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We reexamine k-essence dark energy models with a scalar field ϕ and a factorized Lagrangian,
L ¼ VðϕÞFðXÞ, with X ¼ 1

2
∇μϕ∇μϕ. Avalue of the equation of state parameter, w, near −1 requires either

X ≈ 0 or dF=dX ≈ 0. Previous work showed that thawing models with X ≈ 0 evolve along a set of unique
trajectories for wðaÞ, while those with dF=dX ≈ 0 can result in a variety of different forms for wðaÞ. We
show that if dV=dϕ is small and ð1=VÞðdV=dϕÞ is roughly constant, then the latter models also converge
toward a single unique set of behaviors for wðaÞ, different from those with X ≈ 0. We derive the functional
form for wðaÞ in this case, determine the conditions on VðϕÞ for which it applies, and present observational
constraints on this new class of models. We note that k-essence models with dF=dX ≈ 0 correspond to a
dark energy sound speed c2s ≈ 0.

DOI: 10.1103/PhysRevD.100.023525

I. INTRODUCTION

Observational evidence [1–7] indicates that roughly 70%
of the energy density in the Universe is in the form of a
component called dark energy, which has negative pres-
sure, and roughly 30% is in the form of nonrelativistic
matter. The dark energy component can be parametrized in
terms of its equation of state parameter, w, defined as the
ratio of the dark energy pressure to its density,

w ¼ p=ρ: ð1Þ

A cosmological constant, Λ, corresponds to the case
ρ ¼ constant and w ¼ −1.
While a model with a cosmological constant and cold

dark matter (ΛCDM) is consistent with current observa-
tions, there are other models of dark energy that have a
dynamical equation of state. The most widely investigated
are quintessence models, with a time-dependent scalar
field, ϕ, having potential VðϕÞ [8–14]. (See Ref. [15] for
a review.)
While quintessence generically produces a time-varying

value for w, a successful model must closely mimic ΛCDM
in order to be consistent with current observations. Hence, a
viable model should yield a present-day value of w close
to −1. This fact has been exploited in a number of papers
that explored the evolution of a scalar field subject to the
constraint that wmust be close to −1 [16–21]. By imposing
this constraint, one can reduce an infinite number of models
to a finite set of behaviors for wðaÞ.

In Ref. [22], this methodology was extended to
k-essence models, which are characterized by a nonstand-
ard kinetic term in the Lagrangian. Reference [22] found
two sets of solutions that yield w ≈ −1. The first corre-
sponds to _ϕ → 0 (where a dot will refer throughout to
the time derivative), and it yields a single set of behaviors
for wðaÞ. The evolution of w in this case turns out to
be identical to the quintessence models investigated in
Refs. [17–19]. The second solution corresponds to
_ϕ → constant. However, in the latter case, the solution is
sensitive to the functional form for VðϕÞ and therefore fails
to correspond to a single set of behaviors for wðaÞ.
In this paper, we revisit the second class of these

solutions and show that, under some conditions on the
potential VðϕÞ, they do converge to a single unique set of
trajectories for wðaÞ. Specifically, when jð1=VÞðdV=dϕÞj is
small and nearly constant as ϕ evolves, then the evolution
of wðaÞ converges toward a single functional behavior.
Furthermore, unlike the solutions derived in Ref. [22], the
new class of solutions derived here correspond to behavior
for wðaÞ that differs from previously examined quintes-
sence evolution.
In the next section, we briefly review previously

derived results for quintessence and k-essence evolution
for w near −1. In Sec. III, we present our new results for
k-essence evolution, along with a discussion of the
parameter ranges over which these solutions are valid.
We discuss our results, including observational con-
straints, in Sec. IV.
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II. PREVIOUS RESULTS

Before deriving our new results for k-essence, we need to
present, for comparison, previously derived results for both
quintessence and k-essence evolution. We assume a flat
universe with the Hubble parameter given by

H ¼
�
_a
a

�
¼

ffiffiffiffiffiffiffiffi
ρ=3

p
: ð2Þ

Here a is the scale factor (with a ¼ 1 at the present), ρ is the
total density, and we work in units for which 8πG ¼ 1. At
late times, the contribution of photons and neutrinos to the
expansion can be neglected, so we take ρ to include only
matter (dark matter plus baryons) with a density scaling
as a−3, and our unknown dark energy component, with a
density which we assume to be approximately (but not
exactly) constant.

A. Quintessence

In this section, we will assume that the dark energy is
provided by a minimally coupled scalar field, ϕ, with an
equation of motion given by

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0: ð3Þ

Equation (3) indicates that the field rolls downhill in the
potential VðϕÞ, but its motion is damped by a term
proportional to H.
The pressure and density of the scalar field are given by

p ¼
_ϕ2

2
− VðϕÞ; ð4Þ

and

ρ ¼
_ϕ2

2
þ VðϕÞ; ð5Þ

respectively, and the equation of state parameter, w, is given
by Eq. (1).
We will consider only “thawing” models, for which the

scalar field is initially at rest ( _ϕ ¼ 0, w ¼ −1) and rolls
downhill in the potential VðϕÞ so that w increases up to the
present [23]. Then Ref. [16] considered potentials satisfy-
ing the inflationary slow-roll conditions, namely�

V 0

V

�
2

≪ 1; ð6Þ

and

V 00

V
≪ 1; ð7Þ

where the prime indicates throughout derivatives with
respect to the scalar field, ϕ.
Note, however, that the solutions derived here differ

markedly from the inflationary slow-roll solutions. In the
latter case, H in Eq. (3) contains only the density of the
scalar field itself, and a solution can be derived by setting ϕ̈
in Eq. (3) equal to zero. When both the matter and scalar
field energy densities are included in H, this solution is no
longer valid, as discussed in detail in Refs. [24,25].
When conditions (6) and (7) are imposed on the

potential, along with the thawing initial condition ( _ϕ ¼ 0
at early times), it is possible to derive an approximate
analytic solution for wðaÞ that is independent of VðϕÞ. This
solution is [16]

1þ wðaÞ ¼ ð1þ w0Þ
½GðaÞ − ðGðaÞ2 − 1Þcoth−1GðaÞ�2
½Gð1Þ − ðGð1Þ2 − 1Þcoth−1Gð1Þ�2 ;

ð8Þ

where w0 is the value of w at the present. The function
GðaÞ is

GðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩ−1

ϕ0 − 1Þa−3
q

; ð9Þ

where Ωϕ0 is the fraction of the total density at present
contributed by the scalar field, which we will take through-
out to be Ωϕ0 ¼ 0.7. With these definitions, GðaÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩϕðaÞ

p
and Gð1Þ ¼ 1=

ffiffiffiffiffiffiffiffi
Ωϕ0

p
. Here and throughout

we will not give detailed derivations of previously derived
results but will instead cite the original papers; in this case,
a detailed derivation of Eq. (8) is given in Ref. [16]. Note
that we use different notation and express our results in a
different functional form than some of the earlier works
cited here, both for the sake of increased simplicity and to
avoid confusion with previously adopted k-essence nota-
tion. The function given by Eq. (8) is displayed in Fig. 1
(green, long-dashed curve).
In Refs. [17–19], the condition on the potential given

by Eq. (6) was retained, but condition (7) was relaxed,
resulting in a wider range of possible behaviors. In
this case, the evolution of w with scale factor is given
by [17–19]

1þ wðaÞ ¼ ð1þ w0Þa3ðK−1Þ
½ðGðaÞ þ 1ÞKðK −GðaÞÞ þ ðGðaÞ − 1ÞKðK þGðaÞÞ�2
½ðGð1Þ þ 1ÞKðK − Gð1ÞÞ þ ðGð1Þ − 1ÞKðK þGð1ÞÞ�2 ; ð10Þ
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where the constant K is a function of V 00=V,

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4=3ÞV 00ðϕ�Þ=Vðϕ�Þ

p
; ð11Þ

evaluated at ϕ�, which can be taken to be the initial value of
ϕ [18]. Now instead of a single functional form for wðaÞ for
a given value of w0, Eq. (10) provides a family of solutions
that depend on K. As K becomes large, these solutions
thaw more slowly; i.e., w remains close to −1 until later in
the evolution [17]. In the opposite limit, as K → 1, the
solution in Eq. (10) approaches the evolution given in
Eq. (8). For K → 0, w increases more rapidly than in
Eq. (8). This behavior is illustrated in Fig. 1, where
ð1þ wÞ=ð1þ w0Þ is displayed as a function of a for
K ¼ 2 (blue, dotted curve) and K → 0 (red, short-dashed
curve).

B. k-essence

Now consider k-essence models with w near −1. In
general, k-essence can be defined as any scalar field ϕ with
a noncanonical kinetic term, so that the Lagrangian is of the
form LðX;ϕÞ, where

X ¼ 1

2
∇μϕ∇μϕ: ð12Þ

In practice, only a few special classes of such models
have been explored in detail. The most widely inves-
tigated class of models (and the one examined in detail
here and in Ref. [22]) is taken to have a Lagrangian in
factorized form,

L ¼ VðϕÞFðXÞ: ð13Þ

Such models were first introduced for inflation [26,27],
and later extended to possible models for dark energy
[28–34].
Before considering such models in detail, we briefly

mention a second class of models, for which the
Lagrangian has the form,

L ¼ Xα − VðϕÞ: ð14Þ

These models have been dubbed “noncanonical quintes-
sence” and have been previously examined as models both
for inflation [35,36] and for dark energy [37–42]. For these
models, Li and Scherrer [42] showed that when both slow-
roll conditions on the potential (Eqs. (6) and (7)) are
satisfied, the equation of state is well-approximated by

1þ wðaÞ

¼ ð1þ w0Þ
½GðaÞ − ðGðaÞ2 − 1Þ coth−1 GðaÞ�2α=ð2α−1Þ
½Gð1Þ − ðGð1Þ2 − 1Þ coth−1Gð1Þ�2α=ð2α−1Þ :

ð15Þ

As expected, this expression for 1þ wðaÞ reduces to the
corresponding quintessence result [Eq. (8)] when α ¼ 1,
which corresponds to quintessence with a standard kinetic
term. The behavior of ð1þ wÞ=ð1þ w0Þ as a function
of a for the representative case α ¼ 2 is shown in Fig. 1
(magenta, dot-dashed curve).
Now we direct our attention to factorizable k-essence

models with the Lagrangian given by Eq. (13); such models
are what is usually meant by the term “k-essence.” The
pressure in these models is simply given by Eq. (13), while
the energy density is

ρ ¼ VðϕÞ½2XFX − F�; ð16Þ

where FX ≡ dF=dX. Therefore, the equation of state
parameter is

w ¼ F
2XFX − F

: ð17Þ

The sound speed, which is relevant for the growth of
density perturbations, is

c2s ¼
FX

2XFXX þ FX
; ð18Þ

FIG. 1. Evolution of 1þ w relative to its value at the present,
1þ w0, as a function of the scale factor a for the analytic
predictions discussed in this paper. Solid (black) curve is for
k-essence with FX ≈ 0 (the new result of this paper). Blue (dotted)
curve and red (short-dashed) curve are for k-essence with X ≈ 0
or quintessence with non-negligible curvature in the potential, for
K ¼ 2 and K → 0, respectively. Green (long-dashed) curve is for
quintessence in a nearly flat potential. Magenta (dot-dashed) curve
is for noncanonical quintessence with α ¼ 2.
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with FXX ≡ d2F=dx2. In the flat Robertson-Walker metric,
the equation for the evolution of the k-essence field takes
the form,

ðFX þ 2XFXXÞϕ̈þ 3HFX
_ϕþ ð2XFX − FÞV

0

V
¼ 0: ð19Þ

Chiba et al. [22] noted that w ≈ −1 in Eq. (17) requires

jXFXj ≪ jFj; ð20Þ

which can be satisfied when either (i) X ≈ 0 or (ii) FX ≈ 0.
Note that these two conditions are sufficient, but not

necessary to produce w ≈ −1; one can derive other func-
tional forms for FðXÞ for which Eq. (20) is satisfied for
arbitrary X. For example, if F ¼ X−α we obtain

w ¼ −
1

2αþ 1
; ð21Þ

and α ≪ 1 corresponds to w ≈ −1. Here we will consider
only the two cases examined in Ref. [22], since these both
converge toward unique sets of behaviors for wðaÞ.
Consider first case (i). For this case, Chiba et al. showed

that the resulting evolution for w is given by

1þ wðaÞ ¼ ð1þ w0Þa3ðK−1Þ
½ðGðaÞ þ 1ÞKðK −GðaÞÞ þ ðGðaÞ − 1ÞKðK þGðaÞÞ�2
½ðGð1Þ þ 1ÞKðK − Gð1ÞÞ þ ðGð1Þ − 1ÞKðK þGð1ÞÞ�2 ; ð22Þ

where now,

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

3

V 00ðϕiÞ
FXð0ÞVðϕiÞ2

s
: ð23Þ

This result is identical to the corresponding quintessence
result in Eq. (10). Thus, these two models are observatio-
nally indistinguishable. The behavior of ð1þ wÞ=ð1þ w0Þ
as given by Eq. (22) is displayed in Fig. 1 for K ¼ 2 (blue,
dotted curve) and K → 0 (red, short-dashed curve).
For case (ii), Chiba et al. derived a functional form

for wðaÞ, but the result depends on VðϕÞ and is
therefore considerably less interesting. It is this second
case that we will revisit in the next section, showing
that there are some conditions under which it produces
a single functional behavior for wðaÞ that is indepen-
dent of VðϕÞ.

III. EVOLUTION OF w FOR k-ESSENCE
MODELS WITH FX ≈ 0

Consider a k-essence model for which FX ≈ 0.
Following Ref. [22], we will expand FðXÞ around the
extremum in F, which we will take to occur at X ¼ Xm.
Then taking

X ¼ Xm þ Δ; ð24Þ

where Δ ≪ Xm, we can write FðXÞ as

FðXÞ ¼ FðXmÞ þ
1

2
FXXðXmÞΔ2; ð25Þ

so that

FXðXÞ ¼ FXXðXmÞΔ; ð26Þ

FXXðXÞ ¼ FXXðXmÞ: ð27Þ

Then Eq. (17) can be expanded to linear order in Δ to yield

1þ w ¼
�
2XmFXXðXmÞ

FðXmÞ
�
Δ: ð28Þ

In order to solve for wðaÞ, we first need to reexpress
Eq. (19) in terms of Δ instead of ϕ. Using Eqs. (24)—(27),
we can rewrite Eq. (19), up to linear order in Δ, as

_Δþ 3HΔþ
� ffiffiffiffiffiffiffiffiffi

2Xm

p V 0

V

�
Δ

−
� ffiffiffiffiffiffiffiffiffi

2Xm

p V 0

V

��
FðXmÞ

4X2
mFXXðXmÞ

�
Δ

−
� ffiffiffiffiffiffiffiffiffi

2Xm

p V 0

V

��
FðXmÞ

2XmFXXðXmÞ
�

¼ 0: ð29Þ

The ratio of the third term to the final term is [from
Eq. (28)] equal to 1þ w, which we take to be ≪ 1. The
ratio of the fourth term to the final term is Δ=2Xm, and we
have assumed that Δ=Xm ≪ 1. Thus, the third and fourth
terms in Eq. (29) are negligible compared to the final term
in that equation. Then Eq. (29) simplifies to

_Δþ 3HΔ −
� ffiffiffiffiffiffiffiffiffi

2Xm

p V 0

V

��
FðXmÞ

2XmFXXðXmÞ
�

¼ 0: ð30Þ

To solve this equation, we make one final assumption: that
V 0=V is roughly constant as the k-essence field evolves
through the period of interest. With this assumption,
Eq. (30) can be solved exactly to yield

Δ ¼ Cffiffiffiffiffiffiffiffiffi
3ρϕ0

p ½GðaÞ − ½GðaÞ2 − 1�coth−1GðaÞ�; ð31Þ
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where C is the negative of the third term in Eq. (30), now
taken to be constant,

C ¼
� ffiffiffiffiffiffiffiffiffi

2Xm

p V0

V

��
FðXmÞ

2XmFXXðXmÞ
�
: ð32Þ

Then Eq. (28) gives the value of 1þ w,

1þ w ¼
ffiffiffiffiffiffiffiffiffi
2Xm

3ρϕ0

s
V 0

V
½GðaÞ − ðGðaÞ2 − 1Þ coth−1GðaÞ�:

ð33Þ

We can reexpress this in terms of the w0 as in Eqs. (8), (10),
(15), and (22) to give

1þ wðaÞ ¼ ð1þ w0Þ
GðaÞ − ðGðaÞ2 − 1Þcoth−1GðaÞ
Gð1Þ − ðGð1Þ2 − 1Þcoth−1Gð1Þ :

ð34Þ

Equation (34) is the main result of this paper.
In Fig. 1, we show the behavior of wðaÞ given by

Eq. (34) (solid black curve), along with the corresponding
behavior for the models examined previously. Note that,
unlike the solution for k-essence with X ≈ 0, the result here
does not resemble any corresponding quintessence model,
although it does correspond to the limiting behavior of
noncanonical quintessence (Eq. (15)) in the limit where
α → ∞. This correspondence is not surprising, as α → ∞
in noncanonical quintessence corresponds to the limit
X → constant [40], the same behavior as in the k-essence
models considered here.
The difference between this result for k-essence and

the corresponding behavior for quintessence [Eq. (8)] is
particularly clear if we examine these results in the
w − w0 plane [23,43], where w0 ≡ aðdw=daÞ, in the limit
a ≪ 1. In that limit, Eq. (8) reduces to w0 ¼ 3ð1þ wÞ for
quintessence (see also Ref. [25]), while Eq. (34) gives
w0 ¼ 3

2
ð1þ wÞ for k-essence.

Now consider the conditions on the model parameters
necessary for Eq. (34) to represent a good approximation to
the evolution of w. The conditions we imposed to derive
Eq. (34) are (i) 1þ w ≪ 1, (ii) Δ ≪ Xm, and (iii) V 0=V is
approximately constant as ϕ evolves.
Clearly, if all of the other parameters in the k-essence

models are ∼Oð1Þ, then conditions (i) and (ii) can be
satisfied by choosing ðV 0=VÞ2 ≪ 1 as in Eq. (6); this
follows directly from Eqs. (31)–(33). Condition (iii) indi-
cates that V 0=V evolves only a small amount compared to
its initial value as ϕ evolves. This will be the case as long
as ðV 0=VÞ0=ðV 0=VÞδϕ ≪ 1, where δϕ is the total change
in ϕ between a ¼ 0 and a ¼ 1.
In Fig. 2, we compare the analytic approximation of

Eq. (34) to a numerical integration of the equation for

k-essence evolution, where the parameters of these models
are chosen to satisfy ðV 0=VÞ2 ≪ 1 and ðV 0=VÞ0=
ðV 0=VÞδϕ ≪ 1; these conditions can be satisfied for all
three potentials by taking the initial value of ϕ to be
sufficiently large. For all of these cases we take FðXÞ ¼
F0 þ F2ðX − XmÞ2. The fit to our analytic expression is
very good in all three cases, and nearly exact for the
exponential potential. The latter is not surprising, as the
exponential potential has V 0=V ¼ constant by construction.

IV. DISCUSSION

Now we can compare the behavior of k-essence models
with FX ≈ 0 to those of Ref. [22] with X ≈ 0. The FX ≈ 0
models yield a new form for the evolution of wðaÞ, distinct
from previous behaviors that have been derived for
other models, while X ≈ 0 models correspond to behavior
that is identical to the results for quintessence evolution
given in Refs. [17,18]. On the other hand, our results for
FX ≈ 0 models are applicable to a much more restricted
set of scalar field potentials than is the case for X ≈ 0;
namely, our results apply only to potentials for which
ðV 0=VÞ0=ðV 0=VÞδϕ ≪ 1. This is the reason that Chiba et al.
[22] found a variety of possible behaviors for wðaÞ with
FX ≈ 0 (see Fig. 4 of Ref. [22]); the potentials examined in
that paper did not satisfy our (very restrictive) conditions
on VðϕÞ.

FIG. 2. Evolution of w as a function of a, normalized to a ¼ 1
at the present, with Ωϕ0 ¼ 0.7 and w0 ¼ −0.9 and −0.95, for
models with FX ≈ 0. Solid (black) curve is our analytic approxi-
mation (Eq. (34)). Dotted (blue) curve is for VðϕÞ ¼ V0=ϕ, short-
dashed (red) curve is VðϕÞ ¼ e−λϕ, and long-dashed (green)
curve is VðϕÞ ¼ e−ϕ

2=σ2 . We take FðXÞ ¼ F0 þ F2ðX − XmÞ2 for
all three cases.
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Now consider the observational constraints on our
model. We will compare with the recent results of Alam
et al. [44], derived from baryon acoustic oscillation
measurements from the Sloan Digital Sky Survey III,
cosmic microwave background observations from
Planck, and type Ia supernovae data. Alam et al. express
their constraints on w in terms of the Chevallier-Linder-
Polarski (CPL) parametrization [45,46],

w ¼ w0 þ ð1 − aÞwa; ð35Þ

where wa and w0 are constants, with w0 being the present-
day value of w. The most stringent bounds on wa and w0 in
Alam et al. correspond to a narrow ellipse in the w0, wa
plane. In this two-parameter model, neither w0 nor wa is
individually strongly constrained, but a linear combination
of the two is tightly bounded. The reason for this character-
istic narrow elliptical bounded region in w0 − wa space
is the existence of a pivot redshift zp, at which the errors
on w are minimized [47]. In particular, Alam et al. [44]
find a pivot redshift of zp ¼ 0.37, at which wðzpÞ ¼
−1.05� 0.05.
We can exploit the fact that our model and the other

models discussed in this paper are well-fit by the CPL
parametrization for ap < a < 1, and each model gives a
unique prediction for wðapÞ as a function of w0. Hence,
much stronger constraints can be placed on these models
than on a generic dark energy model; in particular, we can
derive a tight upper bound on the present-day value of w.
First note that the pivot redshift zp is related to ap through
ap ¼ 1=ð1þ zpÞ, so we have ap ¼ 0.73. Then our k-
essence model with FX ≈ 0 must satisfy the 2 − σ upper
bound wða ¼ 0.73Þ < −0.95. We can then simply read off
the allowed value of w0 from Fig. 1; namely, w0 < −0.93.
It is clear from this argument that the models that allow

the largest values of w0 are those for which w increases
most rapidly from a ¼ 0.73 to a ¼ 1. Hence, our new
k-essence model with FX ≈ 0 is the most strongly

constrained of those displayed in Fig. 1. In comparison,
the quintessence model with a nearly flat potential [16]
yields the constraint w0 < −0.91, while the least strongly
constrained model is the k-essence model with X ≈ 0 (or
equivalently, the quintessence model with non-negligible
curvature in the potential) with K ¼ 2, for which
w0 < −0.87. Larger values of K are even less strongly
constrained [17]. (See Ref. [48] for another approach to
observational constraints on thawing models.)
Note further that the k-essence models considered here

with FX ≈ 0 make a very different prediction for the dark
energy sound speed than do the previously examined
models with X ≈ 0. From Eq. (18), we see that our models
give c2s ≈ 0, while the X ≈ 0 models have c2s ≈ 1. Current
observations are unable to significantly constrain cs for
dark energy (see, e.g., Refs. [49–52]), so these two extreme
cases are not currently distinguishable, but future experi-
ments such as Euclid [53] may provide useful constraints
on the sound speed of dark energy.
In summary, we have derived a new generic thawing

evolution of k-essence with w near −1; this is essentially a
special case of the FX ≈ 0 solutions previously derived in
Ref. [22], but for which additional constraints on the
potential VðϕÞ yield a single set of evolutionary behaviors
for wðaÞ. It is interesting that w in this model evolves away
from −1 more rapidly than in any of the other models
considered here, which allows us to place tighter con-
straints on this model than on any of the others. In contrast,
the k-essence models with X ≈ 0 examined in Ref. [22]
require fewer conditions on the potential VðϕÞ and are less
tightly constrained by observations. Our FX ≈ 0 models
also provide a simple case for which w ≈ −1, but the dark
energy sound speed is close to zero.
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