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It is usually assumed that when Weyl invariance is unbroken in the electromagnetic sector, the energy
density of primordial magnetic fields will redshift as radiation. Here we show that primordial magnetic fields
do not exhibit radiationlike redshifting in the presence of stronger electric fields, as a consequence of
Faraday’s law of induction. In particular for the standard Maxwell theory, magnetic fields on superhorizon
scales can redshift as B2 ∝ a−6H−2, instead of the usually assumed a−4. Taking into account this effect for
inflationary magnetogenesis can correct previous estimates of the magnetic field strength by up to 37 orders
of magnitude. This opens new possibilities for inflationary magnetogenesis, and as an example we propose a
scenario where femto-Gauss intergalactic magnetic fields are created onMpc scales, with high-scale inflation
producing observable primordial gravitational waves, and reheating happening at low temperatures.
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I. INTRODUCTION

The origin of the magnetic fields in our universe is a
mystery. There are several known astrophysical and cosmo-
logical mechanisms for producing the galactic magnetic
fields. On the other hand for intergalactic magnetic fields
which are suggested by recent gamma ray observations to
be of femto-Gauss strength, their large correlation length
(typically of megaparsec scales or larger) indicates a
cosmological origin [1–3]. Theories of primordial magnetic
field generation have been widely studied, and the proposed
mechanisms include magnetogenesis during the inflationary
epoch [4,5], the postinflationary epoch [6], and upon
cosmological phase transitions [7,8]. See also reviews such
as [9–12] and references therein. These proposed mecha-
nisms are however not without challenges. For example, in
order for the description to stay perturbative and avoid
backreaction [13], working models of inflationary magneto-
genesis leading to femto-Gauss magnetic fields on the
megaparsec scale have so far required a very low scale of
inflation [14–17] or a combination of mechanisms [6].
Here, in order to connect the magnetic fields produced in

the early universe with those (indirectly) observed in the
present universe, it is crucial to understand the evolution of
magnetic fields along the cosmological history. In most
of the literature on cosmological magnetogenesis, it is
assumed that magnetic fields on superhorizon scales
undergo a radiationlike redshifting with the cosmological
scale factor a as

B2 ∝
1

a4
: ð1:1Þ

This rather rapid decay has been considered as the main
obstacle against magnetic fields produced in the primordial
universe from surviving until today and seeding the
observed fields.
However, it is actually the sum of the magnetic and

electric fields B2 þ E2 which redshifts as radiation,
whereas the individual B2 and E2 can have different
redshift behaviors; the goal of our paper is to explicitly
show this. In particular when the electric field is stronger
than the magnetic field, we show that the magnetic field
outside the horizon can evolve in time as

B2 ∝
1

a6H2
; ð1:2Þ

where H is the Hubble rate. In a decelerating universe,
this yields less redshift to the magnetic fields compared to
(1.1). For instance, if the universe is effectively matter-
dominated, i.e., H2 ∝ a−3, the magnetic field would red-
shift as B2 ∝ a−3. Such a behavior of cosmological
magnetic fields was seen in [6] in the context of postinfla-
tionary magnetogenesis scenarios.1 In this paper, we show
that superhorizon magnetic fields in a decelerating universe
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1Most of the analyses in [6] are based on directly solving the
gauge field’s equation of motion, arriving at the correct scaling
behavior of the magnetic field. However their Sec. III 2 assumes
the redshifting (1.1) and thus can be modified by taking into
account the proper magnetic scaling.
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generically follow the scaling (1.2) in the presence of
stronger electric fields.2

Many of the previously proposed inflationary magneto-
genesis scenarios, including the well-studied I2FF model
[5], produce much stronger primordial electric fields than
magnetic fields during the inflationary epoch. The electric
fields continue to exist after inflation until the universe
turns into a good conductor. This can happen any time from
the end of inflation until the end of reheating depending on
the details of the reheating mechanism [4]. It is usually
assumed that conductivity turns on already at the end of
inflation erasing the electric field, but if the conductivity
remains small during this epoch between the end of
inflation and the end of reheating, the strong electric field
induces the magnetic field evolution of (1.2), which yields
less redshift compared to the usually assumed (1.1). As a
consequence, the present-day amplitude of magnetic fields
arising from inflationary magnetogenesis can actually be
much larger than what has been claimed in previous
studies. The difference is drastic especially when there is
a hierarchy between the inflation and reheating scales; this
implies that a higher inflation scale can help produce
stronger magnetic fields today, as opposed to the wide-
spread belief based on (1.1) that high-scale inflation is
incompatible with efficient inflationary magnetogenesis.
While the conclusions of [15,16], that femto-Gauss mag-
netic fields on the Mpc scale require inflation to happen
below the TeV scale,3 remains true under their assumption
of instantaneous reheating or high conductivity throughout
reheating, a prolonged period of reheating with vanishing
conductivity can significantly alter these conclusions—
opening a new space for inflationary magnetogenesis
phenomenology and model building. As an example, we
propose a toy model of inflationary magnetogenesis that
can produce the femto-Gauss intergalactic magnetic fields
during high-scale inflation, while being free from strong
couplings [13,26] or affecting the background cosmology
[14,17,27,28] and curvature perturbations [15,16,24,
29–35]. We demonstrate how the various constraints on
primordial magnetogenesis claimed in the literature such as
those cited here are relaxed when the electric field-induced
scaling (1.2) is taken into account.
We also study the cosmological consequences of pri-

mordial electric fields. By analyzing their gravitational
backreaction, we derive constraints on magnetic fields

produced from generic Weyl symmetry-breaking scenarios
during the inflationary and postinflationary epochs.
Primordial electric fields can also raise the conductivity
of the universe even before reheating by producing charged
particles via the Schwinger process [36]; this issue will also
be discussed.
The paper is organized as follows: In Sec. II we provide a

simple argument for the electromagnetic scalings based on
Faraday’s law of induction, without specifying the gauge
field action. In Sec. III we focus on I2FF theories and give
a more rigorous derivation using Bogoliubov coefficients.
We study a toy model of inflationary magnetogenesis in
Sec. IV, where we see how the induction effect impacts
the final magnetic field strength; here we also propose a
scenario capable of producing femto-Gauss intergalactic
magnetic fields during high-scale inflation. We further
provide model-independent constraints on primordial mag-
netic fields in Sec. V, and then briefly discuss the possibility
of electric field quenching due to the Schwinger process in
Sec. VI. We summarize our findings in Sec. VII.
We will occasionally use the conversions of 1 G≈

2 × 10−20 GeV2 (in Heaviside-Lorentz units), and 1 Mpc≈
2 × 1038 GeV−1. Moreover, we use Greek letters for the
spacetime indices μ, ν ¼ 0, 1, 2, 3, and Latin letters for
spatial indices i, j ¼ 1, 2, 3.

II. FARADAY’S LAW OF INDUCTION OUTSIDE
THE HUBBLE HORIZON

The magnetic field scaling of (1.2) can be simply
understood from Faraday’s law of induction. In this section
we present general arguments that capture the essence
of the physics without specifying the details of the vector
field theory.
The electric and magnetic fields measured by a comov-

ing observer with 4-velocity uμ (ui ¼ 0, uμuμ ¼ −1) are
given by

Eμ ¼ uνFμν; Bμ ¼
1

2
ημνρσuσFνρ; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ, and ημνρσ is a totally antisym-
metric tensor with η0123 ¼ − ffiffiffiffiffiffi−gp

.
Throughout this paper we fix the metric to a flat

Friedmann-Robertson-Walker (FRW),4

ds2 ¼ aðτÞ2ð−dτ2 þ dx2Þ: ð2:2Þ

Then Faraday’s law of induction follows from the electro-
magnetic fields’ definitions (2.1) as

ðaBiÞ0 ¼ −ε̂ijl∂jðaElÞ: ð2:3Þ

2Nonradiationlike redshifting of magnetic fields has also been
claimed for anisotropic [18] or open [19] universes, although the
mechanism for the open universe was strongly questioned in [20].
Other proposals exist as well, e.g., [21]. However we stress that
the effect discussed in the current paper is different from those.

3One can also consider other options, like the generation of
helical magnetic fields from a coupling of the type I2FμνF̃μν,
where F̃ is the dual field strength [22]. Such mechanisms
however suffer from their own backreaction, anisotropy and
perturbativity constraints [23,24] yielding similar problems for
magnetogenesis [25].

4Gravitational backreaction on the metric from the gauge field
will be discussed later on.
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Here, a prime represents a conformal time τ derivative, ε̂ijl
is totally antisymmetric with ε̂123 ¼ 1, and a sum over
repeated spatial indices is implied irrespective of their
positions. Integrating both sides of the equation yields

aBi ¼ −ε̂ijl
Z

da
a

∂jEl

H
; ð2:4Þ

where we have rewritten the τ-integral in terms of the scale
factor a and Hubble rate H ¼ a0=a2.
Now let us go to momentum space, and focus on modes

larger than the Hubble length, i.e., on comoving wave
numbers that satisfy k < aH. For such wave modes, the
timescales of the electric field oscillations are longer than
the Hubble time, and thus the integrand of (2.4) can in
many cases be approximated by some power-law function
of a. Hence Faraday’s law implies a relation of

B̃ðτ; kÞ ∼ k
aH

Ẽðτ; kÞ þ CðkÞ
a

; ð2:5Þ

where B̃ and Ẽ are the Fourier components of Bi and Ei,
respectively, and we have neglected the spatial indices as
well as ε̂ijl since we are interested in order-of-magnitude
estimates. C is a time-independent integration constant.
Since the electromagnetic field strengths are written in
terms of the vector components as

E2 ≡ EμEμ ¼
EiEi

a2
; B2 ≡ BμBμ ¼

BiBi

a2
; ð2:6Þ

one sees from (2.5) that the part of the magnetic field
expressed as the integration constant undergoes a radiation-
like redshifting (1.1). However, there is another part which
is related to the electric field as

ΔB2 ∝
E2

ðaHÞ2 : ð2:7Þ

This magnetic component grows relative to the electric
field in a decelerating universe, which can be understood as
the electric fields sourcing the magnetic fields. In particular
when the electric field is strong enough for this magnetic
component to dominate over the integration constant part,
and further if the electric field redshifts as E2 ∝ a−4, then
the magnetic field would evolve in time as (1.2).5

In the above discussions we made some rough approx-
imations upon obtaining (2.5), however we stress that the
argument itself followed directly from the definitions of the
electromagnetic fields. In particular, we have not specified
the gauge field action, and thus the result applies to the

standard Maxwell theory, as well as to modified electro-
magnetic theories often invoked in magnetogenesis scenar-
ios. In the following sections we give more rigorous
arguments for a certain class of gauge field theories.
Once the gauge field action is specified, one obtains the

(generalized) Ampère-Maxwell law [e.g., (6.2)], which can
be integrated to yield an equation similar to (2.5) but with E
and B flipped, and with some dependence on the details of
the action. This is useful for studying the relation between
the electromagnetic fields in the presence of strong mag-
netic fields. However we should also remark that going
between cases of E2 ≫ B2 and E2 ≪ B2 can be more than
just flipping the role of the electric and magnetic fields; this
reflects the fact that the Ampère-Maxwell law depends on
the gauge field action while Faraday’s law is independent.

III. ELECTROMAGNETIC FIELDS
AND PHOTON NUMBER

Hereafter we focus on U(1) gauge field theories
described by an effective action of the form

S ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
IðτÞ2FμνFμν; ð3:1Þ

with a time-dependent coefficient IðτÞ2 of the kinetic term.
The standard Maxwell theory corresponds to the case

of I2 ¼ 1, where the action is invariant under a Weyl
transformation,

gμν → Ω2gμν; Aμ → Aμ: ð3:2Þ

Hence with a Weyl-flat background metric such as the flat
FRW (2.2), the gauge field is simply a sum of plane waves.
On the other hand when I2 depends on time, the Weyl

invariance is generically violated and thus the gauge field
can be excited even in a flat FRW universe. The time-
dependent coefficient arises, for instance, from the Weyl
anomaly of quantum electrodynamics [37,38]. Further time
dependence may arise from beyond-the-Standard-Model
physics, such as via couplings of the gauge field to (nearly)
homogeneous degrees of freedom such as the inflaton field
[5]; such explicit violation of the Weyl invariance has been
invoked in most primordial magnetogenesis models in the
literature.
Below we canonically quantize the theory (3.1), and

write down various quantities in terms of time-dependent
Bogoliubov coefficients. This will be useful for analyzing
the redshifting behaviors of electromagnetic fields, as well
as for studying explicit examples in the following sections.

A. Canonical quantization

We decompose the spatial components of the gauge field
into irrotational and incompressible parts,

5We have not discussed the cross term between the two terms
of (2.5) since it only becomes marginally important while kẼ=aH
and C=a are comparable to each other.
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Aμ ¼ ðA0; ∂iSþ ViÞ with ∂iVi ¼ 0: ð3:3Þ

A0 is a Lagrange multiplier in (3.1), and its constraint
equation under proper boundary conditions gives A0 ¼ S0.
This can be used to eliminate both A0 and S from the action
to yield, up to surface terms,

S ¼ 1

2

Z
dτd3xIðτÞ2ðV 0

iV
0
i − ∂iVj∂iVjÞ: ð3:4Þ

We promote Vi to an operator,

Viðτ; xÞ ¼
X
p¼1;2

Z
d3k
ð2πÞ3 ϵ

ðpÞ
i ðkÞ

n
eik·xaðpÞk uðpÞk ðτÞ

þ e−ik·xa†ðpÞk u�ðpÞk ðτÞ
o
; ð3:5Þ

where ϵðpÞi ðkÞ (p ¼ 1, 2) are two orthonormal polarization
vectors satisfying

ϵðpÞi ðkÞki ¼ 0; ϵðpÞi ðkÞϵðqÞi ðkÞ ¼ δpq: ð3:6Þ

It follows from these conditions that

X
p¼1;2

ϵðpÞi ðkÞϵðpÞj ðkÞ ¼ δij −
kikj
k2

; ð3:7Þ

where k≡ jkj. Unlike the spacetime indices, we do not
assume implicit summation over the polarization index (p).
The time-independent annihilation and creation opera-

tors, aðpÞk and a†ðpÞk , satisfy the commutation relations:

h
aðpÞk ; aðqÞh

i
¼

h
a†ðpÞk ; a†ðqÞh

i
¼ 0;h

aðpÞk ; a†ðqÞh

i
¼ ð2πÞ3δpqδð3Þðk − hÞ: ð3:8Þ

Moreover, for Vi and its conjugate momentum obtained
from the action S ¼ R

dτd3xL of (3.4) as

Πi ¼
∂L
∂V 0

i
¼ I2V 0

i; ð3:9Þ

we impose commutation relations as

½Viðτ; xÞ; Vjðτ; yÞ� ¼ ½Πiðτ; xÞ;Πjðτ; yÞ� ¼ 0;

½Viðτ; xÞ;Πjðτ; yÞ� ¼ iδð3Þðx − yÞ
�
δij −

∂i∂j

∂l∂l

�

¼ i
X
p¼1;2

Z
d3k
ð2πÞ3 e

ik·ðx−yÞϵðpÞi ðkÞϵðpÞj ðkÞ;

ð3:10Þ

where the equality in the third line follows from (3.7).

The mode function uðpÞk obeys the equation of
motion:

u00ðpÞk þ 2
I0

I
u0ðpÞk þ k2uðpÞk ¼ 0: ð3:11Þ

Choosing the polarization vectors such that ϵðpÞi ðkÞ ¼
ϵðpÞi ð−kÞ, one can check that the commutation relations
(3.8) and (3.10) are equivalent to each other when the mode
function is independent of the direction of k, i.e.,

uðpÞk ¼ uðpÞk ; ð3:12Þ

and also obeys the normalization condition,

I2ðuðpÞk u0�ðpÞk − u�ðpÞk u0ðpÞk Þ ¼ i: ð3:13Þ

Defining the vacuum state by

aðpÞk j0i ¼ 0 ð3:14Þ

for p ¼ 1, 2 and ∀k, then the correlation functions of the
electromagnetic fields (2.1) can be computed,

h0jEμðτ; xÞEμðτ; yÞj0i ¼
Z

d3k
4πk3

eik·ðx−yÞPEðτ; kÞ;

h0jBμðτ; xÞBμðτ; yÞj0i ¼
Z

d3k
4πk3

eik·ðx−yÞPBðτ; kÞ; ð3:15Þ

where the power spectra are given in terms of the mode
functions as

PEðkÞ ¼
k3

2π2a4
X
p¼1;2

ju0ðpÞk j2;

PBðkÞ ¼
k5

2π2a4
X
p¼1;2

juðpÞk j2: ð3:16Þ

We occasionally omit the argument τ, however it should be
noted that the power spectra generically are time-dependent
quantities.

B. Bogoliubov coefficients

Since the operators aðpÞk and a†ðpÞk do not necessarily
diagonalize the Hamiltonian under the function IðτÞ2 with a
general time dependence, let us further introduce a set of
time-dependent annihilation and creation operators (see
[38,39] for similar analyses applied to cosmological field
excitations),
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bðpÞk ðτÞ ¼ αðpÞk ðτÞaðpÞk þ β�ðpÞk ðτÞa†ðpÞ−k ;

b†ðpÞk ðτÞ ¼ α�ðpÞk ðτÞa†ðpÞk þ βðpÞk ðτÞaðpÞ−k ; ð3:17Þ

where αðpÞk ðτÞ and βðpÞk ðτÞ are time-dependent Bogoliubov
coefficients expressed in terms of the mode function as

αðpÞk ¼ I

� ffiffiffi
k
2

r
uðpÞk þ iffiffiffiffiffi

2k
p u0k

ðpÞ
�
;

βðpÞk ¼ I

� ffiffiffi
k
2

r
uðpÞk −

iffiffiffiffiffi
2k

p u0k
ðpÞ

�
: ð3:18Þ

One can easily check that bðpÞk and b†ðpÞk satisfy equal-time

commutation relations similar to (3.8) for aðpÞk and a†ðpÞk ,
and also diagonalize the Hamiltonian,

H̃ ¼
Z

d3xðΠiV 0
i − LÞ

¼
X
p¼1;2

Z
d3k
ð2πÞ3 k

�
b†ðpÞk bðpÞk þ 1

2
½bðpÞk ; b†ðpÞk �

�
: ð3:19Þ

It follows from the normalization condition (3.13) that the
Bogoliubov coefficients obey

jαðpÞk j2 − jβðpÞk j2 ¼ 1; ð3:20Þ

jβðpÞk j2 ¼ I2

2

�
kjuðpÞk j2 þ ju0kðpÞj2

k

�
−
1

2
: ð3:21Þ

It is also worth noting that for the standard Maxwell theory
where the mode function is a sum of plane waves

[cf. (4.11)], the amplitudes jαðpÞk j and jβðpÞk j are independent
of time.

Now let us suppose aðpÞk and a†ðpÞk to have initially

diagonalized the Hamiltonian, i.e., βðpÞk ¼ 0 in the distant
past, and that the system was initially in the vacuum state
(3.14). However, the photons will eventually be produced
due to the time-dependent background described by IðτÞ2,
and the number of photons with polarization p per unit
six-dimensional phase volume is computed as

h0jb†ðpÞk bðpÞk j0i
V

¼ jβðpÞk j2; ð3:22Þ

where V is the comoving spatial volume,

V ≡
Z

d3x ¼ ð2πÞ3δð3Þð0Þ: ð3:23Þ

For instance, magnetogenesis models that give rise to
coherent magnetic fields with comoving correlation length

of k−1 would create a large number of photons with

momentum k, thus yield jβðpÞk j2 ≫ 1.
In terms of the Bogoliubov coefficients, the electromag-

netic spectra (3.16) are written as

PEðkÞ ¼
k4

4π2a4I2
X
p¼1;2

���αðpÞk − βðpÞk

���2;

PBðkÞ ¼
k4

4π2a4I2
X
p¼1;2

���αðpÞk þ βðpÞk

���2: ð3:24Þ

Here, using (3.20), it can be checked that

���αðpÞk ∓ βðpÞk

���2 ¼ 1þ 2jβðpÞk j2

∓ 2jβðpÞk j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jβðpÞk j2

q
cosfargðαðpÞk βðpÞ�k Þg;

ð3:25Þ

which allows the electromagnetic spectra to be expressed in

terms of the photon number density jβðpÞk j2, and the relative
phase between αðpÞk and βðpÞk .
The energy density of the gauge field can be obtained as

the vacuum expectation value of the Hamiltonian (3.19)
divided by the spatial volume,

ρA ¼ h0jH̃j0i
a4V

¼ 1

a4

Z
d3k
ð2πÞ3 k

X
p¼1;2

�
jβðpÞk j2 þ 1

2

�

¼ I2

2

Z
dk
k
fPEðkÞ þ PBðkÞg; ð3:26Þ

where the third line is written in terms of the electromag-
netic power spectra. In the second line, the 1=2 inside the
parentheses is the zero-point energy and can be removed by

a normal ordering. (Although, when jβðpÞk j2 ≫ 1, the zero-
point energy is anyway tiny compared to the total ρA.)

When I2 is constant and thus the photon density jβðpÞk j2 is
conserved, one clearly sees that the gauge field density,6

and the sum of the electric and magnetic power, both
redshift as ∝ a−4. However we stress that this is not
necessarily the case for the individual electric and magnetic
power, as we will explicitly see below.

C. Hierarchical electromagnetic power spectra

Many Weyl symmetry-breaking models of magneto-
genesis produce much stronger electric fields compared

6If the k-integral is cut off at some kUV, in this paragraph we
are assuming kUV to be time-independent.
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to magnetic fields, or vice versa.7 In terms of the expression
(3.25), such a situation with a hierarchy between
the electromagnetic fields is described as the case of

jβðpÞk j2 ≫ 1 with argðαðpÞk βðpÞ�k Þ ≃ 0;�π;�2π; � � �.
To see this more clearly, let us write the relative phase as

argðαðpÞk βðpÞ�k Þ≡ π þ θðpÞk : ð3:27Þ

One can check that when

1

jβðpÞk j2
≪ jθðpÞk j ≪ 1 ð3:28Þ

is satisfied, then (3.25) is approximated by

���αðpÞk − βðpÞk

���2 ≃ 4jβðpÞk j2;
���αðpÞk þ βðpÞk

���2 ≃ ðθðpÞk Þ2jβðpÞk j2:
ð3:29Þ

This yields

PEðkÞ ≃
k4

4π2a4I2
X
p¼1;2

4jβðpÞk j2;

PBðkÞ ≃
k4

4π2a4I2
X
p¼1;2

ðθðpÞk Þ2jβðpÞk j2; ð3:30Þ

describing a much stronger electric field strength compared
to the magnetic. Cases where the magnetic field is stronger

can similarly be described by argðαðpÞk βðpÞ�k Þ being close
to 0.

D. Maxwell theory on superhorizon scales

For the standard Maxwell theory, i.e., I2 ¼ 1, the mode
function is a sum of plane waves,

uðpÞk ¼ 1ffiffiffiffiffi
2k

p
n
AðpÞ
k e−ikðτ−τiÞ þ BðpÞ

k eikðτ−τiÞ
o
: ð3:31Þ

Here τi is some arbitrary time, while AðpÞ
k and BðpÞ

k are

time-independent complex numbers satisfying jAðpÞ
k j2 −

jBðpÞ
k j2 ¼ 1 as required by the normalization condition

(3.13). The time-dependent Bogoliubov coefficients are
obtained as

αðpÞk ¼ AðpÞ
k e−ikðτ−τiÞ; βðpÞk ¼ BðpÞ

k eikðτ−τiÞ; ð3:32Þ

yielding

cos
n
arg

�
αðpÞk βðpÞ�k

�o
¼ cos

n
arg

�
AðpÞ
k BðpÞ�

k

�
−2kðτ−τiÞ

o
:

ð3:33Þ

Now, supposing that the FRW universe has a constant
equation of state w (≠ −1=3), the Hubble rate would scale
as H ∝ a−3ðwþ1Þ=2. Hence the elapsed conformal time is
obtained as

τ − τi ¼
Z

a

ai

da
a2H

¼ 2

3wþ 1

�
1

aH
−

1

aiHi

�
; ð3:34Þ

where quantities with the subscript i are evaluated at τi.
Rewriting as

argðAðpÞ
k BðpÞ�

k Þ ¼ π þ ΘðpÞ
k ; ð3:35Þ

(note that ΘðpÞ
k is independent of time), then the phase

parameter of (3.27) is

θðpÞk ¼ ΘðpÞ
k −

4

3wþ 1

�
k
aH

−
k

aiHi

�
; ð3:36Þ

up to the addition of integer multiples of 2π.
Let us now consider a situation where there is a hierarchy

between the electric and magnetic power spectra on super-

horizon scales. For this purpose we assume that jΘðpÞ
k j ≪ 1,

so that θðpÞk is also tiny for modes satisfying k ≪ aH; aiHi.

Further supposing the photon density jβðpÞk j2 ¼ jBðpÞ
k j2 to

be large enough to satisfy (3.28), then the super-
horizon electromagnetic power spectra are approximately
obtained as

PEðkÞ≃
X
p

k4

π2a4
jBðpÞ

k j2;

PBðkÞ≃
X
p

k4

4π2a4

�
ΘðpÞ

k −
4

3wþ1

�
k
aH

−
k

aiHi

�	
2

jBðpÞ
k j2:

ð3:37Þ

Focusing on the time dependences, one sees that the electric
power redshifts as ∝ a−4. The magnetic power, on the other
hand, contains a component with a similar redshifting

∝a−4 [cf. (1.1)] arising from the ΘðpÞ
k and k=aiHi terms, as

well as a component with ∝ a−6H−2 [cf. (1.2)] arising from
the k=aH term. The former corresponds to the second
term in the right-hand side of (2.5), and the latter corre-
sponds to the first term, thus manifesting Faraday’s law.
If the expansion of the universe is decelerating, i.e.,
w > −1=3, the magnetic power would eventually be
dominated by the component with ∝ a−6H−2.
In Fig. 1 we show the time evolution of the electromag-

netic power spectra for the standard Maxwell theory, in
7This is analogous to the squeezing of inflaton and graviton

fluctuations during inflation [39].
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terms of kðτ − τiÞ. Here, the photon density is taken as

jβðpÞk j2 ≫ 102, and the phase as ΘðpÞ
k ¼ 0. The spectra are

multiplied by a4, and normalized such that their oscillation
amplitude is unity. As shown in the left plot, the spectra
undergo sinusoidal oscillations in conformal time. The
superhorizon scaling behaviors of (3.37) are easier to see in
the log plot in the right panel. Here, note that in a
decelerating universe (w > −1=3), the asymptotic future
corresponds to kðτ − τiÞ → ∞. One clearly sees from the
log plot that when kðτ − τiÞ ≪ 1, the magnetic field grows
relative to the electric field. On the other hand when
kðτ − τiÞ ≫ 1, the electric and magnetic fields oscillate
with similar amplitudes.
Thus we have explicitly shown for the standard Maxwell

theory that the magnetic power spectrum can scale as (1.2)
on superhorizon scales in the presence of stronger electric
power. In the next section we will see how this effect fits
within magnetic field generation scenarios, by studying a
specific model of inflationary magnetogenesis.

IV. EXAMPLE: INFLATIONARY POWER-LAW
MAGNETOGENESIS

Let us now study the scaling behaviors of electromag-
netic fields in a specific inflationary magnetogenesis model
of the type postulated in [5] where the IðτÞ function in the
action (3.1) decreases as ∝ a−s during inflation, and then
becomes constant after inflation,

I ¼
� ðaenda Þs for a ≤ aend;

1 for a ≥ aend:
ð4:1Þ

The subscript “end” denotes quantities at the end of
inflation. We take the power s to be a positive integer, i.e.,

s ¼ 1; 2; 3;…: ð4:2Þ

Since I2 does not go below unity in this model, the gauge
kinetic term is never strongly suppressed and thus we do
not worry about strong couplings.
In the following we analyze the cosmological evolution

of the electromagnetic fields during both the inflation
and postinflation epochs using the formalism based on
Bogoliubov transformations developed in the previous
sections. In Appendix, we reproduce the result by
matching directly the classical field across the transition
in the long wavelength approximation. Since the gauge
field theory under consideration is symmetric between
the two polarizations, hereafter we omit the polarization
index (p).

A. Inflationary magnetogenesis

During the inflationary epoch a ≤ aend, we consider the
Hubble rate to take a time-independent value Hinf . Then
the mode function that satisfies the equation of motion
(3.11) and the normalization condition (3.13), as well as
approaches a positive frequency solution in the asymptotic
past (i.e., starts from a Bunch-Davies initial condition), is
written in terms of the Hankel function as

uk ¼
1

2I

�
πz
k

�1
2

Hð1Þ
−sþ1

2

ðzÞ; ð4:3Þ

up to an unphysical phase. Here the variable z is defined as

z≡ k
aHinf

: ð4:4Þ

FIG. 1. Time evolution of electromagnetic fields for the standard Maxwell theory, in linear (left panel) and log scales (right panel).
Shown are the electric (red) and magnetic (blue) power spectra multiplied by a4 and normalized such that their oscillation amplitude is

unity. The photon density is taken as jβðpÞk j2 ≫ 102, and the phase as ΘðpÞ
k ¼ 0. Time is shown in terms of the elapsed conformal time in

units of k−1. When the mode is outside the horizon of a decelerating universe, i.e., kðτ − τiÞ ≪ 1, the magnetic spectrum grows relative
to the electric spectrum which redshifts as PE ∝ a−4 (see the text for details).
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The time-dependent Bogoliubov coefficients (3.18) are
thus obtained as

αk ¼
�
πz
8

�1
2
n
Hð1Þ

−sþ1
2

ðzÞ − iHð1Þ
−s−1

2

ðzÞ
o
;

βk ¼
�
πz
8

�1
2
n
Hð1Þ

−sþ1
2

ðzÞ þ iHð1Þ
−s−1

2

ðzÞ
o
: ð4:5Þ

The real and imaginary parts of the Hankel functions are
respectively the Bessel functions of the first and second
kinds,

Hð1Þ
ν ðzÞ ¼ JνðzÞ þ iYνðzÞ; ð4:6Þ

where ν ¼ −s� 1
2
. In the superhorizon limit, i.e., z → 0,

these asymptote to (noting that s is a positive integer) [40],

JνðzÞ ≃
1

Γðνþ 1Þ
�
z
2

�
ν

;

YνðzÞ ≃ −
ΓðνÞ
π

�
z
2

�
−ν
: ð4:7Þ

Using these expressions, one can compute the photon
number density as

jβkj2 ≃
Γðsþ 1

2
Þ2

4π

�
2

z

�
2s
; ð4:8Þ

and the phase parameter defined in (3.27) as, up to the
addition of integer multiples of 2π,

θk ≃ −
z

s − 1
2

: ð4:9Þ

As the wave mode goes well outside the horizon, these
quantities go as jβkj2 → ∞ and θk → 0, while satisfying
the condition (3.28). Hence one can use the approximation
(3.30) to obtain the electromagnetic power spectra on
superhorizon scales k ≪ aHinf ,

PEðkÞ ≃
8Γðsþ 1

2
Þ2

π3
H4

inf

I2

�
k

2aHinf

�
−2ðs−2Þ

;

PBðkÞ ≃
8Γðs − 1

2
Þ2

π3
H4

inf

I2

�
k

2aHinf

�
−2ðs−3Þ

: ð4:10Þ

The two spectra are related via PB ≃ ð2s − 1Þ−2
ðk=aHinfÞ2PE, which is a manifestation of (2.5) implied
by Faraday’s law.

B. After inflationary magnetogenesis

The universe after inflation stays cold until its dominant
energy component turns into heat; we refer to this time
when the universe thermalizes as reheating. During the
epoch between the end of inflation and reheating, let us
suppose charged particles to be nonexistent, and also the
universe to expand with some constant equation of state w
(>−1=3 such that the expansion decelerates).
Such a postinflationary expansion can be supported by,

for instance, an inflaton field coherently oscillating about
its potential minimum. If the oscillation is (mostly) along a
potential of V ∝ ϕn, the equation of state averaged over
the oscillations would be w ¼ ðn − 2Þ=ðnþ 2Þ [41]. In this
picture, reheating would be induced by the decay of the
inflaton.8

1. Between inflation and reheating

We have assumed in (4.1) that the standard Maxwell
theory is recovered at the end of inflation. (Strictly speak-
ing, even within the Standard Model, virtual charged
particles in the loops yield an anomalous dependence of
the effective action for quantum electrodynamics on a, and
thus I is not a constant. However we ignore this since it has
little effect on gauge field excitation [38].) Hence during
the cold stage between the end of inflation and reheating,
the gauge field would follow the Maxwell equation in
vacuum, i.e., the equation of motion (3.11) with I ¼ 1,
whose solution is given by

uk¼
1ffiffiffiffiffi
2k

p fαkðτendÞe−ikðτ−τendÞ þβkðτendÞeikðτ−τendÞg: ð4:11Þ

This expression corresponds to (3.31) with the choice
of τi ¼ τend, where the coefficients of the positive and
negative frequency solutions are fixed by requiring the
Bogoliubov coefficients during inflation (4.5) and after
(3.32) to match at τend. This is equivalent to matching uk
and u0k in the two epochs at the end of inflation.9

For wave modes that have exited the horizon during
inflation, the phase parameter in the postinflation epoch is
obtained from (3.36) and (4.9) as

8As the oscillation amplitude decreases, eventually, the po-
tential would likely be dominated by a quadratic term and thus
w approaches 0. However for simplicity, we consider w to be
constant all the way until reheating.

9The toy model under consideration involves a sudden jump at
the end of inflation in the time derivatives of the I function as well
as the Hubble rate H. Hence depending on whether one chooses
to connect u0k or ðIukÞ0 or something else, different results can be
obtained. Here we choose to match the Bogoliubov coefficients
since they are directly related to physical quantities. We have also
verified this procedure by introducing smooth interpolation for I
and H between the two epochs, and numerically solving the
gauge field’s equation of motion; the numerical results agree well
with our analytic expressions (4.10) and (4.14) respectively in the
asymptotic regimes a ≪ aend and a ≫ aend.
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θk ≃ −
2

2s − 1

k
aendHinf

�
1þ 4s − 2

3wþ 1

�
aendHinf

aH
− 1

�	
;

ð4:12Þ

whose amplitude monotonically increases in time. The
photon number density jβkj2, which is now time-independent,
is obtained by evaluating (4.8) at the end of inflation. The
condition (3.28) continues to be satisfied while the mode is
well outside the horizon, i.e., k ≪ aH, and thus from (3.30)
one can obtain the electromagnetic power spectra as10

PEðkÞ ≃
8Γðsþ 1

2
Þ2

π3
H4

inf

�
k

2aendHinf

�
−2ðs−2Þ�aend

a

�
4

;

PBðkÞ ≃
8Γðs − 1

2
Þ2

π3
H4

inf

�
k

2aendHinf

�
−2ðs−3Þ�aend

a

�
4

×

�
1þ 4s − 2

3wþ 1

�
aendHinf

aH
− 1

�	
2

: ð4:14Þ

The decelerated expansion of the universe eventually renders
aendHinf ≫ aH, then the relation between the electromag-
netic power becomes PB ≃ ð2=3wþ 1Þ2ðk=aHÞ2PE, being
compatible with (2.5) which follows from Faraday’s law.
Here, it is also important to note that while the electric
power redshifts as PE ∝ a−4, the magnetic power scales11

as PB ∝ a−6H−2 ∝ a3ðw−1Þ.

2. After reheating

Upon reheating, the conductivity of the universe
becomes high, and thus the electric fields are shorted
out while the magnetic flux is frozen in. Hence we consider
large-scale magnetic fields after reheating to redshift as
PB ∝ a−4 until today.
The magnetic power spectrum in the present universe is

thus obtained as, for wave modes that are outside the
horizon at the time of reheating,12

PB0ðkÞ ¼ PB rehðkÞ
�
areh
a0

�
4

≃
8Γðs − 1

2
Þ2

π3
H4

inf

�
k

2aendHinf

�
−2ðs−3Þ�aend

a0

�
4

×

�
1þ 4s − 2

3wþ 1

�
aendHinf

arehHreh
− 1

�	
2

; ð4:15Þ

where the subscript “reh” is used to describe quantities
upon reheating, and “0” for today. The enhancement
factor of

aendHinf

arehHreh
¼

�
Hinf

Hreh

�3wþ1
3wþ3 ð4:16Þ

inside the parentheses represents the effect of the electro-
magnetic induction during the epoch between inflation and
reheating. This would be missed if one were to assume the
magnetic power to redshift as a−4 right from the end of
inflation, as has been done in most previous works. The
enhancement factor becomes particularly large when there
is a hierarchy between the inflation and reheating scales.
The scale of inflation is bounded from above by the current
observational limit on primordial gravitational waves as
Hinf ≲ 1014 GeV [42], while the reheating temperature
needs to be higher than about 5 MeV in order not to spoil
BBN [43], setting a lower bound on the reheating scale as
Hreh ≳ 10−23 GeV. Hence the ratio between the inflation
and reheating scales can in principle be as large as
Hinf=Hreh ≲ 1037, and the postinflationary induction would
significantly impact the final magnetic field amplitude.
The effect is maximized for a stiff equation of state w ≫ 1,
for which the factor of (4.16) can be as large as 1037. If
w ¼ 1=3, which is the case we will mainly consider in the
example in the next subsection, the factor can be up to 1018.
Even with a pressureless state w ¼ 0, the factor can be as
large as 1012.

C. Intergalactic magnetic fields
from high-scale inflation

To demonstrate the importance of the postinflationary
induction, let us present an example where the femto-Gauss
intergalactic magnetic fields as suggested by recent gamma
ray observations are produced from inflationary magneto-
genesis with a high inflation scale and low reheat
temperature.
The example is given by the model of (4.1) with a power

s ¼ 2; ð4:17Þ

which produces a k-independent electric power spectrum,
cf. (4.10). The gauge field’s energy density (3.26) during
inflation is dominated by the scale-invariant electric power,
which is roughly of order

10If one allows for a general postinflation expansion history
instead of assuming a constant w, then in (4.14), the final
parentheses of PB is replaced by

�
1þ 4s − 2

3wþ 1

�
aendHinf

aH
− 1

�	
2

→

�
1þ ð2s − 1Þ

Z
a

aend

da
a
aendHinf

aH

	
2

: ð4:13Þ

11If the standard Maxwell theory is recovered during inflation
instead of at the very end, the magnetic power would initially
redshift as PB ∝ a−4, then some time after inflation switch to
∝ a−6H−2.

12Reheating happens before big bang nucleosynthesis (BBN),
and since the comoving Hubble radius at the beginning of BBN is
of a0=ðaBBNHBBNÞ ∼ 10 pc, the result (4.15) applies at least for
wave numbers satisfying k=a0 < ð10 pcÞ−1.
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ρA ∼H4
inf log

�
aHinf

kIR

�
: ð4:18Þ

Here, upon carrying out the k-integral in (3.26), we have
introduced a UV cutoff and set it to the mode exiting the
horizon, i.e., kUV ∼ aHinf , since for higher kmodes the gauge
field fluctuations have not yet become classical and thus their
contributions to the energy density should be renormalized.13

We have also introduced an IR cutoff kIR; considering it to be
the wave mode that exited the horizon at the beginning of
inflation, the factor logðaHinf=kIRÞ corresponds to the
number of elapsed inflationary e-folds N . Here, from the
observational limit Hinf ≲ 1014 GeV, the ratio between
the gauge field density (4.18) and the total density of the
universe ρtot ¼ 3M2

pH2
inf is bounded as ρA=ρtot ≲ 10−9N ,

being much smaller than the amplitude of the curvature
perturbation ζ ∼ 10−5 measured on CMB scales (unless the
inflationary period is extraordinarily long). Thus the effect of
the excited gauge field on the cosmological perturbations14

and the inflationary background is negligible.
However we should also remark that, depending on the

postinflationary equation of state w, the gauge field’s
backreaction may become non-negligible after inflation.
Here, recall that once the standard Maxwell theory is
recovered, the gauge field density redshifts as radiation,
i.e., ρA ∝ a−4. Hence if w ≤ 1=3, its ratio to the total
density ρA=ρtot does not increase in time. However if
w > 1=3, the ratio would grow and thus one needs to
verify whether the backreaction becomes significant.
The magnetic field strength today is obtained by sub-

stituting s ¼ 2 into (4.15), and let us suppose that
aendHinf ≫ arehHreh, namely, that the universe thermalizes
well after inflation ends. Considering the entropy of the
universe to be conserved since reheating, the redshift
and energy scale of reheating are related by (supposing
the Standard Model degrees of freedom),

a0
areh

≈ 3 × 1010
�

Hreh

10−23 GeV

�
1=2

: ð4:19Þ

Also using (4.16), the magnetic field spectrum on large
scales is obtained as

PB0ðkÞ ∼
ð10−33 GÞ2
ð3wþ 1Þ2

�
k
a0

Mpc

�
2
�

Hinf

1014 GeV

��
Hinf

Hreh

�9wþ1
3wþ3

:

ð4:20Þ

From this expression one sees that the magnetic field
strength is larger for smaller length scales, higher inflation
scales, and if w > −1=9, for larger Hinf=Hreh ratios. In the
case with the largest possible hierarchy between the
inflation and reheating scales,15 i.e., Hinf ¼1014GeV and
Hreh ¼ 10−23 GeV, the magnetic field strength on the wave
number k=a0 ¼ ð1 MpcÞ−1 is P1=2

B0 ∼ 10−27 G for w ¼ 0,

and P1=2
B0 ∼ 10−15 G for w ¼ 1=3. For the same parameters

but with a higher reheating scale Hreh ¼ 10−12 GeV (cor-
responding to a temperature of Treh ∼ 1 TeV), then P1=2

B0 ∼
10−21 G for w ¼ 1=3. In Fig. 2 we plot the magnetic field
strength as a function of Hreh, for k=a0 ¼ ð1 MpcÞ−1 and
Hinf ¼ 1014 GeV. The dashed line shows the case of
w ¼ 0, while the solid line is for w ¼ 1=3. The lines are
seen to bend at Hreh ≳ 1013 GeV; here reheating happens
soon after inflation and hence there is not enough time
for the induction effect to become important, namely, the
second term inside the fg parentheses of (4.15) is not much
greater unity and thus the result deviates from the approxi-
mation (4.20). The field strength basically increases with w,
however for w > 1=3, the postinflation backreaction may
become non-negligible as discussed above.16

Thus by properly taking into account electromagnetic
induction after inflation, we have shown that the simple
inflationary magnetogenesis model (4.1) with s ¼ 2 is
capable of creating femto-Gauss intergalactic magnetic
fields on Mpc scales, given a high-scale inflation Hinf ¼
1014 GeV and low reheating Hreh ¼ 10−23 GeV, with the

FIG. 2. Magnetic field strength today on k=a0 ¼ ð1 MpcÞ−1,
generated by the inflationary magnetogenesis model (4.1) with
s ¼ 2. The inflation scale is fixed to Hinf ¼ 1014 GeV, and the
field strength is shown as a function of the Hubble scale at
reheating. The postinflationary equation of state is taken as w ¼ 0
(dashed line) and w ¼ 1=3 (solid).

13By “becoming classical,” we mean that the classical volume
of the space spanned by the gauge field fluctuation and its
conjugate momentum becomes much larger than their quantum
uncertainty. See [17,38,44] for detailed analyses.

14The gauge field sources curvature perturbations roughly of
ζA ∼ ρA=ðϵρtotÞ, where ϵ ¼ −H0=ðaH2Þ is the rate of change of
the Hubble parameter. See e.g., [16] for detailed analyses of CMB
constraints.

15The case ρ1=4inf ¼ 1016 GeV (Hinf ∼ 1014 GeV) and s ¼ 2 is
within the region where backreaction and anisotropy constraints
are satisfied [16].

16An equation of state of w > 1=3 can also blue-tilt the
primordial gravitational wave spectrum [45]. It would be inter-
esting to study the possibility of probing w from a joint analysis
of the magnetic fields and gravitational waves.
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two periods connected by an equation of state w ¼ 1=3.
Here we stress that the equation of state w ¼ 1=3 of this
scenario is not due to charged relativistic particles, but
instead should be realized by some substance without
charge such as an oscillating inflaton condensate.

V. MODEL-INDEPENDENT CONSTRAINTS

We have shown in the previous sections that if primordial
magnetogenesis creates stronger electric fields than mag-
netic fields, then even after the standard Maxwell theory is
recovered, the electromagnetic spectra on superhorizon
scales can be related by

PBðkÞ ∼
�

k
aH

�
2

PEðkÞ; ð5:1Þ

yielding the magnetic scaling PB ∝ a−6H−2 instead of a
radiationlike redshifting. In this section we derive generic
bounds on primordial magnetic fields with such a behavior,
by analyzing the gauge field’s gravitational backreaction.

A. Generic reheating bound

We start by constraining cases where the standard
Maxwell theory is recovered by the time of reheating.
(Thus the Weyl invariance of the gauge field action can
explicitly be violated even after inflation, as in postinfla-
tionary magnetogenesis scenarios [6], see also [46,47].) We
suppose that coherent electromagnetic fields have been
created on some wave modes that are outside the horizon
upon reheating, and that right before reheating when the
electric fields have not yet vanished, the power spectra
satisfy the relation (5.1) on the wave modes of interest.
One can read off from the third line of (3.26) that in

Maxwell theory (I2 ¼ 1), the electric power spectrum
with wave number k contributes to the gauge field’s
energy density as ΔρA ∼ PEðkÞ=2, given that the spectrum
PEðkÞ is smooth over a range of Δk ∼ k so that the integralR
dk=k can be approximated by an order-unity factor.17

Considering that the other contributions to the gauge field
density are non-negative, an inequality of

ρA ≳ 1

2
PEðkÞ ð5:2Þ

is thus obtained. We further assume the magnetic power to
redshift after reheating as

PBðkÞ ∝ a−4 ða ≥ arehÞ: ð5:3Þ

Based on these assumptions, an upper bound on the
magnetic spectrum in the current universe is obtained as

PB0ðkÞ ¼ PB rehðkÞ
�
areh
a0

�
4

≲ 6M2
p

�
k
a0

�
2
�
ρA
ρtot

����
reh

��
areh
a0

�
2

∼ ð10−13 GÞ2
�
k
a0

Mpc

�
2
�
105

ρA
ρtot

����
reh

�

×

�
10−23 GeV

Hreh

�
: ð5:4Þ

Here we have used (5.3) in the first line, then ρtot ¼
3M2

pH2, (5.1), and (5.2) to get to the second line, and (4.19)
for the third line. The reference value of ðρA=ρtotÞreh ¼ 10−5

has been chosen from the amplitude of the large-scale
curvature perturbation ζ ∼ 10−5; a larger density ratio, in
particular if its main contribution is on CMB scales, would
source too large curvature perturbations and contradict
with observations. Note also that Hreh ¼ 10−23 GeV is the
lowest possible reheating scale compatible with BBN.
Hence the bound (5.4) shows that if the electromagnetic
spectra satisfy the relation (5.1) right before reheating, then
the magnetic field strength cannot exceed 10−13 G on Mpc
or larger scales today, otherwise the gauge field fluctuations
would spoil the cosmological perturbations. In particular,
in order to have femto-Gauss magnetic fields on Mpc
scales, the reheating scale should satisfy Hreh≲10−18GeV,
which in terms of the reheating temperature translates
into Treh ≲ 1 GeV.
Upon deriving the bound (5.4), we have only employed

assumptions about times from reheating onward. In par-
ticular, no assumption was made regarding cosmology and
the gauge field theory in epochs prior to reheating.

B. Less generic inflation bound

Let us now make some assumptions about the period
between inflation and reheating, in order to obtain a
magnetic field bound in terms of the inflation scale.
Hereafter we assume that by the end of inflation, the
standard Maxwell theory is recovered and yields (5.2)
(hence the following discussions are limited to inflationary
magnetogenesis scenarios). We further assume that the
postinflationary universe expands with a constant equation
of state w until reheating, with the electric field redshifting
as PE ∝ a−4 during this period. As in Sec. VA, we suppose
the relation (5.1) to hold right before reheating, and the
magnetic field to redshift as (5.3) after reheating.
Then in a similar way as we derived (5.4), but now

considering the backreaction at the end of inflation (note
HðaendÞ ¼ Hinf ), one can obtain

17Sharp features localized to ranges of Δk ≪ k can be
produced if rapidly time varying backgrounds give rise to
resonant production of photons. This could in principle provide
a way to evade the constraints in this section.
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PB0ðkÞ≲ 6M2
p

�
k
a0

�
2
�
ρA
ρtot

����
end

��
areh
a0

�
2
�
Hreh

Hinf

�2ð−3wþ1Þ
3ðwþ1Þ

:

ð5:5Þ

The main difference from the reheating bound (5.4) is
the presence of the ratio Hreh=Hinf . It appears in the bound
with a positive (negative) power for w < (>) 1=3, reflecting
the fact that the gauge density ratio ρA=ρtot decreases
(increases) in time after inflation. Thus the bound would
be equivalent to (5.4) if w ¼ 1=3 (i.e., radiationlike back-
ground), or Hreh ¼ Hinf (i.e., instantaneous reheating at the
end of inflation).
If, for instance, w ¼ 0, then (5.5) can be rewritten as

PB0ðkÞ≲ ð10−15 GÞ2
�
k
a0

Mpc

�
2
�
105

ρA
ρtot

����
end

�

×

�
10−23 GeV

Hreh

�
1=3

�
10−16 GeV

Hinf

�
2=3

: ð5:6Þ

Hence one finds that for w ¼ 0, femto-Gauss magnetic
fields can exist on Mpc scales only if the inflation scale
satisfies18 Hinf ≲ 10−16 GeV.

VI. COMMENTS ON SCHWINGER EFFECT

The nonradiationlike scaling of the electromagnetic
fields arises in the presence of a hierarchy between the
electric and magnetic field strengths. In the previous
sections we considered electric fields much stronger than
magnetic fields being produced in the primordial universe,
which then affect the subsequent magnetic field evolution.
Up until the time of reheating, we supposed a cold universe
where charged particles are absent, and hence assumed the
electric fields to survive. However, if the electric field is
strong enough, it can give rise to Schwinger production of
charged particles [48–50], which in turn would backreact
significantly on the electric fields before reheating [36]
(see also e.g., [51–53]).
Studying the fate of strong cosmological electric fields

would require an analysis of the Schwinger process in a
curved spacetime, whose behavior can differ from that in
flat space due to the extra effect from the gravitational
background, as was shown explicitly for de Sitter space-
times in e.g., [36,54,55]. A complete analysis in a generic
FRW spacetime is beyond the scope of this paper; instead
we provide here a crude estimate of the impact of the
Schwinger process in a cosmological background, and

postulate the condition under which primordial electric
fields are unaffected by the Schwinger effect.
We again consider the gauge field theory of (3.1), but

now coupled to matter such that the equation of motion of
the gauge field includes a conserved current Jμ,

∇μðI2FμνÞ ¼ −Jν: ð6:1Þ

Its spatial component yields the modified Ampère-Maxwell
law, which in terms of the electromagnetic fields reads
[our sign convention follows from the definition (2.1) with
u0 > 0]

ε̂ijl∂jBl¼
ðaI2EiÞ0
aI2

þaJi
I2

¼E0
iþ

�ðaI2Þ0
aI2

þaσ
I2

	
Ei: ð6:2Þ

Here in the far right-hand side, the current is considered to
be carried by particles produced via the Schwinger process,
and thus we have rewritten it using the conductivity σ
introduced as

Ji ¼ σEi: ð6:3Þ

Let us now assume the first term inside the fg parentheses
to be of

���� ðaI
2Þ0

aI2

���� ∼ aH; ð6:4Þ

as is the case for the standard Maxwell theory (I2 ¼ 1), as
well as the power-law magnetogenesis model in Sec. IV.
Then the condition under which the induced current has a
negligible effect on the evolution of the electric field can be
read off as

jσj≲ I2H: ð6:5Þ

In Minkowski space, the conductivity induced by a
background electric field through the Schwinger pair
production is of (see e.g., [56])

σ ∼ ðt − tonÞe3E exp

�
−
πm2

eE

�
; ð6:6Þ

where t is time, ton is when the electric field was turned on,
E is the electric field strength, and m and e are respectively
the mass and amplitude of the charge of the produced pairs.
The linear dependence on time reflects the fact that the
produced particles accumulate until their backreaction to
the electric field becomes non-negligible.
On the other hand in a cosmological background, the

expansion of the universe dilutes away the particles
produced by the electric field, thus introducing the time
scale H−1. Hence, supposing that the rate of change of the
electric field is comparable to or smaller thanH, we crudely

18In [17], constraints on inflationary magnetogenesis were
derived for general gauge field theories with a two-derivative
kinetic term, under the assumption of the postinflationary red-
shifting PB ∝ a−4. Their bound (3.20), for instance, is modified
by instead adopting PB ∝ a−6H−2; further multiplying by 10−5

considering the curvature perturbation, the modified bound
matches with our (5.6).
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estimate the induced conductivity in a FRW background by
replacing the elapsed time in the flat space result (6.6) by
the Hubble time,19

σ ∼
e3E
H

exp

�
−
πm2

eE

�
: ð6:7Þ

Here the electric field strength is understood as E ¼
ðEμEμÞ1=2. In an inflationary de Sitter space, the conduc-
tivity induced by a time-independent electric field actually
does take this form in the strong electric field regime
eE ≫ H2; while with weak electric fields, gravitational
particle production renders σ to take a different form [36].
Since now we are interested in strong primordial electric
fields, let us adopt (6.7) for the moment as the induced
conductivity in a generic FRW universe.
Then the condition (6.5) reads

e3E
H2

exp

�
−
πm2

eE

�
≲ I2: ð6:8Þ

This can be understood as an upper bound on the electric
field strength for which the backreaction from the produced
particles can be neglected. In particular if the charged
particle is light enough such that m2 ≪ eE, then the bound
is simplified to

e3E
H2

≲ I2; ð6:9Þ

which implies that if light charged particles exist in the
theory, then electric fields exceeding the Hubble scale
multiplied by I2 would receive significant backreaction
from the Schwinger process.20

When applying the above discussion to the inflationary
magnetogenesis scenario of Sec. IV by the substitution
E → PEðkÞ1=2, one can check that the condition (6.9)
for e ∼ 1 is either saturated or violated (depending on
the value of s) at some k-mode towards the end of inflation.
Moreover in the postinflation epoch, the condition is
strongly violated since the ratio PEðkÞ1=2=H2 ∝ a1þ3w

grows in time. Hence our crude estimate suggests that
the evolution of the electric field is affected by the produced
light charged particles before reheating, and thus the
magnetic scaling would deviate from PBðkÞ ∝ a−6H−2.
The Schwinger production, however, could be avoided if

there is some mechanism in the early universe giving
sufficiently large masses to charged particles.21

We stress that the analyses in this section rely on the very
rough estimate of the conductivity (6.7) induced by the
Schwinger effect in a FRWuniverse. Clearly a more precise
calculation would be necessary in determining detailed
bounds on primordial electric fields. It is also important to
study what actually happens when the Schwinger effect
becomes relevant; whether the electric fields quickly decay,
or the field decay balances the Schwinger production and
thus allows the electric field to survive. Other than from the
Schwinger process, the electric field may also be affected
by a gradual decay of the inflaton before it completely
thermalizes the universe, depending on the decay process
[4]. We leave a careful exploration of these issues for
future work.

VII. CONCLUSIONS

We showed that primordial electric and magnetic fields
do not necessarily redshift in a radiationlike manner on
superhorizon scales. This is a simple consequence of
Maxwell’s equations allowing exchange of power between
the two fields. Given that electric fields stronger than
magnetic fields are produced in the early universe, the
electric fields can render the magnetic fields to redshift
slowly, or even blueshift. In particular for the standard
Maxwell theory, we showed that the magnetic power scales
as B2 ∝ a−6H−2 in the postinflationary universe until the
electric fields disappear.
The implication of the induction effect for primordial

magnetogenesis is that the produced magnetic fields con-
tinue to be sourced by the electric fields up until the time of
reheating, thus leading to stronger magnetic strengths than
were previously estimated. The effect is particularly large if
the inflation and reheating scales are well separated, and/or
the postinflationary universe has a stiff equation of state, in
which cases the previous estimates are corrected by up to
37 orders of magnitude. As an example, we presented a toy
model of inflationary magnetogenesis which produces
femto-Gauss magnetic fields on Mpc scales, combined
with a high inflation scale of Hinf ¼ 1014 GeV and low
reheating temperature just above the BBN scale, with the
postinflation epoch possessing an equation of state
w ¼ 1=3. This offers a counterexample to the common
lore that high-scale inflation is incompatible with efficient
inflationary magnetogenesis; moreover it opens up the
possibility of producing both observable magnetic fields

19We assume the I2 function to multiply only the photon
kinetic term but not the photon-matter coupling terms, therefore
the induced conductivity would not explicitly depend on I2.

20Given that e2=I2 ≲ 1, then the regime affected by the
Schwinger process, i.e., e3E ≫ I2H2, would fall into the strong
field regime eE ≫ H2 where the approximation (6.7) is expected
to hold. This justifies our use of (6.7) for constraining electric
fields.

21In [36], Schwinger effect constraints on inflationary mag-
netogenesis were derived by analyzing the Schwinger process
during inflation, and assuming PB ∝ a−4 after inflation. The
constraints can be relaxed in the presence of the postinflation
induction; however the estimate in this section indicates that even
if the Schwinger process during inflation is negligible, it may
become important afterwards.
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and gravitational waves from inflation. It would also be
interesting to explore other scenarios of primordial mag-
netogenesis by taking into account the correct scaling
behavior of the electromagnetic fields.
We also derived model-independent bounds on primor-

dial magnetic fields that are supported by the induction
effect, setting a consistency relation between the magnetic
field strength and the reheating scale. Finally, we briefly
commented on the possibility that primordial electric fields
may quench prior to reheating via the Schwinger produc-
tion of charged particles, in which case the magnetic fields
would lose support from the electric fields and thus obey
the radiationlike redshifting. We crudely estimated the
condition for the Schwinger process to be important; a
more precise calculation of this effect is an important task
for the future.
Although we have focused on electromagnetic fields

throughout this paper, the induction effect can also be
important for addressing the fate of other gauge fields, such
as dark photons, that could have been excited in the early
universe.
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We thank André Benevides, Paolo Creminelli, Atish
Dabholkar, Ricardo Z. Ferreira, Daniel G. Figueroa, Daniel
Green, Rajeev Kumar Jain, Mehrdad Mirbabayi, Shinji
Mukohyama, Bharat Ratra, and Giovanni Villadoro for
helpful discussions. M. S. S. is supported by Villum
Fonden Grant No. 13384. CP3-Origins is partially funded
by the Danish National Research Foundation, Grant
No. DNRF90.

APPENDIX: SUPERHORIZON MATCHING
OF CLASSICAL FIELD

Here we match the classical gauge field on superhorizon
scales across the inflationary and postinflationary epochs in
the Ratra model, and show that it agrees with the result
in Sec. IV, which was obtained using the more generally
applicable method of Bogoliubov transformations.
Normalizing the mode function as ũk ¼ Iuk (we drop

polarization indices), the equation of motion (3.11) can be
written as

ũ00k þ
�
k2 −

I00

I

�
ũk ¼ 0: ðA1Þ

The superhorizon regime and the long wavelength regime
of k2 ≪ jI00=Ij approximately coincide for reasonable
power-law functions I ∝ a−s, and in this regime the
equation has the general solution

ũk ∼ C1I þ C2I
Z

dτ
I2

: ðA2Þ

In any regime where I is constant (as in the postinflation
regime of the model discussed in Sec. IV), the solution will
have a constant term and one proportional to τ ⊃ C3=ðaHÞ
[cf. (3.34)], which will be growing in a decelerated
expansion phase.
To be more precise, let us consider the model with

I ∝ a−s during inflation, which by setting the conformal
time as τ ¼ −1=ðaHinfÞ leads to

ũ00k þ
�
k2 −

sðs − 1Þ
τ2

�
ũk ¼ 0: ðA3Þ

The solution starting from the Bunch-Davies vacuum is
given in (4.3). In the superhorizon limit, this can be
expanded in terms of (−kτ) as [15] (given that s is not a
half-integer),

uk ¼
ũk
I

¼ C̃1ðk; sÞ
�
1 −

1

sþ 1
2

�
−kτ
2

�
2

þ � � �
	

þ D̃1ðk; sÞ
��

−kτ
2

�
−2sþ1

þ � � �
	

ðA4Þ

where the dots indicate higher order terms in the long
wavelength approximation and

C̃1ðk; sÞ ¼ −
iΓð−sþ 1

2
Þ

ð2πkÞ1=2
�
−kτend

2

�
s
; ðA5Þ

D̃1ðk; sÞ ¼ −
eisπΓðs − 1

2
Þ

ð2πkÞ1=2
�
−kτend

2

�
s
: ðA6Þ

Here the subscript “end” denotes the end of inflation, and
we have set Iend ¼ 1.
The mode function after inflation ends and I becomes a

constant is a sum of plane waves, i.e., (4.11), which can be
expanded in terms of kðτ − τendÞ,

uk ¼
1

ð2kÞ1=2 ½αkðτendÞ þ βkðτendÞ

− ifαkðτendÞ − βkðτendÞgkðτ − τendÞ þ � � ��: ðA7Þ

The coefficients αkðτendÞ and βkðτendÞ are determined by the
matching conditions at τend. Here, due to considerations
pertaining to energy conservation, it is uk and u0k that has to
be matched across the transition. Focusing on the case
of s > 1=2, then the mode function during inflation (A4)
is dominated by the D̃1 term and thus we obtain the
coefficients as

αkðτendÞ þ βkðτendÞ ≃ −
eisπΓðs − 1

2
Þ

π1=2

�
−kτend

2

�
−sþ1

; ðA8Þ
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αkðτendÞ − βkðτendÞ ≃ −
ieisπΓðsþ 1

2
Þ

π1=2

�
−kτend

2

�
−s
: ðA9Þ

For the power spectrum of magnetic fields on superhorizon
scales after the end of inflation, we then find

PBðkÞ ¼
k5

π2a4
jukj2

≃
Γðs − 1

2
Þ2k4

2π3a4

�
−kτend

2

�
−2ðs−1Þ

×

�
1þ ð2s − 1Þ τ − τend

−τend

	
2

: ðA10Þ

It is easy to verify that this is equivalent to the result in
Eq. (4.14) when using τend ¼ −1=ðaendHinfÞ, and (3.34) for
the elapsed time (τ − τend).
An important observation compared with [15] is that,

when connected to an epoch of I ∝ jτjs̃ with a different
power satisfying s̃ < −1=2 in [15], the growing solution
got matched to the decaying solution, resulting in loss of
power at the transition and thus no enhanced magnetic
fields. On the other hand in the present case of connecting
to an epoch with a constant I, the growing solution gets
matched directly on to the growing solution after the
transition with no loss of power.
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