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A warm-intermediate inflationary universe model is studied in the presence of the Galileon coupling
Gðϕ; XÞ ¼ gðϕÞX. General conditions required for successful inflation are deduced and discussed from the
background and cosmological perturbations under slow-roll approximation. In our analysis we assume that

the dynamics of our model evolves accordingly two separate regimes, namely 3g _ϕH ≫ 1þ R, i.e., when
the Galileon term dominates over the standard kinetic term and the dissipative ratio, and second in the

regime where both 3g _ϕH and R become of the same order than unity. For these regimes and assuming that
the coupling parameter g ¼ g0 ¼ constant, we consider two different dissipative coefficients Γ; one
constant and the other being a function of the inflaton field. Furthermore, we find the allowed range in the
space of parameters for our warm G model by considering the latest data of Planck and also the BICEP2/
Keck-Array data from the r ¼ rðnsÞ plane, in combination with the conditions in which the Galileon term
dominates and the thermal fluctuations of the inflaton field predominate over the quantum ones.
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I. INTRODUCTION

The paradigm of cosmic inflation during the very early
universe is arguably the most successful scenario for
explaining several puzzling features of the hot big-bang
theory (HBB), as the horizon, flatness, monopole problems,
among others [1–6]. One of the most interesting features
of inflation is that it can create primordial perturbations
[7–11]. These primordial perturbations seed the temper-
ature anisotropies that are observed in the cosmic micro-
wave background (CMB) [12–14], as well as the observed
large-scale structure (LSS) of the universe. Indeed, the
simplest inflation model, which consists in a single field
with a canonical kinetic term and a flat enough potential
minimally coupled to gravity, give predictions that are in
agreement with current observational data [15–18].
The standard picture of inflation requires two separate

phases as follows: first, during the slow-roll phase, the
universe undergoes an accelerating expansion during which
its energy density is dominated by the potential term of the
inflaton scalar field. Subsequently, during the reheating
phase [19,20], the inflaton oscillates around the minimum
of its potential by dissipating its energy to a radiation bath.

Consequently, the universe enters the radiation era of the
standard HBB model. For comprehensive reviews on
several aspects of reheating phase, see Refs. [21,22]. An
alternative scenario, called warm inflation [23,24], offers
the possibility that the inflaton field dissipates its energy
into a radiation bath during the slow-phase, triggered by a
friction term added to the background equations. In this
sense, warm inflation is opposed to the conventional cold
inflation avoiding the reheating stage. In the framework of
warm inflation the Universe smoothly enters the radiation
era, wherewith a reheating phase is no longer required after
the end of inflationary epoch. A useful way to parametrize
the effectiveness of warm inflation is through the ratio
R≡ Γ=3H, where Γ denotes the dissipative coefficient
(or else decay ratio) and H the Hubble rate. The weak
dissipative regime for warm inflation corresponds to the
condition R ≪ 1, while R ≫ 1 characterizes the strong
dissipative regime of warm inflation. It is worthwhile to
mention that the parameter Γ, may be computed from first
principles in quantum field theory, taking into account that
the microscopic physics resulting from the interactions
between the inflaton and other degrees of freedom (d.o.f.)
[25–30]. In general terms, the decay rate for the inflaton
field may depend on the scalar field itself or the temperature
of the thermal bath, or both quantities, or even it can be a
constant. Furthermore, thermal fluctuations may play a
fundamental role in warm inflation scenario regarding the
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production of primordial fluctuations [31–33]. In this
sense, the density perturbations arise from thermal fluctua-
tions of the inflaton which dominate over the quantum
fluctuations. So that, an essential condition for warm
inflation to occur is the presence of a radiation component
whose temperature is such that T > H, since the thermal
and quantum fluctuations are proportional to T and H,
respectively [23,24,31–37]. For a comprehensive review
and a representative list of recent references of warm
inflation can be seen in Refs. [38,39] and [40–43,82],
respectively.
In relation to exact solutions for canonical single field

inflation in the framework of general relativity (GR), one of
the most appealing comes from a constant potential for the
inflaton field, which yields to de Sitter expansion [1]. On
the other hand, a power-law dependence of the scale factor
in cosmic time, i.e., aðtÞ ∝ tp, where p > 1, is obtained
when an exponential potential for the inflaton field is
introduced [44]. Yet another exact solution corresponds to
the intermediate inflation model, for which the scale factor
evolves with cosmic time as follows [45]

aðtÞ ¼ exp ½Atf�; ð1Þ

where A and f are constant parameters, satisfying the
conditions A > 0 and 0 < f < 1. This expansion law
becomes slower than de Sitter inflation, but faster than
power-law inflation instead. Although the intermediate
inflationary model was introduced as an exact solution,
this expansion gives a particular scalar field potential of the
type VðϕÞ ∝ ϕ−4ðf−1−1Þ [46]. However, the predictions of
this model, regarding primordial perturbations, may be
studied under the slow-roll approximation [46,47]. In this
form, at lowest order in the slow-roll approximation, this
model predicts that the scalar spectral index becomes ns ¼
1 when f ¼ 2=3, corresponding to the Harrison-Zel’dovich
spectrum, which is ruled out by current observations. In
addition, the predictions of this model on the ns − r plane
lie outside the joint 95% CL contour for any value of f
[17,18,47]. It is worthwhile to mention that, the intermedi-
ate inflation model can be rescued in the stage of warm
inflation thanks to the modified dynamics [48–53].
Going further than the standard canonical inflaton

scenario, there are other single-field models constructed
in the framework of Hordndeski [54], or generalized
Galileon theories [55–58], which is the most general
four-dimensional scalar-tensor theories in curved space-
time, free of ghosts and instabilities, with second-order
equations of motion. Of particular interest is potential-
driven inflation in the presence of a cubic Galileon coupling
given by X□ϕ (where X ¼ −gμν∂μϕ∂νϕ=2) [59]. Here, the
Galileon term may suppress the tensor-to-scalar ratio and
eventually turn viable some inflationary potentials already
discarded by current data in the canonical scenario, see,
e.g., [60,61]. Recently, the efforts have been focused in

building the so-called generalized G-inflation models [57],
consisting in a general term Gðϕ; XÞ□ϕ, which is included
to the action for scalar field in addition to the standard
kinetic term (for recent references, see [62–66]). It is
worthwhile to mention that the construction of such a
model deserves a careful analysis in order to prevent the
appearance of instabilities and having successful inflation
[57,61,67–69], as well as a subsequent stage of reheating
[70]. For instance, the authors in [61] studied chaotic and
natural inflation in a Galileon scenario Gðϕ; XÞ ¼ fðϕÞX,
for two expressions of the coupling function fðϕÞ, f ¼
c=M3 and f ∝ ϕ discussed in [59,67]. Interestingly, they
found that if the Galileon self-interaction dominates over
the standard kinetic term after inflation, the oscillatory
stage of reheating may not take place unless the mass scales
characterizing the several potentials satisfy stringent con-
straints in comparison to the canonical case. Alternatively,
if dissipative effects during inflation are taken into account,
is possible to study the dynamics of warm inflation scenario
in the presence of a Galileon term. This possibility was
addressed first in Ref. [71], and subsequently following the
same line for the thermal fluctuations in Ref. [72].
Particularly, in [71], it was studied the Galilean term
Gðϕ; XÞ ¼ gðϕÞX, when the coupling constant g and the
decay rate Γ are constant. Here, considering the exponential
potential, it was found the possibility of distinguish pure
warm inflation or pure generalized G-inflation from the
background and of the thermal fluctuations. In addition, the
modified dynamics may yield a tensor-to-scalar ratio much
smaller than those obtained in a standard G-inflation
scenario, see e.g., [66,71].
Regarding the viability of the intermediate inflation inG-

inflation scenarios for the cold models, in Refs. [73,74], the
authors studied the inflationary dynamics for such an
expansion law for a Galileon term Gðϕ; XÞ ∝ Xn and
Gðϕ; XÞ ∝ ϕνXn, respectively. For both Galileon cou-
plings, it was found the importance of the power n in
order to make compatible the intermediate inflation model
with current observations. In particular, the authors in [74]
found that for n > 38 the tensor-to-scalar ratio becomes
compatible with the bound r0.05 < 0.07 (95% CL), set by
the BICEP2/Keck-Array collaboration [16]. So that inter-
mediate inflation in the framework of cold model is still
ruled out for the Galileon term Gðϕ; XÞ ∝ X (n ¼ 1).
In this form, the main goal of the present paper is to

explore the viability of the intermediate model in the
context of the warm inflation scenario in which the
Galileon term is given by gðϕÞX. In doing so, we consider
a constant coupling function g0 and in order to parametrize
the dissipative effects, we consider two several expressions
for the decay rate: Γ ¼ Γ0 and ΓðϕÞ ∝ VðϕÞ, respectively.
Thus, for each expression of the parameter Γ, we will be
studied the background as well perturbative dynamics for
two separate regimes. First, we will consider the regime in
which the quantity 3g0 _ϕH ≫ 1þ R, i.e., when the Galileon
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term dominates over the standard kinetic term and the
dissipative ratio. Second, we will analyze the regime where
both quantities 3g _ϕ and R become of the same order than
unity. For all the cases, we will obtain the allowed range in
the space of parameters. In this sense, we will consider the
condition for warm inflation T > H, the conditions for the
regimes 3g0 _ϕH ≫ 1þ R and R ∼ 3g0 _ϕH ∼ 1, respectively,
together with the constraints on the ns − r plane by latest
observational data.
The paper is organized as follows: The next section

presents a general set up of warm inflation scenario in the
presence of a Galileon term Gðϕ; XÞ ¼ gðϕÞX at back-
ground level as well as perturbation level, where expres-
sions for the most relevant cosmological observables as the
power spectrum of scalar perturbations, scalar spectral
index, and the tensor-to-scalar ratio will be obtained.
Subsequently, in Sec. III, the background and perturbative
dynamics for our concrete intermediate inflation will be
study in the dominated Galileon regime for Γ ¼ Γ0 and
ΓðϕÞ ∝ VðϕÞ, respectively. Section IV is devoted to study
the dynamics of our model evolving according to the
general regime R ∼ 3g0 _ϕH ∼ 1, also for the cases in which
Γ ¼ Γ0 and ΓðϕÞ ∝ VðϕÞ, respectively. Finally, Sec. V
summarizes our results and presents our conclusions. We
use units in which c ¼ ℏ ¼ Mp ¼ 8π ¼ 1.

II. WARM G INFLATION: BASIC EQUATIONS

In this section we give a brief review on the scenario
of warm G inflation. We start by writing down the
4-dimensional action for this model

S¼
Z ffiffiffiffiffiffiffiffi

−g4
p �

R
2
þKðϕ;XÞ−Gðϕ;XÞ□ϕ

�
d4xþSγþSint:

ð2Þ

Here the quantity g4 denotes the determinant of the space-
time metric gμν, R corresponds to the Ricci scalar, ϕ denotes
the scalar field and X ¼ −gμν∂μϕ∂νϕ=2. Besides, the
quantities K and G are arbitrary functions of X and the
scalar field ϕ. Additionally, we consider that the action for
the perfect fluid describing radiation is defined by Sγ and the
interaction action is given by Sint. In this context, Sint
corresponds to the interaction between the scalar field
and other d.o.f. [71,75,76].
By assuming a spatially flat Friedmann-Robertson-Walker

(FRW) metric, the Friedmann equation can be written as

3H2 ¼ ρ ¼ ½ρϕ þ ργ�; ð3Þ

where the total energy density ρ is given by ρ ¼ ρϕ þ ργ,
whitρϕ corresponding to the energydensity of the scalar field
ϕ and ργ denotes the energy density of the radiation field,
respectively.

Following Refs. [59,68], we can identify that the energy
density and pressure related to the scalar field from the
action (2) are given by

ρϕ ¼ 2KXX − K þ 3GXH _ϕ3 − 2GϕX; ð4Þ

and

pϕ ¼ K − 2ðGϕ þ GXϕ̈ÞX; ð5Þ

respectively. In the following, we will consider a homo-
geneous scalar field, i.e., ϕ ¼ ϕðtÞ and the subscript
KX corresponds to KX ¼ ∂K=∂X, Gϕ to Gϕ ¼ ∂G=∂ϕ,
KXX ¼ ∂2K=∂X2, and so on.
As it was already mentioned, in the scenario of warm

inflation, the universe is filled with a self-interacting
scalar field and a radiation fluid. In this context, the
dynamical equations for the densities ρϕ and ργ can be
written as [23,24]

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ −Γ _ϕ2; ð6Þ

and

_ργ þ 4Hργ ¼ Γ _ϕ2: ð7Þ

Here, we emphasize that the coefficient Γ > 0 corresponds
to the dissipation coefficient and its dependence can be
considered to be a function of the temperature of the
thermal bath T, in which ΓðTÞ, or the scalar field ΓðϕÞ, or
both ΓðT;ϕÞ or simply a constant [23,24]. Recall that, the
role of the coefficient Γ is to account of the decay of the
scalar field into radiation during the inflationary stage.
From Eqs. (4) and (5) we can rewrite Eq. (6) as

3 _HGX
_ϕ2 þ ϕ̈½3HGXX

_ϕ3 − _ϕ2ðGϕX − KXXÞ
þ 6HGX

_ϕ − 2Gϕ þ KX�
þ 3HGϕX

_ϕ3 þ _ϕ2ð9H2GX −Gϕϕ þ KϕXÞ − Kϕ

− 3H _ϕð2Gϕ − KXÞ ¼ −Γ _ϕ: ð8Þ

In order to study our model in the warm G inflation
scenario, we will consider the specific case in which the
functions Kðϕ; XÞ and Gðϕ; XÞ are given by

Kðϕ; XÞ ¼ X − VðϕÞ; and Gðϕ; XÞ ¼ gðϕÞX; ð9Þ

where, the quantity VðϕÞ denotes the effective potential and
the coupling parameter g is a function that only depends on
the scalar field i.e., g ¼ gðϕÞ.
On the other hand, if we restrict ourselves to (9), with a

constant coupling parameter g ¼ g0, we may consider on
the action (2) as a low-energy effective theory, for which
the maximal cutoff Λ is fixed by Planck scale, that is to say
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Λ≲Mpl. Now, in order for this effective theory to remain
valid during the horizon crossing, the minimal cutoff is
determined by the inflationary Hubble scale, i.e., Λ≳H,
with the masses of the fields satisfying m≲H [77].
Following [77], if we identify the cutoff as Λ ¼ g−1=30 ,

the condition g1=30 H ≲ 1 must hold during the horizon

crossing. In this sense, from condition g1=30 H ≲ 1, we will
find different bounds on the parameters in our models.
In the context of warm inflation, the energy density

related to the inflaton field ρϕ dominates over the energy
density of the radiation field ργ during the inflationary
epoch, wherewith ρϕ ≫ ργ [23,24,31–35]. Also, consider-
ing the slow roll approximation in which the effective
potential VðϕÞ dominates over the functions X, jGXH _ϕ3j
and jGϕXj, see, e.g., [68], then the Friedmann equation
given, by Eq. (3), is reduced to

3H2 ≈ ρϕ ≈ VðϕÞ: ð10Þ

By assuming the slow-roll approximation, we can also
introduce the set of slow-roll parameters for G-inflation,
defined as [68]

ε1 ¼
ð− _HÞ
H2

; ϵ2 ¼
ð−ϕ̈Þ
H _ϕ

;

ϵ3 ¼
gϕ _ϕ

gH
; and ϵ4 ¼

gϕϕX2

Vϕ
: ð11Þ

In this sense, after replacing the functions K andG given
by Eq. (9), together with the set of slow roll parameters
given by Eq. (11), we rewrite the equation of motion for ϕ
given by (8) as follows

3H _ϕð1 − ϵ2=3þ RÞ þ 3gH2 _ϕ2½3 − ε1 − 2ϵ2 þ 2ϵ2ϵ3=3�
¼ −Vϕð1 − 2ϵ4Þ: ð12Þ

Here, R denotes the ratio between Γ and the Hubble rate
and it is defined as R ¼ Γ

3H.
Thus, under the slow-roll approximation in which the

parameters jε1j; jϵ2j; jϵ3j; jϵ4j ≪ 1, we obtain that the slow-
roll equation of motion for the inflaton field (12) is reduced
to [71]

3H _ϕð1þ RþAÞ ≃ −Vϕ; ð13Þ

where the function A is defined as A ¼ 3gðϕÞH _ϕ. From
the Friedmann equation (10), we find that the Eq. (13) can
be rewritten as

_ϕ2ð1þ RþAÞ ≃ 2ð− _HÞ: ð14Þ

For the radiation field, we assume that during the stage of
warm inflation, the radiation production is quasistable,

implying that _ργ ≪ 4Hργ and _ργ ≪ Γ _ϕ2 [23,24,31–35]. In
this form, during inflation, Eq. (7) becomes

ργ ≃
Γ _ϕ2

4H
: ð15Þ

We note that the energy density ργ and the temperature of
the thermal bath T are related through ργ ¼ CγT4, where
Cγ ¼ π2g�=30 and g� corresponds to the number of
relativistic d.o.f. Thus, the temperature of the thermal bath,
considering Eq. (15) can be expressed as

T ≃
�
Γ _ϕ2

4CγH

�1=4
: ð16Þ

In warm G inflation, one may distinguish several
regimes, see Ref. [71]. From the slow-roll equation given
by Eq. (13), the regimes Rþ 3gH _ϕ ≪ 1 and 1þ 3gH _ϕ ≪
R are the standard weak and strong dissipative regimes in
the scenario of warm inflation for a canonical scalar
field, respectively. Now, in warm G inflation we can also
have the regime 1þ R ≪ jgH _ϕj,where the Galileon cou-
pling dominates during the inflationary epoch and therefore
the dynamics of standard or pure warm inflation is modified.
Also, another two interesting regimes were studied in
Ref. [71]. Here, the standard weak and strong dissipative
regimes are mixed with the Galileon effect, and these
correspond toR≪1þ3gH _ϕ and1≪Rþ3gH _ϕ, respectively.
At background level, another important quantity is the

number of e-folds N between two different values of
cosmological times t1 and t2, defined as N ¼ R t2

t1 Hdt. In
particular for intermediate inflation, N is given by

N ¼
Z

t2

t1

Hdt ¼ Aðtf2 − tf1Þ: ð17Þ

In this sense, we noted that the Hubble rate assuming
the intermediate expansion can be expressed in terms of the
e-folds N as follows

HðNÞ ¼ Af

�
Af

1þ fðN − 1Þ
�1−f

f

; ð18Þ

and _H ¼ _HðNÞ as

− _HðNÞ ¼ Afð1 − fÞ
�

Af
1þ fðN − 1Þ

�2−f
f

: ð19Þ

Here, we have considered that the inflationary scenario
begins at the earliest possible stage in which ε1ðt ¼ t1Þ ¼
− _H=H2 ¼ 1 [45,46]. We also mentioned that during
intermediate expansion, the slow-roll parameter ε1 in terms
of the number of e-folds N becomes
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ε1 ¼ −
_H
H2

¼ 1 − f
1þ fðN − 1Þ : ð20Þ

This suggests that the inflationary epoch begins at the
earliest possible stage when the number of e-folding is
equal to N ¼ 0. or equivalently ε1 ≡ 1. Note that when
N ≫ 1, the slow-roll parameter ε1 → 0, implying that
inflation never ends. However, in the context of warm
inflation the universe smoothly enters to the radiation era,
since the radiation field dominates over the energy density
of the inflaton according as the universe expands [23,24],
see also Ref. [78] as other mechanisms for address the end
of the accelerated expansion and the reheating of the
universe or this expansion law.
On the other hand, the cosmological perturbation theory

in the model of warm G inflation was developed in
Ref. [71]. In this context, the source of the density
fluctuations corresponds to thermal fluctuations of the
inflaton field during inflation. Thus, according to the
evolution of warm inflation, the fluctuations of the inflaton
field δϕ are dominantly thermal rather than quantum, see
Refs. [23,24,31–37]. In order to determine the amplitude of
the fluctuations is necessary to consider the Langevin
equation that includes a thermal stochastic noise term in
the KG equation. In this way, the fluctuations of the scalar
field δϕ in the warm G model for the case in which the
dissipation coefficient Γ ¼ ΓðϕÞ, can be written as

δϕ2 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2 þHΓþ 18gH3 _ϕ

q
T=2π2, see ref. [71]. Here,

we noted that in the limit g → 0, the fluctuations of
the scalar field δϕ reduces to the fluctuations found
in the case of pure warm inflation [23,24,31–37]. In this
form, following [71], the power spectrum of the
scalar perturbation defined by PR ¼ ðH= _ϕÞ2δϕ2, can
be written as

PR ¼ 1

2π2

�
H
_ϕ

�
2
�

ΓX
2CγH

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3H2ð1þ 6gH _ϕÞ þ ΓH
q

:

ð21Þ

By using the fact that the rate R ¼ Γ=3H and the
function A ¼ 3gH _ϕ, then the scalar perturbation PR
can be rewritten as

PR ¼
ffiffiffi
3

p

2π2

�
3

4Cγ

�1
4

�
H3R

1
4

�
_ϕ−3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rþ 2A

p
: ð22Þ

As the scalar spectral index ns is given by
ns − 1 ¼ d lnPR

d ln k , we find that the spectral index ns results

ns ≃ 1 −
ϵ1
2

�
7

2
þ 1þ 12gH _ϕ

ð1þ Rþ 6gH _ϕÞ

�

þ 3ϵ2

�
1

4
−

gH _ϕ

ð1þ Rþ 6gH _ϕÞ

�
þ ϵ3

�
3gH _ϕ

ð1þ Rþ 6gH _ϕÞ

�

þ ϵ5
2

�
1

2
þ R

ð1þ Rþ 6gH _ϕÞ

�
; ð23Þ

where the quantity ϵ5 is defined as ϵ5 ¼ ð _ϕHÞð
Γϕ

Γ Þ. Here, we
have used Eq. (22).
It is well known that tensor perturbations during inflation

would generate gravitational waves (GWs). In the case of
G-inflation, the amplitude of the tensor perturbations is the
same as in the case of standard general relativity (GR)
[59,68]. So that, the amplitude of the tensor perturbations is
given by

PG ¼ 2H2

π2
: ð24Þ

Here, we have considered the slow-roll approximation
given by Eq. (10).
Another important cosmological observable is the ten-

sor-to-scalar ratio r ¼ PG=PR. Thus, from Eqs. (22) and
(24) the tensor- scalar ratio can be written as

r ¼ 4X

�
2CγH

ΓX

�
1=4

½3H2ð1þ 6gH _ϕÞ þHΓ�−1=2: ð25Þ

In the following, we will study the intermediate expan-
sion in the framework of warm G inflation, for the simplest
case in which the Galileon coupling function g ¼ g0 ¼
constant [59,68]. Also, in this framework we will consider
two different dissipative coefficients Γ. As well, we will
restrict ourselves to the domination of the Galileon effect
on standard warm inflation, i.e., 3gH _ϕ ¼ A ≫ 1þ R and
we will also studied the regime where all terms of Eq. (13)
are the same order, i.e., 1 ∼ R ∼A, namely the general or
full solution.

III. DOMINATION OF THE GALILEON
REGIME A ≫ 1 +R

In this section we utilize the formalism of above to warm
G inflation in the context of intermediate expansion,
assuming that our warm G model evolves according to
the domination of the Galileon regime, in which the
function A ≫ 1þ R.
By assuming the limit A ≫ 1þ R, we note that the

background equations do not depend on the dissipation
coefficient Γ. In this way, we find that the speed of scalar
field _ϕ given by Eq. (13) results in

_ϕ ≃
�
2ð− _HÞ
3g0H

�1=3
: ð26Þ
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As we mentioned above, we observed that _ϕ does not
depend of the coefficient Γ. Now, from the intermediate
scale factor given by Eq. (1), we obtain that the solution
for the scalar field in terms of the cosmological time
becomes

ϕðtÞ ¼
�
9ð1 − fÞ

4g0

�
1=3

t2=3 þ C0; ð27Þ

where C0 denotes an integration constant, that without loss
of generality it can be assumed C0 ¼ 0. From this solution,
we find that the Hubble rate has the following dependence
on the inflaton field

HðϕÞ ¼ Af

�
3

2

�
1 − f
g0

�1
2

�ð1−fÞ
ϕ−3ð1−fÞ

2 : ð28Þ

In this way, from Eqs. (10) and (28) we obtain that the
effective potential in limit A ≫ 1þ R is given by

VðϕÞ¼V0ϕ
−3ð1−fÞ; where V0¼ 3A2f2

�
3

2

�
1−f
g0

�1
2

�
2ð1−fÞ

:

ð29Þ

Note that this kind of scalar potential (power-law), which
depends on the inflaton field in an inverse power-law way,
does not have a minimum and it decays to zero for larger
values of ϕ, since 0 < f < 1. We also note that this
potential becomes independent of the dissipation coeffi-
cient Γ, as it was previously quoted.
On the other hand, the dimensionless slow-roll

parameter ε1 ¼ − _H=H2 can be rewritten in terms of the
inflaton field, considering the slow-roll approximation
wherewith

ε1 ¼
�
1 − f
Af

��
3

2

�
1 − f
g0

�1
2

�f
ϕ−3f

2 :

In this context, the condition of inflation to occur is
given by ε1 < 1, or analogously ä > 0. Therefore, the
inflaton field during the inflationary epoch is such that

ϕ > ð1−fAf Þ
2
3f½3

2
ð1−fg0

Þ12�23. As we mentioned earlier, the infla-
tionary phase begins at the earliest possible stage, i.e.,
ε1ðϕ ¼ ϕ1Þ ¼ 1. Then, the scalar field ϕ1, is given by

ϕ1 ¼ ð1−fAf Þ
2
3f½3

2
ð1−fg0

Þ12�23. Also the number of e-folds N
defined between two different values of cosmological times
t1 and t2 or equality between ϕ1 and ϕ2, by considering
Eq. (27) can be written as

N ¼
Z

t2

t1

Hdt ¼ Aðtf2 − tf1Þ

¼ 2fA
3f

�
g0

1 − f

�f
2ðϕ3f=2

2 − ϕ3f=2
1 Þ: ð30Þ

From the number of e-folding N, it is possible to rewrite
the function A ¼ 3g0H _ϕ in terms of N. Thus, from
Eqs. (1), (26), and (30), we have that

AðNÞ ¼ 2
1
3ð3g0Þ23ðAfÞð1 − fÞ13

�
Af

1þ fðN − 1Þ
�4−3f

3f

: ð31Þ

Since the cosmological perturbations depend on the
dissipation coefficient Γ, then in the following we will
analyze our model in the limit A ≫ 1þ R, for two specific
cases of the dissipation coefficient Γ studied in the
literature, namely; ΓðϕÞ ¼ Γ0 ¼ constant [23,24] and
ΓðϕÞ ∝ VðϕÞ [79].
In order to account of these coefficients that we will

consider, we mentioned before that the dissipation coef-
ficient incorporates the microscopic physics product of the
interactions between the inflaton field and other fields from
the different interactions. In the literature, we have two
suitable expressions for the dissipation coefficient coming
from first principles of quantum field theory. In the first
situation, the inflaton field is coupled to heavy intermediate
fields and these are coupled to light radiation fields, then
the inflaton field can trigger the decay of these heavy
intermediate fields into the light radiation fields from the
slowly moves on the effective potential. Under this context,
the dissipation coefficient Γðϕ; TÞ was determined in the
called low temperature regime for warm inflation resulting
Γðϕ; TÞ ∝ T3=ϕ2 [25,38]. A second situation in order to
develop a dissipation coefficient from the particle physics
was obtained in Ref. [80]. Here, considering the Higgs
phenomenology, the inflaton corresponds to a pseudo-
Goldstone boson of a broken gauge symmetry. This case
establishes the first achievement of warm inflation (so
called warm little inflation), in which a small number of
fields is considered. In this stage, the dissipative coefficient
in the large temperature regime of warm inflation has a
dependence only on the temperature of the thermal bath
given by Γðϕ; TÞ ∝ T [80]. Thus, the dissipation coefficient
Γ ¼ Γ0 ¼ constant can be interpreted as an intermediate
regime between the high temperature and the low temper-
ature. Also, the dissipation coefficient Γ ¼ Γ0 ¼ constant
can be considered as a first approximation from the
dissipation coefficient Γ ∝ T (from the particle physics),
assuming that the temperature slowly changes during the
last e-folding of expansion, see also Ref. [81]. On the other
hand, in order to obtain analytical solutions for the back-
ground equations and cosmological perturbations, we will
assume a dissipative coefficient Γ ∝ VðϕÞ ∝ H2, however,
this coefficient can not be associated to quantum field
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theory. We also mentioned that a coefficient Γ ∝ H ∝
V1=2ðϕÞ, has been studied in the literature to find analytical
expressions in warm inflation, because this dissipation
coefficient generates a ratio R ¼ Γ=3H ¼ constant [82].

A. Case Γ=Γ0 = constant

Let us consider that our model of warm G inflation
evolves according to the regime A ≫ 1þ R, when the
dissipation coefficient Γ has the following form, where Γ ¼
Γ0 ¼ constant [23,24]. In this sense, from Eq. (22) we find
that the power spectrum of the scalar perturbations PR, can
be rewritten as

PR ¼Γ1=4
0 P0

31=4
H

43
12ð− _HÞ−1

3; where P0¼
319=12g5=60

24=3π2C1=4
γ

: ð32Þ

Here, we have used Eq. (26). Now, by using Eq. (27), we
can write the power spectrum of the scalar perturbation in
terms of the inflaton field as

PRðϕÞ¼PIϕ
−βI ; in which

PI ¼P0

�
Γ0

3

�1
4ðAfÞ3912ð1−fÞ−13

�
3

2

�
1−f
g0

�1
2

�2βI
3

; ð33Þ

and βI is defined as βI ¼ ½35−39f
8

�. Note that for the
particular case in which f ¼ 35=39 ≃ 0.90, the power
spectrum of the scalar perturbations becomes constant.
From Eq. (30), we can rewrite the power spectrum
of the scalar perturbation as a function of the number of
e-folds N as

PRðNÞ ¼ pI

�
Af

1þ fðN − 1Þ
�2βI ;

3f

; ð34Þ

where the constant pI is defined as pI ¼
P0ðΓ0

3
Þ14ðAfÞ134 ð1 − fÞ−13 .

As the scalar spectral index ns is defined as
ns − 1 ¼ d lnPR

d ln k , we find that the index ns can be written
in terms of the scalar field ϕ as

ns ¼ 1 −
�
35 − 39f
12Af

��
3

2

�
1 − f
g0

�1
2

�f
ϕ−3f

2 : ð35Þ

Also, we note that for the specific value of f ¼ 35=39≃
0.90, the scalar spectral index ns corresponds to a scale-
invariant spectral index, for which ns ¼ 1, called the
Harrison-Zel’dovich spectrum of density perturbations.
As we mentioned before, for intermediate inflation in
the context of GR, the parameter f ¼ 2=3 corresponds
to the value ns ¼ 1. From Eq. (30), we also obtain the
scalar spectral index ns as function of N, yielding

ns ¼ 1 −
35 − 39f

12½1þ fðN − 1Þ� : ð36Þ

Note that from this equation we can express the parameter
f in terms of the spectral index and the number of e-folds

as f ¼ 12ðns−1Þþ35

3½13þ4ð1−nsÞðN−1Þ�. In particular, for the number

of e-folds N ¼ 60 and the scalar spectral index
ns ¼ 0.967, we find that the value of the parameter f is
given by f ≃ 0.55. Also, for N ¼ 60 and considering the
current observational constraint for ns set by Planck, given
by ns ¼ 0.964, the parameter f corresponds to f ≃ 0.54.
Furthermore, we can express the parameter A of the

intermediate expansion in terms of the quantities g0, Γ0, N,
PRðNÞ and f (or equivalently ns) as

A ¼
�

31=4PR

f13=4P0Γ
1=4
0

ð1 − fÞ1=3
�
1þ fðN − 1Þ

f

�
2βI=3f

� 12f
39fþ8βI

:

ð37Þ

Here, we have considered Eq. (34).
From Eq. (25), the tensor-to-scalar ratio r as a function of

the scalar spectral index ns can be written as

rðnsÞ ≃
2A2f2

π2pI

�
35 − 39f

12Afð1 − nsÞ
�11−15f

12f

: ð38Þ

By considering Eqs. (36), (37), and (38) we can rewrite
the tensor to scalar ratio as function of the number of
e-folding as

rðNÞ ¼ 2

g4=70

�ð2=3Þ32
π22P11

R

�
1=35

�
C3
γð1 − fÞ4

Γ3
0½1þ fðN − 1Þ�4

�
2=35

: ð39Þ

Note that this ratio allows us to obtain a relation
between the parameters Γ0 and g0 giving the values of
N, PR, Cγ , and f. In particular for N ¼ 60, f ¼ 0.55,
Cγ ¼ 70, and PR ≃ 2.2 × 10−9, the previous relation

becomes r ¼ 273g−4=70 Γ−6=35
0 . This suggest to us that

r < 0.07 implies that the prediction on Γ0 is given by
Γ0 > 9 × 1020g−10=30 , in order to be in agreement with
Planck data.
We also mention that the ratio R ¼ Γ=3H can be

expressed as a function of the number of e-folds by
considering Eq. (30). In doing so, we have that the ratio
R ¼ RðNÞ becomes

RðNÞ ¼ Γ0

3Af

�
1þ fðN − 1Þ

Af

�1−f
f

: ð40Þ

Similarly, from Eqs. (31), (36), and (40), we can obtain the
effective function A − R in terms of the scalar spectral
index ns, resulting
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A − R ¼ ½2ð1 − fÞ�1=3ð3g0Þ2=3ðAfÞ4=3f
�
12ð1 − nsÞ
35 − 39f

�4−3f
3f

−
Γ0

3ðAfÞ1=f
�
35 − 39f
12ð1 − nsÞ

�1−f
f

: ð41Þ

Note that in order to achieve the domination of the
Galileon coupling during the whole inflationary stage, we
must take into account that A ≫ 1þ R.
Also, the temperature of the thermal bath can be

rewritten from Eq. (16) as

T ¼
�
Γ0

4Cγ

�
1=4

�
2

3g0

�
1=6

H−5=12ð− _HÞ1=6; ð42Þ

and from Eqs. (28), (35), and (42) the rate T=H in terms of
the scalar spectral index ns can be written as

T
H
ðnsÞ ¼

�
Γ0

4Cγ

�
1=4

�
2

3g0

�
1=6 ð1 − fÞ1=6

ðAfÞ13=12f
�
35 − 39f
12ð1 − nsÞ

�13−15f
12f

> 1: ð43Þ

Here, we have considered that the essential condition for
warm inflation to occur, is set by T > H [23,24].
Figure 1 shows the tensor-to-scalar ratio r versus the

scalar spectral index ns (upper panel) and in the lower panel
we show the necessary condition for domination of the
Galileon term in which A − R ≫ 1 versus the scalar
spectral index ns, when Γ ¼ Γ0 ¼ constant. For both plots,
we have considered different pairs of values ðΓ0; g0Þ. In the
upper panel are shown the two-dimensional marginalized
constraints at 68% and 95% confidence level on the
consistency relation r ¼ rðnsÞ from Ref. [15]. The lower
panel shows the dependence of the difference between the
function A and the rate R on the scalar spectral index, and
we ensure that the condition of domination Galileon effect
in our model be valid, i.e., A ≫ 1þ R. For the upper plot
we use Eq. (38) in order to obtain the consistency relation
r ¼ rðnsÞ. Also, in order to write down values that
associate the difference of A − R with the scalar spectral
index ns, we considered Eq. (41) (lower panel). On the
other hand, to get the pair ðg0;Γ0Þ, we have manipulated
numerically Eqs. (38) and (43), the form to the satisfy the
essential condition for warm inflation T=H > 1, and the
observational constraint on the consistency relation, given
by r ¼ rðnsÞ. From these relations, considering the specific
case in which r ¼ rðnsÞ < 0.07 we find a lower bound for
the parameter g0 > 2 × 109 and an upper bound for the
parameter Γ0 given by Γ0 < 2 × 10−10. Here, we have used
Eqs. (36) and (37) together with the number of e-folds
set to N ¼ 60. Analogously, for the specific case in
which T=H > 1 and r ¼ rðnsÞ < 0.01 we obtained that

g0 > 8 × 1010 and Γ0 < 3 × 10−12. Also, for the case
T=H > 1 and r ¼ rðnsÞ < 0.0001 we found that the pair
of parameters ðg0;Γ0Þ have as limits; g0 > 8 × 1014 and
Γ0 < 7 × 10−13, respectively. In particular if we consider
the situation in which r > 0.13 together with T=H > 1, we
found that the pair of parameters ðg0;Γ0Þ has the limits;
g0 < 5 × 108 and Γ0 > 3 × 10−10, respectively. This sit-
uation is shown in the upper panel of Fig. 1 as dot-dashed
line and these bounds on g0 and Γ0 are in agreement with
the expression given by Eq. (39).
However, from the lower plot we find a lower bound for

the coupling g0, given by g0 > 8 × 1014 and an upper limit
for Γ0 which becomes Γ0 < 7 × 10−13, in which the warm
G model evolves according to the regime of domination of
the Galilean, i.e., A ≫ 1þ R. Nevertheless, for the limits
of g0 > 8 × 1014 and Γ0 < 7 × 10−13, we noted that the
tensor-to-scalar ratio is such that r ∼ 0. In this sense, the
observational data from the consistency relation r ¼ rðnsÞ

FIG. 1. Plot of the tensor-to-scalar ratio r against the scalar
spectral index ns (upper panel), and the difference A − R as a
functions of scalar spectral index ns (lower panel), in the warm G
intermediate model when Γ ¼ Γ0 ¼ const. For both panels we
use different pair of values of (Γ0, g0).
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does not impose constraints on the parameter-space. Lastly,
for the case in which the coefficient Γ ¼ Γ0 ¼ constant, we
find that the constraint for the parameter f associated to
intermediate scale factor is given by f ≃ 0.55 and the
constraints for the parameter g0 and Γ0 are found to be
g0 > 8 × 1014 and Γ0 < 7 × 10−13, respectively.
As we mentioned before an additional constraint can be

used, from the fact that our effective field theory must be
valid even during the Hubble crossing time, i.e., g1=30 H ≲ 1.
In particular, we shall obtain a constraint for the inflaton
decay rate Γ0 as well as for the coupling g0 from the
condition g1=30 H ≲ 1. In doing so, we consider several
values for the pair ðΓ0; g0Þ [the dependence on Γ0 and g0 for
the Hubble rate is encoded in A, see Eq. (37)], and then we
evaluate numerically g1=30 H, with H being the Hubble rate
given by Eq. (18) and from Eq. (36) it can be written in
terms of the scalar spectral index ns. In Fig. 2, we depict the
behavior of g1=30 H as function of the scalar spectral index
for three several values of the pair ðΓ0; g0Þ. In particular, for
the first two pairs of values given by ð3 × 10−11; 8 × 1010Þ
(solid line) and ð7 × 10−13; 8 × 1014Þ (dotted line), already
used in Fig. 1, it is observed that g1=30 H ≪ 1, when ns takes
values around its maximum likelihood by Planck 2018
results. On the other hand, in order to satisfy the condition
g1=30 H ≳ 1 we find that the constraints on the parameters
Γ0 and g0 become Γ0 ≲ 7 × 10−18 and g0 ≳ 8 × 1026 (dot-
dashed line), see Fig. 2. Here, we mention that for
these bounds on Γ0 and g0, the condition T=H > 1 is still
valid and also the tensor to scalar ratio r ∼ 0 (see upper
panel of Fig. 1). Finally, from the consistency relation r ¼
rðnsÞ and the condition g1=30 H ≳ 1, the allowed range for g0
and Γ0 are given by 7 × 10−18 < Γ0 < 7 × 10−13 and
8 × 1014 < g0 < 8 × 1026, respectively.

B. Case ΓðϕÞ ∝ VðϕÞ
Following Ref. [79], we consider that the dissipative

coefficient in terms of the scalar field ΓðϕÞ is given by
ΓðϕÞ ¼ kVðϕÞ, where k > 0 corresponds to a constant.
By considering Eq. (22), we obtain that the power spectrum
of the scalar perturbation PR, in the limit A ≫ 1þ R
becomes

PR ¼ k
1
4P0H

49
12ð− _HÞ−1

3: ð44Þ

As before, we can find the power spectrum of the scalar
perturbation in terms of the number of e-folds N as

PRðNÞ ¼ pII

�
Af

1þ fðN − 1Þ
�41−45f

12f

; ð45Þ

with pII defined as pII ¼ P0k
1
4ðAfÞ154 ð1 − fÞ−13 . Also, we

find that the scalar spectral index ns ¼ nsðϕÞ becomes

ns ¼ 1 −
�
41 − 45f
12Af

��
3

2

�
1 − f
g0

�1
2

�f
ϕ−3f

2 ; ð46Þ

or, in terms of the number of e-folds this results in

ns ¼ 1 −
41 − 45f

12½1þ fðN − 1Þ� : ð47Þ

Here, we have used Eq. (30). Again, we observe that
for the special value of f ¼ 41=45 ≃ 0.91, we have ns ¼ 1,
yielding the Harrison-Zel’dovich spectrum of density
perturbations. As before, we realize that we may express
the parameter f in terms of the scalar spectral index as well
as the number of e-folds as f ¼ ½12ðns − 1Þ þ 45�=
½12ðN − 1Þð1 − nsÞ þ 45�. In particular, setting N ¼ 60
and considering the maximum likelihood value for ns
found by Planck 2015 [17], given by ns ¼ 0.967, we
obtain that f has the value f ≃ 0.59. Now for the current
observational value ns ¼ 0.964 [15], we found that
f ≃ 0.58. From Eq. (45), we can express the parameter
A as a function of the parameters g0, k, N, and f as follows

A¼
�
PRð1−fÞ1=3
P0k1=4f15=4

�
12f=41�1þfðN−1Þ

f

�41−45f
41

: ð48Þ

By considering Eq. (25), the tensor-to-scalar ratio r,
written in terms of the scalar spectral index ns becomes

rðnsÞ ≃
2A2f2

π2pII

�
41 − 45f

12Afð1 − nsÞ
�17−21f

12f

: ð49Þ

Alternatively, we may express the tensor-to-scalar ratio
as a function of the number of e-folds. In doing so, we
combine Eqs. (47), (48), and (49), yielding

FIG. 2. Evolution of g1=30 H versus the scalar spectral index ns in
the warm G intermediate model for the case in which
Γ ¼ Γ0 ¼ const. For each curve we have used three several
values for the pair(Γ0, g0).
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rðNÞ ¼ 2

�
232

g200

�
1=41

�ð1=3Þ38
π34P17

R

�
1=41

�
C3
γð1 − fÞ4

k3½1þ fðN − 1Þ�4
�
2=41

:

ð50Þ

As before, Eq. (50) gives a relation between the
parameters k and g0. In particular for N ¼ 60, f ¼ 0.58,
Cγ ¼ 70, and PR ≃ 2.2 × 10−9, the above relation becomes

r ¼ 1.5 × 103g−20=410 k−6=41. In order to obtain r < 0.07 (in
agreement with Planck data) implies that the prediction for
the parameter k in terms of the coupling g0 must
be k > 3 × 1029g−10=30 .
Analogously to the case of Γ ¼ Γ0 ¼ constant, we note

that the ratio R ¼ Γ=3H can be expressed in terms of the
number of e-folding N, from Eq. (30), as

RðNÞ ¼ k

�
Af

1þ fðN − 1Þ
�1−f

f

: ð51Þ

Also as before, we can express the difference A − R as
function of the scalar spectral index ns, yielding

A − R ¼ ½2ð1 − fÞ�1=3ð3g0Þ2=3ðAfÞ4=3f
�
12ð1 − nsÞ
41 − 45f

�4−3f
3f

− kðAfÞ1=f
�
12ð1 − nsÞ
41 − 45f

�1−f
f

: ð52Þ

Here we have used Eqs. (31), (47), and(51).
On the other hand, from Eq. (16), the temperature of the

thermal bath can be rewritten as follows

T ¼
�
3k
4Cγ

�
1=4

�
2

3g0

�
1=6

H1=12ð− _HÞ1=6; ð53Þ

and from Eqs. (28), (46), and (53) the ratio T=H as in terms
of the scalar spectral index ns, becomes

T
H
ðnsÞ¼

�
3k
4Cγ

�
1=4

�
2

3g0

�
1=6 ð1−fÞ1=6

ðAfÞ7=12f
�
41−45f
12ð1−nsÞ

�7−9f
12f

> 1:

ð54Þ

Recall that the essential condition for warm inflation to
occur is such that T=H > 1.
In the upper panel of Fig. 3, we plot the tensor-to-scalar

ratio r against the scalar spectral index ns, and in the lower
panel we show the necessary condition of domination of the
Galileon effect in which A ≫ 1þ R versus the scalar
spectral index ns, in the case in which the dissipation
coefficient ΓðϕÞ ∝ VðϕÞ. For both panels, we have con-
sidered three different pairs ðk; g0Þ. The upper panel shows
the two-dimensional marginalized constraints at 68% and
95% C.L. on the consistency relation r ¼ rðnsÞ. The lower
panel shows the evolution of the difference A − R during

the inflationary scenario. Here, we make sure that the
condition of domination Galileon effect in which A ≫
1þ R is valid. In the upper panel we consider the consis-
tency relation r ¼ rðnsÞ from Eq. (49). Also, in order to
write down values that associate the differenceA − R to the
scalar spectral index ns, we considered Eq. (52) (lower
panel). To obtain the pair ðk; g0Þ, we numerically solve
Eqs. (49) and (54), in order to satisfy the constraint on the
consistency relation r ¼ rðnsÞ < 0.07 as well as the essen-
tial condition for warm inflation to occur, T=H > 1. In
this way, the constraints on the several parameters are
found to be g0 > 2 × 109 and k > 7 × 10−2. Here, we have
used Eqs. (48) for the value ofA together with the number of
e-foldsN ¼ 60. Analogously as before, for the specific case
in which T=H > 1 and r ¼ rðnsÞ < 0.01, we obtained that
the lower limit for g0 > 8 × 1010 and k0 > 1 × 10−1.
Similarly, for the special case in which T=H > 1 and
r ¼ rðnsÞ < 0.0001, we found that the lower bounds for
the pair of the parameters are given by g0 > 8 × 1014 and

FIG. 3. The evolution of the tensor to scalar ratio r versus the
scalar spectral index ns (upper panel) and the evolution of the
differenceA − R versus the scalar spectral index ns (lower panel)
in the warm G intermediate model for the case in which the
dissipative coefficient depends of the scalar field as ΓðϕÞ ∝ VðϕÞ.
In both panels we use three different values of the pairs (k; g0).

HERRERA, VIDELA, and OLIVARES PHYS. REV. D 100, 023529 (2019)

023529-10



k > 2 × 10−1, respectively. Here, it is worth to mention that
the lower bound for the parameter g0 is similar to the case in
which the dissipative coefficient is Γ0 ¼ const.
As before, from the lower plot we observe that for

g0 > 8×1014 and k > 2 × 10−1, the warm Gmodel evolves
according to the domination of the Galilean coupling, i.e.,
A ≫ 1þ R. Similarly as before, we noted that for the pair
g0 > 8 × 1014 and k > 2 × 10−1, the warm G model is able
to predict a tensor-to-scalar ratio such that r ∼ 0. In fact, in
order to satisfy the condition of domination of Galileon
coupling, given by A ≫ 1þ R, we have that r ∼ 0. In this
sense, the consistency relation r ¼ rðnsÞ does not impose
any constraints on the space of parameters as the pre-
vious case.
In spite of this, in a similar fashion for the previous case

when Γ ¼ Γ0, the condition to be required in order to have a
valid effective theory, i.e., g1=30 H ≲ 1 puts the upper bounds
on g0 and k. We find numerically that the former condition
breaks down for g0 ≲ 8 × 1026 and k≲ 2. Then, from the
r ¼ rðnsÞ and considering the condition g1=30 H ≲ 1, the
allowed range for the parameters g0 and k becomes 8 ×
1014 < g0 < 8 × 1026 and 2 × 10−1 < k < 2, respectively.

IV. GENERAL SOLUTION

In this section we will study the general solution of the
warm G intermediate inflationary model. In this sense, we
will consider that the left terms of Eq. (13) are similar i.e.,
R ∼A ∼ 1, that we will call it the general solution. From
the slow-roll equation of motion for the inflaton field given
by Eq. (13), we can obtain an equation for _ϕ given by

_ϕ3 þ
�
1þ R
3g0H

�
_ϕ2 −

2ð− _HÞ
3g0H

¼ 0: ð55Þ

Here we note that this equation depends on the ratio
R ¼ Γ=3H. Thus, in the following we will analyze our
model for two specific cases of the dissipation coefficient
Γ. The first case we will analyze corresponds to ΓðϕÞ ¼
Γ0 ¼ constant and in the second case we will study the case
in which ΓðϕÞ ∝ VðϕÞ, as it was previously studied.

A. Case Γ=Γ0 = constant

Let us consider that our model of warm G inflation takes
place for constant dissipative coefficient Γ ¼ Γ0 during the
regime in whichA ∼ R ∼ 1. From Eq. (55) we find that the
speed of the scalar field _ϕ can be written as

_ϕ¼3HþΓ0

27g0H2

�
−1þ2cosh

�
1

3
cosh−1

�
38g20H

5ð− _HÞ
ð3HþΓ0Þ3

−1

���
:

ð56Þ

From Eq. (22) the power spectrum of the scalar pertur-
bation results

PR ¼
ffiffiffi
3

p

2π2

�
Γ0

4Cγ

�1
4

H
11
4 _ϕ−3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ0=3H þ 6g0H _ϕ

q
; ð57Þ

and since the scalar spectral index ns is given by
ns − 1 ¼ d lnPR

d ln k , we have

ns ¼ 1 −
11

4
ε1 þ

3

2
ϵðIÞ2 þ 1

2
ϵðIÞ5 ; ð58Þ

where the coefficient ϵðIÞ2 is given by

ϵðIÞ2 ¼ 2Ḧ þ _ϕ2 _Rþ 3g0 _H _ϕ3

2H _ϕ2ð1þ RÞ þ 9g0H2 _ϕ3
;

and the parameter ϵI5 is defined as

ϵðIÞ5 ¼ −Γ0
_H=3H2 þ 6g0 _H _ϕþ6g0Hϕ̈

Hð1þ Γ0=3H þ 6g0H _ϕÞ ; with

−ϕ̈ ¼ 2Ḧ þ _ϕ2 _Rþ 3g0 _H _ϕ3

2 _ϕð1þ RÞ þ 9g0H _ϕ2
:

Here _R ¼ −Γ0H−2 _H=3.
Recall that the Hubble rate in terms of the

number of e-folds N for intermediate inflation can be

rewritten as HðNÞ¼Af½ Af
1þfðN−1Þ�

1−f
f , and also − _HðNÞ¼

Afð1−fÞ½ Af
1þfðN−1Þ�

2−f
f , see Eqs. (18) and (19), respec-

tively. Then, we may express both the power spectrum of
the scalar perturbation PR and the scalar spectral index
ns can in terms of N, or similarly as a function of the
Hubble rate HðNÞ in the form PR ¼ PR½HðNÞ�, and
ns ¼ ns½HðNÞ�, respectively.
Also from Eq. (25), we may write the tensor-to-scalar

ratio r, for the full solution when Γ ¼ Γ0 ¼ constant. In
this form, we have

r ≃
4ffiffiffi
3

p
�
4Cγ

Γ0

�1
4

H
−3
4 _ϕ

3
2ð1þ Γ0=3H þ 6g0H _ϕÞ−1=2; ð59Þ

where _ϕ is given by Eq. (56). As before, the tensor-to-scalar
ratio r can be rewritten in terms of the number of e-folds N
as r ¼ r½HðNÞ�.
In Fig. 4 we show the plot of the tensor-to-scalar ratio r

against the scalar spectral index ns (upper panel). Here,
we show the two-dimensional marginalized constraints at
68% and 95% C.L. on the consistency relation r ¼ rðnsÞ
from Planck 2018 results [15]. In the lower panel, we show
Aþ R as a function of the number of e-folds N. In
particular, it is depicted the evolution of the function
Aþ R during the inflationary period, i.e., between the
number of e-folds N ¼ 0 [beginning of inflation, see
Eq. (20)] and N ¼ 70. We also establish that the condition
in which A ∼ R ∼ 1, is satisfied, in order to be consistent
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with the full solution to the Klein-Gordon equation, see
Eq. (13) (under slow roll approximation). In both panels we
considered the case when Γ ¼ Γ0 ¼ constant, and we have
also fixed three different values of f, which characterizes
the intermediate expansion law.
In order to write down values that relate r and ns, we

numerically manipulate Eqs. (58) and (59) to get the
consistency relation r ¼ rðnsÞ (upper plot). Analogously,
to relate the effective function Aþ R to the number of
e-foldsN betweenN ¼ 0 toN ¼ 70 during the inflationary
stage, we numerically utilize Eqs. (18), (19), and (56), see
the lower panel. In order to obtain the trio of parameters
ðΓ0; g0; AÞ for fixed value of parameter f, which character-
izes the intermediate expansion law, we consider the last
data Planck collaboration [15], which set the power
spectrum of the scalar perturbation to PR ≃ 2.2 × 10−9,
and the scalar spectral index to ns ≃ 0.964, and we also
consider the minimum condition for warm inflation to
occur, T=H ¼ 1. Here, we have fixed the number of e-folds

to N ¼ 60. In this sense, the corresponding trio of values
ðΓ0; g0; AÞ for f ¼ 0.58, is found to be ð5 × 10−11; 3 × 108;
1 × 10−2Þ. Analogously for the value f ¼ 0.59, we
obtained ð2 × 10−11; 1 × 1010; 9 × 10−3Þ. In a similar fash-
ion, for f ¼ 0.6 we determined that the trio of values is
given by ð8 × 10−12; 3 × 1011; 5 × 10−3Þ.
From the lower panel of Fig. 4, we observe that in order

to satisfy the condition A ∼ R ∼ 1 given by the full Klein-
Gordon equation [see (13)], we obtain that the upper limit
for the parameter f is given by f < 0.6. In this context, we
note that for values of f > 0.6, the effective function
Aþ R ≫ 0, during the inflationary epoch, and the model
does not evolves in agreement to the general regime
A ∼ R ∼ 1. However, from the upper panel we note that
the upper bound for f is given by f < 0.6, since the model
is well supported by the Planck data from the consistency
relation r ¼ rðnsÞ. Here, both conditions are satisfied. We
also mentioned that, according to the parameter f increases,
the corresponding values for the parameters Γ0 and A
decrease, however the parameter g0 increase.
By evaluating numerically Eqs. (18) and (58), we find

that the validity of our effective theory breaks down when
g1=30 H ≃ 1 if the parameters g0, f, and Γ0 take the values
g0 ≃ 1024, f ≃ 0.77, and Γ0 ≃ 10−18, at N ¼ 60 and
ns ¼ 0.964. However, as we mentioned before, we found
that for values of f > 0.6, the effective function
Aþ R ≫ 0, with which the condition of the minimal
cutoff does not impose constraints on the parameters in
the general solution of warm G inflation when f ≃ 0.77 in
the model Γ ¼ Γ0 ¼ constant. In this form, the range for
the parameters in this model is determined by the con-
sistency relation r ¼ rðnsÞ and the condition in which A ∼
R ∼ 1 (full Klein-Gordon equation). Thus, we find that the
constraints on the parameters are given by; 0.58 < f < 0.6,
8 × 10−12 < Γ0 < 5 × 10−11, 3 × 108 < g0 < 3 × 1011 and
for parameter A we have 5 × 10−3 < A < 10−2. Note that
the ranges for the parameters f, Γ0, and A are very narrow
in the case of the general solution unlike the case of
domination of the Galileon regime, see Sec. III. A.

B. Case ΓðϕÞ ∝ VðϕÞ
Now we assume that our G-model of warm inflation

takes place for dissipative coefficient being a function of
the scalar field ϕ given by ΓðϕÞ ¼ kVðϕÞ, during the
regime in with A ∼ R ∼ 1, i.e., the full Klein-Gordon
equation (13) under slow-roll approximation. In this
way, from Eq. (55) we find that _ϕ can be written as

_ϕ¼ 1þkH
9g0H

�
−1þ2cosh

�
1

3
cosh−1

�
35g20H

2ð− _HÞ
ð1þkHÞ3 −1

���
:

ð60Þ

For this dissipative coefficient, the power spectrum of the
scalar perturbation PR, yields

FIG. 4. Plot of the tensor-to-scalar ratio r against the scalar
spectral index ns (upper panel)[15] and the evolution of the
function Aþ R versus the number of e-folds N (lower panel) in
the warm G intermediate model for Γ ¼ Γ0 ¼ constant, for the
general solution. In both panels we use three several values of the
parameter f with their corresponding trios of values ðΓ0; g0; AÞ.
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PR ¼
ffiffiffi
3

p

2π2

�
3k
4Cγ

�1
4

H
13
4 _ϕ−3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kH þ 6g0H _ϕ

q
: ð61Þ

Thus, we obtain that the scalar spectral index ns results in

ns ¼ 1 −
13

4
ε1 þ

3

2
ϵðIIÞ2 þ 1

2
ϵðIIÞ5 ; ð62Þ

where ϵðIIÞ2 is defined as

ϵðIIÞ2 ¼ ϵðIÞ2 ¼ 2Ḧþ _ϕ2 _Rþ3g0 _H _ϕ3

2H _ϕ2ð1þRÞþ9g0H2 _ϕ3
; with _R¼ k _H;

and the parameter ϵðIIÞ5 is given by

ϵðIIÞ5 ¼ k _H þ 6g _H _ϕþ6gHϕ̈

Hð1þ kH þ 6g0H _ϕÞ :

Here _ϕ corresponds to Eq. (60) and ϕ̈ is given

by ϕ̈ ¼ −½2Ḧþ _ϕ2 _Rþ3g0 _H _ϕ3

2 _ϕð1þRÞþ9g0H _ϕ2�.
As before, we find that the tensor-to-scalar ratio r, for the

full solution when ΓðϕÞ ∝ VðϕÞ becomes

r ≃
4ffiffiffi
3

p
�
4Cγ

3k

�1
4

H
−5
4 _ϕ

3
2ð1þ kH þ 6g0H _ϕÞ−1=2: ð63Þ

Here we have used Eq. (25). As in the previous case, we
can rewrite the power spectrum of the scalar perturbation
PR, the scalar spectral index ns, and the tensor-to-scalar
ratio r in terms of the number of e-folds N, or similarly
as a function of the Hubble rate HðNÞ in the form
PR ¼ PR½HðNÞ�, ns ¼ ns½HðNÞ� and r ¼ r½HðNÞ�.
Analogously as before, in Fig. 5 we show the tensor-to-

scalar ratio r versus the scalar spectral index ns (upper
panel). Here, we show the two-dimensional marginalized
constraints at 68% and 95% C.L. on the consistency
relation r ¼ rðnsÞ from Ref. [15]. In the lower panel we
show the function Aþ R versus the number of e-folds N.
In this panel we exhibit the evolution of the functionAþ R
during the inflationary period between the number of e-
folds N ¼ 0 and N ¼ 70. We also check that the condition
A ∼ R ∼ 1 is satisfied, in order to obtain the full expression
to the Klein-Gordon equation (13) under slow-roll approxi-
mation. In both panels we considered that ΓðϕÞ ∝ VðϕÞ as
well as three different values of the parameter f.
As before, by manipulating numerically Eqs. (62) and

(63), we obtain the consistency relation r ¼ rðnsÞ for the
upper plot. Analogously, for the function Aþ R versus
the number of e-folds N, we numerically considered
Eqs. (18), (19), and (60) in order to plot Aþ R against
ns (lower panel).
Since the parameter f lies in the range 0 < f < 1, we

fixed the valuer of f, in order to obtain the trio of values

ðk; g0; AÞ. Then, we numerically utilize Eqs. (16), (61), and
(62) to satisfy theminimumcondition for thatwarm inflation
takes place in which T=H ¼ 1, the power spectrum of the
scalar perturbation PR ¼ 2.2 × 10−9 and the scalar spectral
index ns ¼ 0.964 for a given value of f. In particular, by
fixing the number of e-folds to N ¼ 60, together with
T=HðN¼60Þ¼1, PRðN¼60Þ¼2.2×10−9, nsðN¼60Þ¼
0.964, and f ¼ 0.39, we find numerically that the trio
of values of ðk; g0; AÞ is given by ð0.5; 3 × 106; 0.3Þ.
Analogously, for f ¼ 0.45, we obtained numerically the
trio ð0.6; 9 × 108; 1 × 10−1Þ. Similarly, for f ¼ 0.5 we
determined that the trio corresponds to ð0.9; 5 × 109;
4. × 10−2Þ.
From the upper panel of Fig. 5, we observe that the lower

bound for f becomes f > 0.39, since the model is well
supported by the Planck data in ns − r plane. However,
from the lower panel we note that in order to satisfy the
condition A ∼ R ∼ 1 [in the full Klein-Gordon equa-
tion (13)], the upper limit for the parameter f is found

FIG. 5. The tensor-to-scalar ratio r as a function of the scalar
spectral index ns [15] (upper panel) and the evolution of the Aþ
R in terms the number of e-folds N (lower panel) in the warm G
intermediate model when ΓðϕÞ ∝ VðϕÞ for the general solution.
In both panels we use three different values of the parameter f.
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to be f < 0.5. In this context, we determine that for values
of f > 0.5, the effective function becomes Aþ R ≫ 0
during inflation, hence the model does not evolve accord-
ing to the conditionA ∼ R ∼ 1. Numerically, we also noted
if the parameter f increases, both the associated parameters
with the dissipative coefficient, k and the coupling param-
eter g0 increase, while the associated parameter to the
intermediate expansion A decreases. It is interesting to
highlight that the allowed ranges for the parameters f, k, g0,
and A for the full model are found from the condition in
which the full-model evolves according to A ∼ R ∼ 1
together with the consistency relation r ¼ rðnsÞ.
On the other hand, assuming the condition g1=30 H ≃ 1,

numerically we find that this situation occurs when the
parameters g0, f, and k take the values g0 ≃ 1022, f ≃ 0.7,
and k ≃ 0.7, respectively. Nevertheless, we found that for
values of f > 0.5, the function Aþ R ≫ 0, and therefore
the condition g1=30 H ≃ 1 does not establish constraints on the
parameters when f ≃ 0.7. As in the previous case, we find
that the range for the parameters in this model is specified by
the relation r ¼ rðnsÞ and the full Klein-Gordon equation
(A ∼ R ∼ 1). Also, we note that the ranges for the param-
eters f, k, and A are very narrow unlike the stage of
domination of the Galileon regime, see Sec. III B.

V. CONCLUSIONS

In this paper we have investigated the realization of the
intermediate inflationary model in the warm G inflation
scenario. By assuming the Galileon term under the slow
roll-approximation, we have considered the coupling func-
tion as Gðϕ; XÞ ¼ g0X, where g0 ¼ constant, for two
different dissipation coefficients in the scenario of inter-
mediate warm inflation. In particular, we have studied two
expressions for the dissipative coefficient, namely Γ ¼
Γ0 ¼ constant and ΓðϕÞ ∝ VðϕÞ. In addition, we have
assumed that the dynamics takes place according two
regimes. In the first one, we have considered the domina-
tion of the Galilean coupling over the standard terms of
warm inflation. In the second regime, we have considered
that all terms become of the same order in the slow-roll
equation for the scalar field. By assuming the intermediate
expansion law, we have found analytical solutions to the
background equations under the slow-roll approximation
for each regime, considering the two expressions for the
dissipative coefficient. Also, for both regimes, we have
found the constraints on the several parameters, assuming
the last data of Planck in addition to the condition of
domination term associated with its regime.
In order to develop the analysis for the first regime, or

domination of the Galileon term, i.e., A ≫ 1þ Γ=3H, we
have set the parameter f from the expression for scalar
spectral index and the parameter A from the amplitude of
the power spectrum of scalar perturbations. Also, from the
tensor to scalar ratio r ¼ rðNÞ, we have obtained some

predictions on the parameter-space in this domination
regime, see Eqs. (39) and (50).
In order to obtain the parameters characterizing the

coupling Gðϕ; XÞ and the dissipative coefficient Γ, such
as g0 and Γ0 [or the pair ðg0; kÞ], we have solved numeri-
cally the conditions for warm inflation, i.e., T > H and the
consistency relation r ¼ rðnsÞ < 0.07 from last data of
Planck. Thus, for the regime in which the domination of
warm inflation comes from the Galilean coupling, we have
obtained the constraints on the parameters of our model,
from the conditionA ≫ 1þ Γ=3H, giving specific bounds
on the parameter-space. However, from the condition of
the minimal cutoff during the horizon crossing in which
g1=30 H ≲ 1, we have found other constraints for our space-
parameters for both dissipation coefficients during the
domination of the Galileon term. In this context, we have
shown that the conditions A ≫ 1þ Γ=3H and g1=30 H ∼ 1

are fundamental to find the parameters-space in this regime.
In this sense, we have obtained that the consistency relation
r ¼ rðnsÞ does not impose any constraints on the param-
eters, since the tensor-to-scalar ratio r ∼ 0 for the allowed
range of parameters. We have found that the lower bound
on the parameter g0 is similar to the different types of
dissipation coefficients; Γ ¼ Γ0 ¼ constant and Γ ∝ VðϕÞ
during the regime in which A ≫ 1þ Γ=3H.
In the second stage of the analysis of our model,

we consider the dynamics takes place in the so-called
general regime of Eq. (55) (considering slow-roll approxi-
mation). Here, we have fixed the parameter f associated to
the intermediate expansion f which lies in the range
0 < f < 1. Also, in order to find the other parameters,
such as A, from the intermediate expansion law, the
coupling of Gðϕ; XÞ and the ones which characterize the
dissipative coefficient Γ, namely g0 and Γ0 [or the pair
ðg0; kÞ], we have solved numerically the conditions for
warm inflation in which the temperature T ¼ H, and the
consistency relation in which r ¼ rðnsÞ < 0.07 from last
data of Planck. For the several expression for the dissipative
coefficient, we have found that the current observational
data of Planck imposes different constraints on the space
of parameters. In this sense, we have found that these
models are well supported by the last Planck data, since the
tensor-to-scalar ratio r < 0.07. On the other hand, we have
found that the condition for the model evolves according to
R ∼ 1 ∼A is able to impose the constraints on the
parameters characterizing our model. However, we have
shown that the minimal cutoff during the horizon crossing
given by the condition g1=30 H ≲ 1 does not established con-
straints on the parameters, since the condition R ∼ 1 ∼A is
not satisfied when g1=30 H ∼ 1. As well, we have noted that
the ranges for the parameters f, Γ0, and A (or f, k, and A)
are very narrow in the case of the general solution unlike
the limit of domination of the Galileon regime. Also, due to
the difficulty in treating the equations analytically, we have
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studied this regime (general solution) in numerical way and
we have not obtained predictions on the parameters-space
as in the case of domination of the Galileon regime.
Regarding the space of parameters which characterize

our model, it is spanned by four: two coming from the scale
factor, A and f, the Galileon self-coupling g0, and the last
one which comes from our parametrization of the inflaton
decay ratio Γ (Γ0 or k) accounting for the dissipative
dynamics. On the other hand, from the current observa-
tional data, we have two constraints, at a specific value of
the number of the e-folds N, for the amplitude of power
spectrum, PR ¼ 2.2 × 10−9, and the scalar spectral index,
ns ¼ 0.964. In this context, we were able to obtain any
values for the consistency relation r ¼ rðnsÞ just by dialing
the other two parameters in a convenient way. Nevertheless,
it is worthwhile to mention that our model must satisfy
additional conditions, such as the essential condition for
warm inflation dynamics T > H, the condition of the

minimal cutoff g1=30 H ≲ 1 together with the conditions of
our model evolves according to the several regimes of
warm G inflation (A ≫ 1 or R ∼ 1 ∼A). Thus, these extra
conditions set strong constraints on the space of parame-
ters, particularly on the consistency relation through the
ns − r plane.
As a final remark, we have not studied warm G inflation

in the framework of intermediate expansion when the
coupling function g has a dependence on the inflaton, as
neither a dissipative coefficient having a dependence on the
temperature of the thermal bath T, i.e., Γðϕ; TÞ. We hope to
be able to address these points in a future work.

ACKNOWLEDGMENTS

R. H. was supported by Proyecto VRIEA-PUCV
No. 039.309/2018. N. V. acknowledges support from the
Fondecyt de Iniciación project No. 11170162.

[1] A. Guth, Phys. Rev. D 23, 347 (1981).
[2] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[3] K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981).
[4] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[5] A. D. Linde, Phys. Lett. 129B, 177 (1983).
[6] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220

(1982).
[7] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532

(1981).
[8] S. W. Hawking, Phys. Lett. 115B, 295 (1982).
[9] A. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).

[10] A. A. Starobinsky, Phys. Lett. 117B, 175 (1982).
[11] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev.

D 28, 679 (1983).
[12] N. Aghanim et al. (Planck Collaboration), arXiv:

1807.06209.
[13] P. A. R. Ade et al. (Planck Collaboration), Astron.

Astrophys. 594, A13 (2016).
[14] P. A. R. Ade et al. (Planck Collaboration), Astron.

Astrophys. 571, A16 (2014).
[15] Y. Akrami, J. Socorro, and R. Hernández-Jiménez (Planck
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