments,
which would lead to the loop fragmenting into two child
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FIG. 16. The changes in loop Γ due to gravitational back-
reaction.
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loops. We have not found any such self-intersections in
these cases. This seems to be the generic situation for this
family of loops.

V. CONCLUSIONS

We have developed and demonstrated a technique for
calculating gravitational backreaction on cosmic string
loops, although we have only studied simple models in
this work. This was done in order to draw conclusions on
the fates of cusps and kinks in as controlled of an
environment as possible. However, we are currently study-
ing backreaction on realistic cosmic string loops, as will be
reported in a future paper.
As expected from analytic work [35], backreaction

acting on one side of a kink rounds it off immediately,
but only over a narrow region of the string. Viewed very
close up, the string is smooth, but at larger distances it still
looks like a kink. Smoothing produces a cusp that was not
there initially, but this cusp is very weak and never grows
very strong as compared to what one would expect for a
loop whose A0 and B0 move uniformly around the unit
sphere.
There are two reasons that cusps never grow very strong.

First, the amount of the initial string involved in the
rounding of the kink grows only slowly with time. But
secondly, the energy in this string is always being depleted,
so that even as more and more of the initial segments of
string are involved in the cusp, the amount of energy in
each segment is going down.
For strings with cusps initially, the amount of energy

involved in the cusp, and consequently the cusp strength,
declines over time by a factor of a few by the time the loop
is about half evaporated.
Loops produced in simulations have many kinks, but no

cusps [38], because the paths of A0 and B0 often jump over
each other but never cross smoothly. Thus we expect the
results on the initially cuspless loops that we study in this
paper to be the ones relevant for the prediction of
observable signals from a cosmic string network. These
cusps never grow to more than about one-tenth of the naive
cusp strength that one would predict for a smooth loop.
This worsens the prospects for detection of burst signals,
such as gravitational waves, coming from cusps, and thus
weakens the constraints from nondetection.
Cusps are “dragged” about the unit sphere in the

general direction of X00. Thus successive bursts of
gravitational waves from cusps are emitted in slightly
different directions, so one would not expect observations
of repeating bursts. Figure 17 shows the angular distance
on the unit sphere between the direction of each cusp and
where it was originally. In roughly the first half of the
loop lifetime, studied here, the angles are no more than
50°. This has some impact on the rocket effect [9,43]
because the thrust due to gravitational wave emission is
not in a single direction, but it is tiny. For θ ¼ 50°, the

average thrust is only reduced 3% over what it would be
without dragging.7

Finally, we note that describing the effect of backreaction
on a loop is not as simple as saying that cusps are weakened
and kinks are rounded off. These processes indeed take
place, but parts of the loop far from kinks or cusps are also
affected, in complex ways. In particular, we see that the
dragging process affects segments near kinks or cusps more
than those further away, introducing features that were not
originally present. The resulting loops are not simply
described as having, or not having, cusps and kinks.
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APPENDIX A: CORRECTIONS TO A SEGMENT
DUE TO A SINGLE SOURCE DIAMOND

Given an observer diamond and a source diamond on
some string worldsheet, we may find the correction to the
observer diamond’s A0 and B0 due to that source. To do this,
we make use of the uvcd coordinates of Ref. [35]. These
are pseudo-orthonormal coordinates whose basis vectors
are B0=2 for the u direction and A0=2 for the v direction,
using the null vectors of the source, plus two spacelike
vectors for the c and d directions which are orthogonal to
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FIG. 17. Motion of the cusp direction around the unit sphere
due to backreaction.

7If the thrust is evenly distributed along a great circle
segment of angle θ, the magnitude of the average thrust is
ð1=θÞ R θ=2

−θ=2 dϕ cosϕ ¼ ð2=θÞ sinðθ=2Þ ≈ 1 − θ2=24 if θ is small.
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the plane of the source diamond and to each other. Thus the
source diamond is parametrized by the null parameters u
and v. This also means that

A0γ ¼ ð0; 2; 0; 0Þ; ðA1aÞ
B0γ ¼ ð2; 0; 0; 0Þ ðA1bÞ

when γ ¼ ðu; v; c; dÞ.
Some additional definitions will make the following

equations more compact. First we say that the observer’s
motion in the observer diamond is along the null vector V,
parametrized by x. Thus, if κ connects the centers of the
source and observer diamonds, then we can define

ΩðxÞ ¼ κ þ xV
2

ðA2Þ

as the location of the observer relative to the source
diamond’s center, which we take as the origin of our
coordinate system. The edges of the source diamond have
lengths LA and LB, so locally u runs over −LB…LB, and
similarly for v and LA. This means that we can define
vectors

E ¼ Ω − LAA0=2 − LBB0=2; ðA3aÞ
S ¼ Ωþ LAA0=2þ LBB0=2; ðA3bÞ

which point from the future tip and past tip of the source
diamond, respectively, to the observer. We also define Z ¼
A0 · B0 for convenience, and indicate the null vectors of the
observer diamond by Ā0 and B̄0 to distinguish them from the
source diamond null vectors. Finally, we use the freedom in
c and d to choose our coordinates such that Vd ¼ 0 always.
We will now take Eq. (19) of Ref. [37],

hαβ ¼
8Gμσαβ

Z
ln

�
2A0Ω
Z

− u

�
uþ

u−

; ðA4Þ

with hαβ the first-order perturbation of the spacetime metric
due to the source diamond,

σαβ ¼
1

2
ðA0

αB0
β þ B0

αA0
β − 4ZηαβÞ; ðA5Þ

ηαβ the flat-space metric, and u� the maximum and
minimum values of that parameter visited by the inter-
section line within the source diamond. Then, making use
of Eqs. (1) and (3), we find that the correction to a null
vector N̄0 of the observer diamond due to the source
diamond is given by

ΔN̄λ ¼ −Gμ½ðĀ0vA0λ þ Ā0uB0λ − 2Ā0λÞFρB̄0ρ

þ ðB̄0vA0λ þ B̄0uB0λ − 2B̄0λÞFρĀ0ρ

þ FλðĀ0cB̄0c þ Ā0dB̄0dÞ�; ðA6Þ

where F is given byZ
xf

xi

hαβ;γ ¼
8Gμσαβ

Z
Fγ: ðA7Þ

The values of Fγ depend on which of the three types of
crossing discussed in Sec. II B the source diamond
possesses. This crossing type may change as we move
along the observer line in the observer diamond, and
thus a single source diamond could contribute up to
three separate ΔN̄0 terms which correct the observer
diamond’s null vector. The initial and final values of the
null parameter we integrate over, xi and xf, give the
range of the observer’s motion for a given crossing type.
For an intersection line which connects opposite edges of

fixed u,

Fu ¼
2

Vu

�
ln

�
EuðxfÞ
EuðxiÞ

�
− ln

�
SuðxfÞ
SuðxiÞ

��
; ðA8aÞ

Fv ¼ 0; ðA8bÞ

Fc ¼ 0; ðA8cÞ

Fd ¼ 0: ðA8dÞ

For an intersection line which connects opposite edges
of fixed v, the F are the same as the case which connects
edges of fixed u, but with u ↔ v. For an intersection line
which connects the two future edges of the source
diamond,

Fu ¼
2

Vu ln

�
EuðxfÞ
EuðxiÞ

�
; ðA9aÞ

Fv ¼
2

Vv ln

�
EvðxfÞ
EvðxiÞ

�
; ðA9bÞ

Fc ¼ −
2

Vc ln

�ðΩcðxfÞÞ2 þ ðΩdÞ2
ðΩcðxiÞÞ2 þ ðΩdÞ2

�
; ðA9cÞ

Fd ¼ −
4

Vc arctan

� ðΩcðxfÞ −ΩcðxiÞÞΩd

ðΩdÞ2 þΩcðxfÞΩcðxiÞ
�
: ðA9dÞ

Note that because Vd ¼ 0, Ωd has no dependence on x.
Finally, for an intersection line which connects the two past
edges of the source diamond, the F are as in the case which
connects the two future edges, but with the overall sign of
each F changed and with E → S.
With the forms of the F, and Eq. (A1), we may simplify

Eq. (A6). For a u-type crossing, we know that only Fu ≠ 0,
so the velocity correction becomes

ΔN̄u ¼ 0; ðA10aÞ
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ΔN̄v ¼ −
GμFu

Z
ðĀ0cB̄0c þ Ā0dB̄0dÞ; ðA10bÞ

ΔN̄c ¼ GμFuðB̄0uĀ0c þ Ā0uB̄0cÞ; ðA10cÞ

ΔN̄d ¼ GμFuðB̄0uĀ0d þ Ā0uB̄0dÞ: ðA10dÞ

For a v-type crossing, by the usual symmetry of u ↔ v
and A0 ↔ B0, we find

ΔN̄u ¼ −
GμFv

Z
ðĀ0cB̄0c þ Ā0dB̄0dÞ; ðA11aÞ

ΔN̄v ¼ 0; ðA11bÞ

ΔN̄c ¼ GμFvðB̄0vĀ0c þ Ā0vB̄0cÞ; ðA11cÞ

ΔN̄d ¼ GμFvðB̄0vĀ0d þ Ā0vB̄0dÞ: ðA11dÞ

For a past- or future-type crossing, no member of Fγ is
generally zero. So,

ΔN̄u ¼ −
GμFv

Z
ðĀ0cB̄0c þ Ā0dB̄0dÞ; ðA12aÞ

ΔN̄v ¼ −
GμFu

Z
ðĀ0cB̄0c þ Ā0dB̄0dÞ; ðA12bÞ

ΔN̄c ¼ GμĀ0cFρB̄0ρ þGμB̄0cFρĀ0ρ

−GμFcðĀ0cB̄0c þ Ā0dB̄0dÞ; ðA12cÞ

ΔN̄d ¼ GμĀ0dFρB̄0ρ þ GμB̄0dFρĀ0ρ

−GμFdðĀ0cB̄0c þ Ā0dB̄0dÞ; ðA12dÞ

with the difference in the two crossing types coming
entirely from the Fγ terms.

APPENDIX B: CALCULATING Γcusp

The angular power density in gravitational waves emit-
ted by a cusp diverges as the observer approaches the cusp
direction. We would like to use the coefficient of this
divergence to characterize the strength of the cusp.
We begin by considering a coordinate system oriented so

thatA0 ¼ B0 points entirely in the z direction, soA00 andB00
lie entirely in the x − y plane. We establish spherical polar
coordinates ðθ;ϕÞ, where θ ¼ 0 is the cusp direction. Let
ðθO;ϕOÞ denote the direction of the observer in these
coordinates. We consider directions close to the cusp,
θO ≪ 1. The directions of A00 and B00 are ðπ=2;ϕAÞ and
ðπ=2;ϕBÞ, respectively. Define the relative angles ϕAO ¼
ϕA − ϕO and ϕBO ¼ ϕB − ϕO, and ϕAB ¼ ϕA − ϕB.
The power per unit frequency ω per unit solid angle is

given by Eq. (A29) of Ref. [25],

dP
dωdΩ

¼ 2Gμ2ω2θ8O
9π2L

sin4ϕAOsin4ϕBO

jA00j2jB00j2 ½ðK2
1=3ðξAÞ þ K2

2=3ðξAÞÞðK2
1=3ðξBÞ þ K2

2=3ðξBÞÞ

þ 4signðsinϕAO sinϕBOÞK1=3ðξAÞK2=3ðξAÞK1=3ðξBÞK2=3ðξBÞ�: ðB1Þ

Here Kα is the modified Bessel function of the second kind,
and we have defined

ξA ¼ ωθ3O
j sin3 ϕAOj
6jA00j ðB2Þ

and likewise for ξB.
We change variables from ω to

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jsin3ϕAOsin3ϕBOj

36jA00jjB00j

s
θ3Oω ðB3Þ

and integrate over w to get

dP
dΩ

¼ 48Gμ2

θOπ
2L

1

ðjA00jjB00jj sinϕAO sinϕBOjÞ1=2
×HsignðsinϕAO sinϕBOÞðaÞ; ðB4Þ

where

a ¼ ξA
ξB

¼ jB00j
jA00j

���� sinϕAO

sinϕBO

����3 ðB5Þ

and

H�ðaÞ ¼
Z

∞

0

w2½ðK2
1=3ða−1=2wÞ þ K2

2=3ða−1=2wÞÞðK2
1=3ða1=2wÞ þ K2

2=3ða1=2wÞÞ

� 4K1=3ða−1=2wÞK2=3ða−1=2wÞK1=3ða1=2wÞK2=3ða1=2wÞ�dw: ðB6Þ
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This is invariant under a → 1=a, and thus Eq. (B4) is
invariant under the interchange of A and B. It is also
invariant under rescaling of the loop length, as both jA00j
and jB00j go like 1=L. Length invariance makes this
quantity a good measure of cusp strength for consid-
ering how backreaction changes a cusp on a loop over
time, as the loop’s length is also changing due to
backreaction.
In the main text we defined ΓcuspðθÞ to be the contri-

bution to Γ coming from angles within θ of the cusp
direction. So we should compute

Z
2π

0

dϕO

Z
θ

0

sin θOdθO
dP
dΩ

ðB7Þ

and then use P ¼ Gμ2Γ to find the contribution to Γ. The
polar integration is straightforward because we are working
in the regime where θO ≪ 1 and thus sin θO ≈ θO. The θO
here cancels the θO in the denominator of Eq. (B4), so our
expression is overall ∝ θ. Due to the dependence of a and w
on ϕO, the azimuthal integration must be done numerically.
This integration gives some number Γcusp=θ, which we
show in Fig. 15.
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