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We revisit the constraint on the maximum mass of cold spherical neutron stars coming from the
observational results of GW170817. We develop a new framework for the analysis by employing both
energy and angular momentum conservation laws as well as solid results of latest numerical-relativity
simulations and of neutron stars in equilibrium. The new analysis shows that the maximum mass of cold
spherical neutron stars can be only weakly constrained as Mmax ≲ 2.3 M⊙. Our present result illustrates
that the merger remnant neutron star at the onset of collapse to a black hole is not necessarily rapidly
rotating and shows that we have to take into account the angular momentum conservation law to impose the
constraint on the maximum mass of neutron stars.
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I. INTRODUCTION

The first direct detection of gravitational waves from
the coalescence of binary neutron stars (GW170817) [1]
was accompanied with a wide variety of the observa-
tions of electromagnetic counterparts [2]. These obser-
vations give us new constraints for the properties of
neutron stars. Gravitational-wave observation for the late
inspiral phase of the binary neutron stars constrains the
binary tidal deformability in the range of 100≲ Λ ≲ 800
[3,4]. This suggests that the radius of the 1.4 M⊙
neutron star would be in the range between ∼10.5 km
and ∼13.5 km.
Electromagnetic observations, in particular a possible

observation of a gamma-ray burst [5] and ultraviolet-
optical-infrared observation [2,6], are also used for
constraining the maximum mass of neutron stars. If
we assume that the gamma-ray burst was driven from a
remnant black hole surrounded by a torus, the black
hole might have to be formed in a short timescale after
the merger. In this hypothesis, Ref. [7] suggests that the
maximum mass of neutron stars would be smaller than
2.16þ0.17−0.15 M⊙. Reference [8] suggests that the maximum
mass of neutron stars would be 2.16–2.28 M⊙, suppos-
ing that the merger remnant neutron star has the same
mass as that of the inspiraling binary neutron star and is
a rapidly rotating state (note that the actual mass of the
remnant neutron star should be smaller: see Sec. II). The
optical and infrared counterparts also suggest that the
remnant massive neutron star would survive at least for
several hundreds ms [9–12], while the absence of an
extremely bright emission in the ultraviolet and optical
bands at ≲1 d suggests that the remnant formed after
the merger would collapse to a black hole within a

timescale of ∼100 s after the merger [9,10,13]. This
speculation could also give a constraint on the maxi-
mum mass of neutron stars, and Refs [9,10] suggest a
fairly small value of the maximum mass as ≲2.2 M⊙.
However, these constraints are imposed in the
assumption that the merger remnant neutron star is
rapidly rotating at the onset of collapse; the constraint
is imposed without taking into account details of the
angular momentum dissipation process in the post-
merger stage self-consistently.
In this paper, we revisit the constraint on the maximum

mass of cold spherical neutron stars imposed by the
observational results of GW170817. The analysis is done
taking into account the evolution process in the postmerger
phase of binary neutron stars, by carefully analyzing both
energy and angular momentum conservation laws and by
employing solid results of latest numerical-relativity simu-
lations and of rotating neutron stars in equilibrium. In
particular, we show that it is essential to take into account
the angular momentum conservation for this kind of
analysis. We then find that the maximum mass of cold
spherical neutron stars could be as large as∼2.3 M⊙: that is,
the upper bound may be by ∼0.1 M⊙ larger than in our
previous analysis [10]. We thus conclude that a simplified
analysis and an inappropriate assumption lead to an inac-
curate constraint on the maximum mass.
The paper is organized as follows. In Sec. II, we describe

the assumptions imposed in our present analysis and the
resulting basic equations. In Sec. III, we derive the
constraint on the maximum mass of cold spherical neutron
stars. Section IV is devoted to a summary. Throughout this
paper, G and c denote the gravitational constant and speed
of light, respectively.
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II. ASSUMPTIONS AND BASIC EQUATIONS

In this paper, we postulate or assume the following
interpretation for the observational results of neutron-star
merger event GW170817. First, we postulate that a remnant
neutron star was formed after the merger and survived
temporarily as a quasisteady strong neutrino emitter. This
is supported by the observations of electromagnetic
(ultraviolet-optical-infrared) counterparts for the merger
event [6], because the neutrino irradiation from the remnant
neutron stars would play an important role for reducing the
neutron richness and lanthanide fraction of the ejecta (e.g.,
Refs. [6,10–12]). Second, we postulate that the remnant
neutron star collapsed to a black hole within the dissipation
timescale of its kinetic energy via electromagnetic radiation
like the magnetic dipole radiation (i.e., within ∼100 sec).
This is because after the merger of binary neutron stars,
magnetic fields are likely to be significantly amplified in
the remnant neutron star [14] and in the presence of a strong
energy injection comparable to the rest-mass energy of the
ejecta by the electromagnetic radiation associated with
large kinetic energy of the remnant, the ultraviolet-optical-
infrared counterparts for GW170817 would be much
brighter than the observational results [9,10]. However, it
should be noted that if the angular momentum of the
remnant neutron star is dissipated by gravitational radiation
and/or carried away by mass ejection in a short timescale
(e.g., ∼10 s), we may accept the formation of a stable
neutron star, although this possibility is not very likely (see
Sec. III D for a discussion). Third, we assume that the
remnant neutron star at the onset of collapse was rigidly
rotating. This could be a reasonable assumption for the case
that the remnant neutron star was long-lived, because the
degree of the differential rotation is likely to be reduced
sufficiently via long-term angular momentum transport
process (e.g., Ref. [15]). Thus, we suppose that the collapse
of the remnant neutron star should occur at a turning point
(a marginally stable state) along an equilibrium sequence of
rigidly rotating supramassive neutron stars [16,17] (see
Fig. 1 for turning points). Fourth, we postulate that an
appreciable fraction of the baryon of mass ≳0.05 M⊙ was
located outside the black hole at its formation because the
ultraviolet-optical-infrared observations for the GW170817
event indicate that the ejecta mass was likely to be
≳0.03 M⊙ [6]. Finally, in this paper, we assume that
neutron stars are described by simple nuclear matter
equations of state (see the Appendix) and do not suppose
other exotic possibilities like quark stars, twin stars, and
hybrid stars (e.g., Ref. [18]). We also postulate that general
relativity is a high-precision theory for neutron stars and
binary neutron star mergers.
The quantities which are referred to in this paper are as

follows: the baryon rest mass and gravitational mass at the
formation of the binary neutron stars, M� and M, respec-
tively; the torus mass around the remnant neutron star and
ejecta mass at the formation of a black hole,Mout andMeje,

respectively; the total energy radiated by gravitational
waves throughout the inspiral to postmerger phases,
EGW; total energy radiated by neutrinos throughout the
merger to postmerger phases, Eν; and the maximum mass
for cold spherical neutron stars, Mmax. Here, we know that
M ¼ 2.74þ0.04

−0.01 M⊙ with the 90% credible level [1,3]. In
Mout, we include mass of an atmosphere surrounding the
central object. EGW can be divided into two parts: One is
that emitted in the inspiral phase, EGW;i, and the other is
that in the merger and postmerger phases, EGW;p. The
subject of this paper is to constrain the value of Mmax by
using the relations satisfied among these quantities.
The first relation employed is the energy conservation

law together with the rest-mass conservation law, which
gives

M�f ≔ M� −Mout −Meje ¼ fMSMf; ð2:1Þ

where

Mf ≔ M − EGWc−2 − Eνc−2 −Mout −Meje; ð2:2Þ

and M�f and Mf denote the rest mass and gravitational
mass at the onset of collapse of the remnant neutron star,
respectively. In Eq. (2.2), we assumed that the thermal,
kinetic, and gravitational binding energy of the matter
outside the remnant neutron star is much smaller than
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FIG. 1. Several important curves for rigidly rotating neutron
stars in the plane of the gravitational mass (M) as a function of the
central density (ρc). In this example, we employ EOS-6 (see
Sec. III) as the neutron-star equation of state. The lower and upper
solid curves show the sequences of nonrotating neutron stars
(labeled by J ¼ 0) and rigidly rotating neutron stars at mass
shedding limits. The dashed curve shows the sequence of neutron
stars that are marginally stable to gravitational collapse (the
sequence of the turning points); the neutron stars in the lower-
density side of this dashed curve are stable, otherwise they are
unstable. The filled circles denote the predicted points at the onset
of collapse for GW170817 in this model equation of state with
Mout þMeje ¼ 0.048, 0.096, and 0.150 M⊙ (from higher to
lower mass: see Sec. III).
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(at most ∼10% of) its rest-mass energy. This could affect
the values of Mf, Mout, and Meje only by ∼0.01 M⊙. We
ignore the dissipation by electromagnetic radiation like the
magnetic dipole radiation because in a short timescale of
≲10 s which we consider here, the effect is likely to be
negligible.
In Eq. (2.1), we denoted the ratio of the baryon rest mass

to the gravitational mass for the remnant neutron star at the
onset of collapse by fMSð≔M�f=MfÞ. For cold spherical
neutron stars at a marginally stable state to collapse, the
ratio of the baryon rest mass to the gravitational mass is
≈1.19� 0.05 (see Appendix). For rigidly rotating neutron
stars near the marginally stable state, this value is smaller
by a factor of up to ∼0.02, and, thus, it depends only
weakly on angular momentum (cf. Fig. 2 of Sec. III).
We also denote the ratio of M� to M as f0 ≔ M�=M.

Since the ratio of the baryon rest mass to the gravitational
mass is ∼1.08–1.14 for realistic neutron stars with mass
1.2–1.6 M⊙, f0 should be ≈1.11� 0.03 (see Appendix).
For larger radii of neutron stars, f0 and fMS are in

general smaller. It should be cautioned that the values of f0
and fMS depend on the equation of state and their deviation
is not negligible for imposing the constraint toMmax within
an error of 0.1 M⊙. Thus, in the analysis for constraining
Mmax, we must not use particular values for them.
By eliminating M� from Eqs. (2.1) and (2.2), we finally

obtain

M

�
1−

f0
fMS

�

¼EGWc−2þEνc−2þðMoutþMejeÞ
�
1−

1

fMS

�
: ð2:3Þ

From Eqs. (2.2) and (2.3), we also obtain the gravitational
mass at the onset of collapse as

Mf ¼
f0
fMS

M −
Mout þMeje

fMS
: ð2:4Þ

As we show in the Appendix, for cold spherical neutron
stars of a variety of equations of state with the constraint
that the tidal deformability of 1.35 M⊙ neutron stars, Λ1.35,
is smaller than 1000, the value of f0=fMS is approximately
0.920� 0.025. For this range, the left-hand side of
Eq. (2.3) is found to be in a wide range as

M

�
1 −

f0
fMS

�
¼ 0.219þ0.073

−0.069 M⊙; ð2:5Þ

and also,

Mf ¼ 2.521þ0.106
−0.077 M⊙ −

Mout þMeje

fMS
: ð2:6Þ

We note that fMS depends only weakly on the angular
momentum, as we find in Sec. III. Equations (2.5) and (2.6)

clearly illustrate that the dissipated energy and the gravi-
tational mass at the onset of collapse have uncertain of
approximately �0.1 M⊙ because the equation of state is
not well constrained. As we show in the Appendix, the
values of f0=fMS are correlated with M−1

max. Thus, smaller
values of Mmax lead to larger values of Mf and to smaller
energy dissipated from the system (see Sec. III).
The electromagnetic (ultraviolet-optical-infrared) counter-

part observations for GW170817 show that the ejecta mass
would be approximately Meje ≈ 0.03–0.05 M⊙ (e.g.,
Ref. [6]). This value is also supported by numerical simu-
lations for a neutron star surrounded by a torus [15,19,20].
Numerical simulations (e.g., Refs. [10,15,21]) also indicate
that the mass of the torus around the remnant neutron star
would be ∼0.1–0.2 M⊙ for its early stage, and reduce to
∼0.02–0.05 M⊙ for its late stage τ ≳ 1 s due to the mass
ejection and mass accretion onto the remnant neutron star.
Thus, Mout depends on the lifetime, τ, of the remnant
neutron star. Also, at the formation of a black hole, it is
decreased by ≳50% because a substantial fraction of the
torusmatter in the vicinity of the central object is swallowed
by the black hole at its formation. Thus, we suppose
0.02 M⊙ ≤ Mout ≤ 0.10 M⊙ at the collapse of the remnant
neutron star in the following. ForMout ¼ 0.06� 0.04 M⊙,
ðMout þMejeÞ=fMS is approximately ð0.083� 0.042ÞM⊙
and ðMout þMejeÞð1 − 1=fMSÞ is ð0.016� 0.008ÞM⊙,
which is much smaller than the value of Eq. (2.5). Using
this result, we approximately obtain

Mf ¼ 2.44þ0.15
−0.12 M⊙; ð2:7Þ

and

ðEGW þ EνÞc−2

¼ M

�
1 −

f0
fMS

�
− ðMout þMejeÞ

�
1 −

1

fMS

�

¼ ð0.20� 0.08Þ M⊙: ð2:8Þ

Here, the large (small) side of the uncertainty inMf comes
basically from the large (small) values of f0=fMS, i.e., for
small (large) values of EGW þ Eν. Taking into account the
uncertainty in these unknown values enlarges the uncer-
tainty in the estimate of Mf compared with our previous
estimation [10]. It should be also mentioned that the central
value of Mf is by ∼0.15 M⊙ smaller than the value
estimated in our previous paper [10]. The reason for this
is that we underestimated the values of EGW þ Eν in the
previous paper.
ðEGW þ EνÞc−2 is found to be typically ∼0.2 M⊙ and at

least larger than ≈0.12 M⊙. Numerical relativity simula-
tions (e.g., Ref. [22]) have shown that EGW;i is well
constrained to be 0.035–0.045 M⊙c2 for Λ1.35 ≤ 1000.
On the other hand, they show that EGW;p depends strongly
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on the equation of state. It could be ∼0.125 M⊙c2 ≈ 2.5 ×
1053 erg for the maximum case [22]. Note that EGW;p

should be smaller than the rotational kinetic energy of the
remnant neutron star (see also Table II of Sec. III),

T ¼ 1

2
IΩ2 ≈ 2.3 × 1053 erg

�
MMNS

2.6 M⊙

��
RMNS

15 km

�
2

×

�
Ω

104 rad=s

�
2

; ð2:9Þ

where MMNS, RMNS, and Ω are the gravitational mass,
equatorial circumferential radius, and angular velocity of
the remnant neutron star, and we assumed that it is rigidly
rotating (and hence its angular momentum is written as
2T=Ω). We note that the maximum angular velocity is
approximately written as (see also Table II)

ΩK ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMMNS=R3

MNS

q

≈1.01×104 rad=s

�
MMNS

2.6M⊙

�
1=2

�
RMNS

15 km

�
−3=2

:

ð2:10Þ

As we find in the following, one of the key parameters
for determining the angular momentum at the onset of
collapse of the remnant neutron star is EGW;p. While EGW;p

could be ∼0.125 M⊙c2 if most of the rotational kinetic
energy is dissipated by gravitational radiation, the post-
merger evolution process is highly uncertain. If an efficient
angular momentum transport works in the remnant
neutron star and the degree of its nonaxisymmetric defor-
mation is reduced quickly, EGW;p would be of order
0.01 M⊙c2 [23]. These facts together with Eq. (2.5) suggest
that an appreciable amount of energy of ∼0.1 M⊙c2 ≈ 2 ×
1053 erg would be dissipated by the emission of neutrinos
until the onset of collapse to a black hole, unless the remnant
neutron star radiates gravitational waves of energy compa-
rable to T. Note that the value of Eν ∼ 1053 erg is quite
natural if the remnant neutron star is long-lived with its
lifetime τ ∼ 1 s because numerical-relativity simulations
have shown that the neutrino luminosity from the remnant
neutron star, Lν, is of order 1053 erg=s (e.g., Refs. [24–26]).
By contrast, if the remnant neutron star is relatively
short-lived with τ ∼ 100 ms, Eν would be of Oð1052 ergÞ
(i.e., ≲0.01 M⊙c2), and, for this case, we have to employ a
large value ofEGW;p to satisfy Eq. (2.8) (see Sec. III for more
specific examples).
Since the remnant neutron star is rotating, the gravita-

tional mass at the onset of collapse has to be larger than the
maximum mass,Mmax, for cold spherical neutron stars by a
factor of fr ¼ Mf=Mmax > 1. Here, the value of fr is
determined at a turning point along an equilibrium
sequence of rigidly rotating neutron stars. If we could

obtain the value of fr together with Mf, we can determine
the value ofMmax. For the change of fr by 0.1,Mmax could
be changed by ≈0.2 M⊙. Thus, for constrainingMmax, e.g.,
within the 0.1 M⊙ error, we have to determine the value of
fr within an error of ∼0.05. For the maximally rotating
neutron star along the turning point sequence, the value of
fr is known to be ∼1.2 [17,27] (see also Fig. 2 of Sec. III)
and this value has been often used for guessing the
maximum mass of cold spherical neutron stars [7–10].
However, the remnant neutron star is not always rotating in
such a high rotation speed as shown in Sec. III: In setting
fr ≈ 1.2, one would assume a particular angular momen-
tum of the remnant neutron star neglecting the angular
momentum conservation. In addition, the maximum value
of fr depends on the equation of state (see Fig. 2 of
Sec. III). It should be cautioned again that in the analysis
for constraining the value of Mmax, we must not a priori
employ a particular value for fr.
For inferring the angular momentum of the remnant

neutron star at the onset of collapse, we have to seriously
analyze the dissipation of angular momentum in the
postmerger phase. Let J0 and Jf be the angular momentum
at the onset of merger and at the onset of collapse of the
remnant neutron star to a black hole, respectively. Then, we
obtain

Jf ¼ J0 − JGW;p − Jν − Jout − Jeje; ð2:11Þ

where JGW;p, Jν, Jout, and Jeje are the angular momentum
carried away (after the merger) by gravitational radiation,
by neutrinos, angular momentum of the torus surrounding
the remnant black hole at its formation, and angular
momentum of ejecta (at the black-hole formation). In the
following, we give or determine these quantities based on
the results of numerical-relativity simulations. We also note
that by angular momentum transport processes from the
remnant neutron star to the surrounding matter, the angular
momentum of torus and ejecta in general increases with
time in the postmerger phase.
Since gravitational waves emitted in the postmerger

phase are dominated by a fundamental mode of its
frequency f ¼ 2–4 kHz [28,29], JGW is approximately
written as

JGW;p≈
EGW;p

πf

≈9.5×1048 ergs

�
EGW;p

0.05M⊙c2

��
f

3.0 kHz

�
−1
:

ð2:12Þ

Our latest numerical-relativity simulation confirms that this
relation is satisfied within 1% accuracy [30]. Here, for the
binaries of total mass ≈2.7 M⊙, f ≈ 3.6, 3.1, and 2.5 kHz
for R1.60 ≈ 11; 12, and 13.5 km [28,29], with RM the radius
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of a spherical neutron star of its gravitational mass M (in
units of M⊙). Thus, for R1.35 ≈ R1.60 ≲ 13.5 km (this
constraint was given from the observational result of the
tidal deformability of GW170817 [1,3]), f ≳ 2.5 kHz. In
this paper, we infer the value of f by using the relation of
Eq. (3) of Ref. [28].
Since the angular momentum of neutrinos is

dissipated due to the fact that the emitter (remnant neutron
star) is rotating, Jν is written approximately by Jν ≈
ð2=3Þc−2R2

MNSΩEν [31], and, thus,

Jν ≈ 3.0 × 1048 erg s

�
Eν

0.1 M⊙c2

��
RMNS

15 km

�
2

×

�
Ω

104 rad=s

�
: ð2:13Þ

We note that the value of Jν described here agrees with the
results of a numerical-relativity simulation within a factor
of 2 [21]. Equation (2.13), in comparison with Eq. (2.12),
illustrates that this is a non-negligible but minor effect for
dissipating the angular momentum (thus, the error would be
also a minor effect).
Jout is associated with the typical radius of the torus

surrounding the remnant neutron star (at the onset of
collapse). Denoting it by Rout, it is approximated by
Jout ≈Mout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMMNSRout

p
, and, thus,

Jout ≈ 5.8 × 1048 erg s
�

Mout

0.05 M⊙

��
Rout

100 km

�
1=2

×

�
MMNS

2.6 M⊙

�
1=2

: ð2:14Þ

Here Rout would be fairly small ∼50 km in the early
evolution stage of the accretion torus. However, during
its long-term viscous evolution as well as angular momen-
tum transport from the remnant neutron star, the typical
radius increases to be≳100 km for τ ≳ 300 ms [15], which
shows Rout ≈ 40þ 100ðτ=1 sÞ1=2 km for τ ≲ 1.5 s and, for
a longer term, Rout approaches ∼200 km.
Jeje is associated with the location at which the mass

ejection occurs. Denoting the typical location by Reje, it is
approximated by Jeje ≈Meje

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMMNSReje

p
, and, thus,

Jeje ≈ 6.9 × 1048 erg s

�
Meje

0.05 M⊙

��
Reje

140 km

�
1=2

×

�
MMNS

2.6 M⊙

�
1=2

: ð2:15Þ

For long-lived remnant neutron stars which we consider in
this paper, mass ejection mainly occurs through the long-
term viscous process in the postmerger stage from an
accretion torus [15,19,20] with mass ∼0.05 M⊙, while for
dynamical mass ejection that occurs at merger, the matter

would be ejected at Reje ∼ 30 km with mass ≲0.01 M⊙.
(Note that in Meje both contributions are included.)
Thus, for Jeje, only the postmerger mass ejection could
contribute dominantly to the angular momentum loss. Since
this mass ejection is driven from the torus, we simply set
Rout ¼ Reje in this paper; that is, we employ a relation as
Jout þ Jeje ¼ ðMout þMejeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMMNSRout

p
. Here, we may

overestimate Jeje because the dynamical ejecta would have
smaller angular momentum than the postmerger one.
However, since the mass of the dynamical ejecta would
be much smaller than the postmerger ejecta, the degree of
the overestimation would be minor.
We note that the error for the estimate in Jout þ Jeje

associated with the uncertainty in Rout would be of order
10%. This error will be reflected in Mout þMeje for
determining it (see Sec. III). However, its error size does
not affect our final conclusion.
Thus, besides J0, the quantities in the right-hand side of

Eq. (2.11) are related to EGW, Eν,Mout, andMeje with f, Ω,
MMNS, and Rout as given parameters.
In addition, we have an important relation. From the

definitions already shown, we obtain

frMmax ¼ Mf ¼ f0
fMS

M −
Mout þMeje

fMS
: ð2:16Þ

Thus, for a given value of fr and ðMout þMejeÞ=fMS,
f0=fMS becomes a linear function of Mmax as

f0
fMS

¼ Mout þMeje

fMSM
þ frMmax

M
: ð2:17Þ

This becomes a condition that determines a particular state
of the remnant neutron star at the onset of collapse for a
given equation of state. This equation plays an important
role in Sec. III.
Note that for larger values of Mf, EGW;p þ Eν should be

smaller, and, thus, the value of fr should be larger because
the collapse to a black hole should occur before a
substantial fraction of angular momentum (and energy)
is dissipated. Remembering the fact that Mf is correlated
with M−1

max for plausible equations of state (see Appendix),
we then find that for the larger value of Mmax, the required
value of fr is smaller. This fact clarifies that we cannot
a priori give the value of fr for constraining Mmax.

III. ANALYSIS BASED ON NUMERICAL
MODELING OF NEUTRON STARS AND
BINARY NEUTRON STAR MERGERS

A. Preparation

In the analysis of Sec. II, we have several unknown
parameters; f0, fMS, EGW;i, EGW;p, Eν, f, Ω, MMNS, Mout,
Meje, RMNS, Rout, and J0. Among them, f0, fMS, Ω,MMNS,
and RMNS for a given equation of state are calculated (at
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least with good approximation) by constructing equilibrium
states of nonrotating and rotating neutron stars. Also,
EGW;i, f, Mout, Meje, and Rout are approximately obtained
with the help of numerical-relativity simulations, as already
mentioned in Sec. II. J0 is also obtained accurately with the
help of numerical relativity. The dependence of J0 on total
binary massm0, symmetric mass ratio [hereafter referred to
as ηð≤1=4Þ], and R1.35 is determined by the results by
numerical relativity simulations [30] as

J0 ≈Gc−1m2
0η½a1 − a2δηþ a3R̄3

1.35ð1þ a4δηÞ�; ð3:1Þ

where R̄1.35 denotes R1.35 in units of 10 km,
δη ¼ η − 1=4ð≤0Þ, a1 ≈ 3.32, a2 ≈ 31, a3 ≈ 0.137, and
a4 ≈ 27. We note that J0 increases with the increase of
R1.35 and with the decrease of η because the merger occurs
at a more distant orbit for larger stellar radii and for more
asymmetric binaries.
Equation (3.1) shows that J0 is in the range between

≈5.8 × 1049 erg s and ≈6.3 × 1049 erg s for neutron stars
with R1.35 ¼ 10.5–14 km, total mass m0 ≈ 2.74 M⊙, and
η ¼ 0.244–0.250 (i.e., mass ratio 0.73–1.00). The value of
J0 is by ∼1 × 1049 erg s larger than the maximum angular

momentum of rigidly rotating neutron stars (see Fig. 2) and
2T=Ω forΩ ≈ΩK [see Eq. (2.9)], and this fact suggests that
the remnant neutron star would initially have a differ-
entially rotating state with the maximum angular velocity
slightly larger than ΩK , as has been found in many
numerical-relativity simulations since Ref. [32].
In contrast to J0 and EGW;i, EGW;p and Eν are not

determined into a narrow range although EGW;p þ Eν is
constrained by Eq. (2.8) for given values of f0=fMS, EGW;i,
and ðMout þMejeÞ=fMS fairly well. We note that Eν is
associated with the lifetime of the remnant neutron star of
GW170817, τ, as Eν ≈ Lντ. Here, the neutrino luminosity
is Lν ≳ 1053 erg=s [21], but τ is not very clear. Thus, we
consider EGW;p and Eν as values to be determined in the
present analysis.
In the following, we constrain the value of Mmax by

analyzing rigidly rotating neutron stars at marginally stable
states (at turning points) for several equations of state. For
computing rigidly rotating neutron stars in equilibrium, we
employ a piecewise polytropic equation of state, for which
the details are described in Appendix. The selected equa-
tions of state used in this section are listed in Table I. We
selected many equations of state rather randomly for each
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FIG. 2. Gravitational mass,M, ratio ofM toMmax (fr), ratio of baryon rest mass to the gravitational mass, fMS, and rotational kinetic
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sequence) with selected equations of state (see Table I). Note that M at J ¼ 0 is Mmax.
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range of Mmax. For the analysis, we only employ the
equations of state with which 2 M⊙ neutron stars [33] are
reproduced, Λ1.35 ≤ 1000, and the sound speed is always
smaller than the speed of light for stable neutron stars. We
ignore the thermal effect of the remnant neutron star for
constructing equilibrium rotating neutron stars because it is
a minor contribution to the neutron-star properties if we
consider its age to be of order 0.1–1 s [34].
Figure 2 displays several key quantities as functions

of the angular momentum, J, along the sequences of the
marginally stable neutron stars (cf. the dashed curve of
Fig. 1). Here, the neutron stars with J ¼ 0 denote the
marginally stable state for the spherical neutron stars of
mass Mmax, and at J ¼ Jmax, the neutron stars are at the
mass-shedding limit; the angular velocity at the equatorial
surface is equal to the Keplerian one. Table II also lists
several quantities of a rigidly rotating neutron star at a
turning point and mass shedding limit.

Figure 3 displays the relation between f0=fMS andMmax
for marginally stable rigidly rotating neutron stars with
several piecewise polytropic equations of state. Here, f0 is
calculated for binaries of mass (1.35⊙, 1.40 M⊙) and
(1.20⊙, 1.55 M⊙), but the values for the two cases are
different only by 0.2–0.3% (see the results in Appendix),
and thus, the difference in f0 is not very important in the
following. The uncertainty in Fig. 3 reflects the variation of
fMS for the different angular momentum of the marginally
stable rotating neutron stars: As found from Fig. 2, f0=fMS
is smallest for J ¼ 0 and largest for J ¼ Jmax. The tilted
lines in Fig. 3 show the relation of Eq. (2.17) for fr ¼
1.20 − 0.02 × i up to 1.00 (from left to right) with
ðMout þMejeÞ=fMS ¼ 0.04 M⊙ and 0.08 M⊙, while M is
fixed to be 2.74 M⊙. We note that for a given value of
Mmax, the value of f0=fMS is in general larger for the larger
values of Λ1.35, and, hence, the upper bound is determined
by the constraint for Λ1.35 (see Appendix).

TABLE I. Selected piecewise polytropic equations of state and important quantities for spherical neutron stars. The units of the mass
and radius are M⊙ and kilometer, and that of p is dyn=cm2. fMS is the ratio of the baryon rest mass to Mmax for the maximum mass
neutron star. f0 shown here is M�=M for binaries of mass 1.35 M⊙ and 1.40 M⊙. f denotes the dominant frequency of postmerger
gravitational waves predicted approximately by the formula in Ref. [28].

Model Γ2 Γ3 log10 p Mmax fMS R1.60 R1.35 Λ1.35 f0 f (kHz)

EOS-1 3.15 2.81 34.350 2.075 1.200 11.27 11.30 366.6 1.113 3.45
EOS-2 2.60 2.84 34.550 2.106 1.172 12.67 12.94 746.0 1.092 2.71
EOS-3 3.45 2.70 34.300 2.113 1.208 11.17 11.12 348.2 1.117 3.50
EOS-4 3.80 2.80 34.200 2.147 1.221 10.91 10.80 302.8 1.122 3.62
EOS-5 2.70 2.78 34.575 2.176 1.177 12.88 13.06 821.9 1.092 2.65
EOS-6 3.00 2.80 34.500 2.212 1.196 12.21 12.25 599.0 1.102 3.01
EOS-7 3.15 2.81 34.475 2.246 1.204 12.06 12.04 555.7 1.105 3.08
EOS-8 3.65 2.78 34.325 2.252 1.222 11.39 11.27 395.2 1.116 3.40
EOS-9 3.05 2.80 34.550 2.306 1.200 12.57 12.56 720.7 1.099 2.74
EOS-10 2.85 2.85 34.625 2.328 1.189 13.24 13.29 967.6 1.092 2.55
EOS-11 3.80 2.50 34.375 2.353 1.229 11.66 11.50 459.7 1.113 3.27
EOS-12 3.25 2.78 34.575 2.433 1.212 12.68 12.60 757.8 1.100 2.70

TABLE II. Key quantities for rigidly rotating neutron stars at the maximum mass along the marginally stable sequences for selected
equations of state listed in Table I. MMS;R: gravitational mass, M�MS;R: baryon rest mass, JMS;R: angular momentum, ΩMS;R: angular
velocity, TMS;R: rotational kinetic energy, and RMS;R: circumferential radius at the equatorial surface.

Model MMS;R ðM⊙Þ M�MS;R=MMS;R MMS;R=Mmax JMS;R (1049 erg s) ΩMS;R (104 rad=s) TMS;R (1053 erg) RMS;R (km)

EOS-1 2.497 1.185 1.203 3.875 1.160 2.247 13.04
EOS-2 2.474 1.161 1.175 3.567 1.055 1.880 13.74
EOS-3 2.570 1.193 1.216 4.183 1.155 2.415 13.15
EOS-4 2.631 1.203 1.225 4.492 1.192 2.677 13.11
EOS-5 2.574 1.167 1.183 3.919 1.028 2.014 14.19
EOS-6 2.649 1.182 1.198 4.315 1.077 2.323 13.87
EOS-7 2.707 1.188 1.205 4.580 1.090 2.496 13.93
EOS-8 2.757 1.203 1.224 4.932 1.143 2.819 13.73
EOS-9 2.770 1.185 1.208 4.756 1.049 2.494 14.33
EOS-10 2.774 1.176 1.191 4.668 1.007 2.349 14.79
EOS-11 2.907 1.209 1.234 5.548 1.099 3.049 14.26
EOS-12 2.945 1.195 1.210 5.504 1.039 2.858 14.77
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For rigidly rotating neutron stars, the upper limit of fr is
approximately 1.2 as found from Fig. 2 (see also Table II).
Thus, the left region of the line of fr ¼ 1.2 in Fig. 3 is
prohibited in our model. That is, for the equations of state
with small values of Mmax ¼ 2.0–2.1 M⊙, the remnant
neutron star cannot achieve the rigidly rotating state at the
onset of collapse (we show the examples in Sec. III C). For
such equations of state, the remnant neutron star would
collapse before the rigidly rotating state is achieved; i.e., its
lifetime is shorter than the angular momentum transport
timescale in the remnant neutron star. It is natural to
consider that the lifetime of the remnant neutron star with
such equations of state is fairly short ≪1 s.
For the right region of the line of fr ¼ 1, on the other

hand, the collapse cannot occur, because the mass of the
remnant neutron star is smaller than Mmax. Thus, for such
equations of state, a stable neutron star should be the final
outcome. As mentioned in the first paragraph of Sec. II, if
such a stable remnant is formed in GW170817 and has
large rotational kinetic energy ≳1052 erg, an energy injec-
tion to ejecta through electromagnetic radiation like the
magnetic dipole radiation would occur and be inconsistent
with the observational results for the electromagnetic
counterparts of GW170817 [9,10]. However, if the rota-
tional kinetic energy is dissipated or removed in a short
timescale (≲100 s), e.g., by gravitational radiation and
neutrino emission, we may accept the formation of a stable
neutron star [35].
Figure 3 shows an important fact as follows: If the

maximum mass of spherical neutron stars in nature is
relatively small ≲2.1 M⊙, the collapse would occur for the
remnant neutron star in a rapidly rotating state with
fr ≈ 1.2. On the other hand, if the maximum mass of
spherical neutron stars is relatively large ≳2.3 M⊙, the
collapse would not occur for a rapidly rotating remnant
neutron star but for fr ≲ 1.05. Then the next issue is

whether we can find a self-consistent solution for such
collapses, because fr is determined by the angular momen-
tum dissipation process in the postmerger stage. In the
following, we show several realistic scenarios for this
process in some of equations of state that we select.

B. Method

For each equation of state, we try to find a solution that
satisfies the conservation relations of energy and angular
momentum self-consistently. We will have a brief summary
of our model by analyzing the degree of freedoms (d.o.f.) of
all unknown variables here. There are in total 14 variables
in the conservation law of rest mass, energy, and angular
momentum [cf. Eq. (2.1), (2.2), and (2.11)]. Nevertheless,
M is determined by observation and M� is related to M by
factor f0 which could be determined once a model equation
of state is assumed. Similarly, according to the marginally
stable solution results, Mf and Jf are fixed once M�f is
fixed and an equation of state is given. Hence, there is only
one d.o.f. amongMf,M�f, and Jf. J0 is given by Eq. (3.1).
There are 8 other variables left: Eν and Jν are related by
Eq. (2.13), EGW;p and JGW;p are related by Eq. (2.12),
Meje þMout and Jeje þ Jout are related by Eq. (2.15) and
(2.14). As a consequence, there are only 3 d.o.f. in the
remaining 8 variables. In total, there are 4 d.o.f. and we
have 3 equations (laws of conservation). Once we have
input one parameter, such as Meje þMout, and a model
equation of state is given, all the other quantities related to
the properties of the star at the moment of collapse, the total
energy of neutrino emission, and gravitational wave in the
postmerger phase could be solved (cf. Table. III). With this
analysis we can tell whether the assumed equation of state
model is consistent with the observation; for instance, the
obtained values of Eν and EGW;p have to be positive and
within a plausible range.

 2  2.1  2.2  2.3  2.4  2.5

6

2

1 5

10

9

12

8

4

11

3

7

f 0
 / 

f M
S

Mmax (solar mass)
 2  2.1  2.2  2.3  2.4  2.5

6

2

1 5

10

9

12

8

4

11

3

7

f 0
 / 

f M
S

Mmax (solar mass)

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

FIG. 3. Relation between f0=fMS andMmax for marginally stable rigidly rotating neutron stars with several equations of state listed in
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In this analysis, we employ Mf, RMS (circumferential
radius), and ΩMS (angular velocity) for rigidly rotating
neutron stars at turning points as MMNS, RMNS, and ΩMNS,
respectively. fMS is also found from a solution of rigidly
rotating neutron stars at turning points. f0 is calculated
from the solutions of spherical neutron stars of mass
1.35–1.40 M⊙ or 1.20–1.55 M⊙. EGW;i is set to be
ð0.040� 0.005Þ M⊙c2. J0 is determined by Eq. (3.1) for
a given value of R1.35 and η. Here, the variation in η by
�0.003 systematically changes the values of EGW;p and Eν

only by at most �0.007 M⊙ and ∓0.007 M⊙. Hence, we
only show the results with η ¼ 0.247. Since the depend-
ence of Jout þ Jeje on Rout is not very strong (compared

with the dependence on Mout þMeje), we fix Rout to be
140km.On the other hand,Mout þMeje has a strong effect on
the solution. Thus,wevary it in awide range (e.g., see Fig. 4).
With these preparations, Eq. (2.17) can be considered as

a relation between fr and fMS. Here, in Eq. (2.17), M is
given (2.74 M⊙), f0 is determined for a given equation of
state and each mass of binary, and Mout þMeje is an input
parameter. An equilibrium sequence of rigidly rotating
neutron stars along the turning points for a given equation
of state also gives another monotonic relation between
these two variables as found in Fig. 2. Thus, we first
determine fr and fMS by solving a simultaneous equation
composed of two independent relations and specify a

TABLE III. Predicted states of rigidly rotating neutron stars at the onset of collapse for the GW170817 event with several equations of
state. The given values of Mout þMeje are 0.048 M⊙ (upper), 0.096 M⊙ (middle), and 0.150 M⊙ (lower), respectively. Mf and Jf are
shown in units of M⊙ and 1049 erg s, respectively. The units of EGW;p and Eν are M⊙c2. “…” means that no solution of fr and f0=fMS

exists for the corresponding equations of state. Associated with the uncertainties in J0 and EGW;i by�0.1 × 1049 erg s, and 0.005 M⊙c2,
respectively, an uncertainty, typically, of �0.007 M⊙c2 and ∓0.012 M⊙c2, exists in EGW;p and Eν, respectively. * shows that only
solutions with negative values of Eν are obtained. For EOS-12, no solution for fr and f0=fMS exists forMout þMeje ≳ 0.058 M⊙ and no
solution with the positive value of Eν exists for Mout þMeje ≤ 0.15 M⊙, so that we do not describe the results.

Model f0=fMS fr Mf Jf EGW;p Eν

EOS-1 … … … … … …
EOS-2 … … … … … …
EOS-3 0.935 1.194 2.52 3.89 0.076 0.053
EOS-4 0.931 1.169 2.51 3.71 0.091 0.049
EOS-5 0.936 1.160 2.52 3.59 0.082 0.047
EOS-6 0.930 1.134 2.51 3.35 0.102 0.043
EOS-7 0.926 1.111 2.50 3.11 0.118 0.038
EOS-8 0.921 1.103 2.48 3.01 0.130 0.037
EOS-9 0.922 1.077 2.49 2.65 0.130 0.037
EOS-10 0.923 1.069 2.49 2.51 0.130 0.034
EOS-11 0.910 1.042 2.45 1.98 0.194 0.004

EOS-1 0.939 1.201 2.49 3.84 0.034 0.078
EOS-2 … … … … … …
EOS-3 0.935 1.174 2.48 3.62 0.051 0.072
EOS-4 0.930 1.150 2.47 3.43 0.067 0.068
EOS-5 0.935 1.140 2.48 3.30 0.064 0.059
EOS-6 0.929 1.114 2.46 3.04 0.083 0.057
EOS-7 0.924 1.092 2.45 2.78 0.100 0.051
EOS-8 0.920 1.084 2.44 2.67 0.112 0.051
EOS-9 0.920 1.058 2.44 2.26 0.118 0.045
EOS-10 0.921 1.050 2.44 2.09 0.120 0.040
EOS-11 0.908 1.023 2.41 1.44 0.188 0.006

EOS-1 0.938 1.178 2.44 3.54 0.008 0.098
EOS-2 0.940 1.162 2.45 3.39 0.024 0.079
EOS-3 0.934 1.151 2.43 3.31 0.025 0.092
EOS-4 0.929 1.127 2.42 3.10 0.041 0.088
EOS-5 0.935 1.118 2.43 2.96 0.046 0.071
EOS-6 0.928 1.092 2.42 2.68 0.064 0.070
EOS-7 0.923 1.070 2.40 2.38 0.083 0.063
EOS-8 0.918 1.062 2.39 2.25 0.094 0.064
EOS-9 0.918 1.037 2.39 1.75 0.109 0.051
EOS-10 0.920 1.028 2.39 1.54 0.114 0.043
EOS-11* … … … … … …
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model for the rigidly rotating neutron star at a turning point.
(We note that for some equations of state, e.g., EOS-12, the
solution does not exist.) We can then obtain Jf, Mf, ΩMS,
and RMS for this model using the monotonic relations of
fMSðJfÞ, MfðJfÞ, ΩMSðJfÞ, and RMSðJfÞ: cf. Fig. 2.
We can subsequently determine EGW;pþEν and

JGW;p þ Jν from Eqs. (2.8) and (2.11). For Eq. (2.11),
we employ J0, MMNSð¼MfÞ, Rout, RMNSð¼RMSÞ, f, and
Ωð¼ΩMSÞ for each equation of state. Then these two
relations, EGW;p þ Eν ¼ const and JGW;p þ Jν ¼ const,
constitute a simultaneous equation for EGW;p andEν because
wehave alreadygiven thevalues ofRMNS,Ω, andf,which are
necessary to relateJGW;p andJν toEGW;p andEν, respectively.
Thus, these two quantities are immediately determined, if the
solution exists. (Again we note that for some equations of
state, a physical solution does not exist: see below.)

C. Results

Table III shows the solutions that self-consistently satisfy
the conservation relations of energy and angular momentum

for each equation of state with the selected values of
MoutþMeje; 0.048 M⊙, 0.096 M⊙, and 0.150 M⊙. Figure 4
also shows representative results: The top-left, top-right,
and bottom-left panels display EGW;p and Eν as functions
of Mout þMeje for EOS-3, 6, and 9, respectively, and the
bottom-right panel shows fr as a function of Mout þMeje

for EOS-1, 3, 6, 9, and 11. Here, associated with the
uncertainties in J0 and EGW;i by �0.1 × 1049 erg s, and
0.005 M⊙c2, respectively, an uncertainty, typically, of
�0.007 M⊙c2 and ∓ 0.012 M⊙c2, exists in EGW;p and
Eν, respectively. The three curves for each plot in the top-
left, top-right, and bottom-left panels of Fig. 4 denote the
upper and lower bounds aswell as the central value forEGW;p

andEν. In addition, the change of f0 from the 1.35–1.40 M⊙
case to the 1.20–1.55 M⊙ case variesEGW;p andEν typically
by −0.003 M⊙c2 for both quantities.
For EOS-12, no solution is found for given parameters.

The reason for this is that (i) for large values of
Mout þMeje, the predicted final mass of the remnant
neutron star, Mf, becomes smaller than Mmax, and,
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hence, no solution with fr ≥ 1 is present; and (ii) for
Mout þMeje ≲ 0.057 M⊙, the value of fr is determined but
physical (positive) values for the set of (EGW;p; Eν) are not
found. If this type of equation of state withMmax ≳ 2.4 M⊙
would be the real one, the final outcome should be a stable
neutron star in the GW170817 event. However, this is not
likely as we discuss in Sec. III D.
For EOS-1 and 2 for which Mmax is rather small,

≲2.1 M⊙, we often fail to find a solution. The reason for
this is that Eq. (2.17) can be satisfied only for a high value of
fr ∼ 1.2, and, thus, for small values of Mout þMeje≲
0.09 M⊙, any solution cannot be present (cf. Fig. 3 and
the bottom-right panel of Fig. 4). However, this fact does not
imply that these equations of state with Mmax ≲ 2.1 M⊙
cannot be accepted. It is still possible that our assumption
described in the first paragraph of Sec. II might be
inappropriate (i.e., the collapse of the remnant neutron star
to a black holemight occur before a rigidly rotating statewas
reached). If the equation of state with a low value of Mmax
would be the real one, the collapse to a black hole could
occur in a stage that the remnant neutron star is differentially
rotating for the GW170817 event. If so, the value of fr is
larger than≳1.2, and, thus, the collapse would occur within
the angular momentum transport timescale of the remnant
neutron star.
Table III and Fig. 4 show that for EOS-3–7 for

which Mmax ¼ 2.10–2.25 M⊙, we find solutions with
plausible values of EGW;p and Eν as 0.03 M⊙c2 ≲ EGW;p ≲
0.11 M⊙c2 and 0.03 M⊙c2 ≲ Eν ≲ 0.10 M⊙c2 for plau-
sible values of Mout þMeje. Also, as Fig. 4 illustrates for
EOS-3 and 6, reasonable solutions exist for a wide range of
Mout þMeje for this class of the equations of state. Here,
the value of Eν indicates that the predicted lifetime of the
remnant neutron star in these equations of state is of order
0.1 s to 1 s, which is also quite reasonable. Thus, we
conclude that we do not have any reason to exclude
equations of state with 2.10 M⊙ ≲Mmax ≲ 2.25 M⊙. It
should be emphasized that for these cases, the value of fr is
not always close to ∼1.2 but in a wide range between 1.07
and 1.20 (see the bottom-right panel of Fig. 4). Thus, fr ≈
1.2 does not always hold for many candidate equations
of state.
For EOS-9 and 10, for whichMmax≈2.30M⊙–2.33M⊙,

we can also find solutions. However, for these cases, a
highly efficient energy dissipation by gravitational radia-
tion with EGW;p ≳ 0.11 M⊙ is necessary in particular for
small values of Mout þMeje (see the bottom-left panel of
Fig. 4). As found from Table II, the maximum rotational
kinetic energy of the rigidly rotating neutron stars is
TMS;R ≈ 2.5 × 1053 erg ≈ 0.125 M⊙c2. This implies that
the energy dissipated by gravitational radiation has to be
comparable to the rotational kinetic energy of the remnant
neutron star. To know if this class of equations of state is
really viable, we have to perform a numerical-relativity

simulation to check whether such efficient gravitational
radiation is possible or not. However, this is beyond the
scope of this paper and is left for our future study. The
bottom-right panel of Fig. 4 illustrates that for this class of
equations of state, the value of fr has to be small (≤1.1). That
is, an efficient angular momentum dissipation is supposed.
For EOS-8 of Mmax ≈ 2.25 M⊙, we also find solutions

with high values of EGW;p. However, for this case, with high
values of Mout þMeje, the required value of EGW;p can be
reduced. Also, the maximum rotational kinetic energy of the
rigidly rotating neutron stars for this equation of state is
relatively high, TMS;R≈2.8×1053 erg≈0.14M⊙c2. Thus,
the restriction for this equation of state is not as strong as for
EOS-9 and 10.
For EOS-11, for which Mmax ≈ 2.35 M⊙, the required

energy dissipated by gravitational radiation, EGW;p, far
exceeds 0.125 M⊙c2 that is a plausible maximum value
[22]. Moreover, for this case, theEGW;p required exceeds the
maximum rotational kinetic energy of the rigidly rotating
neutron stars, TMS;R. The reason why the required value of
EGW;p is very large is that for this case the value of fr is quite
small, ≤1.05, and, thus, a large fraction of the angular
momentum dissipation, ∼4 × 1049 erg s, is necessary to
reach amarginally stable state. However, for such significant
angular momentum dissipation, unrealistically large dissi-
pation by gravitational radiation is necessary. Therefore it is
reasonable to exclude these equations of state.
To conclude, it is easy to find model equations of state

withMmax ≤ 2.25 M⊙ that satisfy the conservation laws of
energy and angular momentum self-consistently. Also it is
not impossible to find model equations of state with
Mmax ≲ 2.3 M⊙ that satisfy the required laws. For these
cases, fr is not always ≈1.2. By contrast, it would not be
easy to find an equation of state withMmax ≥ 2.35 M⊙ that
satisfies the required laws.

D. Stable neutron star formation: Not likely

For Mmax ≳ 2.4 M⊙, a stable neutron star could be the
final outcome (e.g., EOS-12) as already mentioned above.
For this case to be viable, its angular momentum (and
rotational kinetic energy) has to be sufficiently small, since
the observational results for the electromagnetic counter-
parts of GW170817 do not show the evidence for the
energy injection to ejecta from strong electromagnetic
radiation like the magnetic dipole radiation associated with
the rotational kinetic energy of the remnant neutron star [9].
If we require that the resulting rotational kinetic energy of
the stable neutron star at its age of ∼100 s is smaller than
1052 erg (i.e., by one order of magnitude smaller than the
rest-mass energy of ejecta of mass ∼0.05 M⊙), we need
Jf < 0.5 × 1049 erg s (see Fig. 2). Because J0 ≈ 6.0 ×
1049 erg s for stiff equations of state like EOS-12, we
obtain a constraint as
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JGW;pþJνþJoutþJeje≳5.5×1049 ergs≈0.9J0: ð3:2Þ

Thus, it is necessary for the remnant neutron star to relax to
a fairly slow rotation state close to a spherical star.
Figure 5 shows f0=fMS ≥ 0.90 (fMS ∼ 1.2) for

spherical neutron stars of Mmax ≈ 2.4 M⊙. Then we also
obtain the following conditions from Eq. (2.8) and
EGW;i ¼ ð0.040� 0.005Þ M⊙:

ðEGW;p þ EνÞc−2 þ ðMout þMejeÞ
�
1 −

1

fMS

�

≤ ð0.234� 0.005Þ M⊙: ð3:3Þ

Here, we supposed that the remnant neutron star would be
located along a stable branch near the marginally stable
sequence, and hence, we employed the equations derived
in Sec. II.
In the hypothesis of this subsection, the remnant is long-

lived and it is natural to suppose that Eν ∼ 0.1 M⊙c2 ≈
2 × 1053 erg or more [21]. Note that it is often mentioned
that the total energy dissipated by the neutrino emission
from a protoneutron star formed in each supernova
would be ∼ð2 − 3Þ × 1053 erg (e.g., Ref. [36]). Here, the
value is larger for a larger mass of the protoneutron
stars. The remnant neutron star of binary neutron star
mergers is more massive and hotter than the protoneutron
star, and hence, it is natural to consider Eν ≳ 3 × 1053 erg.
In the following, we conservatively assume that
Eν ¼ 3 × 1053 erg ≈ 0.15 M⊙c2. For this case, we can
estimate as Jν ∼ 0.5 × 1049 erg s using Eq. (2.13).
We also suppose Mout ≪ Meje for τ ≳ 100 s in the

following because the torus matter would accrete onto
the neutron star or be ejected from the system by viscous
angular momentum transport and/or propeller effect [37].

Equation (3.3) with Mout ¼ 0 gives a constraint as
ðEGW;pþEνÞc−2þMejeð1−1=fMSÞ≤ 0.24M⊙. For Eν ¼
0.15 M⊙c2, we obtain

EGW;pc−2 þMeje

�
1 −

1

fMS

�
≤ 0.09 M⊙: ð3:4Þ

Nowwe consider two extreme cases (assume fMS¼ 1.2):
EGW;p ¼ 0.085 M⊙c2 and Meje ¼ 0.03 M⊙ (minimum
ejecta mass required for the GW170817 event), and
EGW;p ¼ 0.055M and Meje ¼ 0.15 M⊙. Here, for the
GW170817 event, the value of Meje would be smaller than
0.15 M⊙.
For EGW;p ¼ 0.085 M⊙c2 and f ¼ 2.5 kHz (which

would be the possible lowest value), JGW;p ≈ 1.9 × 1049

erg s. For Meje ¼ 0.03 M⊙, the ejection of the angular
momentum would be ≈0.5 × 1049 erg s for Reje ≈ 200 km
[cf. Eq. (2.15)]. Since Jν ≈ 0.5 × 1049 erg s, the constraint of
Eq. (3.2) cannot be satisfied in this model at all.
ForMeje ¼ 0.15 M⊙, the ejection of the angular momen-

tum would be ≈2.5 × 1049 erg s for Reje ≈ 200 km [e.g.,
Eq. (2.15)]. With EGW;p ¼ 0.055 M⊙c2 and f ¼ 2.5 Hz,
JGW;p ≈ 1.3 × 1049 erg s. For Jν ≈ 0.5 × 1049 erg s, it is
found that the constraint of Eq. (3.2) cannot be also
satisfied in this model.
As found from the above analysis, for a larger value of

Meje, JGW;p þ Jν þ Jeje increases. However, for the
GW170817 event, Meje is not very likely to be larger than
0.15 M⊙. If f is smaller than 2.5 kHz, JGW;p would be
larger. However, a number of numerical-relativity simu-
lations have shown f ≥ 2 kHz [28,29,38]; JGW;p could be
increased only by 20%. Thus, we conclude that it is quite
difficult to find a mechanism of the angular momentum
dissipation by ≈0.9J0 in a short timescale of ∼100 s.
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FIG. 5. Left panel: f0 for the case of 1.20–1.55 M⊙ and 1.35–1.40 M⊙ binary neutron stars and fMS for spherical maximum-mass
stars as a function of the maximum mass for a variety of equations of state. Right panel: The same as the left panel but for f0=fMS. We
plot the data with equations of state by which 2 M⊙ neutron stars are reproduced and dimensionless tidal deformability of 1.35 M⊙ star,
Λ1.35, is smaller than 1000.
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Since the values of Eν, Reje,Meje, and f have uncertainty,
it is not possible to fully exclude the possibility of forming
a stable neutron star. In particular, in case that Eν could be
much smaller than 3 × 1053 erg, the angular momentum of
the remnant neutron star could be smaller than 0.1J0, e.g.,
by setting EGW;p ¼ 0.125 M⊙c2, Eν ¼ 0.09 M⊙c2, and
Meje ¼ 0.15 M⊙, with f ¼ 2.5 kHz and Reje ¼ 200 km.
However, we need a (unphysical) fine tuning, and hence,
such a possibility would not be very likely.

IV. SUMMARY

We study the constraint on the maximum mass of cold
spherical neutron stars coming from the observational
results of GW170817 more strictly than our previous study.
We develop a framework which employs not only energy
conservation law but also the angular momentum conser-
vation one, as well as solid results of the latest numerical-
relativity simulations and of neutron stars in equilibrium.
In this framework, we postulate that a massive neutron

star was formed as a remnant after the merger in the
GW170817 event, and the collapse occurred after the
remnant neutron star relaxed to a rigidly rotating state.
Thus, we construct several rigidly rotating neutron stars in
equilibrium as models of the remnant neutron stars at the
onset of collapse. In the analysis, we first give plausible
values forMout þMeje, taking into account the observational
results of electromagnetic counterparts of GW170817.
Then, the energy conservation law gives a relation between
the maximum mass, Mmax, and angular momentum of the
remnant neutron star at the onset of collapse. This relation
indicates that for smaller values ofMmax, the collapse occurs
at higher angular momentum (i.e., at larger values of fr:
cf. Fig. 3). We also find the correlation between Mmax and
Mf: the gravitational mass at the onset of collapse. Thus, for
smaller values ofMmax,Mf has to be larger; i.e., less energy
and angular momentum have to be dissipated prior to the
onset of collapse.
We find that the energy conservation laws can be satisfied

for a wide range of equations of state with various values of
fr ¼ 1.0–1.2. Also, it is found that the combination of
energy and angular momentum conservation laws gives
plausible values ofEGW;p andEν for the equations of state in
which Mmax is between ∼2.1 M⊙ and ∼2.3 M⊙. In par-
ticular, the cases of Mmax ≲ 2.25 M⊙ result in quite plau-
sible values ofEGW;p andEν. ForMmax¼2.30M⊙–2.35M⊙,
it is still possible to find solutions although for such a case,
we need to require large energy dissipation by gravitational
radiation, EGW;p ≳ 0.11 M⊙c2. It is also found that if
the value ofMmax is not very high, i.e.,Mmax ≤ 2.1 M⊙, the
collapse is likely to occur before the velocity profile of the
remnant neutron star relaxes to a rigidly rotating state. Thus,
we infer that if Mmax ≲ 2.1 M⊙, the remnant neutron star
collapses to a black hole in the timescale of angular
momentum transport inside it.

The previous analysis often assumes fr ≈ 1.2 [7–10],
i.e., the collapse occurs at a rapidly rotating stage of the
remnant neutron star. As Fig. 3 shows, this assumption
together with the energy conservation law would automati-
cally lead to an inaccurate conclusion that the value of
Mmax is small, ≲2.1 M⊙ (i.e., the conclusion is derived
from the assumption). The lesson obtained from our present
analysis is that inappropriate assumptions could lead to an
inaccurate constraint on the maximum mass.
The framework of our analysis for the maximum mass of

neutron stars developed in this paper will be applied for
future events, in which the remnant after the mergers is a
massive neutron star that eventually collapses to a black
hole, by simply replacing the values ofM andMout þMeje.
This analysis will be in particular interesting if postmerger
gravitational waves are observed in the future. For this
case, EGW;p and JGW;p will be constrained, and, then, the
constraint for the equation of state and the value of Mmax
will be better imposed. Furthermore, it will be also feasible
to infer how much energy is carried away by neutrinos.
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APPENDIX: MODEL EQUATIONS OF STATE

To model the neutron-star equation of state with a small
number of parameters, we employ a piecewise polytrope
introduced by Read et al. [39]. It is a phenomenologically
parametrized equation of state of the form:

PðρÞ ¼ κiρ
Γi for ρi−1 ≤ ρ < ρi ð1 ≤ i ≤ nÞ; ðA1Þ

where n is the number of the pieces used to parametrize an
equation of state, ρi is the rest-mass density at the boundary
of two neighboring ith and (iþ 1)th pieces, κi is the
polytropic constant for the ith piece, and Γi is the adiabatic
index for the ith piece. Here, ρ0 ¼ 0, and other parameters
ðρi; κi;ΓiÞ are freely chosen. Requiring the continuity of the
pressure at each value of ρi, 2n free parameters, ðκi;ΓiÞ,
determines the equation of state completely. The specific
internal energy, ε, is determined by the first law of
thermodynamics and continuity of each variable at ρi.
In this paper, we employ the case of n ¼ 3 and fix

ρ2 ¼ 1015 g=cm3 (and ρ3 ¼ ∞). The lowest-density piece

CONSTRAINT ON THE MAXIMUM MASS OF NEUTRON STARS … PHYS. REV. D 100, 023015 (2019)

023015-13



models the crust equation of state, and the other two do the
core equation of state. Following Ref. [39], the equation of
state for the crust region is fixed by Γ1 ¼ 1.35692395 and
κ1=c2 ¼ 3.99873692 × 10−8 ðg=cm3Þ1−Γ1 . The equation of
state for the core region is determined by two adiabatic
indices, Γ2 and Γ3, and the pressure, p, at a fiducial density
ρf ¼ 1014.7 g=cm3. Here, p is closely related to the radius
and tidal deformability of neutron stars [40]. For Γ2, we
employ a wide range of values between 2.10–5.00. Γ3 is
chosen to be small values in a narrow range between 2.00–
2.91, because for the large values, the sound speed exceeds
the speed of light even for stable neutron stars, while for the
small values, the maximum mass for given equations of
state cannot exceed 2 M⊙ [33]. The value of log10 p is
varied between 33.8 and 34.8. Here, for large values
of Γ2, only small values of p are accepted (e.g., for Γ2 ¼
4.0 and 5.0, p≲ 1034.35 dyn=cm2 and p≲ 1033.9 dyn=cm2,
respectively). If this condition is not satisfied, the
sound velocity exceeds the speed of light near
ρ ∼ 1015 g=cm3. With the given values of Γ2, Γ3, and p,
κ2, κ3, and ρ1 are determined as κ2 ¼ pρ−Γ2

f , κ3 ¼ κ2ρ
Γ2−Γ3

2 ,

and ρ1 ¼ ðκ1=κ2Þ1=ðΓ2−Γ1Þ.
We analyzed the values of f0 and fMS for spherical

neutron stars with the piecewise polytropes. Figure 5
displays a result. In this figure, we plot the data in the

piecewise polytropes with which 2 M⊙ neutron stars are
reproduced and dimensionless tidal deformability of
1.35 M⊙ neutron stars satisfies Λ1.35 ≤ 1000, taking into
account the results of GW170817 [1]. It is found that f0 and
fMS are in a wide range approximately between 1.08 and
1.14 and between 1.14 and 1.24, respectively. Because f0
and fMS are weakly correlated, f0=fMS is not distributed as
widely as fMS, but it is still in a fairly wide range as 0.895–
0.945. This value depends weakly on each mass of binaries:
For 1.20–1.55 M⊙ binaries, the values of f0=fMS are
0.2–0.3% larger than those for 1.35–1.40 M⊙ binaries
for a given equation of state.
One interesting and key fact for the context of the present

paper is that f0=fMS is correlated with Mmax; for larger
value of f0=fMS, the maximum mass of neutron stars is
smaller. The reason for this is that for the equations of state
with smaller maximum mass, the neutron star at the
maximum mass is less compact and thus has a smaller
value of fMS. This fact implies that for smaller maximum
mass, the mass of the remnant neutron-star mass at the
onset of collapse, Mf ¼ Mf0=fMS − ðMout þMejeÞ=fMS,
is larger [see Eq. (2.4)], and hence, the merger remnant is
more subject to gravitational collapse. We note that the
upper boundary of f0=fMS for a give value of Mmax is
determined by the condition of Λ1.35 ≤ 1000.
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