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The first dark matter halos form by direct collapse from peaks in the matter density field, and evidence
from numerical simulations and other analyses suggests that the dense inner regions of these objects largely
persist today. These halos would be the densest dark matter structures in the Universe, and their abundance
can probe processes that leave imprints on the primordial density field, such as inflation or an early matter-
dominated era. They can also probe dark matter through its free-streaming scale. The first halos are
qualitatively different from halos that form by hierarchical clustering, as evidenced by their ρ ∝ r−3=2 inner
density profiles. In this work, we present and tune models that predict the density profiles of these halos
from properties of the density peaks from which they collapsed. These models predict the coefficient A of
the ρ ¼ Ar−3=2 small-radius asymptote of the density profile along with the maximum circular velocity
vmax and associated radius rmax. These models are universal; they can be applied to any cosmology, and we
confirm this by validating them using six N-body simulations carried out in wildly disparate cosmological
scenarios. We find that these models can even predict the full population of halos with reasonable accuracy
in scenarios with narrowly supported power spectra, although for broader power spectra, an understanding
of the impact of halo mergers is needed. With their connection to the primordial density field established,
the first dark matter halos will serve as probes of the early Universe and the nature of dark matter.
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I. INTRODUCTION

Decades of work have been devoted to understanding the
halos that form by the gravitational collapse of collisionless
dark matter. In the cold dark matter (CDM) model, N-body
simulations have demonstrated that the radial density
profiles ρðrÞ of these halos are well described by a
remarkably universal form, known as the Navarro-Frenk-
White (NFW) profile [1,2], which is a double power law
that transitions from ρ ∝ r−1 at small radii to ρ ∝ r−3

at large radii. This profile has received only minor
corrections since its introduction (e.g., Ref. [3]). In the
CDM picture, all halos form by hierarchical clustering of
smaller halos, and the NFW profile appears to be the
generic consequence.
CDM represents an idealized scenario, however. In

reality, dark matter particles are expected to have a nonzero
temperature, and the corresponding random particle
motions wash out density fluctuations smaller than a
characteristic free-streaming scale. The first halos form
by direct collapse of overdense regions at this scale, and
N-body simulations with sufficient resolution show that
these halos possess a markedly different density profile that
asymptotes to ρ ∝ r−3=2 at small radii [4–9]. This profile is

stable; it does not relax to the NFW profile, at least in the
absence of halo mergers.
The first halos subsequently merge to produce succes-

sively larger halos, and Refs. [9,10] find that these mergers
gradually drive the halos’ density profiles toward the NFW
form. As these works argue, the shallowing of the inner
density profile is likely a consequence of violent relaxation
[11] during merger events. However, there are multiple
lines of evidence suggesting that such relaxation does not
erase the memory of prior states. For nearly equal-mass
mergers, the density profile of the merger remnant
depends sensitively on the profiles of its progenitors
[7,9]. Successive mergers either raise or leave unaltered
a halo’s characteristic density [9,10,12]; since the first halos
are the densest, this trend preserves them. Finally, for
highly unequal-mass mergers, the smaller halo is generally
expected to survive as a subhalo of the larger [13]. The
smaller halo’s central density profile may even be mostly
unaffected by the merger [14–16].
In this way, it is broadly plausible that the dense cen-

tral regions of the first halos survive the hierarchical
clustering process. These halos, forming during a denser
epoch, should be the densest dark matter objects in the
Universe, and such density leads to observational pros-
pects. Signals from dark matter annihilation are dramati-
cally enhanced by the high density within these halos (e.g.,
Refs. [17–22]). Gravitational signatures, whether through
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microlensing (e.g., Refs. [23–26]), timing delays (e.g.,
Ref. [27]), or stellar dynamics (e.g., Refs. [28–30]), are
also enhanced. Meanwhile, since these halos form by direct
collapse from overdense patches, they carry sensitive
information about the primordial density field on scales
that are inaccessible to other probes. Our goal is to develop
a model that extracts this information; we aim to connect
the properties of the first halos to the statistics of the
primordial matter density field.
The matter density field is intimately connected to some

of the most fundamental questions of cosmology. The
power spectrum PðkÞ, which quantifies the power in
density fluctuations at scale wave number k, has been
precisely measured at scales above approximately 1 Mpc
using the cosmic microwave background [31] and the
Lyman-α forest [32]. However, with a few exceptions
[33,34], it is largely unconstrained at submegaparsec
scales. Since density fluctuations are thought to have been
seeded during inflation, PðkÞ serves as a valuable probe of
inflationary models [35]. The power spectrum is also
sensitive to the thermal history of the Universe after
inflation. An early matter-dominated era (EMDE), driven
by an unstable heavy relic, would amplify small-scale
density fluctuations [36–39], as would a period of domi-
nation by a fast-rolling scalar field [40]. The power
spectrum PðkÞ thereby supplies one of the few windows
into the Universe prior to big bang nucleosynthesis.
Separately, its sensitivity to the free-streaming scale makes
it a probe of the nature of dark matter.
Numerous previous works have explored the prospects

of using the first dark matter halos to probe the small-scale
primordial power spectrum [41–49]. However, most
treatments assumed that these halos, if they form suffi-
ciently early, possess a particularly compact ρ ∝ r−9=4

density profile [50] derived from self-similar theory [51].
References [52] and [53] (Paper I) used N-body simula-
tions to show that this profile does not arise from a realistic
formation scenario. In Ref. [54], hereafter Paper II, we
showed that, despite possessing shallower ρ ∝ r−3=2 den-
sity profiles, the first halos can still supply competitive
constraints on the power spectrum through nondetection of
their observable signals. In that work, we used scaling
arguments to model the population of the first halos given a
particular family of power spectra. Each peak in the density
field was mapped to a collapsed halo at later time.
Our present work represents a natural extension of

that model to arbitrary power spectra. It is based on the
notion that the density profile of a halo forming by direct
collapse is uniquely related to the properties of its precursor
density peak. Numerous prior works have explored the
problem of explaining a halo’s density profile in terms of
the structure of the density peak whence it collapsed. In
work that pioneered the so-called spherical infall model,
Refs. [55,56] approximated the density profile of a col-
lapsed halo by employing the simplifying assumption that

particle orbits are unaltered after accretion. Subsequent
works extended this model by including the contraction of
orbiting material due to new accretion [51,57–63], relaxing
the assumption of spherical symmetry [64,65], and model-
ing nonradial motions [66–72]. Because of the difficult,
nonlinear nature of the matter infall problem, every treat-
ment employs simplifying assumptions. Exact solutions
only exist for the self-similar case [51,58,64,65], in which
the primordial mass excess is a power law in radius. More
general treatments employ Ansätze related to angular
momenta and orbital contraction. As an alternative to
tracking each orbit, other works have employed an
Ansatz related to virialization [73,74].
Whereas spherical infall models relate halo density

profiles to the precursor mass distribution, a complemen-
tary paradigm empirically studies the distribution of halo
density profiles as a function of cosmology and redshift. In
this paradigm, cosmological N-body simulations are used
to tune a parametric model that describes the density profile
of a halo as a function of its mass, and models built in this
paradigm are known as concentration-mass relations.1 The
distribution of halo masses can be subsequently obtained
using Press-Schechter theory [75–77], so these models can
predict the full population of halos and their density
profiles. Concentration-mass relations have been studied
extensively. The simplest models describe the halo distri-
bution in a particular cosmological scenario and at a
particular time of interest [78–95]. Other works have
framed a halo’s density profile in terms of its age or
assembly history [1,2,96–106], and progress has been made
in isolating the physical variables most directly relevant for
predicting density profiles [107–110]. Nevertheless, due to
their empirical nature, concentration-mass relations do not
readily extend beyond the cosmological scenarios, times,
and halo-mass ranges over which they are tuned.
Broadly, spherical infall models attempt to explain the

structures of halos from first principles, while concentra-
tion-mass relations endeavor to predict these structures
pragmatically. Our analysis constitutes a hybrid between
these two procedures that is specialized to the first halos.
Forming by direct collapse, these halos are well suited to
the spherical infall description. At the smallest radii, we use
ellipsoidal collapse arguments [76,77,111] to predict the
coefficient of the ρ ∝ r−3=2 inner profile. Beyond the inner
asymptote, we employ the simplest spherical infall models
to predict the larger profile, parametrized by the maximum
circular velocity vmax and the radius rmax at which it is
attained [112]. By building from such first-principles
descriptions, our predictive models are valid in any cos-
mological scenario; we demonstrate this by validating and
tuning the models using six high-resolution cosmological

1The concentration is a parameter in the NFW profile (and
extended to other profiles) describing how centrally distributed
the halo’s mass is.
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N-body simulations carried out in wildly disparate cosmo-
logical scenarios. Our models nominally predict a halo’s
density profile from the density peak whence it collapsed.
However, modulo the influence of halo mergers (which we
discuss), the statistics of peaks [113] may be applied to
thereby predict the full halo population at a given time.
This paper is structured as follows. In Sec. II, we detail

our simulations and the procedure we use to connect halos
with density peaks. Section III develops a model that
predicts the small-radius asymptote ρ ∝ r−3=2 of a halo’s
density profile, while Sec. IV compares models that predict
the profile at larger radii. In Sec. V, we discuss prospects for
predicting whole populations of halos, including discussion
of halo mergers in Sec. V B. Section VI concludes and
discusses avenues for future work. Appendixes A and B
further detail how we extract simulation data. Finally, in
Appendix C, we present a procedure to directly sample
halos from a power spectrum using our model.

II. SIMULATIONS

We first build a halo catalogue on which to test our
model. For this purpose, we simulated six different sim-
ulation boxes drawn from different initial power spectra.
These power spectra are shown in Fig. 1. Three of these
power spectra are constructed as “spikes” centered at the
scale ks ¼ 6.8 kpc−1 with the form

PðkÞ ¼ Affiffiffiffiffiffi
2π

p
w
exp

�
−
1

2

�
lnðk=ksÞ

w

�
2
�

ð1Þ

for different values of w. These spectra are primarily
intended as artificial test beds for halo formation, but
they do have qualitative motivations in inflationary phe-
nomenology [114–123]. A fourth power spectrum repre-
sents the impact of an EMDE with reheat temperature
TRH ¼ 100 MeV and ratio kcut=kRH ¼ 20 between the free-
streaming cutoff and the largest scale affected by the
EMDE (see Ref. [39]). Finally, the last two power spectra
include only the free-streaming cutoffs associated with cold
dark matter with mass mχ ¼ 100 GeV and kinetic decou-
pling temperature Tkd¼33MeV (corresponding to a typ-
ical weakly interacting massive particle [124]) and warm
dark matter (WDM)2 with mass mχ ¼3.5 keV (close to
lower bounds from the Lyman-α forest [126]), respectively.
The particular parameter choices for these power spectra are
intended to represent very different cosmological scenarios
so that we can test the broad applicability of our models.
We generate the three spiked power spectra from Eq. (1)

at a starting redshift of z ¼ 104, normalizingA ¼ 2 × 10−7

at this time in order to effect abundant halo formation by
z ∼ 100. To generate the latter three power spectra, we
begin with a primordial curvature power spectrum of amp-
litude As ¼ 2.142 × 10−9 and spectral index ns ¼ 0.9667
[127]. We then use the Boltzmann solver CAMB SOURCES
[128,129] to produce a matter power spectrum at z ¼ 500
in a scenario with no thermal dark matter motion. Next, we
apply transfer functions from Refs. [39,130], and [125] to
create, respectively, the EMDE, CDM, and WDM spectra.
Finally, we use linear theory [131] to evolve these power
spectra to their initial redshifts. Note that we include radia-
tion in our simulations, and the linear evolution accounts
for this; see Paper II for details.3 We also include a
cosmological constant, although it is of minimal relevance.
The starting redshift zinit, ending redshift zfinal, and

periodic box size of each simulation are listed in
Table I. Also listed are the rms density variance σ0 and

FIG. 1. Top: The (linear-theory) dimensionless matter power
spectra of our six simulations during matter domination. In linear
theory, Pðk; aÞ ∝ a2 when matter dominates, which motivates the
y-axis scaling (with a ¼ 1 today). Bottom: The same power
spectra, but each is scaled to its density variance and character-
istic correlation length (see the text). The shaded region marks
the range of box sizes for the six simulations: larger modes
(smaller k) have wavelengths longer than the simulation box, so
they are not sampled.

2For WDM, we also take the dark matter particle to be
fermionic with 2 degrees of freedom (so, gX ¼ 1.5 in Ref. [125]).

3Modes that were subhorizon during an EMDE grow in an
altered way during radiation domination [39], and we modify the
linear growth function for this scenario accordingly.
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comoving characteristic correlation length R� associated
with each power spectrum in linear theory. These spectral
parameters are defined as [113]

σj ¼
�Z

∞

0

dk
k
PðkÞk2j

�
1=2

ð2Þ

R� ¼
ffiffiffi
3

p σ1
σ2

: ð3Þ

To illustrate the significance of these quantities, Fig. 1
also shows the correspondingly rescaled power spectra.
This rescaling is useful because it factors out the scale
differences between the spectra, leaving only their shapes.
For this reason, we will use these spectral parameters as
our units. The mass unit is munit ≡ ρ̄0R3�, where ρ̄0 is the
background matter density today. Meanwhile, the physical
distance unit is runit ≡ ½a=σ0ðaÞ�R�, where σ0ðaÞ is evalu-
ated using linear theory during matter domination (so
σ0 ∝ a) and a ¼ 1 today. For each simulation, the ending
redshift is tuned so that σ0 ∼ 3 (in linear theory) at
simulation termination, and the comoving box size is tuned
to be roughly 30 to 80 times R�. The initial redshift is
chosen so that the largest fractional density excesses δ≡
ðρ − ρ̄Þ=ρ̄ are of order 0.2 or smaller.
For each simulation, we draw a random density field

from the matter power spectrum at zinit and generate initial
conditions using the Zel’dovich approximation modified

TABLE I. The simulation list with basic parameters. Also listed
are σ0, the rms density variance, and R�, the comoving character-
istic correlation length, both calculated in linear theory. When
matter dominates, σðaÞ ∝ a, which motivates the scaling in this
column (with a ¼ 1 today).

Simulation zinit zfinal Box (kpc) σ0ðaÞ=a R� (kpc)

w ¼ 0.1 104 50 7.4 164 0.25
w ¼ 0.3 104 50 7.4 164 0.19
w ¼ 0.5 104 50 7.4 164 0.12
EMDE 3 × 104 100 1.5 × 10−3 330 4.1 × 10−5

100 GeV 500 9 0.15 30 1.9 × 10−3

3.5 keV 150 2 4.4 × 103 7.6 66

FIG. 2. The projected initial (top) and final (bottom) density fields for the w ¼ 0.1 (left), w ¼ 0.5 (middle), andmχ ¼ 100 GeV (right)
simulations. The color scale is logarithmic; lighter is denser.
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to account for radiation as described in Paper II.4 Finally,
we carry out the simulations using a version of the
cosmological simulation code GADGET-2 [132,133]
that we modified to include the effects of radiation (see
Paper II). All simulations employed 10243 particles and a
comoving force softening length set at 3% of the initial
interparticle spacing (with forces becoming non-Newtonian
at 2.8 times this length).
Figure 2 shows the initial and final density fields for three

of these simulations. This sample illustrates the characteristic
differences between the density fields and halo populations
that result from the different power spectra. The w ¼ 0.1
spectrum produces fluctuations only on a characteristic
scale, and the resulting halo population is relatively uniform
in size and separation. Meanwhile, the w ¼ 0.5 spectrum
produces fluctuations on a wider range of scales, yielding
very small halos as well as larger halo clusters and voids.
Finally, the 100 GeV power spectrum includes fluctuations
at scales up to and exceeding the box size.5 Accordingly, the
bulk of the halos in the box reside within a few clusters, and
some halos are growing exceedingly large.
At the final redshift of each simulation, we use the

ROCKSTAR halo finder [134] to identify every halo with
mass larger than a cutoffMcut ¼ ð4π=3Þk−3maxρ̄0, where kmax
is the wave number k at which PðkÞ is maximized. This
cutoff is intended to exclude most of the artificial fragments
[135,136] that are normally expected to appear in simu-
lations with a small-scale cutoff in density fluctuations.
Roughly speaking, fluctuations at the scale kmax are the first
to collapse, so we do not expect to find many real halos at
smaller scales. Table II lists the number Nhalo of such halos
found in each simulation.
Next, we wish to associate each halo with the density

peak whence it collapsed. To do this, we use ROCKSTAR to
generate halo catalogues at intervals of roughly 5% in the
scale factor, and we use the CONSISTENT TREES merger
tree code [137] to improve the consistency of halo
tracking through time. Starting at the final redshift, we
trace each halo back to its formation time, defined as the
time when its mass first exceeded Mcut. In case of a
merger, we follow the larger progenitor. We then identify
all particles in the halo at its formation time, find their
positions in the initial particle grid at zinit, and compute the
center of mass xCM and rms spread rCM of these positions.
Finally, we consider the initial grid δðxÞ of fractional

density contrasts and find the largest value of δðxÞwithin a
sphere of radius rCM about xCM. If this maximum is also
a local maximum in δðxÞ (a condition that could fail if
the maximum lies at the sphere’s boundary), we take it to
be the initial density peak for this halo. Otherwise, we
discard the halo from further consideration, suspecting it
to be an artificial fragment.6 Moreover, when this pro-
cedure associates multiple halos in the final box with the
same initial peak, we discard all but the most massive
halo. Table II lists both the number Npeak of peaks in the
initial density field and the number Nmatch of peak-halo
identifications made through this procedure.
To test our models, we must still make further cuts to

the halo-peak population. For the small-radius asymptote
of the density profile (Sec. III), we consider the subset of
our peak-matched halos that have well-resolved inner
density profiles.7 The number NA of such halos in each
simulation is listed in Table II. Moreover, Ref. [10] found
that successive major mergers alter the inner asymptote of
a halo’s density profile, and we confirm this effect in
Sec. V B. We aim to model the initial density profile of a
halo before it undergoes any disruptive dynamics, leaving
a treatment of mergers for future work.8 Thus, we also
restrict our sample to halos that underwent fewer than
three major mergers, which we define to be mergers
between two halos with a mass ratio smaller than 3. The
number N<3MM

A of these halos is also listed in Table II.

TABLE II. For each simulation, we list the halo count Nhalo
above the mass cutoff at the final redshift, the number of peaks
Npeak in the linear density field, and the number Nmatch of
successful halo-peak matches. Of these matches, also listed are
the number NA with density profiles resolved at small radii, the
number Nr with rmax < rvir, and the subsets N<3MM

A and N<3MM
r

that also underwent fewer than three major mergers.

Simulation Nhalo Npeak Nmatch NA N<3MM
A Nr N<3MM

r

w ¼ 0.1 696 439 411 408 350 404 347
w ¼ 0.3 801 933 565 561 481 537 457
w ¼ 0.5 1011 3896 795 790 683 738 634
EMDE 610 730 424 416 366 388 339
100 GeV 216 6108 157 153 141 82 73
3.5 keV 581 4401 463 455 430 322 303

4For the EMDE, the methods in Paper II were adapted to the
post-EMDE growth function.

5In fact, the entire boxes of the 100 GeV and 3.5 keV
simulations should be collapsing by the final redshift, a fact
that cannot be reflected in these simulations. Thus, we do not
expect these two simulations to accurately capture the large-scale
dynamics; for example, halo mergers are probably under-repre-
sented. We focus on understanding the halos that form by direct
collapse from peaks in the density field, so we do not expect this
shortcoming to impact our main results.

6We explored the alternative procedure of following the density
gradient to a local maximum, but the only consequence was the
introduction of unphysically distant halo-peak associations.

7In particular, we require that at least 100 particles reside
within the simulation softening length. Otherwise, the central
density is small, usually implying that the density profile was not
centered on the halo’s cusp, which is only true of a handful of
halos not found by ROCKSTAR but filled in by CONSISTENT
TREES. Because of the minuscule fraction of halos affected, we
did not make further efforts to find the true center.

8We prefer to exclude the impact of mergers in this work
because mergers are a continuing process, so their impact is
sensitive to the arbitrarily chosen simulation termination redshift.
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The particular threshold of three major mergers is chosen
as a compromise between minimizing the impact of
mergers on our results and maximizing the sample of
halos from which our results are drawn. As we will see in
Sec. V B, the first two major mergers only marginally
alter halo density profiles.
Meanwhile, for the larger-radius density profile (Sec. IV),

we consider the subset of our peak-matched halos that have
rmax, the radius at which the circular velocity is maximized,
inside their virial radius, defined as the radius rvir enclosing
averagedensity 200 times thebackground.9ThenumberNr of
these halos is listed for each simulation in Table II. Mergers
only minimally alter rmax (see Sec. V B), so when testing
models for rmax, it is not necessary to restrict to halos that
underwent few mergers. However, mergers can significantly
alter the massMðrmaxÞ enclosed within rmax (or equivalently
vmax), so to test ourmass predictions, we restrict the sample to
the subset N<3MM

r of halos that underwent fewer than three
major mergers. This number is also listed in Table II.
Altogether, it is evident fromTable II that only a small fraction
of the full peak andhalo populations is used to test ourmodels.
SectionVexplores the impactof these restrictionsbyreturning
to the full peak and halo populations.
We now have a catalogue that matches peaks in an initial

density field to collapsed halos at a much later time. All that
remains is to collect the halo density profiles and the
parameters of each peak, and we detail these processes in
Appendixes A and B, respectively. With these data, we are
now prepared to test any model relating the structure of a
dark matter halo to its precursor density peak. In the
following sections, we develop such a model.

III. DENSITY PROFILE AT SMALL RADII

We first study the coefficients A of the ρ ¼ Ar−3=2

asymptotes of the density profiles of the first halos. It is
of prime importance to accurately predict the density profiles
in this regime because these radii source the bulk of the
prospective signal from dark matter annihilation, and this
remains true even if these halos relax toward ρ ∝ r−1 profiles
due to mergers. Moreover, there is another reason to study
small radii separately: the ρ ∝ r−3=2 inner density profile is
established almost immediately after collapse. To illustrate
this fact, we simulate10 the collapse of the isolated density
peak shown in Fig. 3. This peak represents a typical 3σ peak
drawn from the w ¼ 0.3 power spectrum using the statistics
of peaks as described in Ref. [113]. The shallowing of this

profile toward r ¼ 0 is associated with the absence of small-
scale fluctuations, and this is the single feature common to
density peaks drawn from all of the power spectra we are
studying. Indeed, it has been suggested that this feature is
responsible for the development of the ρ ∝ r−3=2 profile [8].
Figure 4 shows the halo resulting from this initial peak in

the moments after collapse. We also compute the expected
collapse time from the initial peak using both the spherical
collapse model, δðascÞ ¼ 1.686, and the ellipsoidal col-
lapse model described in Ref. [76]. The redshifts zsc and zec
of spherical and ellipsoidal collapse, respectively, are
indicated in Fig. 4. The critical observation is that the ρ ∝
r−3=2 asymptote of the density profile develops almost
immediately after collapse, matching closely the late-time
density profile as early as a ≃ 1.15aec. Subsequently, the
profile grows outward in radius alone, gradually steepening
as accretion of new material slows. The interval Δa=a ≃
0.15 over which the profile develops is not arbitrary. The
characteristic dynamical time Δt ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3π=ð16GρÞp
[138] of

a virialized region with density 200 times the background is

FIG. 3. The radial profile of a density peak drawn from the
w ¼ 0.3 power spectrum at redshift z ¼ 106. The peak is
ellipsoidal, and the shading indicates the variation in the profile
along different axes. The vertical line marks qmax computed using
the turnaround model (Sec. IVA).

FIG. 4. The density profile of the resulting halo during and after
collapse of the peak in Fig. 3. The numbers denote the redshifts z
at which the density profile is plotted, while zsc and zec are the
redshifts of spherical and ellipsoidal collapse, respectively,
computed from the initial peak. The black curve shows the
density profile long after collapse.

9The requirement rmax < rvir culls a significant fraction of the
halo population in the 100 GeV simulation, but this is not a
serious concern. It turns out that the models we discuss predict
very large rmax for these halos as well, and rmax > rvir only
implies that the halo’s outermost profile has not yet steepened to
the point that d lnM=d ln r < 1.

10This simulation employed about 9 million particles in a
comoving vacuum-bounded sphere of radius 1.5 kpc. The starting
redshift was z ¼ 106.
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Δt ¼ 0.16=H, where H is the Hubble rate. This interval
corresponds to Δa=a ¼ 0.16, implying that the inner
density profile develops over a single dynamical time
interval.

A. Spherical collapse

The rapid development of a halo’s inner ρ ¼ Ar−3=2

profile implies that the coefficient A can only be influenced
by the immediate neighborhood of the precursor density
peak. To make this argument precise, we define11

δ̃ðxÞ≡ δðx; aÞ=a; ð4Þ
where δðx; aÞ is evaluated using linear theory during matter
domination (when δ ∝ a). Here, x is a comoving coordinate,
and we define a ¼ 1 today. We now claim that the inner
ρ ∝ r−3=2 asymptote is only sensitive to the local properties δ̃
and ∂i∂jδ̃ of the precursor density peak. If we neglect
deviations from spherical symmetry, the peak reduces to two
parameters: its amplitude δ̃ and curvature j∇2δ̃j. During
matter domination, spherical collapse theory implies that

asc ∝ δ̃−1. Meanwhile, j∇2δ̃j defines a comoving length
scale qpk ≡ ðδ̃=j∇2δ̃jÞ1=2 associated with the peak. At the
time of collapse, this comoving length corresponds to the
physical length scale ascqpk ∝ ðδ̃j∇2δ̃jÞ−1=2. There is also a
physical density scale ρ̄0a−3sc ∝ ρ̄0δ̃

3, i.e., the cosmological
background density at collapse. If these are the only scales,
then up to a constant coefficient, there is a unique prediction
for the coefficient A of the ρ ¼ Ar−3=2 asymptote of the
density profile,

A ¼ αρ̄0δ
9=4j∇2δj−3=4; ð5Þ

where α is a proportionality constant. We omit the tildes in
Eq. (5), but all quantities related to the linear density field
are understood to be evaluated on δ̃ðxÞ. This convention
applies to the remainder of this work. The parameter αmust
be calibrated by simulations, but this calibration is only
necessary once; it should be the same for any power
spectrum.
We test this model on the N<3MM

A peak-matched halos in
each simulation that have well-resolved inner density
profiles and underwent fewer than three major mergers
(see Sec. II). For these halos, Fig. 5 plots the left-hand side
against the right-hand side of Eq. (5) in order to test the
model. Evidently, our model works well for how simple it
is, predicting the asymptotes with reasonable success in all

FIG. 5. The coefficient A of the ρ ¼ Ar−3=2 density profile asymptote, plotted against the prediction from our models. Top: The
spherical model, Eq. (5). Bottom: The ellipsoidal model, Eq. (7). The left panels plot all of the halos, while the right panels plot a density
estimate: the color scale indicates the density fðlnA; lnApredÞ of the distribution, where Apred is the x-axis quantity. We also plot the line
corresponding to the median proportionality constant for each model.

11After this section, we will omit the tilde, and any quantity
related to the linear density field should be understood to be
evaluated on the scaled linear density field δ̃ðxÞ unless otherwise
specified.
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six simulations. There does, however, appear to be a
correlated effect wherein halos with the densest predicted
asymptotes tend to exceed that prediction, and vice versa at
the less dense end. In fact, this effect is caused by the
assumption of spherical collapse. Peaks of smaller ampli-
tude tend to be less spherical, thereby collapsing later and
forming less dense halos than their amplitude would
suggest. We next account for this effect.

B. Ellipsoidal collapse

Equation (5) neglects deviations from spherical sym-
metry. However, it can be immediately generalized in
the following way. Since A ∝ a−3=2sc , we can use the theory

of ellipsoidal collapse [76,77,111] to predict how the
three-dimensional shape of a peak alters its collapse
time. In particular, ellipsoidal collapse occurs later than
spherical collapse by a factor fecðe; pÞ≡ aec=asc, which is
a function of the ellipticity e and prolateness p of the
gravitational potential ϕ in the vicinity of the peak (see
Appendix B for definitions). To compute fec, we use the
approximation [76]

fecðe; pÞ ¼ 1þ 0.47½5ðe2 − pjpjÞf2ecðe; pÞ�0.615: ð6Þ

Accounting for ellipsoidal collapse,

A ¼ αρ̄0δ
9=4j∇2δj−3=4f−3=2ec ðe; pÞ; ð7Þ

where α is a proportionality constant.
Figure 5 compares the predicted asymptotes in the

ellipsoidal collapse model to their measured values. The
correlated scatter associated with the spherical model is no
longer apparent, confirming that the spherical collapse
assumption was the source. Figure 6 compares the overall
scatter between these two models; the ellipsoidal collapse
model is clearly superior. We remark that not all of the
scatter depicted is physical; there is numerical noise in our
simulated density profiles and finite density grids.
Nevertheless, there are still clear sources of physical scatter.
Absent an understanding of why the ρ ∝ r−3=2 profile
develops, we constructed our model using purely scaling
arguments, and these arguments can break down in two
ways. First, the inner profile does not develop instantly, so

FIG. 6. A comparison of the scatter from the two asymptote
models. For each model, we plot a histogram of the coefficient α
between the asymptote A and its model prediction, scaled to the
mean coefficient for all halos. Vertical lines mark 1σ deviations
from the mean, computed in log space.

TABLE III. A summary of the predictive models along with their simulation-tuned coefficients. In each model, the halo quantity is
proportional to the peak quantity with the given coefficient between them. The mean and rms deviation σ in the proportionality
coefficient are computed in log space. We express the spread as a ratio: in particular, the middle 50% spread is the ratio between the 75th
and 25th percentiles, while the 1σ spread is the ratio corresponding to the log-space σ. We also list the number of halos contributing to
the coefficient statistics.

Halo
quantity Peak quantity Model

Median
coefficient

Middle
50% spread

Mean
coefficient

1σ
spread

Sample
size

Section
reference

A ρ̄0δ
9=4j∇2δj−3=4 Spherical collapse 8.76 1.43 8.50 1.44 2451 III A

A ρ̄0δ
9=4j∇2δj−3=4f−3=2ec ðe; pÞ Ellipsoidal collapse 12.1 1.31 12.2 1.36 2450a III B

rmax qmax=ΔðqmaxÞ Turnaround, qmax < qv 0.131 1.34 0.132 1.39 1759 IVA
rmax qv=ΔðqvÞ Turnaround, qmax > qv 0.088 2.18 0.085 1.75 712 IVA
rmax qmax=½ΔðqmaxÞXðqmaxÞ� s ¼ 0 contraction 0.414 1.40b 0.406 1.52 2471 IV B
rmax qmax=½ΔðqmaxÞXðqmaxÞ� s ¼ 1 contraction 0.846 1.39c 0.848 1.49 2471 IV B
rmax qmax=κðqmaxÞ Virialization, qmax < qta 0.042 1.36 0.042 1.37 1578 IV C
rmax qv=ΔðqvÞ Virialization, qmax > qta 0.092 1.95 0.087 1.70 893 IV C
MðrmaxÞ ð4π=3Þq3maxρ̄0 Turnaround, qmax < qv 0.273 1.64 0.258 1.84 1514 IVA
MðrmaxÞ ð4π=3Þq3vρ̄0 Turnaround, qmax > qv 0.134 2.97 0.123 3.13 639 IVA
MðrmaxÞ ð4π=3Þq3maxρ̄0XðqmaxÞ s ¼ 0 contraction 0.441 1.76 0.396 2.30 2153 IV B
MðrmaxÞ ð4π=3Þq3maxρ̄0XðqmaxÞ s ¼ 1 contraction 0.658 1.73 0.619 2.23 2153 IV B
MðrmaxÞ ð4π=3Þq3maxρ̄0 Virialization, qmax < qta 0.150 1.59 0.145 1.71 1341 IV C
MðrmaxÞ ð4π=3Þq3vρ̄0 Virialization, qmax > qta 0.143 2.79 0.129 2.98 812 IV C

aOne peak is so ellipsoidal that Eq. (6) has no solution, so this peak is discarded from analysis.
bThe s ¼ 0 coefficient has spread 1.33 and 1.74 over halos for which the turnaround model predicts qmax < qv and qmax > qv,

respectively, implying that the contraction model is superior or comparable to the turnaround model in both cases.
cSimilarly, the s ¼ 1 coefficient has spread 1.33 and 1.68 in these two cases.
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it is sensitive to a small region about the density peak
instead of only its immediate neighborhood. Also, as
depicted in Fig. 4, the inner asymptote is not completely
static but instead grows marginally after it develops,
implying that it exhibits some sensitivity to the larger
density field. Second, we only accounted for nonspherical
peak shapes by altering the time of collapse. The sensitivity
of the asymptotic coefficient A to the shape of the peak may
be more complicated.
Nevertheless, it is a significant success to obtain a mere

approximately 30% scatter across such a broad range of
cosmologies from a model as simple as the one presented
here. The proportionality coefficients and their statistics for
our models are summarized in Table III. Thus calibrated,
the model developed in this section may be employed to
predict the inner asymptotes of the first halos’ density
profiles in any cosmological scenario.

IV. DENSITY PROFILE AT LARGE RADII

We next study the density profile beyond the inner ρ ∝
r−3=2 asymptote. These larger radii, containing the bulk of
the halo mass, are relevant to gravitational lensing signa-
tures as well as to the dynamical evolution of the halo
through mergers and tidal stripping. In this section, we
discuss and validate models that can predict the density
profile at large radii. We focus on three physical models:
(1) a “turnaround” model, tracing back to Ref. [55], in

which each mass shell freezes at a fraction of its
turnaround radius, or the radius of first apocenter;

(2) a “contraction” model, expressed most concisely by
Ref. [63], that accounts for contraction of halo
particle orbits due to subsequent infall;

(3) a “virialization” model, put forward by Ref. [73], in
which the final radius of a mass shell is determined
by enforcing that the shell’s enclosed energy be
distributed according to the virial theorem.

All of these models rely on the assumption that material
is accreted gradually. Hence, they are not applicable to the
density profiles at small radii, and none of them predicts the
ρ ∝ r−3=2 asymptote. We will explore in Sec. IV D pre-
cisely where these models are accurate. In the meantime,
we validate and tune the models by using them to predict
the radius rmax at which the halo’s circular velocity is
maximized along with the mass MðrmaxÞ within this
radius. The maximum circular velocity itself follows as
vmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrmaxÞ=rmax

p
.

The radius rmax characterizes where the profile bends
away from its inner asymptote.12 It is more common in the
literature to study the scale radius rs, often defined to be
where d ln ρ=d ln r ¼ −2, instead of rmax, which is where
d lnM=d ln r ¼ 1. However, we favor rmax over rs for

several reasons. First, rmax can be read from a simulation
more robustly than rs, since the mass profile is less noisy
than the density profile. Second, rmax turns out to be cleaner
to predict from the linear density field. Finally, since rmax
characterizes the total mass rather than the local density,
it is the more relevant quantity for understanding halo
dynamics [112] and for predicting gravitational lensing
signatures. The combination of A and rmax serves to
mostly characterize the density profile of a halo, and the
mass MðrmaxÞ (or velocity vmax) supplies an additional
constraint.

A. Turnaround

To develop a model that can predict the full density
profile of a collapsed halo, we must relate this profile to the
spherically averaged fractional density excess profile δðqÞ,
where q is the comoving radius, about the corresponding
peak in the linear density field. Following the convention
established in Sec. III, we define δðqÞ≡ δðq; aÞ=a evalu-
ated in linear theory during matter domination (with a ¼ 1
today). We will also use

ΔðqÞ ¼ 3

q3

Z
q

0

δðq0Þq02dq0; ð8Þ

the fractional enclosed mass excess defined under the same
convention. As in Ref. [55], we consider the simplified
spherical infall model in which each spherical shell freezes
at a fixed fraction of its turnaround radius. A mass shell
initially at comoving radius q turns around at physical
radius rta ¼ ð3=5Þq=ΔðqÞ. Hence, the final physical radius
r of this shell is

r ¼ βq=ΔðqÞ; ð9Þ

where β is a proportionality constant to be measured in
simulations. But in this model, mass shells never cross, so
the mass enclosed within this shell, now at r, is still

MðqÞ ¼ βM
4π

3
q3ρ̄0 ð10Þ

(at zeroth order in Δ) with βM ¼ 1. This equation gives the
mass profile MðrÞ of the collapsed halo if q is obtained
from r by inverting Eq. (9).
To find rmax (up to the proportionality constant β), we

may maximize MðrÞ=r. Alternatively, we can write

d lnM
d ln r

¼ 3

1þ 3ϵðqÞ ; ð11Þ

where we define13

12For example, if ρðrÞ ¼ ρsðr=rsÞ−3=2ð1þ r=rsÞ−3=2 [53,139]
(where ρs and rs are scale parameters), rmax ¼ 1.055rs.

13We define ϵðqÞ as a generalization of the index ϵ of δM=M ∝
M−ϵ in the self-similar theory [58]. Consequently, Eq. (11) has
exactly the same form as its analogue in the self-similar theory.
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ϵðqÞ≡ −
1

3

d lnΔ
d ln q

¼ 1 −
δðqÞ
ΔðqÞ : ð12Þ

In this case, rmax is obtained as the solution to
d lnM=d ln r ¼ 1 or, equivalently, ϵðqmaxÞ ¼ 2=3 with
rmax computed from qmax using Eq. (9).
This model, at first glance, seems to be far divorced from

a realistic description. However, it turns out to be a
reasonable approximation of late accretion. At late times,
halo density profiles are stable in time; see, e.g., Papers I
and II. This observation is explained by noting that once the
halo is established and accretion begins to slow, newly
accreted mass only contributes significantly to the outskirts
of the halo; there is too little new matter, spending too small
a fraction of its orbital period at small radii, to substantially
raise the interior density. Since the density profile is static, a
newly accreted particle settles into a stable orbit with time-
averaged radius proportional to its orbital apocenter, the
turnaround radius.14 The final radius in this model is to be
understood as that orbital average.
We test this model on the Nr peak-matched halos for

which rmax < rvir (see Sec. II). In the top panel of Fig. 7, we
plot the measured rmax against the prediction from this
model. The model appears to work well for the bulk of the
halos. However, there is a significant population of halos,
especially coming from the broader 100 GeV, 3.5 keV,
EMDE, and w ¼ 0.5 power spectra, for which the predicted
rmax is much larger than the measured value. In fact, in
these simulations, there are many peaks for which the mass
shell with ϵ ¼ 2=3 has not yet accreted onto the halo by the
final redshift. In these cases, it makes no sense to use the
properties of this shell to predict rmax.
A minimal correction, for these halos, is to instead relate

rmax to the outer boundary of the halo. In the spherical

collapse model, a mass shell virializes when it falls to half
of its turnaround radius; at this point, its energy is
distributed according to the virial theorem. The halo’s
outer boundary may be taken to be the physical radius of
the last shell to virialize in this way, and we define qv to be
the Lagrangian radius of this shell. If we are considering the
halo population at scale factor a, then qv is the smallest q
that satisfies Δðq; aÞ ¼ aΔðqÞ ≤ δv, where δv ¼ 1.583. If
rmax is proportional to the halo boundary so defined, then

rmax ¼ β0qv=ΔðqvÞ; ð13Þ

where β0 is another proportionality constant, and this model
is understood to apply only to the halos of which the ϵ ¼
2=3 mass shells have not yet virialized, i.e., qmax > qv. In
Fig. 8, we plot the turnaround model for only those halos of
which the ϵ ¼ 2=3 shells have virialized, separately plot-
ting the qv model for the remainder of the halos. Evidently,
the halos of which the ϵ ¼ 2=3 shells had not yet virialized
were indeed the population of which the rmax was severely
overpredicted, and the ϵ ¼ 2=3model exhibits significantly
less scatter with them excluded. Meanwhile, using qv to
predict rmax for these halos works reasonably well,
although the scatter here is significantly larger. The top
panel of Fig. 9 depicts these differences in scatter more
transparently.
Finally, we test how well this model predicts MðrmaxÞ in

similar fashion by using Eq. (10) and allowing βM to float.
In this case, we employ the N<3MM

r halos with rmax < rvir
that also underwent fewer than three major mergers (see
Sec. II). As above, we set q ¼ qmax when qmax < qv and
q ¼ qv otherwise. The bottom panel of Fig. 9 shows the
scatter in these predictions. For both rmax and MðrmaxÞ,
Table III lists the tuned coefficients β and βM and their
statistics.

B. Contraction

The turnaround model assumed that each new shell
freezes at a fixed fraction of its turnaround radius, con-
tributing mass to that radius alone. In reality, a shell
contributes mass to a large range of radii. Figure 10 shows
the density profiles15 laid down by a range of initial mass
shells. These shells consist of successive factors of 1.5 in
initial radius, so that the lowest shell contains the mass
initially in the comoving radius band 0.044 to 0.066 kpc;
the second shell contains the mass initially in the band
0.066 to 0.10 kpc; and so on. Notably, each shell has a
characteristic radius within the final halo below which it
contributes roughly constant density. As Ref. [63] argues,
the constant-density contribution follows from the notion

FIG. 7. For the turnaround model, this figure plots the values of
rmax measured in our simulations against the predicted values. For
visual reference, an example proportionality curve is plotted (not
a fit). The model dramatically overpredicts rmax for a subpopu-
lation of the halos, a problem that we attribute to the finite time at
which the simulated density profiles are measured (see the text).

14The orbital apocenter actually decays over time, an effect for
which the contraction model accounts.

15This figure depicts a halo that collapsed from an isolated 3σ
peak drawn from the w ¼ 0.3 power spectrum. This peak was
simulated with about 70 million particles in a comoving vacuum-
bounded sphere of radius 1 kpc.
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that particles from large-radius mass shells cross the lower
radii at such high velocity that their motions are effectively
unaccelerated.
Consider a halo particle initially orbiting with apocenter

radius r that encloses halo mass MðrÞ. As time goes on,
newly accreted shells contribute to the enclosed mass,
increasing MðrÞ. In a spherically symmetric and self-
similar system, the quantity

H
vrdr ∝ ½MðrÞr�1=2 is an

adiabatic invariant, implying that as the enclosed mass
grows r shrinks as r ∝ 1=MðrÞ. While the quantity Mr
need not be conserved in a more general picture, Ref. [65]
found that it remains nearly invariant for each particle even
with spherical symmetry relaxed.
For a mass shell with apocenter r0, let fðr; r0Þ be the

fraction of the shell’s mass that is within r. It is readily seen
that the mass enclosed within a shell with Lagrangian
radius q and final apocenter rðqÞ increases by the factor

XðqÞ≡ 1þ 3

q3

Z
qv

q
q02dq0f½rðqÞ; rðq0Þ�: ð14Þ

due to the contribution of shells with q0 > q. As before, qv
is the Lagrangian radius of the latest shell to virialize; it is
the smallest q that satisfies aΔðqÞ ≤ δv, where a is the scale
factor at which we wish to characterize the halo population
(and a ¼ 1 today). If orbital apocenters shrink according to
r ∝ 1=M, then

rðqÞ ¼ β
q

ΔðqÞ
1

XðqÞ ð15Þ

describes the apocenter of the q shell after contraction,
with β ¼ 3=5.
As a simple model, let us assume that each shell

contributes density ρðrÞ ∝ r−s below its apocenter radius
and 0 above it, so fðr; r0Þ ¼ ðr=r0Þ3−s. With this shell
profile, Eq. (14) yields the ordinary differential equation

d lnX
d ln q

¼ −
3 − ½3ð3 − sÞϵðqÞ − s�ðX − 1Þ

1þ ð4 − sÞðX − 1Þ ð16Þ

with initial condition XðqvÞ ¼ 1. This equation is equiv-
alent to the simpler expression in Ref. [63], but since it is
expressed with respect to the variable q, it is more
straightforward to integrate over a numerically tabulated
peak profile ϵðqÞ. The enclosed mass profile after con-
traction is now

MðqÞ ¼ βMð4π=3Þq3ρ̄0XðqÞ ð17Þ

(to zeroth order in Δ) with βM ¼ 1. Note that X ranges
from 1 (at qv) to Oð10Þ. Using these equations, one may
maximize MðqÞ=rðqÞ to obtain qmax, after which rmax and
MðrmaxÞ are obtained immediately. Alternatively,

FIG. 8. For the corrected turnaround model, we plot the values of rmax measured in our simulations against the predicted values. At the
top, we show the turnaround model with halos with qmax > qv excluded, while at bottom, we use qv to predict rmax for the previously
excluded halos. This separation corrects the discrepancy seen in Fig. 7. The left panels plot all of the halos, while the right panels show
density estimates; the color scale indicates the density fðln rmax; ln rmax;predÞ of the distribution, where rmax;pred is the x-axis quantity. The
solid line corresponds to the median proportionality constant.
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d lnM
d ln r

¼ 3þ d lnX=d ln q
1þ 3ϵðqÞ − d lnX=d ln q

ð18Þ

with d lnX=d ln q given in Eq. (16), so one may solve
d lnM=d ln r ¼ 1 to obtain qmax. Finally, since we do not
expect to employ the correct form of fðr; r0Þ, we will allow
β and βM to vary, tuning them to simulations.
We test the contraction model using s ¼ 0 as well as

s ¼ 1. While Fig. 10 suggests that s ¼ 0 at small radii, a
nonzero choice of s is motivated by noting that for a given
mass shell q most of the enclosed mass contributed by
higher shells comes from shells just slightly above q.
Meanwhile, Fig. 10 shows that the density profile contrib-
uted by a mass shell does not level off to a constant value
until well below its apocenter radius. Therefore, the bulk of
the mass contribution comes from shell density profiles
ρ ∝ r−s with s > 0. The particular choice s ¼ 1 is partly

arbitrary, but it is roughly the slope of the shell profiles in
Fig. 10 slightly below their apocenters.16

Figure 11 plots rmax against its model prediction for both
contraction models using the Nr halos with rmax < rvir. Both
models successfully predict, with some scatter, the values of
rmax for the halos in all six simulations. In fact, both models
work equally well, as Fig. 9 demonstrates. Moreover,
comparing the results of these models to those of the
turnaround models, which used the ϵ ¼ 2=3 or qv shells
to predict rmax, we see that the main difference is that the
contraction models can handle all of the halos in a single
model requiring just one tuned parameter. Adiabatic con-
traction can produce a bend in the density profile, and hence
an rmax, near the halo outskirts because the outskirts are
uncontracted while the rest of the halo is contracted. Other
than this, there is no significant advantage to the contraction
models for predicting rmax, as the top panel of Fig. 9 shows.
We also use the s ¼ 0 and s ¼ 1 contraction models to

predict MðrmaxÞ using Eq. (17) with βM allowed to float.
For this test, we employ the N<3MM

r halos with rmax < rvir
that underwent fewer than three major mergers. The scatter
in these predictions is depicted in the bottom panel of
Fig. 9. The tuned values of β and βM and their statistics are
listed in Table III.

C. Virialization

Reference [73] developed a model for halo density
profiles in which a mass shell freezes where its enclosed
energy is virialized.17 In this model, the final radius of the q
shell is rðqÞ ¼ −ð3=10ÞGMðqÞ2=EðqÞ, where MðqÞ and
EðqÞ are, respectively, the mass and energy enclosed within

FIG. 9. Comparisons of the scatter in the rmax (top) andMðrmaxÞ
(bottom) predictions. For each model, we plot the distribution of
the coefficient β or βM between the halo quantity and its model
prediction, scaled to the mean coefficient for all halos. “t.a.
(qmax)” and “t.a. (qv)” denote the turnaround models using qmax
and qv and applied only to halos with qmax < qv and qmax > qv,
respectively. “s ¼ 0” and “s ¼ 1” denote the respective contrac-
tion models. “vir. (qmax)” and “vir. (qv)” denote the virialization
models using qmax and qv and applied only to halos with qmax <
qta and qmax > qta, respectively. Note that the contraction models
have more scatter than the turnaround and virialization (qmax)
models only because the latter describe a smaller range of halos;
see the footnotes in Table III.

FIG. 10. The density profile of a halo (black curve) along with
the density profiles contributed by different initial mass shells
(colored curves). The lowest shell contains the mass initially in
the comoving radius band 0.044 to 0.066 kpc, the second shell
corresponds to the band 0.066 to 0.10 kpc, and so on. The dashed
vertical line marks rmax.

16The choice s ¼ 1 also corresponds roughly to the ρ1=2 model
in Ref. [63], since ρ is approximately proportional to r−2 at
r ¼ rmax.17Note that a model in which a shell freezes where its own
energy is virialized is equivalent to the turnaround model above.
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the q shell in the linear density field. This model may be
expressed as

rðqÞ ¼ β
q

κðqÞ ; κðqÞ≡ 2

q5

Z
q

0

q04dq0Δðq0Þ ð19Þ

with β ¼ 3=10 and MðqÞ defined as in Eq. (10). For this
model, d lnM=d ln r ¼ 3=½6 − 2ΔðqÞ=κðqÞ�. As before,
qmax is obtained by maximizing MðqÞ=rðqÞ or by solving
d lnM=d ln r ¼ 1. We test this model in a similar fashion,

allowing β to float and plotting in Fig. 12 the simulated rmax
against the model prediction (using the Nr halos with
rmax > rvir). Evidently, this model performs similarly to the
turnaround model. Again, there is a multitude of halos of
which the qmax shells have not yet accreted, leading to
dramatically overpredicted values of rmax. In this case, the
qmax < qv condition turns out to be too restrictive; it
eliminates too many halos. Instead, we require qmax<qta,
where qta is Lagrangian radius of the last shell to turn
around. In particular, qta is the smallest q satisfying
aΔðqÞ ≤ δta, where δta ¼ 1.062 and a is the scale factor
at which we are studying the halo population. If qmax < qta,
we use qmax to predict rmax using Eq. (19); otherwise,
we use qv to predict rmax using Eq. (13). We also use
this model to predict MðrmaxÞ in a similar fashion (again
using the N<3MM

r halos that also underwent fewer than
three major mergers), allowing βM to float. The scatter
and statistics of these predictions18 are shown in Fig. 9 and
Table III, and we find that this model’s scatter is compa-
rable to that of the turnaround model.

D. Discussion

Table III summarizes the rmax and MðrmaxÞ models
and the statistics of their simulation-tuned parameters.

FIG. 11. For the s ¼ 0 (top) and s ¼ 1 (bottom) contraction models, this figure plots the values of rmax measured in our simulations
against the predicted values. The left panels plot all of the halos, while the right panels show density estimates; the color scale indicates
the density fðln rmax; ln rmax;predÞ of the distribution, where rmax;pred is the x-axis quantity. The solid line corresponds to the median
proportionality constant.

FIG. 12. For the virialization model, this figure plots the values
of rmax measured in our simulations against their predicted
values. For visual reference, an example proportionality curve
is plotted (not a fit). Like the turnaround model, this model
dramatically overpredicts rmax for a subpopulation of the halos,
a discrepancy that can be corrected in a similar fashion (see
the text).

18We remark that the optimal β ≃ 0.042 is much smaller than
the exact value 3=10 claimed in Ref. [73].
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Evidently, all of these models exhibit similar scatter. For
instance, when qmax < qv or qta, each model’s predicted
rmax exhibits about 30% scatter in the middle half of its
predictions. These similarities suggest there may be a
statistical floor limiting the precision of all three models
equally. We propose two sources of such a floor. The first is
artificial discreteness noise in our simulations. As noted in
Paper II, there is discreteness noise in each radial bin of the
density profile that is significantly larger than Poisson noise
and may be associated with the accretion of artificial
fragments. Our procedure of averaging radial profiles over
a finite time interval (see Appendix A) mitigates but does
not eliminate this noise.19

The other probable source of a statistical floor is physical
and owes to a simplifying assumption common to all three
models: spherical symmetry. Observe in Fig. 3 that at the
initial radius of the qmax shell the density profile of the peak
that is depicted—a typical peak drawn from the w ¼ 0.3
power spectrum—is highly ellipsoidal. It is likely that a
substantial fraction of the approximately 30% scatter in
rmax results from deviations from spherical symmetry in the
initial density peaks. To correct this, models must be
employed that move beyond the assumption of spherically
symmetric initial conditions, perhaps employing ellipsoidal
collapse arguments [76,77,111] or drawing from non-
spherical self-similar infall theory [64,65]. The principal
difficulty in moving beyond spherical symmetry is that the
three-dimensional shape of a peak is different at each
radius, an effect for which no model has accounted (to our
knowledge). However, the spherical models presented here
exhibit just approximately 30% scatter in rmax and approx-
imately 60% scatter in MðrmaxÞ over the full range of
cosmologies we simulated, a success that should not be
understated. As we will see in Sec. V, halo mergers present
a larger source of error.
Beyond predicting rmax and MðrmaxÞ (or equivalently

vmax), we may ask how well the spherical infall models can
predict the full density profiles of the first halos. No model
successfully predicts ρ ∝ r−3=2 at small radii,20 and this is
not surprising because in the moments after halo collapse
the accretion of new material is not adiabatic with respect to
the orbits of the already bound material. Nevertheless, we
may explore the radial range over which the spherical infall
models do accurately predict the density profiles. Figure 13
compares the mass profiles of a small halo sample to their

predicted profiles using the median proportionality coef-
ficients in Table III. Evidently, the turnaround and virial-
ization models do not accurately predict the density profile
below rmax, although they may succeed at larger radii. The
s ¼ 0 and s ¼ 1 contraction models, and especially the
latter, more accurately capture the shape of the profile at
smaller radii. However, as shown in Fig. 10, the true density
profile of a mass shell is more complicated than ρ ∝ r−s, so
a more sophisticated model for a shell’s density profile
should yield still better results.
In this section, we presented models that can predict

the outer portions of the density profiles of the first halos
in any cosmology. While the models themselves are not
new, our calibrations enable their use as predictive tools.

FIG. 13. The mass profiles (thick, dark lines) of a few halos in
the w ¼ 0.3 (top) and EMDE (bottom) simulations compared to
their model predictions (thin lines). This figure is intended to
depict how the shapes of the profiles compare, so the sample
was selected to have little discrepancy in the overall normaliza-
tion of M=r. The simulated profiles are plotted out to their virial
radii. The turnaround and virialization model predictions largely
overlap.

19There are other sources of discreteness noise in our analysis,
but they are minor. The binning of our density profiles in factors
of 1.1 introduces artificial scatter, but this scatter does not exceed
5% in rmax and is further reduced by our use of interpolation (see
Appendix A). There is also noise in the predicted values of rmax
because they arise from a finite density grid, but since qmax is
typically much larger than a grid cell [so δðqmaxÞ averages over a
large number of cells], the resulting scatter is small.

20An s ¼ 3=2 contraction model predicts ρ ∝ r−3=2 at small
radii, but only in a contrived way; the adiabatic approximation is
not valid when this part of the profile develops.
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Moreover, our simulations demonstrate the universality of
these models by showing that they succeed across wildly
dissimilar cosmological scenarios.

V. PREDICTING HALO POPULATIONS

So far, we have studied the relationship between a
density peak and its resulting halo. However, our ultimate
goal is to study the larger populations. Recall from Sec. II
that not all peaks matched to halos in our simulations and
not all halos matched to peaks. These discrepancies are
reflected in Table II and may arise from physical processes,
such as halo mergers, or numerical artifacts in our simu-
lations. We have shown that if we know that a peak
developed into a halo that persisted to some later redshift
then we can predict the properties of that halo from the
properties of the peak. Ultimately, however, we wish to
predict an entire population of halos directly from a
population of peaks. In light of the halo- and peak-count
discrepancies, can our models proceed in this way?

A. Population comparisons

We first study the population of halos distributed in the
asymptote A. In Fig. 14, we compare the entire halo
population found in our simulations to the population
predicted by accounting for every peak in the initial density
fields that would have collapsed by simulation termination.
We use the ellipsoidal collapse model. Generally, we see
that for the narrower w ¼ 0.1, w ¼ 0.3, and EMDE power
spectra the predicted population matches the simulated
population reasonably well. In these scenarios, our model
underpredicts halos at the low-density end, a surprising
result that may be due to artificial fragmentation. In
simulations with a small-scale power-spectrum cutoff (like
ours; see Fig. 1), discreteness noise causes filamentary
structures to fragment into halos even below the scales of
the smallest density fluctuations. These halos have been
shown to be unphysical simulation artifacts [135,136], but
they could contribute to the excess of less-dense halos in
our simulations relative to model predictions in the cases of
the narrower power spectra.
Otherwise, Fig. 14 shows a tendency for the model to

overpredict halos at the middle-density range and under-
predict at the highest-density range. This discrepancy can
be attributed to mergers, for which our model does not
account. Halo mergers reduce the number of halos while
raising the central density of the merger remnants. For the
broader w ¼ 0.5, 100 GeV, and 3.5 keV power spectra
(bottom panel of Fig. 14), the merger-based discrepancy is
amplified: the model underpredicts the densest halos and
dramatically overpredicts the rest. Evidently, while our
model can predict the density profiles of individual halos,
an understanding of halo mergers is necessary to accurately
predict halo populations in scenarios with more broadly
supported power spectra. We will return to this point.

We next study the distribution in the radius rmax. Many
of the simulated halos had rmax > rvir, and while we
discarded those halos from previous analyses, doing so
now would alter the populations. Instead, we account for
this problem here by substituting rvir for rmax in those cases.
As Fig. 15 shows, the s ¼ 0 contraction model predicts the
rmax distribution reasonably well for the narrow power
spectra, with the bulk of the discrepancy arising from
overprediction of the total halo count due to halo mergers.
The predicted distributions are also more sharply peaked,
an effect that may owe to the model’s neglect of spherical
asymmetry (see Sec. IV D). For the broader power spectra,
the halo count discrepancy is magnified due to the much
larger frequency of mergers. However, unlike in the case of
the asymptote A, we will soon see that the radius rmax does
not significantly increase due to mergers beyond what the

FIG. 14. A comparison between the simulated halo population,
as solid lines, and the population predicted from the peaks in the
linear density field, as dashed lines, distributed in the inner
asymptotic coefficient A. We use the ellipsoidal collapse model to
predict A. Top: The three simulations with narrower power
spectra. Bottom: The three simulations with broader power
spectra. The vertical axis is logarithmic here to accommodate
the differences in scale. We find that our model can capture halo
populations arising from more narrowly supported power spectra,
but it does not describe well the populations arising from broader
power spectra because of the predominance of halo mergers in
those scenarios.
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models already predict. Hence, there is no significant
underprediction of the largest-radius halos.
We can also ask how well our models predict aggregate

observational signals. If we assume that all halos have
ρ ∝ r−3=2 inner density profiles, then the total dark matter
annihilation rate in halos is proportional to the sum

P
A2

over all halos.21 In Table IV, we show how accurately the
ellipsoidal collapse model predicts the aggregate annihila-
tion signal. Remarkably, despite not accounting for halo
mergers, we successfully predict the annihilation signal to
within a factor of 1.3 for all simulations. The increased
central density within merger remnants has compensated
for the drop in halo count. One caveat is that in this
calculation, we did not account for changes in the slope γ of
the ρ ∝ r−γ inner profile resulting from mergers. This
change must be accounted for separately and will signifi-
cantly reduce the annihilation signal (see Paper II).
We also consider an aggregate microlensing signal. The

apparent image of a background star is deflected by an
angle proportional to M2DðξÞ=ξ, where M2DðξÞ is the

projected mass enclosed within impact parameter ξ. As
an approximation, we claim that the deflection due to a halo
is proportional to MðrmaxÞ=rmax and a function related to
the impact parameter. Integrating over impact parameters
introduces a factor r2max, the characteristic area of the halo.
Hence, for a halo population, the aggregate lensing signal,
considered as the expected deflection of a given image, is
proportional to

P
MðrmaxÞrmax summed over all halos.

In Table IV, we show how accurately the s ¼ 0 con-
traction model predicts this signal. We find that our models
predict the lensing signal significantly worse than the
annihilation signal, although in four of the simulations,
the prediction still agrees to about a factor of 2. For the
simulations drawn from the 3.5 keV and 100 GeV power
spectra, however, the model overpredicts the lensing signal
by an order of magnitude. These power spectra yield the
greatest prevalence of halo mergers, and unlike in the case
of annihilations, mergers do not sufficiently boost the
remnant’s lensing signal relative to its model prediction
to compensate for the loss of halo count in mergers. Hence,
the lensing signal in the simulations is much smaller than
that predicted from the linear density field. We remark,
however, that the story may change if instrument sensitiv-
ities are taken into account. Mergers predominantly destroy
smaller halos, and their signals may have been beyond
sensitivity limits regardless.
It is clear from these results that an accurate accounting

of halo mergers is necessary to predict a halo population in
any generality. However, for narrower power spectra such
as our w ¼ 0.1, w ¼ 0.3, or EMDE cases, mergers are
subdominant, and our models can predict the populations
reasonably well. Moreover, when considering aggregate
annihilation signals, halo mergers may not have a signifi-
cant impact beyond altering the slope γ of the ρ ∝ r−γ inner
density profiles. For these uses, we describe in Appendix C
a method to sample the halo population directly from the
matter power spectrum PðkÞ, bypassing the step of drawing
a density field δðxÞ. Halo populations predicted using this

FIG. 15. Similar to Fig. 14, but studying the halo population
distributed in the radius rmax instead. We use the s ¼ 0 con-
traction model. As in Fig. 14, we find that our model describes the
halo populations arising from more narrowly supported power
spectra with reasonable success, although the predicted distribu-
tions tend to be more sharply peaked. However, halo mergers
greatly alter the halo populations in scenarios with broader power
spectra.

TABLE IV. This table shows how accurately our models predict
aggregate halo signals. We consider simplified aggregate signalsP

A2 for annihilation and
P

MðrmaxÞrmax for lensing, each
summed over the population of predicted or simulated halos.
In each case, we list the ratio of the signal predicted from the
linear density field to the signal aggregated over halos in the
simulation box. We use the ellipsoidal collapse and s ¼ 0
contraction models.

Simulation
P

A2
P

MðrmaxÞrmax

w ¼ 0.1 0.91 0.56
w ¼ 0.3 0.89 0.69
w ¼ 0.5 0.91 2.2
EMDE 0.78 0.66
100 GeV 1.15 33
3.5 keV 1.16 14

21There is a logarithmic sensitivity to rmax, which we neglect.
Also, note that there is a density cap imposed by annihilations
[140], so the signal converges even for ρ ∝ r−3=2.
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method are slightly different from those predicted using our
density fields, but we propose that they are more accurate;
the method we describe can easily sample a much larger
number of peaks, and it is not subject to errors related to the
finite size and finite grid spacing of a sampled density
field.22

B. Halo mergers

A full treatment of mergers is beyond the scope of this
work, but we are poised to make some observations. Our
procedure for matching a halo to its predecessor density
peak involved tracking each halo backward through time.
During this process, we counted the number of major
mergers this halo underwent, which we define to be a
merger between two halos with mass ratio smaller than 3.
Over half of our halos with well-resolved asymptotes
experienced at least one major merger, and 12% experi-
enced at least three.
In an effort to find a simple way to cull halos that end up

merging, we explored cutting out density peaks that were
too close to an earlier-collapsing density peak. We con-
sidered two characteristic comoving length scales below
which to make these cuts: the scale qpk associated with the
density peak (see Sec. III) and the scale qmax where
ϵðqmaxÞ ¼ 2=3 (see Sec. IVA). Unfortunately, neither of
these cuts produced sensible results. The qpk cut culled far
too few halos, while the qmax cut culled far too many.
Ultimately, we expect that a more sophisticated accounting
of mergers will be necessary, possibly following along the
lines of extended Press-Schechter theory [141] or the PEAK
PATCH algorithm [111,142,143].
Another question is how halo density profiles change

due to mergers. Reference [10] found that successive
mergers cause the slope γ of the small-radius asymptote
of the density profile, ρ ∝ r−γ, to become shallower than its
initial value of γ ¼ 3=2. The same work also found that
successive mergers increase the central density. Figure 16
shows that both of these results are borne out in our own
simulations as well. There is a clear trend wherein more
major mergers lead to successively denser23 but shallower
inner structures. On the other hand, we also see in Fig. 16
that major mergers do not significantly increase rmax

beyond what our models already predict, although they
do increase MðrmaxÞ.

VI. CONCLUSION

The first halos form by direct collapse of peaks in the
primordial density field. If some of these halos survive the
subsequent hierarchical clustering process, as evidence
suggests [7,9,10,12–16], then they would be the densest
dark matter objects in the Universe. In this work, we

FIG. 16. The impact of major mergers on the density profiles in
our simulations. Top: The effect on the power-law index γ of the
ρ ∝ r−γ inner asymptote. Since we do not resolve these radii well,
much of the scatter likely arises from numerical noise. Middle to
bottom: The effects on the asymptote A, radius rmax, and mass
MðrmaxÞ, respectively, plotted as the ratio between the measured
value and the prediction using our models. For the asymptote, we
use the ellipsoidal collapse model, while for rmax and MðrmaxÞ,
we use the s ¼ 0 contraction model. The color scale, which is
logarithmic, represents a density estimate (in log space for α, β,
and βM; darker is denser), while the lines mark the median and the
25th and 75th percentiles at each merger count.

22If sampling directly from the power spectrum is more
accurate, one may wonder why we chose to compare our
simulation results to those predicted from the less-accurate finite
density fields (Figs. 14 and 15). The reason for this choice is that
it leads to a more explicit test of our model. Since we compare a
simulation’s results to model predictions using the same simu-
lation’s initial density field, any discrepancy that is not a
simulation artifact can be attributed to the model.

23While the coefficient A is only well defined if γ ¼ 3=2, our
procedure for measuring A (see Appendix A) obtains a logarith-
mically averaged value of ρr3=2 over the inner density profile
regardless.
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presented models that predict the density profiles of these
halos directly from the properties of the density peaks that
formed them, and we used high-resolution cosmological
simulations in a variety of different scenarios to tune and
validate these models. The models are described in Secs. III
and IVand summarized in Table III. They have simulation-
tuned parameters, but these parameters are independent of
cosmology and do not need to be retuned to accommodate
different scenarios.
We treated small and large radii separately, with the

understanding that these regimes form under radically
different circumstances. At small radii, the first halos
develop ρ ¼ Ar−3=2 density profiles [4–9,53,54], and our
model predicts the coefficient A with remarkable success.
Over the full range of cosmologies we explored, the scatter
from our model is only in the vicinity of 30%–40%, and it
is likely that a significant fraction of that scatter arises from
numerical noise in our simulations. The density profiles at
large radii are more varied, but we parametrize them using
the radius rmax at which the circular velocity is maximized
along with the mass MðrmaxÞ enclosed within that radius.
For this regime, we employ models already present in the
literature [55,63,73], but we supply calibrations that enable
their use as predictive tools applicable to any cosmology.
The scatter from our models is roughly 40%–50% in rmax
and a factor of 2 in MðrmaxÞ, and, similarly, not all of this
scatter is physical.
In this way, the models we presented can predict the halo

arising from a given density peak. Our goal, however, is to
predict populations of halos. For a power spectrum of
density fluctuations that is narrowly supported, such as the
spectrum imprinted by an EMDE [36–39] or certain
inflationary models [114–123], our models replicate the
entire halo population reasonably well. Thus, our models
can serve as a tool to predict the observational signals of
such cosmologies. However, for more broadly supported
power spectra, such as those arising from a scale-invariant
initial spectrum, halo mergers dramatically alter the halo
population, causing the populations that arise in our
simulations to differ substantially from the populations
our models predict. Interestingly, modulo changes in the
slopes γ of the ρ ∝ r−γ inner density profiles, dark matter
annihilation signals seem to be sufficiently close to additive
in halo mergers that our models still predict the aggregate
annihilation signal to within 30% in every cosmology we
tested.
Nevertheless, it is not clear that this additivity in the

annihilation signal should extend beyond the timescales
spanned by our simulations. More broadly, our models
predict the initial halo population, but a proper under-
standing of halo mergers is needed in order to robustly
connect it to the population today. It is necessary to
understand both how mergers are distributed across halos
and time and how they impact halo density profiles.
Methods exist that can predict the distribution of mergers,

the most prominent of which is the extended Press-
Schechter theory [141]. The PEAK PATCH algorithm
[143] represents a method that may be easier to adapt,
among other advantages, if more computationally
expensive to apply. Meanwhile, the larger challenge is
to predict how halo mergers alter density profiles.
References [9,10,12] (for major mergers) and [14–16]
(for minor mergers) represent steps toward this goal, but
there is not, as yet, a sufficiently general model.
Moreover, there is room for improvement in our models

themselves. In predicting the density profiles at large radii,
we assume that each mass shell contributes density in a
profile that is a single power law up to a maximum radius.
In reality, shell profiles follow more complicated forms that
are sensitive to the total density profile; see Fig. 10 and
Refs [63,65]. Utilizing more accurate shell profiles would
likely improve the model predictions for the density profile,
especially in predicting its broader shape rather than only
rmax andMðrmaxÞ. Also, our model for the density profile at
large radii completely discounts any deviations from
sphericity in the initial peak. Another avenue for improve-
ment may be to incorporate ellipsoidal collapse. At small
radii, the reason the ρ ∝ r−3=2 profile arises is not well
understood, and its accuracy has only been confirmed down
to the resolution limits of N-body simulations. A physical
understanding must be developed of the mechanism by
which this profile arises in order to confirm whether the
profile truly extends to arbitrarily small radii.
The primordial density field and its power spectrum of

density fluctuations comprise a valuable window into the
early Universe and the nature of dark matter. Our work in
this paper was carried out as part of an effort to use the
observational signatures of dark matter halos to probe these
fluctuations. Further research is still needed to understand
the impact of mergers on halo populations before these
signatures, or their nonobservation, can be employed to
robustly constrain cosmology. Nevertheless, the models
presented in this work, which predict the initial halo
population, represent a step forward in our capacity to
use this probe.

ACKNOWLEDGMENTS

The authors thank Dragan Huterer for bringing Ref. [63]
to their attention. The simulations for this work were
carried out on the KillDevil and Dogwood computing
clusters at the University of North Carolina at Chapel Hill.
M. S. D. and A. L. E. were partially supported by NSF
Grant No. PHY-1752752. Several key figures in this work
employ the cube-helix color scheme developed by
Ref. [144].

APPENDIX A: COLLECTING HALO DATA

In Sec. II, we carried out six simulations and catalogued
all halos present at the final redshift of each. The models we
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present in Secs. III and IV require data on the density
profiles of these halos, and in this section, we detail our
methods for collecting these data.
We first need to obtain the density profile and enclosed

mass profile of each halo at the final redshift of each
simulation. To reduce random noise, we use the procedure
described in Paper II, wherein the profiles are averaged
over a time interval. The profiles are binned at successive
factors of 1.1 in radius, but to mitigate noise associated with
the binning scheme, we use a cubic spline to smoothly
interpolate them. These profiles are only valid down to the
radius rsoft corresponding to the separation below which
simulation forces become non-Newtonian; for GADGET-2,
rsoft is 2.8 times the force softening length. At large radii,
we cut off the density profile at the radius rvir inside which
the mean enclosed density is 200 times the background
density. Figure 17 shows a random sample of halo density
profiles from each simulation.
The model developed in Sec. III predicts the coefficient

A of the ρ ¼ Ar−3=2 asymptote of the density profile at
small r. Thus, we wish to extract A from each density
profile. Starting at rsoft, we find the cumulative (logarith-
mic) average of ρr3=2 across radial bins, and we set A to be
the maximum of this cumulative average. The averaging
procedure is intended to minimize noise resulting from
employing a narrow range of radii while at the same time
minimizing the influence of any bend in the density profile
at larger radii. However, we also tested the alternative
procedure of simply finding the average of ρr3=2 within a
factor of 3 in radius above rsoft and found it to yield similar
results.
We also wish to accommodate deviations from ρ ∝ r−3=2

at small radii. Unlike those of Paper II, our simulations do
not have the resolution to clearly resolve the power-law
index of the small-radius asymptote, but we may still hope
to see statistical correlations in our large sample. For each

halo, we measure the slope γ of the small-radius asymptote
ρ ∝ r−γ by considering the radius range from rsoft to 3rsoft
and fitting a line in log space to the density profile within
this range.
To test the models presented in Sec. IV, we also need to

compute the radius rmax at which the circular velocity is
maximized along with the massMðrmaxÞ. Since we already
obtained the enclosed mass profile MðrÞ for each halo, we
simply find the maximum value ofMðrÞ=r. The parameters
rmax and MðrmaxÞ are then defined to be the radius and
enclosed mass at which MðrÞ=r is maximized.

APPENDIX B: COLLECTING PEAK
PARAMETERS

The models we present in Secs. III and IV employ data
on the peaks in the linear density field δðxÞ≡ δðx; aÞ=a
(evaluated during matter domination). We obtain these data
using Fourier methods, defining

δðkÞ≡
Z

d3xe−ik·xδðxÞ: ðB1Þ

The derivatives of δ at a peak located at x immediately
follow as

∂i∂jδ ¼ −
Z

d3k
ð2πÞ3 e

ik·xkikjδðkÞ: ðB2Þ

Similarly, using Poisson’s equation, the derivatives of the
(peculiar) gravitational potential are

∂i∂jϕ ¼ 4πGρ̄0

Z
d3k
ð2πÞ3 e

ik·x kikj
k2

δðkÞ: ðB3Þ

The ellipsoidal refinement described in Sec. III B requires
the three-dimensional shape parameters eϕ and pϕ for the
potential ϕ about the peak. Taking λ1 ≥ λ2 ≥ λ3 to be the
eigenvalues of ∂i∂jϕ, these parameters are defined

eϕ ≡ λ1 − λ3
2ðλ1 þ λ2 þ λ3Þ

and pϕ ≡ λ1 þ λ3 − 2λ2
2ðλ1 þ λ2 þ λ3Þ

:

ðB4Þ

Our model in Sec. IV requires the density profile δðrÞ
and mass profile ΔðrÞ about the peak. For a peak centered
at x, these profiles are computed as

8>><
>>:

δðrÞ
ΔðrÞ
ζðrÞ

9>>=
>>;

¼
Z

d3k
ð2πÞ3 e

ik·xδðkÞ
8<
:

sincðkrÞ
WðkrÞ
cosðkrÞ

9=
;; ðB5Þ

where sincðxÞ≡ sinðxÞ=x and W is the top-hat window
function, WðxÞ≡ ð3=x3Þðsin x − x cos xÞ. The third profile

FIG. 17. The density profiles of three random halos from each
simulation’s final box.
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ζðrÞ is useful because it is related to the derivative of δðrÞ.
In particular, to numerically integrate Eq. (16), we inter-
polate δðrÞ andΔðrÞ with piecewise polynomials, using the
relations

dδ
d ln r

¼ ζðrÞ− δðrÞ and
dΔ
d ln r

¼ 3½δðrÞ−ΔðrÞ� ðB6Þ

to fix their derivatives.
Figure 18 shows the density profiles δðrÞ of three peaks

from each of the six simulations. The peaks displayed are
those that later collapse into the halos depicted in Fig. 17.

APPENDIX C: PREDICTING THE HALO
POPULATION FROM THE POWER SPECTRUM

A primary goal of this work is to enable a prediction
of the halo population given a power spectrum PðkÞ of
density fluctuations. One option is to sample a density field
from the power spectrum, use the methods described in
Appendix B to characterize the peaks, and then apply the
models developed in this work. However, it is possible to
exploit the statistics of a Gaussian random field to compute
the halo distribution more directly. In this section, we
outline a practical procedure to perform this computation
by sampling from the peak distribution. Similarly to earlier
sections, we define PðkÞ≡ Pðk; aÞ=a2, where Pðk; aÞ is
the dimensionless matter power spectrum evaluated using
linear theory during matter domination. All quantities
derived therefrom, such as σj and δðxÞ, inherit similar
scaling.

1. Number density of peaks

The first step is to find the total number density n of
peaks. As derived in Ref. [113], the differential number

density of peaks in a Gaussian random field, in terms of
parameters ν≡ δ=σ0 > 0 and x≡ −∇2δ=σ2 > 0, is

d2n
dνdx

¼ e−ν
2=2

ð2πÞ2R3�
fðxÞ exp ½−

1
2
ðx − γνÞ2=ð1 − γ2Þ�

½2πð1 − γ2Þ�1=2 ; ðC1Þ

where γ ≡ σ21=ðσ0σ2Þ, σj and R� are defined in Eqs. (2)
and (3), and

fðxÞ≡ x3 − 3x
2

½erfð
ffiffiffiffiffiffiffiffi
5=2

p
xÞ þ erfð

ffiffiffiffiffiffiffiffi
5=8

p
xÞ�

þ
ffiffiffiffiffiffi
2

5π

r ��
31

4
x2 þ 8

5

�
e−

5
8
x2 þ

�
x2

2
−
8

5

�
e−

5
2
x2
�
:

ðC2Þ

The ν integral can be carried out analytically, leading to

dn
dx

¼ fðxÞ
8π2R3�

e−x
2=2

�
1þ erf

�
xγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − γ2Þ
p

��
; ðC3Þ

and this equation can be integrated numerically over x ≥ 0
to obtain n.

2. Asymptote A

Next, we use Monte Carlo methods to compute the
distribution of coefficients A of the ρ ¼ Ar−3=2 small-radius
asymptote. The model described in Sec. III predicts this
asymptote from the amplitude δ and curvature j∇2δj of the
density peak along with the shape parameters24 e and p
associated with the potential about the peak. Equation (C1)
supplies the peak distribution in ν≡ δ=σ0 and x≡
−∇2δ=σ2. Meanwhile, the conditional distribution of e
and p for a peak of height ν, derived in Ref. [76], is

fðe; pjνÞ ¼ 1125ffiffiffiffiffiffiffiffi
10π

p eðe2 − p2Þν5 exp
�
−
5

2
ν2ð3e2 þ p2Þ

�
:

ðC4Þ

To compute the distribution of A, we now employ a
Monte Carlo procedure. We use rejection methods to
sample x from Eq. (C3) and then sample ν from
Eq. (C1). Next, we employ the cumulative distributions
of e and p,

FðejνÞ ¼ e−
15
2
e2ν2ð1–15e2ν2Þerfð

ffiffiffiffiffiffiffiffi
5=2

p
eνÞ

− 3
ffiffiffiffiffiffiffiffiffiffi
10=π

p
eνe−10e

2ν2 þ erfð
ffiffiffiffiffi
10

p
eνÞ ðC5Þ

and

FIG. 18. The density profiles of three peaks from each
simulation’s initial box. These peaks are chosen to match the
halos of which the density profiles are depicted in Fig. 17.

24Since these parameters describe the potential, they are
different from the parameters e and p in Ref. [113].
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ðC6Þ
numerically inverting them to inverse transform sample e
and p. This procedure yields a sample of peaks with
parameters ν, x, e, and p. Finally, we use Eqs. (6) and (7) to
convert this sample into a halo sample distributed in the
asymptote A, and we multiply the distribution by the total
number density n to obtain the differential number den-
sity dn=d lnA.
As a test, we sample 400,000 density peaks from each of

our six power spectra, and for each peak, we compute its
predicted asymptote A (without the proportionality con-
stant) using the ellipsoidal collapse model of Sec. III B. We
plot the resulting distributions in Fig. 19 superposed with
the distributions we find in the randomly generated
simulation boxes. We find that the two distributions match
well for all of our power spectra except for the 100 GeV
spectrum. For this power spectrum, directly sampling the
power spectrum yields halos of higher predicted density
that we find in the box. This discrepancy is explained by
noting that the simulation box only samples fluctuation
modes up to the size of the box. The 100 GeV power

spectrum has sufficient power at larger scales that neglect-
ing it significantly reduces the amplitudes of fluctuations
and therefore the density of the resulting halos. In this way,
sampling peaks directly from the power spectrum is more
accurate than using the intermediate step of sampling a
density field.

3. Outer profile: rmax and MðrmaxÞ
So far, we have obtained the halo population distributed

in the small-radius asymptote A. The next step is to extend
this computation to find the multivariate distribution in A
and the outer profile parameters rmax andMðrmaxÞ using the
models discussed in Sec. IV. This calculation is more
difficult because, instead of the finite number of Gaussian
variables relevant to the neighborhood of each peak, we
must now handle a Gaussian distribution in the infinitely
many variables corresponding to the density profile about
the peak at each radius q. Nevertheless, a numerical
computation is tractable.
The idea is to Monte Carlo sample the full density profile

δðqÞ about the peak. To accomplish this, we must discretize
the radial coordinate such that

0 ≤ q1 < q2 < … < qN ðC7Þ

for some large N. The maximum radius may be initially set
at some qN ≳ R� and raised as needed. For shorthand, we
will write δi ¼ δðqiÞ and use δ to represent the full vector of
δis. We now seek the distribution of δ conditioned on the
data we already used to find the asymptote A. In fact, δ has
vanishing covariance with the three-dimensional shape of
the peak, so we need only the conditional distribution
fðδjν; xÞ. This distribution is Gaussian with mean

δ̄i ¼
ðhδiνi − γhδixiÞνþ ðhδixi − γhδiνiÞx

1 − γ2
ðC8Þ

(recalling γ ≡ σ21=½σ0σ2�) and covariance matrix

Cij ¼ hδiδji −
1

1 − γ2
½hδiνihδjνi þ hδixihδjxi

− γðhδiνihδjxi þ hδixihδjνiÞ� ðC9Þ

with the necessary covariances given by8>><
>>:

σ0hδiνi
σ2hδixi
hδiδji

9>>=
>>;

¼
Z

∞

0

dk
k
PðkÞ

8<
:

sincðkqiÞ
k2sincðkqiÞ
sincðkqiÞsincðkqjÞ

9=
;:

ðC10Þ
It is helpful to diagonalize C ¼ PDPT so that P is an

orthogonal matrix and D ¼ diagðλ1;…; λNÞ is diagonal.
If we define a new vector κ≡ PTðδ − δ̄Þ, then κ is
distributed as

FIG. 19. A test of the Monte Carlo halo-sampling method of
Appendix C. This figure plots the peaks drawn from our six
power spectra distributed in the predictions for A from Sec. III B
(with simulation-tuned parameter α factored out). The solid lines
show the distributions in the initial density field used for our
simulations, while the dashed lines show the distributions
computed using the Monte Carlo method.
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fðκjν; xÞ ¼
YN
i¼1

1

ð2πλiÞ1=2
exp

�
−

κ2i
2λi

�
: ðC11Þ

We then sample each κi from its respective univariate
Gaussian distribution, and the density profile δ immedi-
ately follows using δ ¼ δ̄þ Pκ. From the density profile
δ → δðqÞ, we can find the mass profile ΔðqÞ using Eq. (8).
With these profiles in hand, it is now a simple matter to
apply any of the models detailed in Sec. IV.
To test this procedure, we sample density profiles for the

same 400,000 peaks from each power spectrum for which
we already sampled the peak parameters. Using the s ¼ 0
contraction model in Sec. IV B, Fig. 20 compares the rmax
distributions binned from our initial density fields to those
computed using the Monte Carlo method. As before, the
distributions from the 100 GeV power spectrum are
discrepant, likely owing again to the finite size of the
random density fields. Also, there is a tendency for the
random density fields to produce less sharply peaked

distributions than the Monte Carlo method, especially
for the w ¼ 0.1, w ¼ 0.3, and EMDE power spectra. It
is unclear where this discrepancy arises, but it could be
connected to the finite grid resolution of the random density
fields. For a second test, we also plot the combined
A-rmax distribution for the 3.5 keV power spectrum in
Fig. 21. The Monte Carlo method proposed in this section
accurately reproduces the correlations between A and rmax
found in the density field.
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