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We consider the simplest anisotropic generalization, as a correction, to the standard ΛCDM model, by
replacing the spatially flat Robertson-Walker metric by the Bianchi type-I metric, which brings in a new
term Ωσ0a−6 (mimicking the stiff fluid) in the average expansion rate HðaÞ of the Universe. From Hubble
and Pantheon data, relevant to the late Universe (z ≲ 2.4), we obtain the constraint Ωσ0 ≲ 10−3, in line with
the model-independent constraints. When the baryonic acoustic oscillations and cosmic microwave
background (CMB) data are included, the constraint improves by 12 orders of magnitude, i.e.,Ωσ0 ≲ 10−15.
We find that this constraint could alter neither the matter-radiation equality redshift nor the peak of the
matter perturbations. Demanding that the expansion anisotropy has no significant effect on the standard big
bang nucleosynthesis (BBN), we find the constraint Ωσ0 ≲ 10−23. We show explicitly that the constraint
from BBN renders the expansion anisotropy irrelevant to make a significant change in the CMB quadrupole
temperature, whereas the constraint from the cosmological data in our model provides the temperature
change up to ∼11 mK, though it is much beyond the CMB quadrupole temperature.
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I. INTRODUCTION

The standard Lambda cold dark matter (ΛCDM) model,
relying on the canonical inflationary paradigm [1–4], is
established on the spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime metric, namely, on
the spatially flat homogeneous, isotropic (viz., maximally
symmetric space led by the Copernican principle) and flat
Robertson-Walker (RW) spacetime metric for describing
the Universe on large scales and general relativity (GR)
for describing dynamics of the Universe. The simplest and
mathematically tractable step towards a cosmological
model with a more realistic background metric is to allow
different expansion factors in three orthogonal directions
while continuing to demand spatial homogeneity and
flatness. It corresponds to replacing the spatially flat RW
background metric by the Bianchi type-I background
metric [5,6]. This, in the absence of any anisotropic source
in GR, leads to the generalized Friedmann equation
containing average Hubble parameter along with a new
term, namely, the energy density corresponding to the
expansion anisotropy, ρσ , scaling as the inverse of the

square of the comoving volume. Therefore, ρσ contributes
like a stiff or Zeldovich fluid (p ¼ ρ) [7] and decreases
faster than other known physical sources as the Universe
expands [8,9]. Moreover, there is a cosmic no-hair theorem
implying that canonical inflation (driven by scalar field
model of inflaton) isotropizes the Universe very efficiently
[10,11], leaving a residual anisotropy that is negligible
for any practical application in the observable Universe.
Hence, any high confidence detection of anisotropy in the
background expansion of the Universe would have far-
reaching consequences on the ΛCDM model and/or infla-
tionary paradigm and further on the fundamental theories of
physics underlying them. Depending on the characteristics
of the detected expansion anisotropy, it could be illuminat-
ing to the nature of inflaton, dark energy (DE) and even
gravitation. For instance, altering the stiff-fluid-like behav-
ior of the expansion anisotropy could be possible mainly by
either replacing minimally coupled scalar field models of
inflaton or DE by a source yielding anisotropic pressure
(e.g., vector fields; see [12] for a list of anisotropic stresses
and their effects on the expansion anisotropy) or replacing
GR by a modified gravity that can give rise to effective
source yielding anisotropic pressure (e.g., Brans-Dicke
theory [13–15]); see, for examples, [16–33].
There are various clues for questioning the RW back-

ground of the ΛCDM model. This has been mainly
motivated by hints of anomalies in the cosmic microwave
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background (CMB) distribution first observed on the full
sky by the WMAP experiment [34–37]. These were also
observed in the Planck experiment [38–42], and followed
by many studies, e.g., large angle anomalies [43], with the
possible clarifications in the alignment of quadrupole and
octupole moments [44–46], the large-scale asymmetry
[47,48], the strange cold spot [36], and the low quadrupole
moment of the CMB [22,42,49]. So far, the local deviations
from the statistically highly isotropic Gaussianity of the
CMB in some directions (the so-called cold spots) could
not have been excluded at high confidence levels
[37,38,49,50]. Similarly, it has been shown that the
CMB angular power spectrum has a quadrupole power
persistently lower than expected from the best-fit ΛCDM
model [42,49,51–53]. Several explanations for this
anomaly have been proposed [22–24,27,28,54–60], includ-
ing the anisotropic expansion of the Universe, that could be
developed well after the matter-radiation decoupling, for
example, during the domination of DE, say, by means of its
anisotropic pressure, acting as a late-time source of not
insignificant anisotropy (see, e.g., [23–33,61–66] for aniso-
tropic DE models and [67–70] for constraint studies on
the anisotropic DE). On the other hand, in GR in the
absence of any anisotropic source as it is the case in the
standard ΛCDM, the CMB provides very tight constraints
on the anisotropy at the time of recombination [71–73]
of the order of the quadrupole temperature fluctuation
ðΔT=TÞl¼2 ∼ 10−5. And, the stiff-fluid-like behavior of
the expansion anisotropy implies an isotropization of the
expansion from the recombination up to the present,
leading to the typically derived upper bounds on the Ωσ0

today of the order ∼10−20. Thus, any high confidence
detection of anisotropic expansion in the present day
Universe larger than this expected value within ΛCDM
could be taken as a hint that the late-time Universe is under
the influence of some source yielding anisotropic pressure,
viz., DE as a source or DE arising as an effective source
from a modified gravity.
The implications of the existence of anisotropic expan-

sion in the observable Universe, some of which we pointed
out above, led many researchers to study the constraints on
the possible anisotropic expansion of the Universe. For
example, a direct observational constraint on the expansion
anisotropy of the Universe from SN Ia data corresponding
to low redshifts is obtained as Ωσ0 ≲ 10−3 [74,75]. Because
of the stiff-fluid-like redshift dependence of the expansion
anisotropy, however, such large upper bounds are not
acceptable within the ΛCDM model, since, in this case,
the expansion anisotropy would dominate the Universe just
by z ∼ 10 and spoil the standard cosmology for z≳ 10.
There are much stronger constraints such as Ωσ0 ≲ 10−22,
from Planck CMB temperature and polarization data
[76–78] and from the light element abundances predicted
by big bang nucleosynthesis (BBN) [79]. These are model
dependent, which assume GR and nonexistence of any

anisotropic source so that the stiff-fluid-like behavior of the
expansion anisotropy is employed. Recently, the stiff-fluid-
like contribution of the expansion anisotropy to the average
Hubble parameter is considered in [80,81], and the con-
straintΩσ0 ≲ 10−3 is obtained usingHðzÞ and/or SN Ia data
corresponding to z≲ 2.4, which is in line with the model-
dependent constraints.
In our study, we first present an explicit construction of

the Bianchi type-I extension of the ΛCDM model (Sec. II).
Then, to constrain the model and study the Bayesian
inference, we consider the most recent Hubble and
Pantheon data relevant to the late Universe (z≲ 2.4)
and then include the baryonic acoustic oscillations
(BAO) and CMB data as well, both of which contain
information about the Universe at z ∼ 1100 (see Sec. III).
We guarantee expansion anisotropy to remain as a correc-
tion all the way to the largest redshifts involved in BAO and
CMB data used in our analyses, by fixing the drag redshift
as zd ¼ 1059.6 (involved in BAO analysis) and the last
scattering redshift as z� ¼ 1089.9 (involved in CMB data)
from the Planck 2015 release for the standard ΛCDM
model [82]. We obtain constraints on the Bianchi type-I
extension of ΛCDM in comparison with the standard
ΛCDM model by considering different combinations of
the datasets and discuss the results (Sec. IV). We further
discuss the results in the context of matter-radiation equal-
ity (relevant to the Universe at z ∼ 3400), BBN (relevant to
the Universe as z ∼ 108), and CMB quadrupole problem
(Sec. V). The main findings and conclusions of the study
are summarized in Sec. VI.

II. BASIC EQUATIONS AND THE MODEL

The simplest spatially homogeneous but not necessarily
isotropic universes can be constructed by the Bianchi type-I
spacetime metric [5,6], which is the straightforward gen-
eralization of the spatially flat FLRW model to allow for
different expansion factors in three orthogonal directions,
and can be given in matter-comoving (four-velocity being
uμ ¼ δμ0) coordinates in the form

ds2 ¼ −dt2 þ A2ðtÞdx2 þ B2ðtÞdy2 þ C2ðtÞdz2; ð1Þ

where fAðtÞ; BðtÞ; CðtÞg are the directional scale factors
along the principal axes fx; y; zg and are functions of the
cosmic time t only. The corresponding average expansion
scale factor is aðtÞ ¼ ðABCÞ13 that arises from the average
Hubble parameter defined as H ¼ _a

a ¼ 1
3
ðHx þHy þHzÞ.

Here, the dot represents the time derivative, and the
directional Hubble parameters are defined along the x, y

and z axes, respectively, as Hx ¼ _A
A, Hy ¼ _B

B and Hz ¼ _C
C.

The most general form of the total energy-momentum
tensor Tμν that could be accommodated by this metric is of
the form
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Tν
μ ¼ diag½−ρ; px; py; pz�; ð2Þ

where ρ is the energy density and fpx; py; pzg are the
pressures along the principal axes fx; y; zg. In view of
Eqs. (1) and (2), Einstein’s field equations

Rμν −
1

2
gμνR ¼ 8πGTμν; ð3Þ

where Rμν is the Ricci tensor, R is the Ricci scalar, gμν is the
metric tensor and G is Newton’s gravitational constant,
yield the following set of differential equations:

HxHy þHyHz þHzHx ¼ 8πGρ; ð4Þ

− _Hy −H2
y − _Hz −H2

z −HyHz ¼ 8πGpx; ð5Þ

− _Hz −H2
z − _Hx −H2

x −HzHx ¼ 8πGpy; ð6Þ

− _Hx −H2
x − _Hy −H2

y −HxHy ¼ 8πGpz: ð7Þ

This set of equations satisfies Tμν
;ν ¼ 0 (the conservation

equation for the total energy-momentum tensor represent-
ing all sources in the Universe) via Gμν

;ν ¼ 0 as a
consequence of the second Bianchi identity. This leads
to the continuity equation

_ρþ 3HρþHxpx þHypy þHzpz ¼ 0: ð8Þ

We intend to investigate the simplest anisotropic gener-
alization, as a correction, to the base ΛCDM model. We
replace the spatially flat RW background metric of the
standard ΛCDM cosmology by the Bianchi type-I
background metric while keeping the physical ingredients
of the Universe as usual, summarized as follows: We
consider the pressureless fluid or dust (CDM, baryons)
described by the equation of state (EOS): pm=ρm ¼ 0,
radiation (photons γ, neutrinos ν) described by the EOS:
pr ¼ ρr=3, and DE mimicked by the cosmological constant
Λ described by the EOS: pΛ ¼ −ρΛ. These all yield
isotropic pressure (i.e., px ¼ py ¼ pz ¼ p), reducing the
continuity equation (8) to _ρþ 3Hðρþ pÞ ¼ 0. We assume
that these sources interact only gravitationally so that the
continuity equation is satisfied separately by each source,
and this leads to

ρr ¼ ρr0a−4; ρm ¼ ρm0a−3 and ρΛ ¼ const; ð9Þ

for which a ¼ 1 corresponds to the present time of the
Universe. Here and onward, a subscript 0 attached to any
quantity implies its value in the present time Universe. We
consider the radiation content, ρr ¼ ργ þ ρν, by including
three neutrino species (Neff ¼ 3.046) with minimum
allowed mass

P
mν ¼ 0.06 eV, theoretically well deter-

mined within the framework of the standard model of

particle physics. The photon energy density today ργ0 is

well constrained. For, it has a simple relation ργ ¼ π2

15
T4
CMB

with the CMB monopole temperature (see [83] for further
details), which today is very precisely measured: TCMB0 ¼
2.7255� 0.0006 K [84]. The density parameter of radia-
tion is Ωr0 ¼ 2.469 × 10−5h−2ð1þ 0.2271NeffÞ, where
h ¼ H0=100 km s−1Mpc−1 is the dimensionless Hubble
constant [85].
Next, we need to find the contribution of the expansion

anisotropy to the anisotropic ΛCDM model, which could
be quantified through the shear scalar

σ2 ≡ 1

2
σαβσ

αβ; ð10Þ

where σαβ ¼ 1
2
ðuμ;ν þ uν;μÞhμ αhνβ − 1

3
uμ;μhαβ is the shear

tensor. Here hμν ¼ gμν þ uμuν is the so-called “projection
tensor” with uμ being the four-velocity in the comoving
coordinates [6]. For the Bianchi type-I spacetime metric
(1), σ2 is obtained in terms of the directional Hubble
parameters as

σ2 ¼ 1

6
½ðHx −HyÞ2 þ ðHy −HzÞ2 þ ðHz −HxÞ2�: ð11Þ

From (5)–(7), in the absence of any anisotropic source in
line with aforementioned standard cosmological sources,
one can obtain

Hx −Hy

x1
¼ Hy −Hz

x2
¼ Hz −Hx

x3
¼ a−3; ð12Þ

where x1, x2 and x3 are integration constants. Then (11)
reduces to

σ2 ¼ σ20a
−6; ð13Þ

where σ20 ¼ 1
6
ðx21 þ x22 þ x23Þ. The density parameter cor-

responding to the shear scalar can be defined as follows:

Ωσ ¼
σ2

3H2
; ð14Þ

which quantifies the expansion anisotropy through its
contribution to the average expansion rate HðzÞ of the
Universe in line with the other density parameters.
Finally, the Friedmann equation (4) for the anisotropic

ΛCDM model can be recast as follows:

3H2 ¼ 8πGðρr þ ρm þ ρΛÞ þ σ2: ð15Þ

Using (9), (13) and (14), it leads to

H2ðaÞ
H2

0

¼ Ωσ0a−6 þ Ωr0a−4 þΩm0a−3 þ ΩΛ0; ð16Þ
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whereΩi0 ¼ ρi0=ρc0 is the present day density parameter of

the ith fluid, ρc0 ¼ 3H2
0

8πG being the present critical density

of the Universe, and Ωσ0 ¼ σ2
0

3H2
0

from (14). We note that

Ωσ0 þΩr0 þ Ωm0 þΩΛ0 ¼ 1. Further, this Friedmann
equation (16) obtained within Bianchi type-I spacetime
differs from that of the base ΛCDM with its two aspects:
(i) Here HðzÞ is the average expansion rate, and that the
expansion rates along the different principal axes—Hx, Hy

and Hz—need not necessarily be the same. Accordingly,
we define the corresponding average redshift z through the
average scale factor a as z ¼ −1þ 1

a. (ii) There is a new
term Ωσ0a−6 on the top of the base ΛCDM model, which
quantifies the contribution of the expansion anisotropy to
the average expansion rate. The shear scalar σ2 [see (13)]
contributes to the Friedmann equation like a stiff fluid
ρs ∝ a−6 described by the EOS of the form ps=ρs ¼ 1,
when stiff or Zeldovich fluid [7] is included to the base
ΛCDM model.1 This is a generic result for general
relativistic Bianchi type-I cosmologies in the absence of
any kind of anisotropic source.2

III. BAYESIAN INFERENCE

In recent years, Bayesian inference has been extensively
used in parameter estimation and model comparison in
cosmological studies [86–90]. According to Bayes’ theo-
rem, the posterior distribution PðΘjD;MÞ of the parameters
Θ of a given model M is written as

PðΘjD;MÞ ¼ LðDjΘ;MÞπðΘjMÞ
EðDjMÞ ; ð17Þ

where D is the cosmological data, LðDjΘ;MÞ is the
likelihood, πðΘjMÞ is the prior probability of the model
parameters, and EðDjMÞ is the Bayesian evidence, given by

EðDjMÞ ¼
Z
M
LðDjΘ;MÞπðΘjMÞdΘ: ð18Þ

For parameter estimation in cosmological models, it is
common to use a multivariate Gaussian likelihood given by

LðDjΘ;MÞ ∝ exp

�
−
χ2ðDjΘ;MÞ

2

�
; ð19Þ

where χ2ðDjΘ;MÞ is the chi-squared function for the
dataset D. In case of uniform prior distribution πðΘjMÞ
of the model parameters, Eq. (17) leads to

PðΘjD;MÞ ∝ exp

�
−
χ2ðDjΘ;MÞ

2

�
: ð20Þ

Thus, the posterior probability PðΘjD;MÞ or the likelihood
LðDjΘ;MÞ is maximum where the χ2ðDjΘ;MÞ is
minimum.
In order to compare a model Mi with a reference model

Mj, the ratio of the posterior probabilities of the two
models, is computed by using [91]

PðMijDÞ
PðMjjDÞ ¼ Bij

PðMiÞ
PðMjÞ

; ð21Þ

where Bij is the Bayes’ factor, defined as

Bij ¼
Ei

Ej
: ð22Þ

The Bayes’ factor is commonly interpreted using the
Jeffrey’s scale [92], given in Table I. This table suggests
that the evidence in favor of or against the model Mi
relative to model Mj is weak or inconclusive in case
j lnBijj < 1. Further, the reference model Mj is favored
over the model Mi when lnBij < −1. In our analysis, we
will adopt the ΛCDM model as the reference model Mj.

A. Data and likelihoods

1. HðzÞ
We consider a compilation of 36 HðzÞ measurements as

shown in Table II, viz., the first 31 measurements obtained
from the cosmic chronometric method [93], three correlated
measurements (at z ¼ 0.38, z ¼ 0.51 and z ¼ 0.61) from
the BAO signal in galaxy distribution [94], and the last two
measurements (at z ¼ 2.34 and z ¼ 2.36) determined from
the BAO signal in Ly-α forest distribution alone or cross-
correlated with quasistellar objects (QSOs) [95,96].
The chi-squared function for the 33 HðzÞ measurements,

denoted by χ2CCþLyα, is

TABLE I. Jeffrey’s scale.

j lnBijj Strength of evidence

[0, 1) Weak=inconclusive
[1, 3) Positive=definite
[3, 5) Strong
≥ 5 Very strong

1A detailed theoretical investigation of the standard ΛCDM
model augmented by stiff fluid was recently presented in [9]. One
may check that these two models have mathematically exactly the
same Friedmann equation, though they are physically different.
However, at the background level, the observational constraints
obtained in this study are valid for that model too.

2The presence of anisotropic sources or modifications to GR
leading to effective sources yielding anisotropic pressure alters
the σ2 ∝ a−6 relation; see Sec. VI for further comments.

AKARSU, KUMAR, SHARMA, and TEDESCO PHYS. REV. D 100, 023532 (2019)

023532-4



χ2CCþLyα ¼
X33
i¼1

½HobsðziÞ −HthðziÞ�2
σ2
HobsðziÞ

; ð23Þ

where HobsðziÞ is the observed value of the Hubble
parameter with the standard deviation σ2

HobsðziÞ as given

in the Table II and HthðziÞ is the theoretical value obtained
from the cosmological model under consideration.
On the other hand, the covariance matrix related to the

three measurements from galaxy distribution [94] reads

C ¼

2
64
3.65 1.78 0.93

1.78 3.65 2.20

0.93 2.20 4.45

3
75: ð24Þ

The chi-squared function for the three galaxy distribution
measurements is

χ2Galaxy ¼ MTC−1M; ð25Þ

where

M ¼

2
64
Hobsð0.38Þ −Hthð0.38Þ
Hobsð0.51Þ −Hthð0.51Þ
Hobsð0.61Þ −Hthð0.61Þ

3
75: ð26Þ

Henceforth, the combined chi-squared function for HðzÞ
measurements, denoted by χ2H, is

χ2H ¼ χ2CCþLyα þ χ2Galaxy: ð27Þ

2. BAO

BAO measurements are useful to study the angular-
diameter distance as a redshift function and the evolution of
the Hubble parameter. These measurements are represented
by using angular scale and redshift separation. They are
commonly written in terms of the dimensionless ratio

dðzÞ ¼ rsðzdÞ
DVðzÞ

; ð28Þ

where rsðzdÞ represents the comoving size of the sound
horizon at the drag redshift, zd ¼ 1059.6 [82]:

rsðzdÞ ¼
Z

∞

zd

csdz
HðzÞ : ð29Þ

Here, cs ¼ cffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þRÞ

p represents the sound speed of the

baryon-photon fluid, and R ¼ 3Ωb0
4Ωr0ð1þzÞ with Ωb0 ¼

0.022h−2 [102] and Ωr0 ¼ Ωγ0ð1þ 7
8
ð 4
11
Þ43NeffÞ, where

Ωγ0 ¼ 2.469 × 10−5h−2 and Neff ¼ 3.046 [83].
Further, DVðzÞ is the volume averaged distance that

gives the relation between the line of sight and transverse
distance scale [103,104]:

DVðzÞ ¼
�
ð1þ zÞ2DAðzÞ2

cz
HðzÞ

�
1=3

; ð30Þ

where DAðzÞ ¼ c
1þz

R
z
0

dz
HðzÞ is the angular diameter distance

and c is the speed of light.
The chi-squared function of BAO measurements from

the first five surveys as mentioned in Table III, denoted
by χ2NW, reads

χ2NW ¼
X5
i¼1

�
dobsðziÞ − dthðziÞ

σdðziÞ

�
2

; ð31Þ

where dobsðziÞ is the observed value of the dimensionless
ratio with the uncertainty σdðziÞ as given in the Table III and

TABLE II. Hubble parameter data.

zi HobsðziÞ [km s−1 Mpc−1] σHobsðziÞ Reference

0.07 69 19.6 [97]
0.09 69 12 [98]
0.12 68.6 26.2 [97]
0.17 83 8 [98]
0.179 75 4 [93]
0.199 75 5 [93]
0.2 72.9 29.6 [97]
0.27 77 14 [98]
0.28 88.8 36.6 [97]
0.352 83 14 [93]
0.38 81.9 1.9 [94]
0.3802 83 13.5 [99]
0.4 95 17 [98]
0.4004 77 10.2 [99]
0.4247 87.1 11.2 [99]
0.4497 92.8 12.9 [99]
0.47 89 50 [100]
0.4783 80.9 9 [99]
0.48 97 62 [100]
0.51 90.8 1.9 [94]
0.593 104 13 [93]
0.61 97.8 2.1 [94]
0.68 92 8 [93]
0.781 105 12 [93]
0.875 125 17 [93]
0.88 90 40 [100]
0.9 117 23 [98]
1.037 154 20 [93]
1.3 168 17 [98]
1.363 160 33.6 [101]
1.43 177 18 [98]
1.53 140 14 [98]
1.75 202 40 [98]
1.965 186.5 50.4 [101]
2.34 223 7 [95]
2.36 227 8 [96]
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dthðziÞ is the theoretical value obtained from the cosmo-
logical model under consideration.
We shall also consider the three data points from the

WiggleZ survey [109]. The inverse covariance matrix
related with these data points is given by

C−1 ¼

2
64
1040.3 −807.5 336.8

−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

3
75: ð32Þ

For the WiggleZ data, the chi-squared function, denoted
by χ2W, is defined as

χ2W ¼ DTC−1D; ð33Þ

where

D ¼

2
64
dobsð0.44Þ − dthð0.44Þ
dobsð0.6Þ − dthð0.6Þ

dobsð0.73Þ − dthð0.73Þ

3
75: ð34Þ

Thus, the chi-squared function for the total BAO con-
tribution, denoted by χ2BAO, gives

χ2BAO ¼ χ2NW þ χ2W: ð35Þ

3. CMB

From the compressed likelihood information of Planck
2015 CMB data [82], we use the angular scale of the
sound horizon at the last scattering surface, denoted by la,
defined as

la ¼ π
rðz�Þ
rsðz�Þ

; ð36Þ

where rðz�Þ is the comoving distance to the last scattering
surface, evaluated as

rðz�Þ ¼
Z

z�

0

cdz
HðzÞ ; ð37Þ

and rsðz�Þ is the size of the comoving sound horizon
[see (29)] evaluated at z� ¼ 1089.9, the redshift of last
scattering [82].
The chi-squared function of CMB, denoted by χ2CMB,

reads

χ2CMB ¼ ðlobsa − ltha Þ2
σ2la

; ð38Þ

where lobsa ¼ 301.63 is the observed value of the angular
scale of the sound horizon with uncertainty σla ¼ 0.15
(see [82]) and ltha is the theoretical value obtained from the
cosmological model under consideration.

4. Pantheon supernovae type Ia

The Pantheon sample is a combination of five subsamples:
PS1, SDSS, SNLS, low-z, and HST that gives the largest
supernovae sample of 1048 measurements, spanning over
the redshift range: 0.01 < z < 2.3 [110]. Following [110],
we use Pantheon data in line with the joint light-curve
analysis sample [111] but ignoring the stretch luminosity
parameter α and the color luminosity parameter β.
The theoretical distance modulus is defined by [111]

μth ¼ 5log10
dLðzhel; zcmbÞ

10 pc
; ð39Þ

wheredL is the luminosity distance givenbydL¼ðc=H0ÞDL.
Further,

DL ¼ ð1þ zhelÞ
Z

zcmb

0

H0dz
HðzÞ ; ð40Þ

where zhel is the heliocentric redshift and zcmb is the redshift
of the CMB rest frame.
The observed distance modulus [111] is given by

μobs ¼ mB −M; ð41Þ

where mB is the observed peak magnitude in the rest frame
of the B band and M is the nuisance parameter.
In the case of Pantheon data, the chi-squared function,

denoted by χ2Pan, is given by

χ2Pan ¼ mTC−1m; ð42Þ

where C is the covariance matrix of μobs given in [112] and
m ¼ mB −mth with

mth ¼ 5 log10DL þM: ð43Þ

The total covariance matrix as in [110] reads

C ¼ Dstat þ Csys; ð44Þ

TABLE III. BAO data.

Survey zi dðziÞ σdðziÞ Ref.

6dFGS 0.106 0.3360 0.0150 [105]
MGS 0.15 0.2239 0.0084 [106]
BOSS LOWZ 0.32 0.1181 0.0024 [107]
SDSS(R) 0.35 0.1126 0.0022 [108]
BOSS CMASS 0.57 0.0726 0.0007 [107]
WiggleZ 0.44 0.073 0.0012 [109]
WiggleZ 0.6 0.0726 0.0004 [109]
WiggleZ 0.73 0.0592 0.0004 [109]
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where Csys is the systematic covariance matrix and Dstat is
the diagonal covariance matrix of the statistical uncertainty,
calculated as

Dstat;ii ¼ σ2mB;i
: ð45Þ

The systematic covariance matrix together with mB;i, σ2mB;i
,

zcmb, zhel for the ith SN Ia are available in [110].

B. Methodology

To obtain observational constraints on the anisotropic
ΛCDMmodel parameters from the above-mentionedHðzÞ,
BAO, CMB and Pantheon data, we use PYMULTINEST

[113] code, which is a PYTHON interface for MULTINEST

[114–116], and a generic Bayesian inference tool that
uses the nested sampling [117] to calculate the Bayesian
evidence and also allows for parameter inference.
We consider multivariate joint Gaussian likelihood

given by

LJoint ∝ exp

�
−χ2Joint

2

�
; ð46Þ

where the joint chi-squared function of all the datasets reads

χ2Joint ¼ χ2H þ χ2BAO þ χ2CMB þ χ2Pan: ð47Þ

In our study, we choose uniform prior distribution
for all the model parameters H0, Ωm0 and Ωσ0, viz.,
55 ≤ H0 ≤ 85, 0.1 ≤ Ωm0 ≤ 0.5 and 0 ≤ Ωσ0 ≤ 0.1, respec-
tively. In the case of the data combinations with CMB and/or
BAO, we have chosen the prior range 0 ≤ Ωσ0 ≤ 10−14.3

IV. RESULTS AND DISCUSSION

Table IV displays the constraints on the parameters of the
anisotropicΛCDMmodel in comparison to the baseΛCDM
model from two relatively low redshift datasets: HðzÞ and
HðzÞ þ Pantheon. Figure 1 shows the one-dimensional and
two-dimensional (68% and 95%) confidence regions of the
anisotropic ΛCDM model parameters for the two datasets.
In both cases, we see that the upper bound on the anisotropy

parameter Ωσ0 is of the order 10−3 in line with the model-
independent constraints, e.g., from type Ia supernovae data
[74,75]. Also, this order is similar to the one obtained in
[80,81]. However, such an amount of expansion anisotropy
in the present Universewithin the anisotropicΛCDMmodel
implies the domination of the anisotropy in the Universe by
z ∼ 10. Thiswould lead to large deviations from the standard
ΛCDM model and spoil the successful description of the
Universe for z≳ 10. Hence, we see that the upper bound on
the density parameter corresponding to the present day
expansion anisotropy at the level 10−3 may not be realistic
within the anisotropic ΛCDM model.

TABLE IV. Constraints (68% and 95% C.L.) on the anisotropic
ΛCDM and ΛCDM model parameters from the HðzÞ and
Pantheon data.

Data HðzÞ HðzÞ+Pantheon
Anisotropic ΛCDM
H0 70.4þ1.9þ3.5

−1.9−3.8 68.7þ1.3þ2.5
−1.3−2.7

Ωm0 0.254þ0.024þ0.054
−0.028−0.051 0.281þ0.017þ0.034

−0.017−0.034
Ωσ0 (95% C.L.) <4.6 × 10−4 <7.4 × 10−4

ln E −15.29� 0.09 −536.11� 0.16

ΛCDM
H0 69.6þ1.8þ3.5

−1.8−3.4 68.8þ1.4þ2.7
−1.4−2.6

Ωm0 0.271þ0.023þ0.048
−0.025−0.046 0.285þ0.017þ0.035

−0.017−0.032
ln E −14.64� 0.09 −535.24� 0.16

FIG. 1. One-dimensional and two-dimensional marginalized
confidence regions (68% and 95% C.L.) for the anisotropic
ΛCDM parameters H0, Ωm0 and Ωσ0 from HðzÞ and HðzÞ þ
Pantheon data.

3CMB and BAO data likelihoods, in our study, use the fixed
high redshifts such as the drag redshift zd and the last scattering
redshift z�, and therefore we expect a small amount of anisotropy
as a correction on the top of standard ΛCDM evolution of the
Universe in our model and results (for more details see Secs. I and
IV). The Universe should be matter dominated at the recombina-
tion that takes place at z ∼ 1100, which is physically closely
related to the last scattering surface redshift z� and drag redshift zd.
Accordingly, using Ωmðz ∼ 1100Þ ≈ 1 and, say, Ωσðz ∼ 1100Þ≲
10−2 into Ωσ

Ωm
¼ Ωσ0

Ωm0
ð1þ zÞ3, we find that the upper bound for Ωσ0

Ωm0

should be∼10−11. Starting from this upper bound, during test runs
of the code, we found that the prior range 0 ≤ Ωσ0 ≤ 10−14 is good
enough to extract the information about Ωσ0.
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In this study, we aim to constrain the allowed amount of
anisotropy from the observational data on the top of the
standard ΛCDM model, so that on average the standard
ΛCDM Universe is not spoiled. Notice that the new term,
i.e., the expansion anisotropy, is the fastest growing term
with the increasing z in HðzÞ. Therefore, for guaranteeing
expansion anisotropy to remain as a correction all the way
to the largest redshifts involved in BAO and CMB data used
in our analyses here, we fix the drag redshift as zd ¼ 1059.6
(involved in BAO analysis) and the last scattering redshift
as z� ¼ 1089.9 (involved in CMB data), where the fixed
values are taken from the Planck 2015 release for the
standard ΛCDM model [82]. With these settings, when we
include CMB and/or BAO data, Ωσ0 is of the order 10−15 in
all cases (see Table V). This shows that the CMB and/or
BAO data offer tight constraints on Ωσ0. The reason is that
HðzÞ and Pantheon data correspond to low redshifts and are
therefore unable to put tight constraints on Ωσ0. On the
other hand, CMB and BAO data likelihoods include fixed
high redshifts such as the drag redshift zd and the last
scattering redshift z� and, therefore, preserve the standard
ΛCDM evolution of the Universe at early times. In other
words, 10−15 is the allowed order of anisotropy on the top
of standard ΛCDM evolution of the Universe in our results.
In what follows, we discuss the results with the constraints
obtained in Table V.
Figure 2 shows the one-dimensional and two-

dimensional (68% and 95%) confidence regions of the
anisotropicΛCDMmodel parameters for four different data
combinations, each including the CMB data. From Table V
and Fig. 2, one may see that the joint dataset HðzÞ þ
BAOþ Pantheonþ CMB yields the most tight constraints
on all the model parameters. Further, in the anisotropic
ΛCDMmodel we notice constraints onH0 andΩm0 similar
to the ΛCDM model. We observe that the mean values of
H0 andΩm0 in the case of the anisotropic ΛCDMmodel are
systematically larger than those in the case of the standard
ΛCDMmodel, though not significantly. One may visualize
the precise shift in these parameters due to anisotropy in
Fig. 3, where the 68% C.L. ranges of H0 and Ωm0 are

displayed for the anisotropic ΛCDM in contrast with the
ΛCDM model. In the anisotropic ΛCDM model in com-
parison to the ΛCDM model, the predicted mean values
of H0 and Ωm0 for different combinations of the datasets
are more similar while the errors remain almost the same.
Namely, the largest deviations in H0 and Ωm0 between
the different combinations of datasets are ΔH0 ¼ 0.50
and ΔΩm0 ¼ 0.0048 in the anisotropic ΛCDM, while those
are approximately 2 times larger, ΔH0 ¼ 0.94 and
ΔΩm0 ¼ 0.0113, in the standard ΛCDM.
Figure 4 shows a summary of the Bayesian evidence

of the anisotropic ΛCDM model in comparison with the
ΛCDM model. We observe definite evidence in all cases of
the data combinations as per the Jeffrey’s scale in Table I.

TABLE V. Constraints (68% and 95% C.L.) on the anisotropic ΛCDM and ΛCDM model parameters from four different
combinations of HðzÞ, CMB, BAO and Pantheon data. The Bayesian evidence is also displayed in each case.

Parameter HðzÞ þ CMB HðzÞ þ BAOþ CMB HðzÞ þ Pantheonþ CMB HðzÞ þ BAOþ Pantheonþ CMB

Anisotropic ΛCDM
H0 70.4þ1.7þ3.3

−1.7−3.3 70.0þ0.7þ1.3
−0.7−1.3 69.9þ1.2þ2.3

−1.2−2.3 69.9þ0.5þ1.3
−0.7−1.1

Ωm0 0.287þ0.020þ0.044
−0.024−0.042 0.291þ0.007þ0.016

−0.008−0.014 0.291þ0.016þ0.030
−0.016−0.029 0.291þ0.007þ0.014

−0.007−0.014
Ωσ0 (95% C.L.) <2.93 × 10−15 <3.04 × 10−15 <2.81 × 10−15 <2.72 × 10−15

ln E −20.45� 0.13 −24.32� 0.14 −539.99� 0.18 −543.74� 0.18

ΛCDM
H0 70.2þ1.7þ3.3

−1.7−3.2 69.4þ0.6þ1.1
−0.6−1.1 69.5þ1.1þ2.3

−1.1−2.1 69.3þ0.5þ1.0
−0.5−1.0

Ωm0 0.280þ0.020þ0.046
−0.024−0.040 0.290þ0.008þ0.015

−0.007−0.014 0.288þ0.016þ0.030
−0.016−0.030 0.291þ0.007þ0.014

−0.007−0.014
ln E −18.1� 0.12 −22.1� 0.17 −537.6� 0.30 −541.91� 0.17

FIG. 2. One-dimensional and two-dimensional marginalized
confidence regions (68% and 95% C.L.) for the anisotropic
ΛCDM model parameters H0, Ωm0 and Ωσ0 from HðzÞ, CMB,
BAO and Pantheon data combinations.
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V. FURTHER DISCUSSIONS

In this section, we further discuss our results in the
context of matter-radiation equality, big bang nucleosyn-
thesis and CMB quadrupole problem.

A. Matter-radiation equality

The transition from radiation domination to matter
domination is one of the most important epochs in the
history of the Universe. This transition alters the growth
rate of density perturbations: during the radiation era
perturbations well inside the horizon are nearly frozen
but once matter domination commences, perturbations on
all length scales are able to grow by gravitational instability
and therefore it sets the maximum of the matter power
spectrum [118]. Namely, it determines the wave number,
keq;m;r, of a mode that enters the horizon, Heq;m;raeq;m;r, at
the matter-radiation transition [118]. In our model, keq;m;r ¼
Heq;m;raeq;m;r can be estimated analytically by assuming

HðaÞ given in (16) that holds all the way to matter-radiation
equality. At this point, both the radiation and matter
contribute equally to the total energy density. At radia-
tion-matter equality, the wave number of a mode that enters
the horizon is given by keq;m;r ¼ aeq;m;rHeq;m;r. In the
anisotropic ΛCDM model, it turns out that

k2eq;m;r

H2
0

¼ Ωσ0ð1þ zeq;m;rÞ4 þ 2Ωm0ð1þ zeq;m;rÞ

þ ΩΛ0ð1þ zeq;m;rÞ−2; ð48Þ

where ΩΛ0 ¼ 1–2Ωm0 −Ωσ0. The combined data
[HðzÞ+BAO+Pantheon+CMB], from our observational
analysis, predict the matter-radiation equality redshift as

zeq;m;r ¼ −1þ Ωm0

Ωr0
¼ 3412þ45

−59 ð49Þ

and

keq;m;r ¼ 0.01040� 0.00010 Mpc−1; ð50Þ

which are pretty much consistent with the recent Planck
results; for instance, Planck TTþ lowE gives zeq;m;r ¼
3411� 48 and keq;m;r ¼ 0.01041� 0.00014 Mpc−1 [119],
implying that the matter perturbations in the anisotropic
ΛCDMmodel are not affected by the expansion anisotropy.

B. Big bang nucleosynthesis

BBN [120,121] provides a probe of the dynamics of the
early Universe, which in turn would give us an opportunity
to further investigate the constraints on the anisotropic
ΛCDM model. Such that, in the standard-BBN model—
assuming that the standard model of particle physics is
valid, and the expansion of the Universe is governed by
GR—the processes relevant to BBN take place during the
time evolution of the Universe from t ∼ 1 s to t ∼ 3 min

FIG. 3. 68% confidence intervals of H0 and Ωm0 for the anisotropic ΛCDM in comparison with the ΛCDM model.

FIG. 4. Summary of the Bayesian evidence for the anisotropic
ΛCDM model in comparison with the ΛCDM model.
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corresponding to the temperature change from T ∼ 1 MeV
to T ∼ 0.1 MeV, during the radiation-dominated era. This
scenario, of course, should not be altered significantly in a
viable cosmological model. The radiation-expansion
anisotropy equality redshift zeq;σ;r is evaluated as

zeq;σ;r ¼ −1þ
�
Ωr0

Ωσ0

�1
2

: ð51Þ

Also, zBBN ∼ 3 × 108 is the redshift of the physical proc-
esses relevant to BBN that takes place in standard cosmol-
ogy. Therefore, it would then roughly require zeq;σ;r > zBBN
in order to avoid any possible adverse effects on the BBN
phenomenon due to expansion anisotropy. This inequality
leads to

Ωσ0 <
Ωr0

ðzBBN þ 1Þ2 ; ð52Þ

and, given that Ωr0 ∼ 10−4, the upper bound of Ωσ0 yields
Ωσ0 < 10−21, that lies within the probability region of Ωσ0

given by the constraint Ωσ0 < 10−15 (see Table V).
On the other hand, as may be seen from the inves-

tigations in Refs. [79,122], the expansion anisotropy would
not lead to a considerable deviation from the standard BBN
for the Ωσ=Ωr ratio up to a few percent, viz.,

Ωσðz ¼ zBBNÞ
Ωrðz ¼ zBBNÞ

≲ 10−2: ð53Þ

Considering this, the upper bound on Ωσ0 further improves
to Ωσ0 ≲ 10−23. Thus, we see that BBN offers tight
constraints on the anisotropy parameter Ωσ0 in comparison
to the constraint Ωσ0 < 10−15 obtained here directly using
the cosmological data. However, it may be noted that the
constraint on Ωσ0 from BBN may be weaker than the one
obtained from the cosmological data in the presence of
anisotropic sources.

C. CMB quadrupole problem

The CMB power spectrum at l ¼ 2 (quadrupole) corre-
sponds to the angular scale θ ¼ π=2 on the sky (l ¼ π

θ).
Corresponding to l ¼ 2, the observed value of the temper-
ature fluctuation by Planck is ΔTPlanck ≈ 14 μK [52],
whereas the standard ΛCDM predicted value reads
ΔTst ≈ 34 μK. Clearly, there is a considerable discrepancy
between the two values. This deficit can be reduced
partially by using cosmic variance, viz., ΔTstþvariance ≈
28 μK [22,83]. Here, we look for the possible effects of the
expansion anisotropy on the CMB power spectrum.
Anisotropic expansion of the Universe implies a different
evolution of the temperature of the free streaming photons
for the different expansion factors in three orthogonal
directions. This in turn would alter the CMB power

spectrum at l ¼ 2, without affecting the temperature
fluctuations corresponding to higher multipoles as pre-
dicted within the standard ΛCDM model.
We first set x1 ¼ 0 [viz., consider locally rotationally

symmetric (LRS) anisotropy [6] for convenience] and
thereby find x2 ¼ −x3 leading to σ20 ¼ x23=3 from (13).
For small anisotropies, the evolution of the photon temper-
ature along the x and z axes can be given as [12,123]

Tx ¼ T0

ax0
ax

¼ T0e
−
R

Hxdt ≃ T0 − T0

Z
Hxdt; ð54Þ

Tz ¼ T0

az0
az

¼ T0e
−
R

Hzdt ≃ T0 − T0

Z
Hzdt; ð55Þ

where today’s CMB monopole temperature is T0 ¼
2.7255� 0.0006 K [84]. In the case of LRS anisotropy,
using (13) and (14), the temperature difference along the x
axis and z axis can be given as

Tx − Tz ¼ T0

Z
t0

trec

ðHx −HzÞdt ¼ T0

Z
t0

trec

ffiffiffi
3

p
σdt

¼ 3T0

ffiffiffiffiffiffiffiffi
Ωσ0

p Z
zrec

0

H0ð1þ zÞ2
HðzÞ dz: ð56Þ

Using the upper bound Ωσ0 ∼ 10−15 and mean values of
other parameters, we obtain ΔTΩσ

¼ Tx − Tz≈ 10.72 mK,
whereas, we need Ωσ0 ∼ 4 × 10−20 to get ΔTΩσ

∼ 20μK,
which could be considered for addressing the quadrupole
temperature problem. For, in the latter case, provided that
the orientation of the expansion anisotropy is set properly,
it is possible to reduce ΔTst ≈ 34 μK in ΛCDM model
to the observed value ΔTPlanck ≈ 14μK [52]. However, the
strict upper bound Ωσ0∼10−23 from BBN, yields ΔTΩσ

∼
1 μK. Thus, the BBN constraint on Ωσ0 prohibits significant
modification in the quadrupole temperature.

VI. CONCLUSIONS

We have considered the simplest anisotropic generali-
zation, as a correction, to the standard ΛCDM model,
constructed by replacing the spatially flat RWmetric by the
Bianchi type-I metric while keeping all other constituents
(e.g., the physical ingredients of the Universe) of the model
as usual. This modifies the Friedmann equation of the
standard ΛCDM model by rendering HðaÞ as the average
expansion rate of the Universe and including a new term
Ωσ0a−6 (which mimics stiff fluid), where a is the average
expansion scale factor. We have carried out observational
analysis by defining the corresponding average redshift
z through the mean scale factor a as z ¼ −1þ 1

a.
Accordingly, we should note that the constraints obtained
here on Ωσ0, viz., the present day expansion anisotropy, are
model dependent. The method employed here constrains
the stiff-fluid-like effect of the expansion anisotropy, which
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arises within GR in the absence of any kind of anisotropic
source, in the model under consideration. From the data
[HðzÞ and Pantheon] relevant to the late Universe (z≲ 2.4)
only, we have obtained the constraint Ωσ0 ≲ 10−3. This
being comparable with the model-independent constraints
[74,75] shows that the method we employed is useful and
informative. When the BAO and CMB data also are
included in our analysis, the constraint improves by 12
orders of magnitude, i.e., Ωσ0 ≲ 10−15. The reason for such
a tight constraint is that we guaranteed expansion
anisotropy to remain as a correction all the way to the
largest redshifts involved in BAO and CMB data used in
our analyses, by fixing the drag redshift as zd ¼ 1059.6
(involved in BAO analysis) and the last scattering redshift
as z� ¼ 1089.9 (involved in CMB data), where the fixed
values are taken from the Planck 2015 release for the
standard ΛCDM model [82]. In all cases of the dataset
combinations, the Bayesian evidence of the anisotropic
ΛCDM model in comparison with the ΛCDM model is
definite as per the Jeffrey’s scale. We have found that, in
comparison with the standard ΛCDM model, Ωσ0 ≲ 10−15

could alter neither the matter-radiation redshift zeq;m;r

nor the peak of the matter perturbations keq;m;r. Finally,
demanding that the expansion anisotropy has no significant
effect on the standard BBN, we have obtained a more tight
constraint as Ωσ0 ≲ 10−23. We have shown explicitly that
this constraint from BBN renders the expansion anisotropy
irrelevant to make a significant contribution to the reso-
lution of the quadrupole moment problem, whereas the
constraint from the cosmological data in our model
provides the temperature change up to ∼11mK, which is
much larger than the required ∼20 μK temperature differ-
ence in the free streaming photons arriving us from the last
scattering surface in the orthogonal directions in the sky.
Such strong constraints, very much beyond the model-
independent constraints, result from the data relevant to
earlier Universe due to the quite steep redshift dependence
of the shear scalar, σ2 ∝ ð1þ zÞ6. On the other hand, it is in
principle possible to alter the redshift dependence of the
shear scalar, particularly in the late Universe by replacingΛ
by an anisotropic DE (see, e.g., [32] and references therein)

or replacing GR by a modified gravity, such as Brans-Dicke
theory, leading to effective anisotropic sources (see, e.g.,
[33] and references therein). For example, it is possible to
have cosmological models in which the shear scalar yields
σ2 ∼ ð1þ zÞ4 as like radiation; then, in principle, it would
contribute to the Friedmann equation like an extra relativ-
istic degrees of freedom (e.g., neutrino). Accordingly, in
such a setup, expansion anisotropy would play the role of
the extra relativistic degrees of freedom in the ΛCDM
model, and, given that the recent Planck release [119] gives
ΔNeff < 0.30, we would expect to obtain Ωσ0 ∼ Ωr0=10≲
10−6 from observational analysis, which is pretty much
consistent with the direct observational constraints on the
present day expansion anisotropy and it could also con-
tribute to the quadrupole moment problem. Moreover, for
the cosmological models in which the shear scalar yields a
redshift dependence flatter than that of the radiation, we
would expect the cosmological data to constrain Ωσ0

stronger than BBN. Thus, we conclude that constraining
the present day expansion anisotropy (viz.Ωσ0) through the
new term that appears in the Friedmann equation due to
expansion anisotropy, as done in this paper, provides a very
informative method and could successfully be used for
constraining different kinds of anisotropic cosmological
models and investigating their underlying theories in the
light of data from cosmological observations.
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