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In this paper, we have developed a new cosmological model in Einstein’s modified gravity theory using
two types of modification: (i) Geometrical modification, in which we have used Lyra’s geometry in the left-
hand side of the Einstein field equations (EFE), and (ii) modification in gravity (energy momentum tensor)
on the right-hand side of EFE, as per the Brans-Dicke (BD) model. With these two modifications, we have
investigated spatially homogeneous and anisotropic Bianchi type-I cosmological models of Einstein’s
Brans-Dicke theory of gravitation in Lyra geometry. The model represents an accelerating universe at
present and a decelerating in the past and is considered to be dominated by dark energy. Gauge function β
and BD-scalar field ϕ are considered as a candidate for the dark energy and is responsible for the present
acceleration. The derived model agrees at par with the recent supernovae (SN Ia) observations. We have set
BD-coupling constant ω to be greater than 40000, seeing the solar system tests and evidence. We have
discussed the various physical and geometrical properties of the models and have compared them with the
corresponding relativistic models.
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I. INTRODUCTION

Einstein formulated the theory of general relativity (GR)
in 1915, in which he described gravity as a geometrical
property of space and time. In particular, the curvature of
spacetime was proposed to be directly related to the energy
and momentum of whatever matter and radiation are
present in the universe. The relation was specified by
the Einstein field equations (EFE), which are a system of
partial differential equations. The original EFE were written
in the form Rμν − 1

2
Rgμν ¼ 8πG

c4 Tμν, where Rμν is Ricci
curvature tensor, R is the scalar curvature, gμν is the metric
tensor, and Tμν is the energy momentum tensor.
EFE are a foundation on which various cosmological

models have been constructed. Soon after the formulation
of the field equation, Einstein applied these equations for
constructing the model of the universe. Einstein’s original
field equations support an expanding universe. But at that
time, it was believed that the universe is static. So to make
his model static, Einstein modified his original EFE by
introducing a positive constant Λ in his field equations and
termed this as a cosmological constant. But, after Hubble’s
discovery in 1929, it was established that the universe
is not static but expanding. So, under the new scenario,
Einstein abandoned the cosmological constant, calling it
the “biggest blunder” of his life, and returned to his original

field equations. Inspired by geometrizing gravitation, in
1918 Weyl [1] proposed a more general theory in which
both gravitation and electromagnetism are described
geometrically.
So, to accommodate new findings or for the sake of

generalization, various modifications have been proposed
by researchers in original EFE from time to time, since its
inception. Some researchers modified the geometrical part,
whereas some proposed the modification in the energy
momentum part of the EFE.
In the present paper, we have applied both types of

modification simultaneously. On the left-hand side, we have
used Lyra’s geometry (geometrical modification) in EFE;
and on the right-hand side, we have modified the energy
momentum tensor as per the Brans-Dicke model. The
motivation behind such modifications are as follows: In
general relativity Einstein succeeded in geometrizing gravi-
tation by identifying the metric tensor with the gravitational
potentials. In 1951, Lyra proposed a modification of
Riemannian geometry by introducing a gauge function into
the structureless manifold [2] (see also [3]). Based on Lyra
geometry, a new scalar-tensor theory of gravitation which
was an analogue of the Einstein field equations was
proposed by Sen and Dunn [4,5]. An interesting feature
of this model is that it keeps the spirit of Einstein’s principle
of geometrization, since both the scalar and tensor fields
have more or less intrinsic geometrical significance. In
contrast, in the Brans-Dicke theory, the tensor field alone is
geometrized and the scalar field remains alien to the
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geometry [6,7]. By incorporating both of these separate
modifications into a single theory, we have arrived at a more
general method of geometrizing gravitation.
Also, in the construction of recent cosmological models,

two problems prevail: The late time acceleration problem,
and the existence of big-bang singularity. To deal with the
first problem, one of the ways is by introducing the gauge
function into the structureless manifold in the framework
of Lyra geometry. In this approach, the cosmological
constant of EFE naturally arises from the geometry, instead
of introducing it in an ad hoc way. In fact, the constant
displacement vector field plays the role of cosmological
constant which can be responsible for the late-time
cosmological acceleration of the universe [8,9]. For the
second problem, recently a new mechanism for avoiding
the big-bang singularity was proposed in the framework
of the emergent universe scenario (see [10–12]). The
emergent universe scenario is a past-eternal inflationary
model in which the horizon problem is solved before the
beginning of inflation and the big-bang singularity is
removed.
To date, various researchers have studied cosmology in

Lyra’s geometry (see [8,9,13–29]) with both a constant
displacement field and a time-dependent one. For instance,
in [20] the displacement field is allowed to be time
dependent, and the Friedmann-Robertson-Walker (FRW)
models are derived in Lyra’s manifold. Those models are
free of the big-bang singularity and solve the entropy and
horizon problems which beset the standard models based
on Riemannian geometry. Recently, cosmological models
in the framework of Lyra’s geometry in different contexts
are investigated in several papers (see [21–29]).
Also, in the past few decades, there has been consid-

erable interest in alternative theories of gravitation coursed
by the investigations of inflation and, especially, late
cosmological acceleration which is well proved in many
papers (see [30–35]). In order to explain such unexpected
behavior of our universe, one can modify the gravitational
theory (see [36–41]), or construct various field models of
the so-called dark energy (DE), for which equation of state
(EoS) satisfies γ ¼ p

ρ < − 1
3
(see [42–48]). Presently, there is

an uprise of interest in scalar fields in GR and alternative
theories of gravitation in this context. Therefore, the study
of cosmological scalar-field models in Lyra’s geometry is
relevant for the cosmic acceleration models. A Bianchi
type-I dust filled accelerating Brans-Dicke cosmological
model with cosmological constant Λ as a dark energy
candidate was investigated by Goswami et al. [49], and
Brans-Dicke scalar-field cosmological models in Lyra
geometry with a time-dependent deceleration parameter
was studied by [50]. Recently, a detailed review on dark
energy/modified gravity problem was presented by [51].
Most studies in Lyra’s cosmology involve a perfect fluid.

Strangely, at least to our knowledge, the case of the scalar
field in Lyra’s cosmology was not studied properly. Here

we would like to fill this gap. In this paper, we will consider
a scalar field Brans-Dicke cosmology in the context of
Lyra’s geometry. With motivation provided above, we have
investigated Einstein’s modified field equations for the
spatially homogeneous anisotropic Bianchi type-I space-
time metric within the framework of Lyra’s geometry.
The outline of the paper is as follows: Section I is

introductory in nature. In Sec. II, the field equations in Lyra
geometry with Brans-Dicke modifications are described.
Section III deals with the cosmological solutions that have
established relations among energy parametersΩm,Ωσ, and
Ωβ. In Sec. IV, we obtained expressions for Hubble’s
constant, luminosity distance, and apparent magnitude in
terms of redshift and scale factor. We have also estimated
the present values of energy parameters and Hubble’s
constant. The deceleration parameter (DP), age of the
universe, and certain physical properties of the universe
are presented in Sec. V. The discussion of results are given
in Sec. VI. Finally, conclusions are summarized in Sec. VII.

II. LYRA GEOMETRY AND EINSTEIN’S
BRANS-DICKE FIELD EQUATIONS

Lyra geometry is a modification of Riemannian geom-
etry by introducing a gauge function into the structureless
manifold [2]; see also [3]. Lyra defined a displacement
vector between two neighboring points PðxμÞ and Qðxμ þ
dxμÞ as Adxμ where A ¼ AðxμÞ is a nonzero gauge function
of the coordinates. The gauge function AðxμÞ together with
the coordinate system xμ form a reference system ðA; xμÞ.
The transformation to a new reference system ðĀ; x̄μÞ is
given by the following functions:

Ā ¼ ĀðA; xμÞ; x̄μ ¼ x̄ðxμÞ; ð1Þ

where ∂Ā
∂A ≠ 0 and detð∂x̄∂xÞ ≠ 0.

The symmetric affine connections Γ̃μ
νσ on this manifold

are given by

Γ̃μ
νσ ¼ 1

A
Γμ
νσ þ 1

2
ðδμνψσ þ δμσψν − gνσψμÞ; ð2Þ

where the connection Γμ
νσ is defined in terms of the metric

tensor gμν as in Riemannian geometry and ψμ ¼ gμνψν is
the so-called displacement vector field of Lyra geometry. It
is shown by Lyra [2], and also by Sen [4], that in any
general reference system, the displacement vector field ψμ

arises as a natural consequence of the formal introduction
of the gauge function AðxμÞ into the structureless manifold.
Equation (2) shows that the component of the affine
connection depends not only on metric gμν but also on
the displacement vector field ψμ. The line element (metric)
in Lyra geometry is given by

ds2 ¼ A2gμνdxμdxν; ð3Þ
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which is invariant under both of the coordinate and gauge
transformations. The infinitesimal parallel transport of a
vector field Vμ is given by

δVμ ¼ Γ̂μ
νσVνAdxσ; ð4Þ

where Γ̂μ
νσ ¼ Γ̃μ

νσ − 1
2
δμνψσ which is not symmetric

with respect to ν and σ. In Lyra geometry, unlike Weyl
geometry, the connection is metric preserving as in
Riemannian geometry which indicates that length transfers
are integrable. This means that the length of a vector is
conserved upon parallel transports, as in Riemannian
geometry.
The curvature tensor of Lyra geometry is defined in

the same manner as in Riemannian geometry and is
given by

R̃μ
νρσ ¼ A−2

� ∂
∂xρ ðAΓ̂

μ
νσÞ − ∂

∂xσ ðAΓ̂
μ
νρÞ

þ A2ðΓ̂μ
λρΓ̂

λ
νσ − Γ̂μ

λσΓ̂
λ
νρÞ

�
: ð5Þ

Then, the curvature scalar of Lyra geometry will be

R̃ ¼ A−2Rþ 3A−1∇μψ
μ þ 3

2
ψμψμ þ 2A−1ðlogA2Þ;μψμ;

ð6Þ

whereR is theRiemannian curvature scalar and the covariant
derivative is taken with respect to the Christoffel symbols of
the Riemannian geometry.
The invariant volume integral in the four-dimensional

Lyra manifold is given by

I ¼
Z ffiffiffiffiffiffi

−g
p

LðAdxÞ4; ð7Þ

where L is an invariant scalar in this geometry. Using the
normal gauge A ¼ 1 and L ¼ R̃ through the equations (6)
and (7) results in

R̃ ¼ Rþ 3∇μψ
μ þ 3

2
ψμψμ; ð8Þ

I ¼
Z ffiffiffiffiffiffi

−g
p

R̃dx4: ð9Þ

Therefore the Lagrangian for the Brans-Dicke theory in
Lyra geometry can be defined as

L̃BDT ¼ ϕ

�
R̃ − w

ϕ;μϕ
;μ

ϕ2

�
þ 16πLmat; ð10Þ

where R̃ ¼ Rþ 3∇μψ
μ þ 3

2
ψμψμ is the curvature scalar of

Lyra geometry [2] using normal gauge transformations, ψμ

is a displacement vector field of Lyra geometry, R is
curvature scalar in Riemannian geometry, w is the Brans-
Dicke coupling constant, ϕ is the Brans-Dicke scalar field
as mentioned in the first section, and Lmat is Lagrangian
for matter. Therefore, the action for this Lagrangian is
defined as

I ¼
Z �

ϕ

�
Rþ 3∇μψ

μ þ 3

2
ψμψμ − w

ϕ;μϕ
;μ

ϕ2

�

þ 16πLmat

� ffiffiffiffiffiffi
−g

p
d4x: ð11Þ

By varying the action I of the gravitational field with
respect to the metric tensor components gμν and ϕ,
respectively, we obtained the following Einstein’s Brans-
Dicke field equations in Lyra geometry:

Gμν þ
3

2
ψμψν −

3

4
gμνψσψ

σ

¼ −
8πTμν

ϕc4
−

w
ϕ2

�
ϕ;μϕ;ν −

1

2
gμνϕ;σϕ

;σ

�

−
1

ϕ
ðϕ;μ;ν − gμν□ϕÞ; ð12Þ

□ϕ ¼ ϕ;μ
;μ ¼ 8πT

ð3þ 2wÞc2 ; ð13Þ

whereGμν is the Einstein curvature tensor, ð; Þ and ð ;Þ denote
the covariant and contravariant derivatives, and other
symbols have their usual meanings in Riemannian geom-
etry. The metric in Lyra geometry is defined by ds2 ¼
gμνðAdxμÞðAdxνÞ, where A is the gauge transformations.
Using normal gauge transformation (A ¼ 1) the above
metric becomes ds2 ¼ gμνdxμdxν as in Riemannian
geometry.
We assume a perfect fluid form for the energy-momentum

tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν ð14Þ

and comoving coordinates uμuμ ¼ −1. We also let ψμ be the
timelike constant vector

ψμ ¼ ðβ; 0; 0; 0Þ; ð15Þ

where β is a constant. The metric for Bianchi type-I
spacetime is given by

ds2 ¼ −dt2 þ A2dx2 þ B2dy2 þ C2dz2; ð16Þ

where A, B, and C are functions of cosmic time t alone.
For the metric (16), solving the field equations (14), we

get the following field equations:
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_A _B
AB

þ
_B _C
BC

þ
_A _C
AC

−
3

4
β2 ¼ 8πρ

ϕc2
−
w
2

�
_ϕ

ϕ

�2

þ
_ϕ

ϕ

�
_A
A
þ

_B
B
þ

_C
C

�
;

ð17Þ

B̈
B
þ C̈
C
þ

_B _C
BC

þ3

4
β2¼−

8πp
ϕc2

þw
2

�
_ϕ

ϕ

�2

þ
_ϕ

ϕ

�
_B
B
þ

_C
C

�
þ ϕ̈

ϕ
;

ð18Þ

Ä
A
þ C̈
C
þ

_A _C
AC

þ3

4
β2¼−

8πp
ϕc2

þw
2

�
_ϕ

ϕ

�2

þ
_ϕ

ϕ

�
_A
A
þ

_C
C

�
þ ϕ̈

ϕ
;

ð19Þ

Ä
A
þ B̈
B
þ

_A _B
AB

þ3

4
β2 ¼−

8πp
ϕc2

þw
2

�
_ϕ

ϕ

�2

þ
_ϕ

ϕ

�
_A
A
þ

_B
B

�
þ ϕ̈

ϕ
;

ð20Þ

ϕ̈

ϕ
þ

_ϕ

ϕ

�
_A
A
þ

_B
B
þ

_C
C

�
¼ 8πðρ − 3pÞ

ð2wþ 3Þϕc2 : ð21Þ

Here overdots denote the derivatives with respect to time t.

III. COSMOLOGICAL SOLUTIONS
OF THE FIELD EQUATIONS

The covariant derivative of field equation (12) for
Eq. (14), gives the energy conservation law as

_ρþ 3Hðρþ pÞ ¼ 0: ð22Þ

The equation of state for the model is defined as

p ¼ γρ; ð23Þ

where γ is EoS parameter of the fluid filled in the universe
and the Hubble parameter H is given by H ¼ _a

a, where a is
the average scale factor.
There are two cases for the value of the EoS parameter γ

in Eq. (23):
Case I: Taking γ ¼ const, integrating Eq. (22), we get

ρ ¼ ρ0ðaÞ−3ð1þγÞ ¼ ρ0ðABCÞ−ð1þγÞ: ð24Þ

Case II: Taking γ ¼ variable and assuming γ ¼ γðaÞ in
the form

γ ¼ γ0 þ γað1 − aÞ; ð25Þ
where γ0 is an arbitrary constant and γa is the value
of j dγda ja¼0

.
Using this in Eq. (22), we get

ρ ¼ a−3ð1þγ0þγaÞ exp ðρ0 þ 3aγaÞ: ð26Þ

In the present model, we will consider case I assum-
ing γ ¼ const.
Now, from Eqs. (18)–(20), we obtain

B
A
¼ c2 exp

�
c1

Z
ϕ

a3
dt

�
; ð27Þ

C
A
¼ c4 exp

�
c3

Z
ϕ

a3
dt

�
; ð28Þ

C
B
¼ c6 exp

�
c5

Z
ϕ

a3
dt

�
: ð29Þ

Now, taking the value of arbitrary integrating constants
c2 ¼ c4 ¼ c6 ¼ 1 and c1 ¼ k; c3 ¼ −k; c5 ¼ −2k and
assuming

D ¼ exp
�Z

kϕ
ðABCÞ dt

�
; ð30Þ

we get the following relations:

B ¼ AD and C ¼ A
D
: ð31Þ

The average scale factor a is defined as a ¼ ðABCÞ13 and
using Eq. (31), we obtain

a ¼ ðABCÞ13 ¼ A: ð32Þ

Therefore, from Eqs. (17) to (32), we obtain

3

�
_A
A

�2

−
�

_D
D

�2

−
3

4
β2 ¼ 8πρ

ϕc2
−
w
2

�
_ϕ

ϕ

�2

þ 3
_ϕ

ϕ

�
_A
A

�
;

ð33Þ

2

�
Ä
A

�
þ
�
_A
A

�2

þ
�

_D
D

�2

þ 3

4
β2

¼ −
8πp
ϕc2

þ w
2

�
_ϕ

ϕ

�2

þ 2
_ϕ

ϕ

�
_A
A

�
þ ϕ̈

ϕ
; ð34Þ

d
dt

�
_D
D

�
þ

_D
D

�
3
_A
A
−

_ϕ

ϕ

�
¼ 0; ð35Þ

ϕ̈

ϕ
þ 3

_ϕ

ϕ

�
_A
A

�
¼ 8πðρ − 3pÞ

ð2wþ 3Þϕc2 ; ð36Þ

_ρ

ρ
þ 3ð1þ γÞ

_A
A
¼ 0: ð37Þ

From Eq. (31), we get
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_D
D
A3

ϕ
¼ k ⇒

_D
D

¼ kϕ
A3

: ð38Þ

Now, we define the matter energy density parameter
ðΩmÞ, curvature anisotropy parameter ðΩσÞ, and dark
energy parameter Ωβ as

Ωm ¼ 8πρ

3c2H2ϕ
; Ωσ ¼

k2ϕ2

3H2A6
; Ωβ ¼

β2

4H2
: ð39Þ

The deceleration parameter (q) for scale factor and ðqϕÞ for
scalar field are defined as [49]

q ¼ −
ä

aH2
; qϕ ¼ −

ϕ̈

ϕH2
; ð40Þ

where aðtÞ ¼ A is the average scale factor.
Now, using Eq. (39) in (33), we get

Ωm þΩσ þ Ωβ ¼ 1þ ω

6
ξ2 − ξ: ð41Þ

Again using Eqs. (39) and (40) in Eq. (34), we get

γΩm þ Ωσ þ Ωβ ¼
2

3
q −

1

3
þ ω

6
ξ2 þ 2

3
ξ −

1

3
qϕ: ð42Þ

Equation (36) becomes

−qϕ þ 3ξ ¼ 3ð1 − 3γÞΩm

2ωþ 3
; ð43Þ

where ξ ¼ _ϕ
ϕH. From Eqs. (41)–(43), we get

q −
ðω − ωγ − 3γ þ 2Þ

ð1 − 3γÞ qϕ þ
ð3ω − 3ωγ − 12γ þ 5Þ

ð1 − 3γÞ ξ ¼ 2:

ð44Þ

This gives the following power law relations between scalar
field ϕ and scale factor A:

ϕ ¼ ϕ0

�
A
A0

� 1−3γ
ω−ωγ−3γþ2 ð45Þ

and

ξ ¼ 1 − 3γ

ω − ωγ − 3γ þ 2
; ð46Þ

where A0 and ϕ0 are values of scale factor A and scalar field
ϕ at present. Putting this value of ξ in Eq. (41), we get the
following relationship for energy parameters:

Ωm þ Ωσ þ Ωβ ¼ 1 −
ð1 − 3γÞð5ω − 3ωγ − 18γ þ 12Þ

6ðω − ωγ − 3γ þ 2Þ2 :

ð47Þ

In the Brans-Dicke theory as ω → ∞, we get the following
relativistic result:

Ωm þ Ωσ þ Ωβ ¼ 1: ð48Þ

A. Gravitational constant versus redshift relation

As in the Brans-Dicke theory, gravitational constant G is
reciprocal of ϕ, i.e.,

G ¼ 1

ϕ
ð49Þ

and

A0

A
¼ 1þ z; ð50Þ

where z is the redshift.
So, from Eqs. (45), (49), and (50), we obtain

G
G0

¼ ð1þ zÞ 1−3γ
ω−ωγ−3γþ2: ð51Þ

It is concluded that variation of the gravitational con-
stant G over redshift z and coupling constant ω follows the
same patterns for both isotropic and anisotropic BD
universes.
This relationship shows that G grows toward the past,

and in fact it diverges at cosmological singularity.
Radar observations, lunar mean motion, and the Viking
landers on Mars [52] suggest that the rate of variation of the
gravitational constant must be very much slow of order
10−12 yr−1. The recent experimental evidence [53,54]
shows that ω > 3300. Accordingly, we consider large
coupling constant ω in this study.
From Eqs. (46) and (49), the present rate of the

gravitational constant is calculated as

Redshift z
0 50 100 150 200

G
ra

vi
ta

tio
na

l C
on

st
an

t G
/G

0

1

1.0002

1.0004

1.0006

1.0008

1.001

1.0012

1.0014

1.0016

1.0018

 = 49590
 = 40000
 = 4000
 = 3300

FIG. 1. Variation of gravitational constant over redshift.
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�
_G
G

�
0

¼ −
1 − 3γ

ω − ωγ − 3γ þ 2
H0; ð52Þ

where H0≊10−12 yr−1.
Equation (51) exhibits the fact that G=G0 varies over ω.

For higher values of ω, G=G0 grows very slow over
redshift, whereas for lower values of ω it grows fast.
The variations of the gravitational constant over the redshift
for different ω’s are shown in Fig. 1. From Fig. 1 and
Eq. (51), it is clear that G=G0 and in turn 1

ϕ are increasing

functions of redshift z for 0 ≤ γ ≤ 1
3
. This implies that ϕ is a

decreasing function of redshift z and so is an increasing
function of cosmic time t. It means the value ofG decreases
with time due to background effects (i.e., scalar field). Also,
as ω → ∞, G=G0 → 1, i.e., G ¼ G0 at ω ¼ ∞, and in this
case the model behaves as an Einstein model in Lyra
geometry.

IV. EXPRESSIONS FOR HUBBLE’S CONSTANT,
LUMINOSITY DISTANCE, APPARENT

MAGNITUDE, ETC

A. Hubble’s Constant

The energy conservation Eq. (36) is integrable for
constant EoS parameter (γ ¼ const), giving rise to the
following expression amongst matter density ρ, average
scale factor aðtÞ ¼ AðtÞ, and the redshift z of the universe:

ρ ¼ ρ0

�
A0

A

�
3ð1þγÞ

¼ ρ0ð1þ zÞ3ð1þγÞ; ð53Þ

where we have used the relation given by Eq. (53).
Now, using Eqs. (38), (47), (50), and (53), we get

following expressions for Hubble’s constant in terms of
scale factor and redshift:

H ¼ H0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−3γÞð5ω−3ωγ−18γþ12Þ

6ðω−ωγ−3γþ2Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0

�
A0

A

�3ω−3ωγ2þ6γþ7
ω−ωγ−3γþ2 þ Ωσ0

�
A0

A

�2ð3ω−3ωγ−6γþ5

ω−ωγ−3γþ2 þΩβ0

s
ð54Þ

and

H ¼ H0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−3γÞð5ω−3ωγ−18γþ12Þ

6ðω−ωγ−3γþ2Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3ω−3ωγ

2þ6γþ7
ω−ωγ−3γþ2 þ Ωσ0ð1þ zÞ2ð3ω−3ωγ−6γþ5

ω−ωγ−3γþ2 þ Ωβ0

r
; ð55Þ

respectively. The graph of Hubble constant against redshift is shown in Fig. 2.

B. Luminosity distance

The luminosity distance which determines the flux of the source is given by

DL ¼ A0rð1þ zÞ; ð56Þ

where r is the spatial coordinate distance of a source. The luminosity distance for metric (16) can be written as [49]

DL ¼ cð1þ zÞ
Z

z

0

dz
HðzÞ : ð57Þ

Therefore, by using Eq. (55), the luminosity distance DL for our model is obtained as

DL ¼
cð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−3γÞð5ω−3ωγ−18γþ12Þ

6ðω−ωγ−3γþ2Þ2
q

H0

Z
z

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3ω−3ωγ

2þ6γþ7
ω−ωγ−3γþ2 þΩσ0ð1þ zÞ2ð3ω−3ωγ−6γþ5

ω−ωγ−3γþ2 þΩβ0

q : ð58Þ

C. Apparent magnitude

The apparent magnitude of a source of light is related to the luminosity distance via the following expression:

m ¼ 16.08þ 5 log10
H0DL

0.026cMpc
: ð59Þ
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Using Eq. (58), we get the following expression for the apparent magnitude in our model

m¼16.08þ5log10

0
B@ð1þzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ð1−3γÞð5ω−3ωγ−18γþ12Þ
6ðω−ωγ−3γþ2Þ2

s Z
z

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þzÞ3ω−3ωγ

2þ6γþ7
ω−ωγ−3γþ2 þΩσ0ð1þzÞ2ð3ω−3ωγ−6γþ5

ω−ωγ−3γþ2 þΩβ0

q
1
CA:

ð60Þ

D. Energy parameters at present

We consider 580 high redshift ð0.015 ≤ z ≤ 1.414Þ SN
Ia supernova data of observed apparent magnitudes along
with their possible errors from the union 2.1 compilation
[55]. In our present study, we have used a technique to
estimate the present values of energy parameters Ωm0, Ωσ0,
and Ωβ0 by comparing the theoretical and observed results
with the help of the R2 formula,

R2
SN ¼ 1 −

P
580
i¼1½ðmiÞob − ðmiÞth�2P

580
i¼1½ðmiÞob − ðmiÞmean�2

: ð61Þ

Here the sums are taken over datasets of observed and
theoretical values of the apparent magnitude of 580
supernovae.
The ideal case R2 ¼ 1 occurs when the observed data

and theoretical function mðzÞ agree exactly. On the basis of
the maximum value of R2, we get the best fit present values
of Ωm, Ωσ, and Ωβ for the apparent magnitude mðzÞ
function as shown in Eq. (60) which is given in Table I.
For this, coupling constant ω is taken as > 40000 and the
theoretical values are calculated from Eq. (60). We have
found the best fit present values of Ωm, Ωσ, and Ωβ are
ðΩmÞ0 ¼ 0.2940, ðΩσÞ0 ¼ 1.701 × 10−14, and ðΩβÞ0 ¼
0.7452 for maximum R2 ¼ 0.9931 with root mean square
error (RMSE) 0.2664, i.e., mðzÞ � 0.2664, and their R2

values only 0.69% far from the best one. Figures 3 and 4
indicate how the observed values of luminosity distances and
apparent magnitudes, respectively, reach close to the theo-
retical graphs for ðΩmÞ0¼0.2940, ðΩσÞ0¼1.701×10−14,
ðΩβÞ0 ¼ 0.7452.

E. Estimation of present values of
Hubble’s constant H0

We present a dataset of the observed values of the
Hubble parameter HðzÞ versus the redshift z with possible

errors in the form of Table II. These data points were
obtained by various researchers from time to time, by using
the different ages approach.
In our model, Hubble’s constant HðzÞ versus redshift z

relation Eq. (55) is reduced to

H2 ¼ ð1.0003ÞH2
0½0.2991ð1þ zÞ3

þ 2.341 × 10−14ð1þ zÞ6 þ 0.7443�; ð62Þ

wherewe have taken ðΩmÞ0¼0.2991, ðΩσÞ0¼2.341×10−14,
ðΩβÞ0 ¼ 0.7443, and the coupling constantω ¼ 49590. The
Hubble Space Telescope (HST) observations of Cepheid
variables [60] provide present values of Hubble constantH0

in the range H0 ¼ 73.8� 2.4 km=s=Mpc. A large number

TABLE I. Outcomes of the R2 test for the best fit curve of apparent magnitude mðzÞ in Eq. (60) and Hubble constant HðzÞ in Eq. (55)
and Figs. 4 and 2. The values of coefficients Ωm, Ωσ , Ωβ, and ω are at 95% confidence of bounds.

Function γ ω Ωm0 Ωσ0 Ωβ0 H0 R2 RMSE

HðzÞ 0 ≤ γ ≤ 1
3

49590 0.2991 2.341 × 10−14 0.7443 71.27 0.8798 16.75
mðzÞ 0 ≤ γ ≤ 1

3
49413 0.2940 1.701 × 10−14 0.7452 � � � 0.9931 0.2664

TABLE II. Hubble’s constant table.

z HðzÞ σH Reference Method

0.07 69 19.6 Moresco et al. [56] DA
0.1 69 12 Zhang et al. [57] DA
0.12 68.6 26.2 Moresco et al. [56] DA
0.17 83 8 Zhang et al. [57] DA
0.28 88.8 36.6 Moresco et al. [56] DA
0.4 95 17 Zhang et al. [57] DA
0.48 97 62 Zhang et al. [57] DA
0.593 104 13 Moresco [58] DA
0.781 105 12 Moresco [58] DA
0.875 125 17 Moresco [58] DA
0.88 90 40 Zhang et al. [57] DA
0.9 117 23 Zhang et al. [57] DA
1.037 154 20 Moresco [58] DA
1.3 168 17 Zhang et al. [57] DA
1.363 160 33.6 Moresco [58] DA
1.43 177 18 Zhang et al. [57] DA
1.53 140 14 Zhang et al. [57] DA
1.75 202 40 Zhang et al. [57] DA
1.965 186.5 50.4 Stern et al. [59] DA
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of datasets of theoretical values of Hubble constant HðzÞ
versus z, corresponding to H0 in the range ð60.45 ≤ H0 ≤
74.21Þ are obtained by using Eq. (62). It should be noted that
the redshift z’s are taken from Table II and each dataset
consists of 19 data points. In order to get the best fit
theoretical dataset of Hubble’s constant HðzÞ versus z, we
calculate the R2 test by using the following statistical
formula:

R2
SN ¼ 1 −

P
19
i¼1½ðHiÞob − ðHiÞth�2P

19
i¼1½ðHiÞob − ðHiÞmean�2

: ð63Þ

Here the sums are taken over datasets of observed and
theoretical values of Hubble’s constants. The observed
values are taken from Table II and theoretical values are
calculated from Eq. (55). Using the above R2 test, we have
found the best fit function of HðzÞ for Eq. (55) which is
mentioned in Table I.
From Table I, one can see that the best fit value of

Hubble constant H0 is 71.27 for maximum R2 ¼ 0.8798
with root mean square error RMSE ¼ 16.75, i.e., H0 ¼
71.27� 16.75 and their R2 values only 12.02% far from the
best one. Figure 2 shows the dependence of Hubble’s
constant with redshift. Hubble’s observed data points are
closed to the graph corresponding to ðΩmÞ0 ¼ 0.2991,
ðΩσÞ0 ¼ 2.341 × 10−14, and ðΩβÞ0 ¼ 0.7443. This vali-
dates the proximity of observed and theoretical values.

V. ESTIMATION OF CERTAIN OTHER PHYSICAL
PARAMETERS OF THE UNIVERSE

A. Matter, dark energy, and
anisotropic energy densities

The matter, anisotropic energy, and dark energy densities
of the universe are related to the energy parameters through
the following equation:

Ωm ¼ ρm
ρc

; Ωσ ¼
ρσ
ρc

; Ωβ ¼
ρβ
ρc

; ð64Þ

where

ρc ¼
3c2H2

8πG
¼ 3c2ϕH2

8π
: ð65Þ

So,

ðρmÞ0 ¼ ðρcÞ0ðΩmÞ0; ðρσÞ0 ¼ ðρcÞ0ðΩσÞ0;
ðρβÞ0 ¼ ðρcÞ0ðΩβÞ0: ð66Þ

Now the present value of ρc is obtained as

ðρcÞ0 ¼
3c2H2

0

8πG
¼ 1.88h20 × 10−29 gm=cm3: ð67Þ
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The estimated value of h0 ¼ 0.7127. Therefore, the present
value of matter and dark energy densities are given by

ðρmÞ0 ¼ 0.562308h20 × 10−29 gm=cm3; ð68Þ

ðρσÞ0 ¼ 4.40108h20 × 10−43 gm=cm3; ð69Þ

ðρβÞ0 ¼ 1.399284h20 × 10−29 gm=cm3: ð70Þ

Here, we have taken ðΩmÞ0¼0.2991, ðΩσÞ0¼2.341×10−14,
and ðΩβÞ0 ¼ 0.7443. General expressions for energy den-
sities are given by

ρ ¼ ρ0

�
a0
a

�
3ð1þγÞ

¼ ρ0ð1þ zÞ3ð1þγÞ; ð71Þ

ρσ ¼
k2c2ϕ3

8π

�
a0
a

�
6

¼ k2c2ϕ3

8π
ð1þ zÞ6; ð72Þ

and

ρβ ¼ ðρcÞΩβ ¼
3c2β2

32π
ϕ: ð73Þ

From above, we observe that the current matter and dark
energy densities are very close to the values predicted by the
various surveys described in the Introduction.

B. Age of the universe

By using the standard formula

t ¼
Z

t

0

dt ¼
Z

A

0

dA
AH

;

we obtain the values of t in terms of the scale factor and
redshift, respectively,

t ¼
Z

A

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−3γÞð5ω−3ωγ−18γþ12Þ

6ðω−ωγ−3γþ2Þ2
q

dA

AH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ðA0

A Þ
3ω−3ωγ2þ6γþ7
ω−ωγ−3γþ2 þ Ωσ0ðA0

A Þ
2ð3ω−3ωγ−6γþ5

ω−ωγ−3γþ2 þ Ωβ0

q ; ð74Þ

t ¼
Z

z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−3γÞð5ω−3ωγ−18γþ12Þ

6ðω−ωγ−3γþ2Þ2
q

dz

ð1þ zÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3ω−3ωγ

2þ6γþ7
ω−ωγ−3γþ2 þ Ωσ0ð1þ zÞ2ð3ω−3ωγ−6γþ5

ω−ωγ−3γþ2 þΩβ0

q : ð75Þ

For ω ¼ 49590, ðΩmÞ0 ¼ 0.2991, ðΩσÞ0 ¼ 2.341 × 10−14,
and ðΩβÞ0 ¼ 0.7443, Eq. (75) gives t0 → 1.3282H−1

0 for
high redshift. This means that the present age of the
universe is t0 ¼ 18.23þ5.60

−3.47 Gyrs as per our model.
From WMAP data, the empirical value of the present
age of the universe is 13.73� 0.13 Gyrs which is closed
to the present age of the universe, estimated by us in this
paper.

Figure 5 shows the variation of time over redshift. At
z ¼ 0 the value ofH0t0 ¼ 1.3282. This provides the present
age of the universe. This also indicated the consistency with
recent observations.

C. Deceleration parameter

From Eqs. (41), (44), and (46), we obtain the expressions
for DP as

q ¼ −
ωþ ωγ þ 1

2ωγ þ 3γ − 2ω − 3
þ ðω − 3ωγ þ 2Þð1 − 3γÞ
2ðω − ωγ − 3γ þ 2Þð2ωγ þ 3γ − 2ω − 3Þ þ

3ðω − ωγ − 3γ þ 2Þ
2ωγ þ 3γ − 2ω − 3

ðγΩm þΩσ þΩβÞ: ð76Þ

Using Eqs. (38), (46), (54), and (55) in Eq. (76), we get the following expression for the deceleration parameter:
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FIG. 5. Plot of H0t versus redshift z.
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q ¼ −
ωþ ωγ þ 1

2ωγ þ 3γ − 2ω − 3
þ ðω − 3ωγ þ 2Þð1 − 3γÞ
2ðω − ωγ − 3γ þ 2Þð2ωγ þ 3γ − 2ω − 3Þ

þ 3ðω − ωγ − 3γ þ 2Þ
2ωγ þ 3γ − 2ω − 3

�
1 − ð1−3γÞð5ω−3ωγ−18γþ12Þ

6ðω−ωγ−3γþ2Þ2
�h

γΩm0ðA0

A Þ
3ω−3ωγ2þ6γþ7
ω−ωγ−3γþ2 þ Ωσ0ðA0

A Þ
2ð3ω−3ωγ−6γþ5Þ

ω−ωγ−3γþ2 þΩβ0

i
h
Ωm0ðA0

A Þ
3ω−3ωγ2þ6γþ7
ω−ωγ−3γþ2 þΩσ0ðA0

A Þ
2ð3ω−3ωγ−6γþ5Þ

ω−ωγ−3γþ2 þ Ωβ0

i : ð77Þ

In terms of redshift, q is given by

q ¼ −
ωþ ωγ þ 1

2ωγ þ 3γ − 2ω − 3
þ ðω − 3ωγ þ 2Þð1 − 3γÞ
2ðω − ωγ − 3γ þ 2Þð2ωγ þ 3γ − 2ω − 3Þ

þ 3ðω − ωγ − 3γ þ 2Þ
2ωγ þ 3γ − 2ω − 3

�
1 − ð1−3γÞð5ω−3ωγ−18γþ12Þ

6ðω−ωγ−3γþ2Þ2
�h

γΩm0ð1þ zÞ3ω−3ωγ
2þ6γþ7

ω−ωγ−3γþ2 þ Ωσ0ð1þ zÞ2ð3ω−3ωγ−6γþ5Þ
ω−ωγ−3γþ2 þΩβ0

i
h
Ωm0ð1þ zÞ3ω−3ωγ

2þ6γþ7
ω−ωγ−3γþ2 þ Ωσ0ð1þ zÞ2ð3ω−3ωγ−6γþ5Þ

ω−ωγ−3γþ2 þΩβ0

i : ð78Þ

As the present phase (z ¼ 0) of the universe is accelerating q ≤ 0, i.e., ä
a ≥ 0, so we must have

Ωβ0 ≥
�
−3γ2 þ 4γ þ 1

2ðγ þ 2Þ þ 3ðγ − 1Þ½−24γ2 þ 8γ þ 4 − ωð9γ3 − 21γ2 þ 7γ − 3Þ�
2ðγ þ 2Þ½ð12γ2 − 36γ þ 24Þω2 þ ð45γ2 − 126γ þ 73Þω − 60γ þ 44�

�
Ωm0 −Ωσ0: ð79Þ

For ω ¼ 49590 and Ωm ¼ 0.2991, Ωσ ¼ 2.341 × 10−14,
0 ≤ γ < 1

3
the minimum value of Ωβ0 is given by Ωβ0 ≥

0.3152 which is consistent with the present observed value
of Ωβ0 ¼ 0.7443. Putting z ¼ 0 in Eq. (79), the present
value of the deceleration parameter is obtained as

q0 ¼ −0.57: ð80Þ

Equation (79) also provides

zc ≈ 0.708 at q ¼ 0: ð81Þ

Therefore, the universe attains the accelerating phase when
z < zc.

Converting redshift into time from Eq. (81), the value of
zc is reduced to

zc ¼ 0.708 ∼ 0.8258H−1
0 Gyrs ∼ 11.33 Gyrs ð82Þ

So, the acceleration must have begun in the past at
11.33 Gyrs. Figure 6 shows how the deceleration parameter
increases from negative to positive over redshift which
means that in the past the universe was decelerating, and at
a instant zc ≅ 708, it became stationary; thereafter it goes
on accelerating.

D. Shear scalar

The shear scalar is given by

σ2 ¼ 1

2
σijσ

ij; ð83Þ

where

σij ¼ ui;j − θðgij − uiujÞ: ð84Þ

In our model

σ2 ¼
_d2

d2
¼ k2ϕ2

A6
¼ ðΩσÞ0H2

0ð1þ zÞ2ð3ω−3ωγ−6γþ5Þ
ω−ωγ−3γþ2 : ð85Þ

From Eq. (85), it is clear that the shear scalar vanishes
as A → ∞.
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E. Relative anisotropy

The relative anisotropy is given by

σ2

ρm
¼ 3Ωσ0H2

0ð1þ zÞ2ð3ω−3ωγ−6γþ5Þ
ω−ωγ−3γþ2

ðρcÞ0Ωm0

: ð86Þ

This follows the same pattern as the shear scalar. This
means that relative anisotropy decreases over the scale
factor, i.e., time.

VI. DISCUSSION OF RESULTS

For the viability of a cosmological model, it is necessary
that it should be consistent with recent observational data.
From the analysis of various observational data, some of
the basic observational parameters Ω0, q0, and H0 read as
the total density parameter, deceleration parameter, and
Hubble constant, respectively, are evaluated. On the basis
of these, it has been established now that the expansion of
the universe is in an accelerating phase at present. Since
there is not enough matter or radiation to lead this
accelerated expansion, theoreticians attributed this to a
mysterious form of energy present in the universe and
termed it as dark energy (DE). The earlier discarded
cosmological constant Λ is reintroduced to incorporate
DE. But the question is, what is the actual nature of this
dark energy and from where does the Λ-term come? To
answer this, various researchers using different approaches,
proposed different models, but despite these, it is still a
mystery for the researchers.
In this order, in the present paper, we have proposed a

cosmological model of the universe in Bianchi type-I
spacetime in the context of an amalgamation of BD theory
and Lyra geometry. The Lyra geometry establishes a term
such as cosmological constant Λ, which otherwise is
simply added in the Einstein field equation by Einstein
and in some other theories. The BD theory is involved by
making the model consistent with Mach’s principle, since
Einstein’s GR and also Lyra’s modification are inconsistent
with it. Here, we have solved the field equations (17) to (21)
by aking EoS parameter γ ¼ const. We have defined the
energy density parameters: Ωm as the matter energy density
parameter, Ωσ as the curvature energy density parameter,
and Ωβ as the dark energy density parameter. Since the
observational data are available in the form of the apparent
magnitude and Hubble constant H with redshift z, there-
fore, we have derived the expressions for the apparent
magnitude mðzÞ and Hubble constant HðzÞ in terms of
energy parametersΩm,Ωσ,Ωβ and redshift z as in Eqs. (60)
and (55), respectively.
For mapping the theoretical model to the observed

universe model we have fitted the curve of the Hubble
constant HðzÞ and apparent magnitude mðzÞ using the R2-
test formula. On the basis of the maximum R2 value, we
obtained the best fit curve for mðzÞ to 580 data of the union
2.1 compilation data of SNe Ia observations [55], with

coefficients Ωm¼0.2940,Ωσ¼1.701×10−14,Ωβ ¼ 0.7452,
and ω ¼ 49413 with 95% confidence of bounds and
maximum R2 ¼ 0.9931. On the other hand, we have found
the best fit curve for HðzÞ with coefficients Ωm ¼ 0.2991,
Ωσ ¼ 2.341 × 10−14, Ωβ ¼ 0.7443, H0 ¼ 71.27, and ω ¼
49590 with the maximum R2 ¼ 0.8798. From these two
fittings (mentioned in Table I) with different sources of
datasets, one can see that the values of density parameters
Ωm,Ωσ,Ωβ are approximately compatiblewith each other. If
we compare these values with the values obtained from the
analysis of the observational datasets, we find that these are
very close to them. From Eq. (47), one can see that the total
energy density parameter is greater than unity, which means
our model supports an open universe.
In Sec. V. 3, we have obtained the expression for the

deceleration parameter qðzÞ in Eq. (78) in terms of density
parameters and redshift z. Figure 6 represents the plot of DP
versus redshift z with coefficients Ωm ¼ 0.2991, Ωσ ¼
2.341 × 10−14, Ωβ ¼ 0.7443, and ω ¼ 49590 for γ ¼ 0.3,
0.15, 0. From Fig. 6, one can see that qðzÞ is an increasing
function of redshift z. A nonzero deceleration parameter qðzÞ
depicts the expansion phase of the universe (decelerating or
accelerating, as its value is positive or negative, respectively).
Here, from Fig. 6, one can see that the signature of q changes
at zc ≈ 0.7080, and this point is called the transition point of
the model. For z > zc ¼ 0.708, q > 0 indicates the universe
is in the decelerating phase, and for z < zc ¼ 0.708, q < 0
indicates the expansion is in the accelerating phase. It means
the expansion of the universe is entered into the accelerating
phase at z ≈ 0.708 [see Eq. (81)] which is equivalent to the
age of 11.33 Gyrs [see Eq. (82)]. The direct empirical
evidence for the transition from past deceleration to present
acceleration is provided by SNe type Ia measurements. In
their preliminary analysis it was found that the SNe data
favor recent acceleration (z < 0.5) and past deceleration
(z > 0.5). More recently, the High-z Supernova Search
(HZSNS) team has obtained zt ¼ 0.46� 0.13 at ð1σÞ
confidence level [61] in 2004 which has been further
improved to zt ¼ 0.43� 0.07 at ð1σÞ confidence level
[61] in 2007. The Supernova Legacy Survey (SNLS)
(Astier et al. [62]), as well as the one recently compiled
by Davis et al. [63] (in better agreement with the flat ΛCDM
model zt ¼ ð2ΩΛ=ΩmÞ13 − 1 ∼ 0.66), yields a transition red-
shift zt ∼ 0.6ð1σÞ. Another limit is 0.60 ≤ zt ≤ 1.18 (2σ,
joint analysis) [64]. Also, in Eq. (80), we see that at z ¼ 0
(denoting the present stage of the universe) q ¼ −0.57,
which is in good agreement with recent observations.
In Sec. V. 2, we have estimated the present age of the

universe, which comes out to be t0 → 1.3282H−1
0 , for

ω ¼ 49590, ðΩmÞ0 ¼ 0.2991, ðΩσÞ0 ¼ 2.341 × 10−14, and
ðΩβÞ0 ¼ 0.7443, which is closed to the empirical value
from WMAP data.
So, we can say that these estimations establish the

viability of our model.
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VII. CONCLUSION

We summarize our results by presenting Table III which
displays the values of cosmological parameters at present
obtained by us. We have found the following main features
of the model:

(i) The derived model is an anisotropic Bianchi type-I
universe which tends to the isotropic flat ΛCDM
model at the late time because of Ωσ0 ≈ 0 and shear
scalar σ2 → 0 as A → ∞.

(ii) The values of density parameters Ωm0, Ωσ0, and Ωβ0

obtained are very close to HðzÞ and SNe Ia data. It
declares the viability of the model.

(iii) The present values of various physical parameters
calculated and presented in Table III are in good
agreement with the recent observations.

(iv) The deceleration parameter shows signature flipping
(from positive to negative with decreasing redshift;
see Fig. 6), i.e., the transition phase at zc ≈ 0.7080
which is in good agreement with various relativistic
models and cosmological surveys.

(v) We have found that the acceleration would have
begun in the past at 11.33þ3.48

−3.16 Gyrs.
(vi) The Lyra geometry with a constant displacement

vector removes the cosmological constant Λ-term
problem naturally.

(vii) The present universe is dominated by scalar field ϕ,
and it is the responsible candidate for the present
behavior of the universe.

These results are in good agreement with the various
observational results described in the Introduction. In the
present model, the energy parameter Ωβ behaves like the
dark energy parameter ΩΛ. The model creates more interest
in researchers to study the behavior of gauge function β and
scalar field ϕ and their coupling in formulation of the
universe model.
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