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We study the Wheeler-DeWitt equation for a class of induced gravity models in the minisuperspace
approximation. In such models a scalar field nonminimally coupled to gravity determines the effective
Newton’s constant. For simplicity our analysis is limited to power-law potentials for the scalar field which
have exact classical solutions. We show that these models have exact solutions also when quantized. Finally
the Einstein frame form of these solutions is obtained and a classical-quantum correspondence is found.
Realistic induced gravity models also must include a symmetry breaking term which is needed in order to
obtain a gravitational constant, successful inflation and a subsequent standard cosmological evolution.
Nonetheless the potentials considered are important as they may describe the inflationary phase when the
symmetry breaking part of the potential is negligible.
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I. INTRODUCTION

Since the introduction of inflation [1], many models have
been suggested in order to achieve it. Subsequently the
wealth of data obtained from the Planck survey [2] has put
severe constraints on the space of the diverse models. In
particular the fact that scalar and tensor perturbations [3]
are nearly scale invariant severely restricts such models.
Indeed the models which currently best fit the data are the
Starobinsky Rþ R2 [4] model and nonminimal Higgs
inflation [5] (of course one may also consider combinations
of the two [6]). The reason for this is that in both cases
during inflation, or if we wish in a regime of high curvature,
they are almost scale invariant. The two models are related
insofar as there exists a general equivalence between fðRÞ
gravity (of which Starobinsky inflation is part) and scalar
tensor theories (of which Higgs inflation is part). Moreover
such theories can be reformulated, through a field redefi-
nition and a conformal transformation of the metric tensor,
in terms of General Relativity (GR) and a minimally
coupled scalar field. Such a transformation is called the
transition from the Jordan frame (JF) to the Einstein frame
(EF) [7]. The complete physical equivalence of the two
frames, beyond the classical level (and eventually adding

quantum inflationary fluctuations to the classical homo-
geneous background), is still not clear [8] but it is
commonly exploited to calculate the primordial inflationary
spectra or to describe the crossing of classical cosmic
singularities [9].
The fact that inflation is associated with intense

gravitational fields makes one suspect that quantum cos-
mology leads to effects on the observed scalar and tensor
perturbation spectra. Hence we feel that it would be of
interest to study some simple induced gravity models [10]
in the context of quantum gravity, in particular theWheeler-
DeWitt (WdW) equation [11], with the aim of finding
some, preferably exact, solutions for quantum homo-
geneous scalar field minisuperspace models. Induced
gravity models are a subset of the more general class
called scalar-tensor theories (to which Higgs inflation also
belongs) and are a natural generalization of GR especially
in the presence of large quantum effects which “induce”
nontrivial coupling between the scalar field and the
gravitational sector [12].
In particular we shall study general actions of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μσ∂νσ − VðσÞ þUðσÞR

�
ð1Þ

involving a homogeneous scalar field σ and a minisuper-
space metric
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ds2 ¼ −NðtÞ2dt2 þ aðtÞ2ðdr2 þ r2dΩ2Þ; ð2Þ

where NðtÞ is the lapse function and aðtÞ is the scale factor.
One may search for a static classical solution to the above
by solving the (static) equation of motion,

dU
dσ

R ¼ dV
dσ

; ð3Þ

and a static solution U ¼ Uðσ0Þ≡U0, R ¼ R0 should also
solve the Einstein equation

U0R0 ¼ 2Vðσ0Þ: ð4Þ

Further one has the following requirement [13] for the
stability of the solution

R0

h
U00

0 þ ðU0
0
Þ2

U0

i
− d2V

dσ2

���
σ¼σ0

1þ 3
ðU0

0
Þ2

U0

≤ 0: ð5Þ

The use of the global scale invariant potential V ¼ λσ4 [14]
is particularly attractive since it describes a scale invariant
inflationary phase which ends in a scale dependent fixed
point and is related to the previously mentioned phenom-
enologically successful models. The final scale dependent
fixed point can be thought to arise through the presence of a
condensate or the presence of symmetry breaking quantum
corrections [15]. We shall not address such points here
since we expect them to be important in the end of the
inflationary phase when quantum gravitational effects are
presumably not significant.
The article is organized as follows. In the second section

we illustrate the Hamiltonian formalism for a nonminimally
coupled scalar field and we then obtain the WdW equation
for induced gravity. In Sec. III we calculate the solutions to
the WdW by three different approaches, two of which lead
to the same class of solutions. In Sec. IV we formulate
the theory in the EF, we show its equivalence to the JF and
we illustrate the correspondence between the quantum and
the classical solutions. Finally in Sec. V we present the
conclusions.

II. INDUCED GRAVITY

For the Friedmann flat universe with the metric (2) the
Lagrangian (1) becomes

L ¼ 6Ua _a2

N
þ 6_aa2 _σU0

N
−
a3 _σ2

2N
þ NVa3; ð6Þ

where a “dot” means the derivative with respect to the time
parameter t and “prime” is the derivative with respect to the
field σ. The conjugate momenta are

pa ¼
12_aaU

N
þ 6a2U0 _σ

N
; ð7Þ

pσ ¼
6_aa2U0

N
−
a3 _σ
N

: ð8Þ

On inverting,

_a ¼ Npa

12aðU þ 3U02Þ þ
NpσU0

2a2ðU þ 3U02Þ ; ð9Þ

_σ ¼ NpaU0

2a2ðU þ 3U02Þ −
NpσU

a3ðU þ 3U02Þ : ð10Þ

Correspondingly, the Hamiltonian has the structure

H ¼ NH; ð11Þ

where the super-Hamiltonian constraint is

H ¼ p2
a

24aðU þ 3U02Þ þ
papσU0

2a2ðU þ 3U02Þ

−
p2
σU

2a3ðU þ 3U02Þ − Va3 ¼ 0: ð12Þ

Henceforth we shall restrict our study to the induced
gravity case with

UðσÞ ¼ γ
σ2

2
; U0 ¼ γσ; Uþ 3U02 ¼ 1

2
γð1þ 6γÞσ2

ð13Þ

and

H ¼ p2
a

12γð1þ 6γÞaσ2 þ
papσ

ð1þ 6γÞa2σ −
p2
σ

2a3ð1þ 6γÞ− Va3:

ð14Þ

The quantum realization of the momentum operators in the
coordinate representation (ℏ ¼ 1) is

pa ¼ −i
∂
∂a ; pσ ¼ −i

∂
∂σ ð15Þ

and the WdW equation takes the following form:

�
1

12γ

∂2

∂ðln aÞ2 þ
∂2

∂ ln a∂ ln σ −
1

2

∂2

∂ðln σÞ2

þ ð1þ 6γÞa6σ2VðσÞ
�
Ψða; σÞ ¼ 0: ð16Þ

Let us note that a particular ordering choice has been made
in order to promote the classical constraint (12) to a
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quantum WdW equation (16) and we omit dimensional
factors when irrelevant. For the induced gravity case, in
contrast with the case with a minimally coupled scalar field,
both the scale factor a and the homogeneous field σ kinetic
terms involve ordering ambiguities.
For simplicity we shall restrict the analysis to the class of

power-law potentials,

V ¼ λM4−nσn; ð17Þ

where λ is a dimensionless coupling constant and M is an
arbitrary energy scale, which, at the classical level, admit
exact analytical solutions of the form

σ ¼ σ0

�
a0
a

� γðn−4Þ
1þγðnþ2Þ

; H ¼ H0

�
a0
a

�γðn−2Þðn−4Þ
2½1þγðnþ2Þ�

; ð18Þ

where σ0, H0 and a0 are integration constants. The above
solutions are attractors for a larger set of solutions of the
classical equations (with n > 0 and γ > 0) and can be
mapped into the well-known Einstein frame solutions for
power-law inflation driven by an exponential potential [16].
In the absence of the scalar field potential (V ¼ 0) the
following exact solutions also exist:

σ ¼ σ0

�
a
a0

�
6γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6γð1þ6γÞ

p
;

H ¼ H0

�
a
a0

�
−3−2½6γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6γð1þ6γÞ

p
�
: ð19Þ

III. QUANTUM SOLUTIONS

Let us look for a solution of the WdW equation in the
following form:

Ψða; σÞ ¼
�
a
a0

�
ν

χðxÞ; ð20Þ

where the new variable x is

x≡ a3σ
nþ2
2 : ð21Þ

Then, Eq. (16) becomes

�
1 −

γ2ðn − 4Þ2
Γ2

�
d2χ

dðln xÞ2

þ 2

3
ν

�
1þ 6γ2ðn − 4Þ

Γ2

�
dχ

d ln x
þW1ðxÞχ ¼ 0; ð22Þ

where Γ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6γð1þ 6γÞp

and

W1ðxÞ≡
�
2γν2

3Γ2
þ 4

3
γλM4−nx2

�
: ð23Þ

The general solution of (22) can be written in terms of
Bessel functions in the form

χðxÞ ¼ xq½c1JrðAxÞ þ c2YrðAxÞ� ð24Þ

with

A≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4γΓ2λM4−n

3½Γ2 − γ2ðn − 4Þ2�

s
; ð25Þ

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −

2γν2

3½Γ2 − γ2ðn − 4Þ2�

s
ð26Þ

and

q≡ −
ν

3

Γ2 þ 6γ2ðn − 4Þ
Γ2 − γ2ðn − 4Þ2 : ð27Þ

An analogous procedure can be followed starting from the
ansatz,

Ψða; σÞ ¼
�
σ

σ0

�
μ

χ̄ðxÞ; ð28Þ

finally leading to the equation

�
1 −

γ2ðn − 4Þ2
Γ2

�
d2χ̄

dðln xÞ2

− 4μ
γ2ðn − 4Þ

Γ2

dχ̄
d ln x

þW2ðxÞχ̄ ¼ 0; ð29Þ

where

W2ðxÞ≡
�
−
4γ2μ2

Γ2
þ 4

3
γλM4−nx2

�
: ð30Þ

This last equation admits the following general solution in
terms of Bessel functions:

χ̄ðxÞ ¼ xp½c1JsðAxÞ þ c2YsðAxÞ� ð31Þ
with

s≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4μ2γ2

Γ2 − γ2ðn − 4Þ2

s
ð32Þ

and

p≡ 2μγ2ðn − 4Þ
Γ2 − γ2ðn − 4Þ2 : ð33Þ

Let us note that the solutions obtained from the different
ansatzes (20) and (28) are indeed the same as one may
easily verify by the following substitution:
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μ ¼ −ν
�
nþ 2

6

�
; χ̄ ¼ xν=3χ: ð34Þ

As far as we know a second (distinct) possible set of
solutions can be found. Consider the change of variable
ða; σÞ → ðu�; v�Þ with

u� ¼ a3ð1�
ð4−nÞγ

Γ Þσ
nþ2
2 ½σ�3½ðnþ2Þγþ1�

Γ þ σ∓
3½ðnþ2Þγþ1�

Γ �; ð35Þ

v� ¼ a3ð1�
ð4−nÞγ

Γ Þσ
nþ2
2 ½σ�3½ðnþ2Þγ�þ1

Γ − σ∓
3½ðnþ2Þγþ1�

Γ �: ð36Þ

The WdW equation then takes the form of the following,
massive, two-dimensional Klein Gordon equation,

ð∂2
u� − ∂2

v� þ BÞΨ̃ðu�; v�Þ ¼ 0; ð37Þ

where B ¼ γ
3

Γ2λM4−n

Γ2−ðn−4Þ2γ2. Starting from the ansatz Ψ̃ ¼
expðiqv�Þρðu�Þ one then finds the solution given by

Ψ̃� ¼ c1 exp
h
i
�
qv� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ B

q
u�

	i
þ c2 exp

h
i
�
qv� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ B

q
u�

	i
; ð38Þ

where q is a free parameter. Let us note that for n ¼ 4 the
solutions Ψþ and Ψ− coincide (simply exchange q → −q)
while for n ≠ 4 the two solutions given by (38) are distinct.

A. Interpretation of the results

So far we have illustrated three different methods leading
to different sets of solutions of the original equation (16)
(although the first two are related). Even if the methods are
quite straightforward the form of the solutions found is still
rather cumbersome.
Let us note that, in order to obtain such solutions, we did

not make any assumption on the scalar product (normali-
zation) for the solutions of our quantum system. In the
context of canonical quantum cosmology, within the
minisuperspace approximation, the wave function, in our
case, can always be factorized into a gravitational part,
which only depends on the scale factor, and a matter part
containing the homogeneous (scalar) inflaton and the scale
factor as well. The matter wave function belongs to a
Hilbert space with the canonical scalar product with respect
to the homogeneous scalar field and can be normalized
accordingly. On the other hand the gravitational wave
function need not be normalizable (it could correspond
to a plane wave with a squared modulus inversely propor-
tional to the velocity) and is associated with the emergence
of time for the matter part [17].
More precisely, in traditional approaches to the quantum

(WdW) inflaton-gravity system, one performs a Born-
Oppenheimer (BO) decomposition of the total wave func-
tion leading to an equation for the gravitational part with

the backreaction of the matter degrees of freedom (d.o.f.)
and a matter equation which, after the proper introduction
of time, becomes the usual time dependent Schrödinger
equation with quantum gravitational effects included. In
order to perform the BO decomposition the definition of a
proper scalar product in the matter sector is necessary.
Therefore, in such an approach, the quantum to classical
correspondence is well established by standard quantum
mechanical prescriptions, and the quantum solutions found
may be easily interpreted.
In this article a complete BO approach was not employed

[note however that the factorization (20) is of the BO type]
still, even in the absence of a scalar product, one may
interpret some of the solutions obtained by adopting the
standard methods of quantum mechanics.
Let us first note that the time independent Schrödinger

equation can be solved order by order in ℏ through a WKB
expansion. The result, independently of the definition of the
scalar product, is a superposition of particular solutions
having the following form:

ψWKBðxÞ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpclðxÞj

p exp

�
i
ℏ

Z
x
pclðx0Þdx0

�
ð39Þ

in the classically permitted region and to the next to leading
order in ℏ. Its classical limit can be then easily obtained
either by observing that

p̂ψWKB ¼ ðpclðxÞ þOðℏÞÞψWKB ð40Þ

or

jψWKBj2 ∼
1

jpclðxÞj
: ð41Þ

In the first case one recovers, to the leading order, the
classical expression for the momentum as a function of the
position x. In the second case, one finds the functional
dependence of the modulus squared of the wave function
and observes that it is proportional to the classical prob-
ability density (depending on the context see [17] for more
details). The two methods employed above lead to the
correct classical limit and are equivalent. One may thus
adopt a similar procedure to interpret the solution obtained
for the WdW (which indeed resembles a time independent
Schrödinger equation).
For simplicity we shall look for the natural interpretation

of the solution (20) with ν ¼ 0 and n ¼ 4 by evaluating the
effect on χðxÞ of the operator ĥ defined as the quantum
counterpart of the Hubble parameter hcl. This would
correspond to the application of the criterium (40). In
terms of the momenta pa and pσ defined by (7) and (8)
one has
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_a
a
≡ hcl ¼

apa þ 6γσpσ

Γ2

σ

x
ð42Þ

and, after quantization,

ĥχðxÞ ¼ −i
σ

2γ

dχ
dx

; ð43Þ

where χ satisfies Eq. (22) which, for ν ¼ 0 and n ¼ 4, has
the simple form

d2χ
dðln xÞ2 þ

4

3
γλx2χ ¼ 0: ð44Þ

For x large Eq. (44) has solutions of the form

χ ≃ e�i
ffiffiffiffiffi
4
3
γλ

p
ð45Þ

and correspondingly

ĥχðxÞ ¼ �
ffiffiffiffiffi
λ

3γ

s
σχðxÞ ¼ hclχðxÞ; ð46Þ

where hcl is the value of the Hubble parameter correspond-
ing to the classical solution with _σ ¼ 0. We can then
conclude that the solution considered above (ν ¼ 0) cor-
responds to a classical static configuration.
In order to get a better understanding of such solutions,

in the next section we shall transform them to the EF form
where the d.o.f. do not mix as in the JF and we restrict our
attention to the physically more interesting case with n ¼ 4.
For such a case, the original Lagrangian (6) becomes scale
invariant, a condition needed in order to generate the
correct inflationary spectra.

IV. EINSTEIN FRAME TRANSITION

As we already discussed in the Introduction, at the
classical level there is a well-known redefinition of the
dynamical d.o.f. in the inflaton-gravity action (1), called
transformation from the JF to the EF. This transformation
maps the original metric and the scalar field ðgμν; σÞ into a
new metric and a redefined scalar field ðg̃μν;ϕÞ with an
action given by the standard Einstein Hilbert term and a
minimally coupled scalar field:

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
MP

2

2
R −

1

2
g̃μνϕ;μϕ;ν þWðϕÞ

�
: ð47Þ

This transformation corresponds to a conformal rescaling
of the metric

gμν ¼
MP

2

2UðσÞ g̃μν ð48Þ

and the following redefinition of the scalar field

ϕ ¼
Z

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MP

2

2
½U þ 3ðdUdσ0Þ2�

q
U

dσ0 ð49Þ

leading to the potential

WðϕÞ ¼ MP
4

4U2
VðσðϕÞÞ: ð50Þ

Let us note that these transformations can also be used
when studying exact solutions for some cosmologies or
static geometries which are more complicated than FLRW
flat universes (see e.g., [18]).
In particular for the induced gravity case (13) and the

potential (17) one has

ã ¼
ffiffiffiffiffi
6γ

p
mp

aσ; ϕ ¼ Γ
6γ

mp ln
σ

σ0
; ð51Þ

and

WðϕÞ ¼ m4
p

ð6γÞ2 λM
4−nσn−40 exp

�
ðn − 4Þ 6γ

Γ
ϕ

mp

�
; ð52Þ

where mp ≡
ffiffiffi
6

p
MP.

While the equivalence of the two frames, the JF
described by (1) and the EF by (47), is expected at the
classical level, at the quantum level it is not clear whether
such an equivalence still holds. In a semiclassical context
where the homogeneous background is treated classically
while the inhomogeneous perturbations are quantized, at
least in the linearized approximation, the frames are
equivalent and, for example, the inflationary observables,
such as the spectral indices, are the same.
On canonically quantizing the classical system (47) in

the minisuperspace approximation one finally obtains the
following WdW equation:



1

2m2
p

∂2

∂ðln ãÞ2 −
1

2

∂2

∂ϕ2
þm4

pã6

ð6γÞ2
�
σ0
M

exp

�
6γ

Γ
ϕ

mp

��
n−4

�

× Ψ̃ðã;ϕÞ ¼ 0; ð53Þ

where again a particular ordering has been chosen for the
kinetic term associated with the scale factor ã.
Let us now consider the EF transition, described by (51)

and (52), after quantization. The WdW equation for mini-
superspace in the Jordan frame is (16) with (17) and, on
using the chain rule,

∂
∂ðln σÞ ¼ mp

Γ
6γ

∂
∂ϕþ ∂

∂ðln ãÞ ;
∂

∂ðln aÞ ¼
∂

∂ðln ãÞ ;
ð54Þ
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one exactly finds Eq. (53). We conclude that, at least in the
minisuperspace approximation canonical quantization and
the transition from the JF to the EF (and vice versa) indeed
commute.
As a consequence the exact solutions found in the JF can

be mapped into exact solutions of (53) in the EF. Let us now
consider, for simplicity, the solution obtained on starting
from the ansatz (28) with n ¼ 4. For such a case the scalar
field potential is transformed into a cosmological constant
ρΛ ¼ m4

p=ð6γÞ2. In the Einstein frame the solution (28)
corresponds to

Ψ̃ ¼ exp

�
μ
6γ

Γ
ϕ

mp

�
χ̄ðãÞ; ð55Þ

where χ̄ satisfies (29). More general solutions can be
obtained as a superposition of solutions of the form
(55). Let us note that, in the EF, the total homogeneous
wave function can be factorized into the product of a wave
function for the inflaton and that for the scale factor. It
appears that for μ real the inflaton wave function is
divergent at infinity in the EF while for μ imaginary it
takes a plane wave form corresponding to an eigenstate of
the (Hermitian) field momentum operator with a real
eigenvalue. Therefore the analysis of such a solution in
the EF, because of the requirement of a well-defined scalar
product in the Hilbert space, constrains μ to be imaginary.
The corresponding form for the gravitational wave

function χ̄ is given by (31) with n ¼ 4 and μ≡ iμ̃ (with
μ̃ real). The solution found is a fully quantum solution with
a well-defined classical counterpart which can be obtained,
following the criterium (41), as follows. We first note that,
at the classical level, the energy density of the inflaton
fluid corresponding to a solution with a constant momen-
tum πϕ is

ρϕ ¼ 1

2
_ϕ2 ¼ π2ϕ

2ã6
: ð56Þ

On considering a classical value for the momentum equal to
its quantum eigenvalue πϕ ¼ μ̃

mp

6γ
Γ we finally obtain the

corresponding classical Friedmann equation,

H2
cl ¼

2

m2
p
ðρϕ þ ρΛÞ ¼

m2
p

18γ2

�
μ̃2ð6γÞ4
2m6

pΓ2ã6
þ 1

�
; ð57Þ

which has the attractor solution (18) in the ã → ∞ limit.
Let us now consider the modulus squared of the

gravitational wave function χ̄ðãÞ. If one, for simplicity,
considers c1 ¼ 1 and c2 ¼ −i, the wave function is

χ̄ðãÞ ¼ Hð2Þ
2μγ=Γ

� ffiffiffi
2

p

18γ
m3

pã3
�
; ð58Þ

where Hð2Þ
s ðzÞ is a Hankel function of the second kind with

an asymptotic behavior (z → þ∞) given by

Hð2Þ
s ðzÞ ≃

ffiffiffiffiffi
2

πz

r
e−i½z−π

4
ð2sþ1Þ�

�
1þ i

1 − 4s2

8z

�
: ð59Þ

Therefore, in the large a limit and πϕ ≫ m−1
p the modulus

squared of the gravitational wave function is

χ̄ðãÞ�χ̄ðãÞ ≃ 18γ
ffiffiffi
2

p

πm3
pã3

�
1 −

μ̃2ð6γÞ4
4Γ2m6

pã6

�
∝

1

ã3Hcl
; ð60Þ

where the last relation holds for amp ≫ 1. Thus an
expression proportional to the classical probability density
for a given classical solution is recovered and a well-
defined correspondence between the quantum and the
classical solutions is established. Such a correspondence
must hold both in the EF and in the JF and we can therefore
conclude that the attractor given by (18) corresponds, at the
quantum level, to a solution with μ ¼ 0. The solutions with
μ ≠ 0 describe the evolution during an approach towards
the attractor.
Let us now consider the solution Ψ̃ given by (38) with

n ¼ 4. In the EF

uþ ¼ m3
pã3

ð6γÞ3=2
�
e

3ϕ
mp þ e−

3ϕ
mp

	
;

vþ ¼ m3
pã3

ð6γÞ3=2
�
e

3ϕ
mp − e−

3ϕ
mp

	
: ð61Þ

Let us set, for example, c1 ¼ 1, c2 ¼ 0 and, following now
the criterium (40), evaluate

−i
∂
∂ϕ Ψ̃ ¼ 3

m2
pã3

ð6γÞ3=2
h�

qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ B

q 	
e

3ϕ
mp

þ
�
q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ B

q
Þ e−

3ϕ
mp

i
Ψ̃: ð62Þ

The expression on the right-hand side (rhs) of the above
equality is the classical momentum as a function of ϕ
multiplied by Ψ̃. Let us note that the general solution to the
classical equations of motion for (47) withWðϕÞ ¼ Λ leads
to the following phase space trajectories:

_ϕ ¼ �
ffiffiffiffi
Λ
2

r h
D̃e∓

3ϕ
mp − D̃−1e�

3ϕ
mp

i
; ð63Þ

and correspondingly _ϕã3 ¼ πϕ ¼ const, which exactly
reproduces the rhs of (62) once the definitions of B ¼
γ=3 and that of the cosmological constant in the EF
[Λ ¼ m4

p=ð6γÞ2] are taken into account. Moreover, one
must identify
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D̃ ¼ qffiffiffiffi
B

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

B
þ 1

r
; ð64Þ

where the correspondence between the quantum eigenvalue
q and the classical integration constant has been shown. Let
us note that the quantum solution (38) has a form similar to
a “generalized” plane wave and can be simultaneously
associated with the general classical solution through the
relation π̂ϕΨ̃ ¼ πϕ;clðϕÞΨ̃ [just as for the WKB case (40)].
Therefore, in contrast with the case discussed for the

solution (55) which was connected to the classical solution
on comparing the corresponding probability densities (in
the large ã limit), in the EF, for the wave function (38), a
correspondence between the quantum and the classical
solutions is possible on examining the expression for the
quantum momentum and its relation with its classical
counterpart. Let us further note that, in this latter case,
the quantum-classical correspondence based on the com-
parison of the probability density is not possible because of
the plane-wave form of the solution (38) which trivially
gives Ψ̃�Ψ̃ ¼ 1.
We further observe that the same classical solution can

be obtained both starting from Eq. (55) or Eq. (38).

V. CONCLUSIONS

Inflation is currently believed to be the highest energy
physics mechanism which can be tested by observations.
Further, since it occurs for scales just a few orders of
magnitude below the Planck scale, it may be affected by the
quantum gravitational effects. The correct description of
gravity at such scales, when quantum effects become
relevant, is not clear; nonetheless, it is reasonable to expect
that the canonical procedure for the quantization of gravity
(and the resulting WdW equation) will lead to a sensible
theory of quantum gravity, at least in the minisuperspace
approximation, which can then be applied to the study of
inflation. In this article our analysis focusses on the solution
of the WdW equation for a set of induced gravity models,
instead of just GR, and a minimally coupled inflaton.
Induced gravity models are a natural generalization of GR
and, even if they were introduced many years ago, recently
have become more and more attractive. When quantum
effects become large enough a nonminimal coupling to
gravity naturally arises in the presence of a scalar field
which then affects the observed Newton’s constant. Higgs
inflation belongs to this class of models since, in them, the
scalar Higgs field is also responsible for inflation and
generates the primordial inhomogeneities with spectra
which are compatible with observations. Nowadays
Higgs inflation (and the models related to it by a frame
transformation) seems favored by observations since it
reconciles, within a common framework, Planck scale and
Standard Model physics. Higgs inflation occurs during a
phase which is dynamically indistinguishable from induced

gravity with a nearly quartic potential and this motivates
our quantum gravity approach to induced gravity.
The canonical quantization of the inflaton-gravity sys-

tem for the case of induced gravity leads to a WdW
equation which can be solved exactly for power-law form
potentials. The same class of models is exactly solvable
classically as well and this fact, in principle, allows an exact
comparison between the quantum solutions and their
classical counterparts. Moreover, it gives the opportunity
of studying the equivalence between the JF and the EF
description. Such an equivalence is defined classically but
its extension to the (full) quantum level is not obvious. In
this paper we found that, at least in the minisuperspace
approximation, the EF and the JF are indeed equivalent in
the sense that the frame transformation “commutes” with
the canonical quantization. We exploited such an equiv-
alence in order to analyze the exact set of solutions found
for the WdW equation. In particular we found two sets of
one parameter independent solutions for it. These solutions
have been transformed to the EF and their classical
counterpart has been found. We have shown that the free
parameter entering in the solutions has a classical counter-
part and can be put in correspondence with the classical
trajectories. Let us further observe that the EF version of the
models studied corresponds to the power-law inflation case
and is classically exactly solved, and we now also have its
quantum counterpart.
An alternative approach to the quantization of minisuper-

space models is in the context of loop space quantum
cosmology [19]. It would be interesting to find analogous
solutions to ours in such a context. Let us note, however,
that we have found our solutions in the context of induced
gravity and, as we pointed out, they are presumably valid
(physically interesting) for a large value of the scalar field
when scale breaking effects are negligible. Thus it is in such
a, physically interesting, context that related solutions
should be found.
The importance of the exact solution found is also

reinforced by the possibility we now have of calculating
the quantum gravitational effects on the primordial spectra
generated during inflation following the approach already
adopted for the minimally coupled case [20]. The inclusion
of inhomogeneities is certainly necessary in order to further
clarify the much debated correspondence between the JF
and the EF both theoretically and at the level of inflationary
observables (primordial spectra). Our approach to the
matter-gravity system has always been through a BO
approach wherein the heavy (slow) d.o.f. are gravitational
and matter is described by the light ones. Again in this case
alternative approaches may be studied and we have briefly
discussed and compared them [21] previously.
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