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The gravitational wave emission from the merging binary neutron star system GW170817 arrived full of
tidal information which can be used to probe the fundamental ultradense nuclear physics residing in these
stars. In previous work, we used two-dimensional correlations between nuclear matter parameters and tidal
deformabilities of neutron stars applying specifically to GW170817 to derive constraints on the former.
Here, we extend this analysis by finding similar correlations for varying chirp masses, the dominant
determining factor in the frequency evolution of the inspiral, such that one can apply the same method to
future detections. We estimate how accurately one can measure nuclear parameters with future gravitational
wave interferometers and show how such measurements can be improved by combining multiple events.
We find that bounds on the nuclear parameters with future observations can improve from the current one
with GW170817 only by ∼30% due to the existence of systematic errors caused mainly by the remaining
uncertainty in the equation of state near and just above the nuclear saturation density. We show that such
systematic errors can be reduced by considering multidimensional correlations among nuclear parameters
and tidal deformabilities with various neutron star masses.
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I. INTRODUCTION

Neutron stars (NSs) exist in one of the most extreme
states of matter found in the Universe. However, the
determination of the equation of state (EoS) of ultradense
matter found exclusively in such compact objects remains
to be one of the largest unsolved mysteries in both nuclear
physics and astrophysics to date. The nuclear matter EoS
determines many important stellar properties, such as the
mass, radius, and tidal deformability, and is vital to the
further study of supranuclear matter. Independent mea-
surements of certain macroscopic NS observables deter-
mined by the EoS, such as the mass and radius, can be used
to constrain the EoS, as was indeed done in Refs. [1–5]
via x-ray observations of the mass-radius relationship.
However, such measurements potentially suffer from large
systematic errors due to uncertainties in the astrophysical
modeling of x-ray bursts.
Recent observations of gravitational waves (GWs) from

a merging binary NS system (GW170817 [6]) have been
used to probe the interior nuclear structure via imprinted
tidal effects [7–12], which offers us a cleaner method of
determining the nuclear matter EoS than electromagnetic
wave observations of neutron stars. As the NSs lose energy
via GW emission, they inspiral towards each other and
become increasingly tidally deformed in response to the
companion stars’ tidal field. This deformation is charac-
terized by the tidal deformability [13] of the NS, and is

strongly dependent on the underlying EoS. Further, the
mass-weighted combination of such tidal deformabilities
from each star is the leading tidal parameter in the
gravitational waveform, which has been constrained by
the LIGO and VIRGO collaborations to a 90% credible
bound of 70 ≤ Λ̃ ≤ 720 [7,14]. Such observations have
also been mapped to the NS radius in Refs. [8,14–18].
While all currently proposed EoSs to date utilize various

different approximations, one way to effectively study them
is by measuring the nuclear parameters which parametrize
the EoSs using a model-independent formalism. One such
method for doing this1 is to Taylor expand the energy per
nucleon of asymmetric nuclear matter about the satura-
tion density of symmetric matter [27,28]. The resulting
coefficients are known as the “nuclear matter parameters”
and consist of the following: the slope of the symmetry
energy L0; the nuclear incompressibility K0; the slope of
the incompressibility M0; the curvature of the symmetry
energy Ksym;0; and higher orders, each evaluated at the
nuclear saturation density.
Previous important analyses by Alam et al. [29] found

approximately universal relations between the NS radius at

1Piecewise polytropic constructions [19–21] and spectral EoSs
[8,22–25] similarly parametrize nuclear matter EoSs in a model-
independent way. See also [12,26] for related works on piecewise
unified EoSs.
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a given mass and the nuclear parameters mentioned above
(similar work can be found in Refs. [30,31]). Further, Malik
et al. [11] found that certain linear combinations of nuclear
parameters (such as K0 þ αL0 with α chosen to give
maximal correlation) gave way to heightened correlations
with the individual tidal deformabilities evaluated at a given
mass. By assuming individual masses for GW170817 and
taking the approximate universal relations to be exact, the
authors utilized prior constraints on the tidal deformability
from GW170817 [32,33] and L0 [4,7,34] to derive new
constraints on the nuclear parameters.
In Ref. [35], we expanded upon the previous work of

Malik et al. [11] and found improved constraints on K0,
M0, and Ksym;0. We made various improvements upon the
original analysis, such as (i) using an expanded set of EoSs
in order to fully take into account the EoS-variation
systematic errors; (ii) considering the correlations with
the mass-weighted tidal deformability Λ̃ (rather than Λ1.4,
the tidal deformability at 1.4 M⊙) which was directly
measured by GW observations; (iii) fully considering the
EoS variation scatter uncertainty in the estimation of
constraints; and (iv) adopting the full posterior distribution
on Λ̃ as measured from GW170817. Further, we found that
by using our method of computing the posterior distribu-
tion on nuclear parameters, high degrees of correlation
between Λ̃ and such nuclear parameters was not necessary,
as any covariances between the two was taken into
account by the multivariate Gaussian probability distribu-
tion between them. On the other hand, the authors of
Ref. [11] absolutely required high correlations with nuclear
parameters in order to assume that the relationship between
the tidal deformability and the nuclear parameters lie
exactly on the best-fit line between the two. The resulting
90% confidence interval on the curvature of symmetry
energy was found to be −259 MeV ≤ Ksym;0 ≤ 32 MeV,
which was more conservative than that derived in Ref. [11].
Here, we extend the work of Ref. [35] into the future of

GW astronomy. While every future merger event will be
composed of NSs with varying individual masses which are
difficult to measure, we can categorize them by the chirp
mass M, which is the dominant driving factor in the
frequency evolution of the inspiral event given by a
certain combination of individual NS masses. In this
investigation, we repeat the analysis of Ref. [35] as a
function of chirp mass, applicable to any future event.
Further, we restrict the set of EoSs to those that obey the
nuclear parameter correlations of Ref. [36], and consider
the implications of observations using future GW interfer-
ometers: Advanced LIGO (aLIGO) [37], LIGO Aþ (Aþ)
[38], Voyager [38], Cosmic Explorer (CE) [38], and
Einstein Telescope (ET) [39]. We will consider not only
the increased sensitivities from current detectors but also
the combined uncertainties from multiple-event detections
(relevant for future detectors with expanded horizon
volumes).

A. Executive summary

Here we summarize our results for busy readers. In the
current analysis, we attempt to find constraints on the
nuclear matter parameters as a function of the binary
systems’ chirp mass. We begin by finding the correlations
between the mass-weighted tidal deformability Λ̃ and
various nuclear parameters, and combinations thereof.
Similar to our results in Ref. [35], we find that the low-
order nuclear parameters K0 and M0 observe small corre-
lations with Λ̃, while the correlations for higher-order
parameter Ksym;0 remain high at ∼80%. For this reason,
we consider constraints on the curvature Ksym;0 of the
symmetry energy which is one of the most uncertain parts
of the EoS of dense nucleonic matter [40].
In this analysis, we compute the posterior probability

distribution for the curvature of symmetry energy Ksym;0,
for 22 different values of chirp mass between 0.94 M⊙ and
1.6 M⊙. For each value of chirp mass Mi considered, we
compute the single-event Λ̃ uncertainties using Fisher
analysis techniques. Approximated as a Gaussian prior,
the uncertainty in Λ̃ may be used to estimate the posterior
probability distribution on Ksym;0, by multiplication with
the two-dimensional Ksym;0 − Λ̃ probability distribution,
and then marginalizing over Λ̃. The process is then repeated
for each value of chirp massMi, resulting in a relationship
between the uncertainties in Ksym;0 and the chirp mass M.
The corresponding one-sided 90% confidence intervals

on Ksym;0 for single-event detections, along with the
calculated systematic errors, are plotted in Fig. 1 as a
function of chirp mass for six different GW interferometers.
In this figure, we observe that as the detector sensitivity is
increased, the statistical errors become subdominant rather
quickly. This in turn forces the overall errors to approach
the systematic error “wall” at ∼104 MeV, caused partially
by uncertainties in the EoS at low density which are less
sensitive to neutron star tidal deformabilities. For this
reason, the curves corresponding to the third-generation
detectors CE and ET become indistinguishable from the
systematic errors—indicating the necessity to reduce such
errors in order for the further constraint of Ksym;0 to become
possible.
Following this, we offer a method to further decrease the

statistical errors in the measurement of Ksym;0. This is
accomplished by repeating the same analysis for the fixed
chirp mass of 1.188 M⊙ with the first coefficient, Λ1.4, of
the Taylor expanded tidal deformability Λ ≈ Λ1.4 þ
Λ0
1.4ð1 − m

m0
Þ about m0 ¼ 1.4 M⊙,

2 rather than the mass-

weighted tidal deformability Λ̃. Λ1.4 (or the tidal deform-
ability at 1.4 M⊙) is mass independent, and thus, it is

2m0 will remain fixed for the remainder of the analysis, with
the exception of Sec. V, where we consider the effect of variations
in m0.
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identical for all future GW events. This way, we can
combine the uncertainties for multiple detected events
when it becomes applicable for future detectors. As was
observed in Fig. 1, we found that the uncertainties in Ksym;0

became dominated by systematics for the single-event
analyses on Voyager-era detectors and beyond. By com-
bining GW170817-like events detected on aLIGO and Aþ,
we find that one can further reduce the statistical errors in
Ksym;0 such that the errors similarly become dominated by
systematics.
Finally, we investigate the reduction of systematic

errors by adding information about the tidal deforma-
bility at various different masses. We begin by generating
a four-dimensional Gaussian probability distribution
PðKsym;0;Λmx

;Λmy
;Λmz

Þ. The systematic error on Ksym

is obtained by first evaluating PðKsym;0;Λmx
;Λmy

;Λmz
Þ at

the fiducial values of Λmx
, Λmy

, and Λmz
and estimating the

90% confidence interval. Figure 2 presents the systematic
errors when mz is fixed to be 1.5 M⊙, and (mx, my) are
varied between 1.0 M⊙ and 2.0 M⊙. Observe how the

resulting systematic uncertainties are reduced to ∼74 MeV
for certain combinations of mx and my.
The remainder of this paper is organized as follows.

We begin in Sec. II with a review on the tidal deformability
of neutron stars, as well as the nuclear matter EoS and
its constituent nuclear parameters. We follow this up in
Sec. III with a study on the correlations between various
nuclear parameters and the mass-weighted tidal deform-
ability. In Sec. IV, we analyze the measurement accuracy on
such nuclear parameters as a function of the chirp mass,
applicable to future binary NS mergers. In Sec. V, we
discuss how one can further reduce systematic errors by
considering correlations among nuclear parameters and
multiple tidal deformabilities at different NS masses. We
conclude in Sec. VI with a discussion on the implications of
our results, as well as an outline into possible avenues of
future work. We have adopted geometric units such that
G ¼ c ¼ 1 throughout.

II. BACKGROUND AND THEORY

In this section we begin with a review on the NS tidal
deformability in Sec. II A, followed up by a review on the
NS equation of state and its constituent nuclear parameters
in Secs. II B and II C.

FIG. 2. Contours displaying the systematic errors in Ksym;0
[MeV] as a function of the massesmx andmy used to compute the
four-dimensional probability distribution between Ksym;0, Λ1.5,
Λx, and Λy. The systematic errors are then computed by
evaluating the probability distribution at the fiducial values of
Λ1.5, Λx, and Λy, and then taking the 90% confidence interval of
the resulting distribution in Ksym;0. Observe how a large reduction
in systematic errors to ∼74 MeV can occur by including
information about the tidal deformability at three different NS
masses spread throughout their realistic range. The diagonal
contours at mx ¼ my labeled in white correspond to the system-
atic errors obtained from the reduced three-dimensional proba-
bility distribution PðKsym;0;Λx;Λ1.5Þ.
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FIG. 1. The overall (statistical plus systematic) errors on Ksym;0

using priors in Λ̃ for single-event measurements, plotted as a
function of the binary systems’ chirp mass—applicable to any
future binary NS merger. We fix the mass ratio as q ¼ 0.9
consistent with GW170817 and choose the distance and sky
location of the binaries such that it gives the signal-to-noise ratio
(SNR) of 32.4 for the O2 run, again corresponding to
GW170817. This is repeated for six different interferometers
(O2, aLIGO, Aþ, Voyager, CE, ET). Note that the error on O2
appears as a single point, corresponding to GW170817—the
single event observed on O2. We also present systematic errors
due to scattering in correlations between Ksym;0 and Λ̃. Observe
how as one improves the detector sensitivity, the statistical errors
become subdominant, and the overall errors approach the
systematic uncertainties’ wall. This indicates the need to further
reduce the EoS variation in the scattering that is the origin of
systematic uncertainties before stronger constraints on Ksym;0 can
be derived. Additionally shown by the dashed vertical line is the
chirp mass M ¼ 1.188 M⊙ corresponding to GW170817.
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A. Neutron star tidal deformability

Here we offer a brief overview on how one can extract
information on the internal structure of a NS by way of the
GW observations of binary NS merger events, such as
GW170817. In the presence of a neighboring tidal field Eij
(such as a NS in a binary system with a compact
companion), NSs will acquire a quadrupole moment Qij

characterized as the linear response to Eij:

Qij ¼ −λEij; ð1Þ

with tidal deformability λ [13,41–44]. The tidal deform-
ability characterizes the NSs corresponding deformation
from sphericity, and can be made unitless by the following
normalization:

Λ≡ λ

M5
ð2Þ

with stellar mass M.
Following Refs. [35,41,42,44], the dimensionless tidal

deformability Λ can be computed by isolating different
asymptotic limits of the gravitational potential in the buffer
zone R ≪ r ≪ L given by

ΦðxiÞ ¼ 1þ gtt
2

¼ −
M
r
−
3

2

Qij

r3

�
xi

r
xj

r
−
1

3
δij

�
þO

�
L4

r4

�

þ 1

2
Eijxixj þO

�
r3

R3

�
; ð3Þ

where r ¼ jxij, L is the length scale of the companion-
induced curvature, and R is the stellar radius. Here, gtt
corresponds to the tt-component of the full spacetime
metric:

gαβ ¼ gð0Þαβ þ hαβ; ð4Þ

constructed via a nonspinning, spherically symmetric

background solution gð0Þαβ perturbed by the tidal deformation
with metric components hαβ. The perturbed Einstein
equations may then be solved in the interior of the NS
and matched to the exterior solution at the surface of the
star. Further, the radius R may then be determined from the
condition pðRÞ ¼ 0.
In this investigation, we consider the scenario of two NSs

orbiting each other in a binary system, like GW170817. In
this case, each NS individually obtains quadrupole
moments from the neighboring tidal field, resulting in
two highly correlated tidal deformabilities Λ1 and Λ2. Due
to these correlations, individual tidal deformabilities are
very difficult to extract from GWobservations. Typically, it
is useful to reparametrize the waveform via independent

linear combinations of Λ1 and Λ2 which enter the gravi-
tational waveform at fifth post-Newtonian (PN) and 6PN
orders3 respectively. The dominant tidal effect in the
resulting waveform is known as the mass-weighted tidal
deformability, and is given by [13]

Λ̃ ¼ 16

13

ð1þ 12qÞΛ1 þ ð12þ qÞq4Λ2

ð1þ qÞ5 ; ð5Þ

with mass ratio q≡m2=m1 (m1 ≥ m2). Here we also define
the chirp mass of the binary system, which is the primary
controlling factor of the merger inspiral defined by

M≡
�

q3

1þ q

�
1=5

m1: ð6Þ

Similarly to Λ̃, this quantity can be measured with much
higher accuracy than either of the individual masses m1,
m2, or the mass ratio q. For this reason, we consider the
binary chirp mass M to be the dominant dependent
variable in this analysis, cataloging our various results as
a function of M for any future GW event.

B. The nuclear matter parameters

While the NS EoS is not currently known, there are many
methods one can use to restrict it using various observa-
tions. This is because the structure of a NS and many of its
observables such as mass, radius, tidal deformability, etc.
rely strongly on the underlying EoS of nuclear matter.
For example, GWobservations may help constrain the EoS
in the pressure-density plane [45]. In this paper, we show
how GW detections can aid in the constraint of various
characteristics of the EoS, known as the nuclear matter
parameters [28].
As originally considered in Ref. [27] and followed up in

Refs. [11,28,29,35], we offer a generic method to para-
metrize NS EoSs. This is done by first Taylor expanding the
energy per nucleon e of asymmetric nuclear matter about
δ ¼ 0 (symmetric nuclear matter), where δ≡ ðnn − npÞ=n
is the isospin symmetry parameter for nuclear matter with
nn neutron density, np proton density, and total density
n ¼ nn þ np:

eðn; δÞ ¼ eðn; 0Þ þ S2ðnÞδ2 þOðδ4Þ: ð7Þ

Here eðn; 0Þ and S2ðnÞ are the symmetric and second-
order asymmetric nuclear matter energy per nucleon,
respectively. Such energies are then further Taylor
expanded about the nuclear saturation density n0 ≈ 2.3 ×
1014 g=cm3 as

3nPN order corrections enter the gravitational waveform at
relative powers of ðv=cÞ2n.
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eðn; 0Þ ¼ e0 þ
K0

2
y2 þQ0

6
y3 þOðy4Þ;

S2ðnÞ ¼ J0 þ L0yþ
Ksym;0

2
y2 þOðy3Þ; ð8Þ

with y≡ ðn − n0Þ=3n0. The above coefficients, all evalu-
ated at the nuclear saturation density, determine the NS EoS
and are referred to in the literature [27,28] as the energy per
particle e0; incompressibility coefficient K0; third deriva-
tive of symmetric matter Q0; the slope of the incompress-
ibility M0 ≡Q0 þ 12K0 [11,29]; symmetry energy J0; its
slope L0; and its curvature Ksym;0.
In this paper, we expand upon previous works [11,29,35]

and investigate the correlations between the mass-weighted
tidal deformability Λ̃ and various nuclear parameters L0,
K0, M0, and Ksym;0 in order to derive constraints on such
parameters. Specifically, we focus on the curvature of the
symmetry energy Ksym;0, shown to be one of the most
uncertain features of the nuclear matter EoS, especially at
supranuclear densities found primarily in NSs [40].

C. The supranuclear equation of state

We now explain which EoSs we use in this paper. In
Ref. [35], we showed the importance of considering a wide
range of physically valid EoSs when computing constraints
on nuclear parameters, in order to more properly take into
account the systematic errors. In the current analysis, we
employ a restricted set of the same EoSs as was used
previously, taking into account the observed correlations
between nuclear parameters J0 and L0. Starting with the
121 nuclear EoS models found in Ref. [35], we further
remove 63 EoS models which do not comply with the
allowed regions shown in Fig. 8 of Tews et al. [36]. Here,
they combined an exclusion region J0ðL0Þ with the
“accepted” 95.4% correlation confidence bands between
J0 and L0. See Appendix A for the impact of restricted
EoSs on correlations between Ksym;0 and Λ̃.
Taking the shared region between the above two exclu-

sions results in 58 different nuclear EoS models, which can
be classified into three distinct classes: 13 nonrelativistic
“Skyrme-type” EoSs, five relativistic-mean-field (RMF)
EoSs, and 40 EoS models developed with a phenomeno-
logical variation method (PEs). The Skyrme-type models
used consist of: SKa, Sly230a [46], Sly2, Sly9 [47], Sly4
[48], SkOp [49], SK255, SK272 [50], BSK20, BSK21 [51],
BSK22, BSK24, BSK26 [52]. Further, the RMF models
used are: BSR2, BSR6 [53,54], NL3ωρ [55], DD2 [56],
DDHδ [57]. All 18 of the above EoSs originate from the
minimal set of EoSs used in Refs. [11,29], now restricted
by nuclear matter correlations. Lastly, following Ref. [19],
the high-density core region of the EoSs used in our
analysis are matched to the low-density crust region of
the SLy EoS model [58] at about half of the nuclear
saturation density, ρstitch ≈ 1.3 × 1014 g=cm3.

One last class of EoSs indirectly used in our analysis can
be found in Ref. [59], which we call “LVC constrained”
EoSs in this paper. By sampling the full physical EoS
parameter space, the LIGO and Virgo collaborations
[21,45] derived a marginalized 90% posterior region on
the NS pressure as a function of mass density (EoS) from
GW170817, as seen in Fig. 2 of [45]. By randomly
sampling the EoS posteriors from this analysis, a set of
100 constrained EoSs were obtained, restricted by the GW
observation of GW170817. While we do not directly utilize
these 100 EoSs in the current analysis, we use them to
estimate the mean value of the mass-weighted tidal deform-
ability Λ̃ in Sec. IVA, seen by Fig. 6.

III. CORRELATIONS BETWEEN Λ̃
AND NUCLEAR PARAMETERS

We begin the current analysis by studying the correla-
tions between the mass-weighted tidal deformability Λ̃ and
various nuclear parameters K0,M0, and Ksym;0 as was done
in Ref. [35]. In the previous analysis, we studied the
correlations and constraints as a function of the mass ratio
q≡m1=m2 for the fixed chirp mass of 1.188 M⊙; corre-
sponding to GW170817. We here supplement this inves-
tigation by considering the correlations and constraints as a
function of varying chirp mass at a fixed mass ratio,
applicable to any number of future GW observations.
The left panel of Fig. 3 justifies the use of a fixed mass
ratio by presenting Λ̃ as a function of q for the various EoS
models used in this analysis. Observe how Λ̃ is insensitive
to the choice of q. Such feature is absent in the right panel
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q (      =1.188 M

O.
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Λ~
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      (q=0.90) [M
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FIG. 3. (left) Mass-weighted tidal deformability Λ̃ for each EoS
model used in this analysis as a function of the mass ratio q for a
fixed chirp mass of M ¼ 1.188 M⊙. The vertical dashed line at
q ¼ 0.90 corresponds to GW170817. Observe that Λ̃ is insensi-
tive to the choice of q, which justifies our method of keeping
the mass ratio fixed. (right) Similar to the left panel but as a
function of the chirp mass M for a fixed mass ratio of q ¼ 0.90.
The vertical dashed line at M ¼ 1.188 M⊙ corresponds to
GW170817.
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of Fig. 3, where Λ̃ is plotted as a function of chirp mass for
fixed q. Thus, for the remainder of this analysis we fix the
mass ratio to be q ¼ 0.90, corresponding to the center of
0.80 ≤ q ≤ 1.00 derived in Ref. [60] for GW170817.
We measure the amount of correlation between two

observables x and y via

Cðx; yÞ ¼ Σxyffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣxxΣyy

p ; ð9Þ

with covariances Σab ða ¼ ðx; yÞ; b ¼ ðx; yÞÞ given by

Σab ¼
1

N

XN
i¼0

aibi −
1

N2

�XN
i¼0

ai

��XN
i¼0

bi

�
: ð10Þ

Here N represents the number of data points. A correlation
of C ¼ 1 represents perfect correlation between observables
x and y, while C ¼ 0 corresponds to no correlation.
In Ref. [35], we studied the universal relations between

Λ̃ and various nuclear parametersK0,M0,Ksym;0 in order to
derive constraints on such parameters. Additionally, it was
shown in Refs. [11,29,35] that certain linear combinations
of nuclear parameters, specifically K0 þ αL0, M0 þ βL0,
andKsym;0 þ γL0, exhibit heightened correlations, allowing
one to derive more accurate constraints on the individual
nuclear parameters. However, it was found in Ref. [35] that
this came at the expense of additional sources of uncer-
tainty which, if properly accounted for, enlarges the
resulting constraints on the nuclear parameters K0, M0,
and Ksym;0. It was also found that the single nuclear
parameters as well as the linear combinations involving
K0 and M0 observed poor correlations of C ≲ 0.50;
indicating somewhat unreliable constraints on the nuclear
parameters.
Figure 4 similarly shows the above correlations as a

function of chirp mass for a fixed mass ratio of q ¼ 0.90.
Observe how, similar to what was found in Ref. [35], the
correlations for K0, M0, K0 þ αL0, and M0 þ βL0 are
exceedingly poor for all values of chirp mass. Ksym;0 on the
other hand, remains highly correlated with Λ̃ across the
entire range of M. We also observe how correlations are
not improved by much when considering linear combina-
tions between Ksym;0 and L0.
Could other combinations of nuclear parameters give

stronger correlations? To address this question, we further
explore new combinations of nuclear parameters in
Appendix B. In particular, we consider the “multiplicative”
combinations of K0L

η
0, M0Lν

0, and Ksym;0L
μ
0 that is moti-

vated from Refs. [30,31]. We found that such new combi-
nations do not offer any advantages in terms of correlations
and constraints.
For the above reasons, we consider only the curvature

of the symmetry energy Ksym;0 for the remainder of the
investigation, without combinations with other parameters

which would otherwise introduce additional uncertainties
in the computation of constraints.

IV. NUCLEAR PARAMETER CONSTRAINTS
WITH FUTURE GW OBSERVATIONS

Now that we have identified the high-correlation behav-
ior of Ksym;0, we proceed to compute projected bounds on
the curvature of the symmetry energy as a function of chirp
mass that is applicable to any future event. Additionally we
offer the same analysis repeated for five anticipated future
detector sensitivities SnðfÞ for detectors O2 [37], aLIGO
[37], Aþ [38], Voyager [38], ET [39] and CE [38] (see
Fig. 5), which would allow one to compute the correspond-
ing posterior distribution on Ksym;0 given an events’ chirp
mass M.

A. Single events

Previously in Ref. [35], a posterior distribution on Λ̃
as derived from GW170817, was utilized in order to
compute posterior distributions on the nuclear parameters.
In this analysis of future observations however, no such
distribution is available. To remedy this, we approximate
the effective “future” posterior distribution on Λ̃ as a
Gaussian probability distribution given by

PAðΛ̃Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2A

p e−ðΛ̃−μΛ̃Þ2=2σ2A ð11Þ

for detector A. Here, μΛ̃ ¼ μΛ̃ðMÞ is computed from the
mean value of the LVC constrained EoSs [59] described
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FIG. 4. Correlations between Λ̃ and various nuclear parameters
as a function of the chirp mass. Observe how low-order nuclear
parameters K0 and M0 show poor correlations, while high-order
parameter Ksym;0 is highly correlated—both with and without a
linear combination with L0. Additionally shown by the dashed
vertical line is the chirp mass of 1.188 M⊙ corresponding to
GW170817, studied in detail by Ref. [35].
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in Sec. II C for each value of chirp mass, as shown by
Fig. 6. Further, σA is approximated via simple Fisher
analyses (described below), which estimates the measure-
ment accuracy on Λ̃ under the assumption of detector
sensitivity A. Figure 7 presents σA for all six detectors.
The Fisher analysis method [63–65] estimates the

accuracy with which one can extract best-fit para-
meters θa given prior probability distributions σθa and a
template waveform h. For this analysis, we consider the
sky-averaged “IMRPhenomD” gravitational waveform

template h [61,62] for point particles, modified by the
5PN and 6PN tidal corrections given in Ref. [66]. We
utilize a template parameter vector θa consisting of

θa ¼ ðlnA;ϕc; tc; lnMz; ln η; χs; χa; Λ̃; δΛ̃Þ; ð12Þ

where A ¼ M5=6
zffiffiffiffi

30
p

π2=3DL
is a normalized amplitude factor, DL

is the luminosity distance to the event, Mz ¼ ð1þ zÞM is
the redshifted chirp mass, η ¼ m1m2=ðm1 þm2Þ2 is the
symmetric mass ratio, χs;a ¼ 1

2
ðχ1 � χ2Þ are the symmetric

and antisymmetric combinations of individual spins χ1;2,
and δΛ̃ is a tidal parameter entering first at 6PN order. In
this investigation, we utilize fiducial parameter values of
ϕc ¼ 0, tc ¼ 0, χs ¼ χa ¼ 0, δΛ̃ ¼ 0, M and η are chosen
from the current chirp mass iteration with a mass ratio of
q ¼ 0.9, and Λ̃ is computed from the mean value of the
LVC constrained EoSs. Additionally, we impose Gaussian
spin priors of jχs;aj < 1, and tidal priors of 0 < Λ̃ < 3000,
and jδΛ̃j < 500 [66].
To obtain a posterior distribution, one needs to know

both the likelihood and prior distributions. Assuming the
prior distributions on template parameters θa are Gaussian,4

the resulting posterior distributions are also Gaussian with
root mean squares of

Δθa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ̃−1Þaa

q
: ð13Þ
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FIG. 5. Spectral noise densities
ffiffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
plotted for detectors:

LIGO O2, aLIGO, Aþ, Voyager, CE, and ET-D as interpolated
from publicly available data. Spectral noise densities are plotted
from fmin ¼ ð23; 10; 10; 7; 1; 1Þ Hz, respectively, to fmax ¼
1649 Hz. Also shown is the frequency evolution of the character-
istic amplitude 2

ffiffiffi
f

p jh̃j for GW170817 using the IMRPhenomD
[61,62] gravitational waveform template. The ratio between GW
spectrum and signal roughly corresponds to signal-to-noise ratio.
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FIG. 6. Mean value of Λ̃ (dashed maroon curve) as a function of
chirp mass M, computed as the mean value of the LVC
constrained EoSs (cyan shaded region) from Ref. [59] for each
value of chirp mass. This mean value corresponds to μΛ̃ðMÞ used
in the generation of the approximated Λ̃ probability distributions
in Eq. (11) needed to compute constraints on Ksym;0 in Eq. (18).

1 1.1 1.2 1.3 1.4 1.5
      [M

O.
 ]

10

100

σ A
 (

Λ~  )

O2
aLIGO
A+
Voyager
CE
ET
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detectors A ¼ ðO2; aLIGO; Aþ;Voyager;CE;ETÞ as a function
of chirp mass, computed via simple Fisher analyses. These
correspond to the standard deviations σA used in the generation
of the approximated Λ̃ probability distributions needed to
compute constraints on Ksym;0.

4A more comprehensive Bayesian analysis assumes the more
valid choice of uniform prior distributions.
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The Fisher matrix Γ̃ab is defined as

Γ̃ab ≡
� ∂h
∂θa

���� ∂h∂θb
�
þ 1

σ2θa
δab; ð14Þ

where σθa are the prior root-mean-square estimates of
parameters θa, and the inner product ðajbÞ is given by

ðajbÞ≡ 2

Z
∞

0

ã�b̃þ b̃�ã
SnðfÞ

df: ð15Þ

Now that all of the tools are prepared, we next compute
the posterior distributions on Ksym;0 using the Gaussian
prior distributions on Λ̃ computed above as a function of
chirp mass, for future detectors. Following the process used
in Ref. [35], this is accomplished by first generating a two-
dimensional Gaussian probability distribution between
Ksym;0 and Λ̃, taking into account the covariances between
the two as

PðΛ̃; Ksym;0Þ ¼
1

2π
ffiffiffiffiffiffijΣjp e−

1
2
ðx−μÞTΣ−1ðx−μÞ: ð16Þ

Here x and μ are the 2D vectors containing ðΛ̃; Ksym;0Þ and
their means respectively, and Σ is the covariance matrix
with elements given by Eq. (10).
Let us now offer readers the means to fully reproduce the

results of the above analysis for any future event by
constructing a fit for μ and Σ in terms of chirp mass
M. Based on the relations between the former and the latter
as shown in Fig. 8, we create a fit in a logarithmic power
expansion as

log yi ¼ ai þ bi logMþ ciðlogMÞ2; ð17Þ

with yi being the various parameters
ffiffiffiffiffiffiffi
Σab

p
and μa, and

fitting coefficients ai, bi, and ci which are summarized in
Table I. Observe how well the fit agrees with the numerical
data in Fig. 8.
Constraints on Ksym;0 are extracted by combining

the two-dimensional probability distribution function of
Eq. (16) with the one-dimensional prior distribution on Λ̃
of Eq. (11). Marginalizing over Λ̃ results in a posterior
probability distribution on Ksym;0,

PAðKsym;0Þ ¼
Z

∞

−∞
PðΛ̃; Ksym;0ÞPAðΛ̃ÞdΛ̃; ð18Þ

from which 90% confidence intervals on the curvature of
symmetry energy can be extracted. This process is then
repeated for 22 values of chirp mass M across its feasible
range, and then for each interferometer A. Appendix C
exemplifies this by demonstrating the procedure for one
value of chirp massM ¼ 1.188 M⊙ on interferometer O2,
corresponding to GW170817. The results found there are
compared to those found in Ref. [35] in order to demon-
strate the accuracy of our approximated Gaussian Λ̃ priors,
rather than the full posterior distribution found in Ref. [45].
We found that we slightly underestimate the errors in
Ksym;0 by using this method.
There is one important question to analyze here: how

do the statistical errors on Ksym;0 [σA in PAðΛ̃Þ given in
Eq. (11) that enters in Eq. (18)] compare to the
systematic errors[(covariance Σ in PðΛ̃; Ksym;0Þ given
in Eq. (16) that also enters in Eq. (18)]? As more events
are observed and the detector sensitivities SnðfÞ drop, the
statistical errors on the measurement of Ksym;0 approach
zero, and the overall errors limit closer to the systematic
error wall introduced from the EoS variation in the
universal relations. We study this effect by first plotting
the overall errors on Ksym;0 as a function of chirp mass,
defined to be the one-sided 90% confidence interval on
the posterior distribution of Ksym;0. Following this, we
define the systematic errors to be the one-sided 90%
confidence interval of Ksym;0 in the two-dimensional

TABLE I. Respective fitting functions for the covariance matrix
Σ and the mean vector μ in Eq. (16) necessary for the full
reconstruction of the two-dimensional probability distributions
between Λ̃ andKsym;0. Here, the values of ΣKK and μK correspond
to the variance and mean of Ksym;0, which are independent of
chirp mass, thus require no fitting function.

Parameter Fitting functionffiffiffiffiffiffiffiffi
ΣΛΛ

p ðMÞ [MeV] Exp½6.287 − 11.86 logM − 0.9803log2M�ffiffiffiffiffiffiffiffi
ΣΛK

p ðMÞ [MeV] Exp½5.073 − 5.477 logM − 4.103 log2 M�ffiffiffiffiffiffiffiffiffi
ΣKK

p ðMÞ [MeV] 80.11
μΛðMÞ [MeV] Exp½7.394 − 12.27 logM − 6.399 log2 M�
μKðMÞ [MeV] −71.6
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probability distribution evaluated at the central value
μΛ̃ðMÞ of the Λ̃ prior distribution shown in Fig. 6.
Equivalently, the fixed diagonal Ksym;0 coefficient of
the Gaussian argument exp½−Σ−1

KKðKsym;0 − hKsym;0iÞ2=
2þ � � �� shows the systematic errors to be exactly equal
to ðΣ−1

KKÞ−1=2.
Figure 1 displays the results of the above described

procedure; plotting the (one-sided 90% confidence inter-
val) overall and systematic errors on the measurement of
Ksym;0 as a function of chirp mass. We observe here the
presence of a minimum in the uncertainties with respect
to the chirp mass—a relic originating from the correla-
tions between Ksym;0 and Λ̃ seen in Fig. 4, which
similarly observe a maximum at the same chirp mass
(and thus minimum EoS variation that generates system-
atic errors). We do note, however, that while previous
analyses by Refs. [11,29] required high correlations for
the computation of constraints,5 our analysis does not, as
all covariances between Λ̃ and Ksym;0 are taken into
account by the two-dimensional probability distribution
of Eq. (16).
Observe also how, as predicted, the statistical errors

drop as the more sensitive detectors are analyzed,
reducing to almost zero as the overall errors limit to
the fixed systematic error wall. The overall errors on the
highly sensitive third generation interferometers CE and
ET are indistinguishable from the systematic errors—
indicating that the error budget is highly dominated by
systematics at this point. Once the errors are dominated
by systematics, improving detector sensitivities or observ-
ing new events will not aid in the further constraint of
Ksym;0. This indicates the urgent need to reduce the
systematic errors found in the EoS variation of the
universal relations for the Voyager-class detectors and
beyond.6

B. Multiple events

The future of GW astronomy will become quite busy in
terms of detected events. For example, future GW inter-
ferometer Cosmic Explorer will be detecting anywhere
from 3 × 105 to 4 × 106 [59] binary NS merger events
within its horizon distance per year—a staggering number
which will certainly help reduce the statistical errors on
tidal measurements. How does one account for this effect
when studying the uncertainties in future, undetected,
events? The dominant tidal parameter in the gravitational

waveform, Λ̃, depends strongly on the subsequent masses
in the binary system, something difficult to predict before-
hand. Ultimately, this prevents one from combining the
uncertainties on Λ̃ for multiple events.
Fortunately, this can be remedied by following in the

footsteps of Ref. [59], where we reparametrized the
gravitational waveform to instead consider the Λ1.4 and
Λ0
1.4 tidal coefficients, generated by Taylor expanding

the tidal deformability Λ about the reference mass
of m0 ¼ 1.4 M⊙ [67,68]7:

Λ ≈ Λ1.4 þ Λ0
1.4

�
1 −

m
m0

�
: ð19Þ

Here, Λ1.4 ≡ Λj1.4 M⊙
and Λ0

1.4 ≡ −dΛ=d lnmj1.4 M⊙
are the

dimensionless tidal deformability and its slope at 1.4 M⊙,
and they do not depend on the individual NS masses m or
any combination thereof (however they do depend on the
fiducial mass value m0 chosen). Therefore, they are
identical for every future binary NS merger event, and
may be combined in uncertainty.
Similar to the correlation between Λ̃ and Ksym;0, we also

find a correlation between Λ1.4 and Ksym;0. We constructed
a 2D Gaussian distribution PðΛ1.4; Ksym;0Þ similar to
PðΛ̃; Ksym;0Þ in Eq. (16) and find

ffiffiffiffi
Σ

p
¼

�
193.6 97.10

97.10 80.11

�
½MeV�;

μ ¼
�

543.2

−71.164

�
½MeV�; ð20Þ

for x ¼ ðΛ1.4; Ksym;0Þ. Notice that both Σ and μ are
independent of M in this case.
In this section, we repeat the analysis performed in

Sec. IVA using the combined uncertainties on Λ1.4 from
NA unique events with chirp mass 1.188 M⊙, correspond-
ing to the number of observed binary NS mergers within
one observing year on detector A. We refer to Appendix D
for details on how to combine information from multiple
events, which closely follows Appendix A of [59]. Fiducial
values of Λ1.4 and Λ0

1.4 were computed to be the mean
values of Λj1.4 M⊙

and −dΛ=d lnmj1.4 M⊙
from the LVC

constrained EoSs. Figure 9 shows how the combined-event
uncertainties on Ksym;0 for the fixed chirp mass of
1.188 M⊙ further become saturated on the aLIGO, and
Aþ detectors as well. As was shown in Fig. 1, the single-
event uncertainties on Ksym;0 become dominated by sys-
tematic errors for Voyager-class detectors and beyond, and

5References [11,29] assumed the relationship between Λ1.4
(the tidal deformability at 1.4 M⊙) and nuclear parameters to lay
exactly on the best-fit line between the two. Thus, high degrees of
correlation were absolutely necessary for accuracy on this claim.

6A similar conclusion was reached in Ref. [59], where the
detector statistical errors became comparable to the systematic
errors from the binary Love universal relations for future
detectors Voyager and beyond.

7We note here that a linear truncation of this Taylor series is
valid for our purposes. By taking into account an additional
quadratic term identified by Λ00

1.4, we found a reduction in
measurement accuracy in Λ1.4 by only ≤5%, across various
detectors and values of chirp mass.
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thus there is not much point in stacking multiple events for
these detectors to further reduce statistical errors on Λ1.4.

V. REDUCING SYSTEMATIC ERRORS VIA
MULTIDIMENSIONAL CORRELATIONS

Let us now consider how we can reduce the systematic
walls present in Fig. 1. In Sec. IV B, this was computed
by evaluating the two-dimensional probability distribution
between Ksym;0 and Λ1.4 at the fiducial value of Λ1.4,
and then finding the 90% confidence interval of the
resulting probability distribution of Ksym;0 to yield
∼104 MeV. We here construct multidimensional correla-
tions among Ksym;0 and Λmx

at a few different masses mx

(since we expect to detect GWs from binary NSs with
different masses with future observations) to see how
adding information of the tidal deformability at multiple
different masses may help us to reduce the systematic
errors on Ksym;0.
Let us begin by using Λ at two different masses mx and

my. This requires us to find a three-dimensional correlation
among Ksym;0, Λxð≡Λmx

Þ, and Λyð≡Λmy
Þ, and construct a

three-dimensional Gaussian distribution PðKsym;0;Λx;ΛyÞ.
Figure 10 shows an example of such a distribution for the

FIG. 10. Example three-dimensional probability distribution
between Λ1.3, Λ1.6, and Ksym;0 (blue density contour). Each EoS
yields one point (black dot) in this space. The resulting systematic
errors in Ksym;0 are computed by evaluating the probability
distribution at the fiducial values of Λ1.3 ¼ 886.8 and Λ1.6 ¼
269.4 (maroon line), at the 90% confidence level.

FIG. 11. Similar to Fig. 2, but computed from the three-
dimensional probability distribution between Ksym;0, Λx,
and Λy, and evaluated at the fiducial values of Λx and Λy.
The white diagonal line atmx ¼ my corresponds to the systematic
errors obtained from the reduced two-dimensional probability
distribution PðKsym;0;ΛxÞ. In particular, the black diamond
represents the systematic error obtained with such a func-
tion with Λ1.4 (the horizontal dashed line of Fig. 9). The
systematic errors along the horizontal dashed line at my ¼
1.5 M⊙ corresponds to PðKsym;0;Λx;Λ1.5Þ, which is equivalent
to PðKsym;0;Λx;Λx;Λ1.5Þ along the diagonal line in Fig. 2.
Observe that having the information of additional Λ values does
not help in this case, and what matters is to have mx and my to be
both small or large.
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FIG. 9. The overall errors on Ksym;0 using priors on the
combined Λ1.4 (tidal deformability at 1.4 M⊙) uncertainty of
multiple events (described in Appendix D), evaluated at the chirp
mass M ¼ 1.188 M⊙. The 90% uncertainties on Ksym;0 are
shown as a function of the SNR of GW170817 as detected on
each interferometer. σ1GW170817 corresponds to the constraint
formed with one GW170817-like observation, while σNGW170817

forms the range bounded by the optimistic and pessimistic local
binary NS coalescence rates. While the single-event analysis of
Fig. 1 shows that single detections are nearly saturated by
systematic uncertainties for Voyager-class detectors and beyond,
here we show the effect stacking events can have on the aLIGO
and Aþ analyses. We observe that by combining multiple
detections, even the aLIGO and Aþ interferometers approach
the systematic error wall (dashed horizontal line) with an
optimistic number of detections.
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case of mx ¼ 1.3 M⊙ and my ¼ 1.6 M⊙. The systematic
error is then computed by evaluating the three-dimensional
distribution at the fiducial values of Λx and Λy, and then
evaluating the resulting one-dimensional Ksym;0 probability
distribution at the 90% confidence interval.
Figure 11 displays the resulting systematic uncertainties

on Ksym;0 using canonical masses mx and my between
1 M⊙ and 2 M⊙. Observe that the systematic errors can be
reduced by setting both mx and my to be large or small.
However, this means that mx ≈my, which corresponds to
effectively using a two-dimensional probability distribu-
tion. Thus, in this case, having additional information on Λ
at a different mass does not help to reduce the systematic
errors.
It may sound strange that adding more pieces of

information does not help to reduce the systematic errors.
Let us explain why this is the case by comparing the
systematic errors at ðmx;myÞ ¼ ð1; 2ÞM⊙ and ðmx;myÞ ¼
ð2; 2ÞM⊙. Figure 12 compares the two-dimensional 90%
contours between Ksym;0 and Λ2.0 from two different
methods by computing (i) directly the two-dimensional
probability distribution from Eq. (16), and (ii) the three-
dimensional probability distribution between Ksym;0, Λ2.0,
and Λ1.0, and then evaluating it at the fiducial value of Λ1.0.
We observe that while the contour from the first case
has a larger area (and value of jΣj) as expected due to the

use of less information, it becomes distorted such that the
systematic uncertainty (along the dashed horizontal line
corresponding to the fiducial value of Λ2.0) becomes
smaller than that from the first case.
Let us now consider using Λ at three different masses,

mx, my and mz. This requires us to find a four-dimensional
correlation and construct the four-dimensional Gaussian
probability distribution PðKsym;0;Λx;Λy;ΛzÞ. We fix
mz ¼ 1.5 M⊙, and allow mx and my to vary between
½1.0; 2.0�M⊙. Similar to the process used previously, this
probability distribution is evaluated at the fiducial values of
Λx, Λy and Λ1.5:

P000ðKsym;0Þ ¼ PðKsym;0; Λ̄x; Λ̄y; Λ̄1.5Þ: ð21Þ
The resulting 90% confidence intervals are presented in
Fig. 2 for the entire range of mx and my mass values. We
observe that by including information about binaries with
large, medium, and small masses together, the systematic
errors can be improved drastically, down to ∼74 MeV. We
also see that along the diagonal line of mx ¼ my, the four-
dimensional probability distribution PðKsym;0;Λx;Λx;Λ1.5Þ
reduces to the three-dimensional case PðKsym;0;Λx;Λ1.5Þ,
with uncertainties ∼104 MeV approaching that of Fig. 11
along the horizontal dashed line.

VI. DISCUSSIONS

Are there any other ways to further improve the con-
straints on Ksym;0 using observed GW events? One might
think that the constraint on Λ̃ with GW170817 may help in
this direction. However, the restriction of data in only the Λ̃
dimension does not help as systematic errors are found by
evaluating the scattering width in the Ksym;0 direction.
Finally, we briefly discuss the possibility of NSs with

strong first-order phase transitions from hadronic to quark
matter in the core, as described in Ref. [9]. With high enough
observed chirp masses M, future binary NS merger events
could potentially be composed of one or both hybrid stars
(HSs) with quark-matter cores. The tidal deformabilities and
thus, the nuclear parameters, depend on such structure, and
could potentially disagree between events with varying chirp
masses and combinations of NS/HS [69]. Thus, significant
variations between nuclear parameter measurements with
future GW observations with varying chirp masses could
potentially present evidence of strong phase transitions at
around 2–3 times the nuclear saturation density. If such
transitions are present at sufficiently low-densities, then the
nuclear matter parameters will be further decoupled from the
GW observations and thus our lower limit for the nuclear
matter parameter uncertainties will increase. Alternatively,
similar measurements of nuclear parameters could either
indicate a pure hadronic matter EoS, or phase transitions
occurring at higher nuclear densities. The structure of such
high-density transitions could be probed by the GW post-
merger oscillation signal.
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FIG. 12. 90% confidence interval contours of the two-dimen-
sional probability distribution between Ksym;0 and Λ2.0 computed
using two different methods: (i) (brown) the two-dimensional
probability distribution between Ksym;0 and Λ2.0, and (ii) (dashed
orange) the three-dimensional probability distribution between
Ksym;0, Λ2.0, and Λ1.0. (We evaluate the latter at the fiducial value
of Λ1.0.) To compute the systematic errors in Ksym;0, one would
evaluate such contours at the fiducial value of Λ2.0, denoted by
the horizontal line, and finding the 90% confidence interval of the
resulting one-dimensional probability distribution in Ksym;0.
Observe that although the area of the brown contour is larger
than that of the orange, the systematic error on Ksym;0 from the
former is smaller than that of the latter.
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As we showed in the previous section, one can use
multidimensional correlations to reduce the systematic
errors. Instead of using tidal deformabilities from different
NS masses obtained from GWs alone, one can consider
combining information from multimessenger observations.
For example, pulse profiling techniques by NASA’s
Neutron star Interior Composition Explorer (NICER)
instrument may provide high-precision measurements on
the NS radius down to 5% [70,71]. Thus, one can construct
multidimensional correlations among nuclear parameters,
tidal deformabilities and radii of NSs. The work along this
direction is currently in progress [72].
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APPENDIX A: ORIGINAL VERSUS
RESTRICTED SETS OF EoS

In this Appendix, we show how the restriction of
EoSs described in Sec. II C used in the current analysis
impacts our observations, as compared to the original set of
EoSs used in Ref. [35]. Figure 13 shows a comparison
between the two-dimensional probability distributions

PðKsym;0; Λ̃Þ resulting from each set of EoSs. We see that
while the restriction to EoSs does indeed shrink the 90%
confidence intervals in the direction of correlation, the
widths are approximately equal at the fiducial value of Λ̃
(where the systematic errors are analyzed). This shows that
while using a subset of EoSs may reduce the overall error,8

the level of systematic errors will remain mostly fixed. Our
result is consistent, for example, with Ref. [55], which
found that the correlation between L0 and the radius of a
1.4 M⊙ neutron star was weak because of the contribution
of the high-density component of the EoS.

APPENDIX B: MULTIPLICATIVE
COMBINATIONS OF NUCLEAR

PARAMETERS

In this Appendix, we discuss the feasibility of using
multiplicative combinations of nuclear parameters, such as
K0L

η
0, rather than the linear combinations such as K0 þ

αL0 considered in Refs. [11,29,35]. Here we consider the
following multiplicative combinations for comparison pur-
poses: K0L

η
0, M0L

μ
0, and Ksym;0Lν

0, where coefficients η, μ,
and ν are similarly chosen to achieve maximal correlation.
Such multiplicative combinations are similar to those
considered in [30,31].
Figure 14 presents the correlations between Λ̃ and all six

multiplicative and linear combinations of nuclear param-
eters considered in this analysis. While the two classes of
nuclear parameter combinations produce very similar
correlations with Λ̃, we observe that the linear cases slightly
outperform the multiplicative cases for nearly all values of
chirp mass. Similarly, repeating the analysis9 found in
Sec. IV returns constraints on Ksym;0 to be slightly worse
than that considered in the main analysis, due to the
additional inclusion of uncertainties from nuclear param-
eter L0. One arrives at a similar conclusion if one uses a
linear combination with γ ≠ 0 [35].
From this evidence, we conclude with the remarks that

the multiplicative combinations of nuclear parameters offer
nothing new in terms of enhanced constraints on nuclear
parameters. The multiplicative combinations of nuclear
parameters slightly underperform their linear combination
counterparts in terms of correlations with Λ̃. Thus, we
neglect their use and continue our analysis as was done
previously in [35].
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FIG. 13. Comparison of the two-dimensional Ksym;0 − Λ̃ cor-
relations when using (i) the reduced set of EoSs taking into
account the nuclear parameter correlations found in Ref. [36]
(filled circle) and (ii) the original set of EoSs used in Ref. [35]
(open diamond). Depicted by their respective 90% confidence
ellipses, we observe that the reduced set of EoSs shrinks the
probability distribution in the direction of correlation, though
such a set does not appreciably change the width. The systematic
errors, computed to be the 90% width of the Ksym;0 probability
distribution evaluated at the fiducial value of Λ̃ (depicted by the
vertical dashed line), are seen to be both ∼104 MeV, independent
of which set of EoSs are used. However, the overall errors are
observed to be reduced for the reduced set.

8We indeed observed large reductions in the overall errors
found in Fig. 1 when using the restricted EoSs rather than the
original ones, while the level of systematics stayed constant at
∼104 MeV.

9Because the two-dimensional probability distribution is now
between Λ̃ and Ksym;0Lν

0, an additional marginalization over L0:R
∞
−∞ PðKsym;0Lν

0ÞPðL0ÞdL0 must be performed [PðL0Þ is an
additional prior distribution on L0 given by Refs. [4,34,36,73]]
in order to extract the posterior distribution on Ksym;0.
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APPENDIX C: EXAMPLE COMPUTATION OF
THE Ksym;0 POSTERIOR DISTRIBUTION

In this Appendix, we demonstrate the process of com-
puting the posterior distribution on Ksym;0 (used in Sec. IV)
for one value of chirp mass, M ¼ 1.188 M⊙, correspond-
ing to GW170817 on detector O2. This case corresponds to
the large dot in Fig. 1. Referring to Figs. 6 and 7, we
observe that the mean and root-mean-square Λ̃ values for
O2 detector sensitivity at M ¼ 1.188 M⊙ are given by
μΛ̃ ¼ 430.8 and σO2 ¼ 172.5, respectively. This results in a
prior distribution on Λ̃ shown in Fig. 15, given by

PO2ðΛ̃Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð172.5Þ2
p e−ðΛ̃−430.8Þ2=2ð172.5Þ2 : ðC1Þ

We additionally show the true posterior distribution on Λ̃
derived in Ref. [45], which was used as a prior in our
original analysis found in Ref. [35] for comparison
purposes.
Following along with Sec. IVA, we generate the two-

dimensional probability distribution between Ksym;0 and Λ̃,
given by Eq. (16). We find the covariance matrix and the
mean vector to be

Σ ¼
�
45610 10410

10410 6418

�
; μ ¼

�
606.7

−71.16

�
; ðC2Þ

for x ¼ ðΛ̃; Ksym;0Þ. This results in the two-dimensional
probability distribution between Ksym;0 and Λ̃ shown in
Fig. 16. The systematic error on Ksym;0 is then computed
by evaluating the 90% confidence interval width of
the distribution in the Ksym;0 dimension at μΛ̃ ¼ 430.8,
corresponding to the mean of the prior distribution
in Λ̃. The resulting (one-sided 90% confidence level)
systematic errors for this case are found to be
σsys ¼ 104.6 MeV.
Finally, the posterior distribution on Ksym;0 can be

computed by combining the two-dimensional probability
distribution with the prior distribution on Λ̃, and then
marginalizing over Λ̃:

PðKsym;0Þ ¼
Z

∞

−∞
PðΛ̃; Ksym;0ÞPO2ðΛ̃ÞdΛ̃: ðC3Þ

Figure 17 displays the resulting posterior distribution on
Ksym;0, with a mean of −97.63 MeV and a one-sided
90% confidence interval of 116.0 MeV. Comparing this
to the resulting posterior distribution (also shown in
Fig. 17) found in Ref. [35] giving a 90% confidence
interval of −259 MeV ≤ Ksym;0 ≤ 32 MeV, we find that
this approximation of Λ̃ priors slightly underestimates the
errors in Ksym;0, but otherwise works quite well. We also
note that here, we utilize a restricted set of EoSs
compared to that done in Ref. [35], resulting in a slightly
more accurate posterior distribution on Ksym;0.
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FIG. 15. Prior distribution (solid green) on Λ̃ for O2 detector
sensitivity with a chirp mass of M ¼ 1.188 M⊙. This distribu-
tion, used to compute posteriors on Ksym;0, is generated by
assuming Λ̃ follows a Gaussian distribution in Eq. (C1) with
mean μΛ̃ ¼ 430.8 (dashed vertical line), and root-mean-square
σO2 ¼ 172.5 (cyan shaded region). These are computed from the
GW170817-constrained EoSs from Ref. [35], and from a simple
Fisher analysis respectively. Additionally shown in the figure is
the posterior distribution on Λ̃ derived by the LIGO and Virgo
collaborations in Ref. [45] (dashed blue).
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FIG. 14. Similar to Fig. 14, but for the comparison between
multiplicative and linear combinations of nuclear parameters:
K0L

η
0,M0L

μ
0, Ksym;0Lν

0, K0 þ αL0,M0 þ βL0, and Ksym;0 þ γL0.
Here, parameters η, μ, ν, α, β, and γ are chosen such that the
correlations with Λ̃ are maximal at each value of chirp mass.
Observe how both the linear and multiplicative combinations of
nuclear parameters produce similar correlations with Λ̃, though
the former outperforms the latter marginally for nearly all values
of chirp mass.
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APPENDIX D: COMBINING UNCERTAINTIES
FROM MULTIPLE EVENTS

In this Appendix, we explain how one can combine
statistical uncertainties on certain parameters from multiple
events. We closely follow Appendix A of [59]. To estimate
the number of detected binary NS merger events NA on
interferometer A, we integrate the local binary NS merger
rate across all redshift values within detector A’s horizon
redshift zh with SNR thresholds of ρth ¼ 8. Following the
process used in Ref. [59], this is given by

NA ¼ Δτ0
Z

zh

0

4π½a0r1ðzÞ�2RrðzÞ dτ
dz

dz: ðD1Þ

In our cosmology, we choose a0r1ðzÞ, dτ
dz, and rðzÞ to be

a0r1ðzÞ ¼
1

H0

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −ΩΛÞð1þ z0Þ3 þ ΩΛ

p ; ðD2Þ

dτ
dz

¼ 1

H0

1

1þ z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 −ΩΛÞð1þ z0Þ3 þ ΩΛ
p ; ðD3Þ

rðzÞ ¼
8<
:

1þ 2z ðz ≤ 1Þ
3
4
ð5 − zÞ ð1 ≤ z ≤ 5Þ

0 ðz ≥ 5Þ;
ðD4Þ

whereH0 ¼ 70 km s−1 Mpc−1 is the local Hubble constant,
ΩΛ ¼ 0.67 is the Universe’s vacuum energy density, R ¼
1540þ3200

−1220 Gpc−3 yr−1 is the local binary NS coalescence
rate density [32], and Δτ0 is chosen to be a one year
observation period. Doing so gives the rates found in
Table VIII of Ref. [59]. For demonstration purposes, we
choose to use the lower and upper limits of these rates
which are found to be ð2.0 × 100; 3.0 × 102Þ, ð1.6 × 102;
2.4 × 103Þ, ð2.2 × 103; 3.2 × 104Þ, ð7.2 × 104; 1.1 × 106Þ,
and ð3.0 × 105; 4.4 × 106Þ events per year for aLIGO, Aþ,
Voyager, CE, and ET respectively.
Similarly following Ref. [59], the combined uncertainty

σNA
is computed by first simulating a population of NA

events from the SNR (ρ) probability distribution [74,75]:

fðρÞ ¼ 3ρth
ρ4

; ðD5Þ

with an SNR threshold of ρth ¼ 8. The combined popula-
tion root-mean-square error on Λ1.4 is then computed by
integrating over all NA sources at various redshifts z:

σ−2NA
¼ Δτ

Z
zh

0

4π½a0r1ðzÞ�2RrðzÞ dτ
dz

σAðzÞ−2dz: ðD6Þ

Here, σAðzÞ is the redshift dependence of the root-mean-
square error on detector A, evaluated via Fisher analyses at
various redshifts up to zh.
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FIG. 17. Resulting posterior distribution on Ksym;0 (solid
green), displaying a mean of −97.63 MeV (dashed magenta)
and a one-sided 90% confidence interval of 116.0 MeV (shaded
magenta). Additionally shown (dashed blue) are the results found
in Ref. [35], when using the full set of 121 EoSs and the full prior
distribution in Λ̃, rather than the Gaussian estimation and
restricted set of EoSs used here. Observe that the approximation
of Gaussian Λ̃ prior distributions slightly underestimates the
uncertainties in Ksym;0.

FIG. 16. Two-dimensional normalized probability distribution
between Ksym;0 and Λ̃ as given by Eq. (16), with the 68% and
90% confidence regions highlighted in black. Overlaid on the
distribution is the set of 58 data points corresponding to the
various EoS models used in the analysis. The vertical dashed line
represents the mean of the prior Λ̃ distribution, at which the (one-
side 90% confidence interval) systematic error in Ksym;0 is
computed to be σsys ¼ 104.6 MeV.
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