PHYSICAL REVIEW D 100, 023011 (2019)

New search pipeline for compact binary mergers: Results for binary black
holes in the first observing run of Advanced LIGO

Tejaswi Venumadhav,"” Barak Zackay,' Javier Roulet,” Liang Dai,' and Matias Zaldarriaga'

'School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton,
New Jersey 08540, USA
2Departmem‘ of Physics, Princeton University, Princeton, New Jersey 08540, USA

® (Received 21 March 2019; published 24 July 2019)

In this paper, we report on the construction of a new and independent pipeline for analyzing the public
data from the first observing run of Advanced LIGO for mergers of compact binary systems. The pipeline
incorporates different techniques and makes independent implementation choices in all its stages including
the search design, the method to construct template banks, the automatic routines to detect bad data
segments (“glitches”) and to insulate good data from them, the procedure to account for the nonstationary
nature of the detector noise, the signal-quality vetoes at the single-detector level and the methods to
combine results from multiple detectors. Our pipeline enabled us to identify a new binary black hole merger
GW151216 in the public LIGO data. This paper serves as a bird’s eye view of the pipeline’s important
stages. Full details and derivations underlying the various stages will appear in accompanying papers.
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I. INTRODUCTION

The LIGO and Virgo observatories reported the detection
of several gravitational wave (GW) events from compact
binary coalescence in their first and second observing runs
(O1 and O2 respectively) [1]. These detections required
technically sophisticated analysis pipelines to reduce the
strain data. This is because typical events are buried under
the detector noise and cannot be simply “seen’ in raw data at
current sensitivities. Hence, any search for signals in the data
needs to properly and precisely model the detector noise.

The simplest model is that the detector noise is stationary
and Gaussian in nature. Under these assumptions, the
best method to detect signals is matched filtering, which
involves creating a bank of possible signals, constructing
optimal filters (or templates) for the signals given the noise
model, and running the templates over the data. The resulting
scores are distributed according to known (chi-squared)
distributions in the presence or absence of real signals [2].

Unfortunately, both the assumptions underlying matched
filtering fail at some level: the noise statistics vary even on
the timescales of the (putative) signals, and there are
intermittent nonastrophysical artifacts which are clearly
not produced by Gaussian random noise (“glitches”) [3];
examples of such disturbances can be found in Ref. [4].
These systematics pollute the distribution of the matched-
filtering scores. Moreover, the templates describing differ-
ent astrophysical signals have finite overlaps and thus often
trigger on the same underlying noise transients. Detectable
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real events lie in the tails of the score distribution. Hence it
is crucial to properly correct for systematics in order to
maximize the sensitivity to GW events and to quote reliable
false-alarm rates (FARS).

The official catalog of GW events published by the
LIGO and Virgo collaborations comprises candidates from
two independent pipelines: PyCBC [5] and GstLAL [6].
Additional analysis of the data was presented in Ref. [7].
Each of these pipelines has developed solutions for the data
complexities described above. In this paper, we describe a
new and independent analysis pipeline that we have devel-
oped for analyzing the publicly available data from the first
observing run of Advanced LIGO [8]. Our solutions and
implementation choices were guided by the desire to attain,
as much as possible, the ideal of the distributions in the
Gaussian case, which are easily understood and interpreted.

First, we developed a method to construct template banks
that enumerates not over physical waveforms, but over linear
combinations of a complete set of basis functions for their
phases. Correlations between templates have a uniform and
isotropic metric in this space.

Second, when dealing with systematics, we use proce-
dures with analytically tractable behavior in the case of
Gaussian random noise, which enables us to set thresholds
based on well-defined probabilities. We developed a simple
method to empirically correct for the nonstationary nature
of the detector noise [power spectral density (PSD) drift]).
Under this procedure, segments of data with no apparent
glitches produce trigger scores with perfect chi-squared
distributions. At the first pass, we attempt to veto out
residual glitches using a collection of simple tests (either at
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the signal-processing level or after triggering), while still
using the matched-filtering scores as the ranking statistics
to leave the Gaussian “floor” untouched. We also devel-
oped methods to condition masked data in a way that
guarantees that the following matched-filtering step would
have zero response to the masked data segments.

Finally, we estimate the background of coincident triggers
between the two detectors using time slides (akin to PyCBC).
Our pipeline includes methods to use the information from
background triggers to combine physical triggers from
different detectors in a statistically optimal manner for
distinguishing astrophysical events from noise transients.

Our paper is organized as follows: Section II provides an
overview of the stages in the pipeline. Section III expands
upon each of the stages while omitting derivations and
precise details, which we present in accompanying papers
[9-11]. In Sec. IV we present the results of our search for
binary black hole mergers in O1.

I1. PIPELINE STAGES

We construct our pipeline in several stages, which are

organized as follows:

(1) Construction of a template bank: We divide the
mergers into banks with logarithmic spacing in the
chirp mass and analyze each bank separately.
Section III A provides further details on the under-
lying method and the properties of the resulting
banks.

(2) Analysis of single-detector data: We first analyze the
data streams from the Hanford (H1) and Livingston
(LT) detectors separately, as follows:

(a) We preprocess data from each detector in chunks
of ~4096 s. Section IIIB details our initial
signal processing.

(b) We iteratively whiten the data stream, perform
several tests to detect and remove bad data
segments (glitches), and condition the remain-
ing data to preserve astrophysical signals.
Sections III C and III D describe this procedure.

(c) We correct for the nonstationary nature of
the noise (PSD drift), which if untreated,
systematically pollutes the connection between
the matched-filtering scores and probability.
Section III F provides more details.

(d) We generate matched-filtering overlaps for the
waveforms in our banks with the whitened data
stream, apply the PSD drift correction, and
record triggers whose matched-filtering scores
are above a chosen threshold (Sec. III E).

(3) Coincidence analysis between detectors: We ana-
lyze triggers that are coincident in H1 and L1.
In Sec. III G, we describe how we collect coincident
triggers with a combined incoherent score above a
threshold, at both physical (candidates) and unphys-
ical (background) time delays.

(4) Refining on a fine grid: We refine the parameters of
the candidates and the background on a finer grid
around the triggers in order to account for template
bank inefficiency and allow room for more stringent
signal-quality vetoes.

(5) Trigger-quality vetoes: We apply vetoes on the
triggers based on the signal quality, as well as the
data quality. The vetoes have to be applied at
the single-detector level, to avoid biasing the calcu-
lation of the coincident background using time slides.
Section III I lists the vetoes we applied to the triggers.

(6) Estimating the significance of candidates: We use
the set of background triggers to estimate the FAR
for the candidates at physical lags between H1 and
L1. We do this in two stages:

(a) We first compute a ranking score that is purely a
function of the incoherent scores of the triggers,
under the assumption that the noise processes
that produce the background are independent
between detectors (Sec. II1J).

(b) Section IIIK describes our coherent score,
which adds all the information encapsulated in
the phase, amplitude, relative sensitivity and
arrival time differences between the detectors
to create our final candidate ranking statistic.

(c) Section IIIL describes how we construct an
estimate for the probability of a coincident event
being of astrophysical origin given an astro-
physical event rate.

III. CONCISE DESCRIPTION OF THE
PIPELINE STAGES

A. Template bank

We perform our search by matching the strain data to a
discrete set of waveform templates that sufficiently closely
resemble any gravitational wave signal within our target
parameter space. We target our search at coalescing binary
black holes (BBH), defined here as compact binary objects
with individual masses between 3 and 100 My and with
aligned spins. We allow spin magnitudes up to |y ,| < 0.85.
We restrict the mass ratios to be ¢g~' < 18.

As described in Ref. [9], we construct five BBH template
banks (BBH 0-4) that together span this target parameter
space, and we conduct a separate search within each of them.
The banks are defined by regions in the plane of component
masses, as shown in Fig. 1. We place the bounds between
adjacent banks at M = {5,10,20,40} M, where M =
(mymy)3 /(m; + m,)'/3 is the chirp mass and m; , are the
individual masses. We find several motivations for dividing
the search. The low-mass banks have many more templates
than the heavier banks, and thus they inherently have a larger
look-elsewhere penalty. Dividing the search prevents this
from strongly affecting the sensitivity of the high-mass
searches: in this way, on astrophysical grounds we might
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FIG. 1. Division of the BBH parameter space into five template

banks (BBH 0-4) by component masses. A separate search is
conducted on each. The points represent the input waveforms
used to construct the banks (not the templates themselves), and
the colors encode the division of each bank into sub-banks
according to the shapes of the waveform amplitude. Approximate
detector-frame masses are indicated for BBH detections reported
to date (in Ol and O2) and for GW151216.

expect roughly comparable numbers of signals in each bank,
regardless of the largely different number of templates they
have. Moreover, this splitting enables us to discriminate
between the different types of background events that each
search is subject to. The different duration of the signals in
each bank will require us to use different thresholds when
masking bad data segments (see Sec. III C). The prevalence
of non-Gaussian glitches will be different in each bank and
thus the score we assign to events with the same signal-to-noise
ratio (SNR) is different in each bank (see Sec. III J). Table I
summarizes the template bank parameter ranges and sizes.

The template bank needs to be effectual, that is, to
guarantee a sufficiently high match between a GW wave-
form and at least one template in the bank. We define the
inner product between waveforms h;, h;,

TABLE 1. Summary of template bank parameters. M is the
chirp mass range that the bank is designed to cover. E, and E are
the effectualnesses without and with refinement (Sec. III H)
respectively, as quantified by the best match within the bank
achieved by the top 99.9% of random astrophysical templates.
Nemplaes 18 the total number of templates in each bank.

Bank M (M O) EO E N templates
BBH 0 <5 0.90 0.97 6465
BBH 1 (5,10) 0.92 0.96 7919
BBH 2 (10,20) 0.94 0.96 5855
BBH 3 (20,40) 0.95 0.96 594
BBH 4 >40 0.97 0.97 57
Total 20890

e ili(f )];*'<f )
h;|h; ::4/ df 2722 1
(hilhj) | 5.0) (1)
where S, (f) is the one-sided noise PSD of the detector and
a tilde indicates a Fourier transform into the frequency
domain. It is used to define the match

m;; = max|(hi|hjei2”fr)|§ (2)
T
throughout this section we assume that all waveforms are
normalized to (h|h) = 1. We assess the effectualness E of
each bank by computing the best match with 10* random
waveforms in its target parameter space. We apply the down-
sampling and sinc-interpolation described in Sec. IIIE
and the waveform optimization described in Sec. Il H to
the test waveforms, to properly simulate the search pro-
cedure. We report the effectualness of the banks in Table 1.
When designing banks, we set the reference PSD to be the
aLIGO MID LOW PSD [12], which is representative of O1.
In order to correct the PSD drift at a manageable
computational cost, our search pipeline requires that the
frequency domain templates, of the form

h(f) = A(f)eVV), (3)

share a common amplitude profile A(f) (see Sec. Il F) and
differ only in the phase y/(f). In order to avoid excessive
loss of effectualness due to this approximation, we split
each bank into several sub-banks, each of which is assigned
a different A(f) profile. We use the method of “stochastic
placement” to determine as many sub-banks as needed to
guarantee that every waveform within the target parameter
range has an amplitude match,

/dfw > 0.95, (4)

with at least one sub-bank. The resultant divisions into sub-
banks are color coded in Fig. 1.

The remaining task is to place templates in each sub-
bank to efficiently capture the possible phase shapes y(f).
We achieve that with a geometric approach, where we use
the mismatch between templates to define a mismatch
distance, which quantifies the similarity between any two
waveforms. We abandon the physical parameters as a
description of the templates in favor of a new basis of
coordinates ¢, in which the mismatch distance induces a
Euclidean metric. We then set up a regular grid in this
space. Our templates take the form

hifie) = A7 exp| () + ;cawamﬂ )

where (f) is the average phase, and {y,(f)} are phase
basis functions which are orthonormalized such that the
mismatch distance satisfies
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d2

c.c+dc =

= %Z(Sc?, + O(5c3). (6)

1 —m(h(c), h(c + dc))

An input set of physical waveforms representing the target
signals is used, first to define the sub-banks and then to
determine the appropriate phase basis functions. The input
waveforms may be generated with any frequency-domain
model; we use the IMRPhenomD approximant [13]. The
phase basis functions are found from a singular value
decomposition of the input waveforms which identifies
the minimal set of linear independent components that
need to be kept. A small number of basis functions are
enough to approximate all possible phases to sufficient
accuracy. All banks require five linearly independent bases
or fewer, with about half of them having only three or
fewer. While the coefficient for the lowest order bases may
vary over a range of several hundred units, the coefficients
for the highest order bases vary within narrow ranges,
sometimes by less than one unit.

B. Loading and preprocessing the data

The strain data are provided by LIGO in sets of files of
length 4096 s for each detector (HI and L1 in O1). The
natural choice is to split the analysis along the same lines,
i.e., file by file. We would like to preserve our sensitivity to
events near the edges of files, and hence we pull in data
from adjacent files if available. The length of data we pull
in is set by the following considerations: (a) there should be
no artifacts in the whitened strain at the edge of a file due to
missing data at the right edge; (b) events that straddle files
should be contained inside the padded and whitened data
stream; and (c) relatively short segments of data (<1024 s)
near file edges, with a large adjoining segment (> 64 s) of
missing data, are analyzed as part of the adjoining file
instead of on their own. Even after padding, the boundary
of the (expanded) data stream will still have artifacts from
the whitening filter. To treat this, we further append 64 s of
zeros to the padded strain data on either side, that we will
later inpaint using the method of Sec. III D.

Additionally, we observe that long segments (=64 s) of
bad data, as marked by LIGO’s quality flags, can have a
few unmarked extra seconds of bad data adjoining the
marked segments (this can happen due to latency in the
flagging system, for example). The procedure outlined in
Sec. III C is designed to catch such segments, as well as
other kinds of misbehaved data. However, we only reach
this stage after some initial signal processing and suffi-
ciently bad data segments might pollute good data seg-
ments through each step of the analysis. Therefore, we trim
an additional 2 s of data when these segments occur at the
right edges of files.

The next step after loading the data is to estimate its PSD.
We use Welch’s method [14], in which several overlapping

chunks of data are windowed and their periodograms are
averaged (we use the implementation in scipy.signal
with a Hann window). We make our PSD estimation robust
to bad data by (a) disregarding chunks that overlap with
segments that were marked by LIGO’s quality flags and
(b) averaging using the median instead of the mean (see
Appendix B of Ref. [15]).

An important choice to make is the length of the
individual chunks whose periodograms enter the averages
(“chunksize” in what follows). In pure Gaussian random
noise, the choice of chunksize is governed by the following
(conflicting) considerations: (a) controlling the statistical
uncertainty in the averages, which depends on the number
of independent samples within a file, and (b) mitigating the
loss in matched-filter sensitivity around under-resolved
spectral lines. As we discuss in Sec. III F, the advanced
LIGO data are typically not described by purely Gaussian
random noise (even in the absence of “bad” segments with
excess power) due to systematic drifts in the PSD within
a file. We find that using 64 s chunks to measure the
PSD yields an acceptable compromise between the above
effects. This choice also affects the minimum length of the
files that we choose to analyze: the first consideration
above (the measurement noise in the PSD) implies that we
take a 4% loss in sensitivity for files that are shorter than
16 times the chunksize. If a file is shorter than this limit (not
including the segments marked by LIGO’s quality flags),
we try to analyze it using a chunksize of 16 s instead, while
enforcing the same minimum number of chunks.

We restrict ourselves to analyzing frequencies f <
512 Hz by down-sampling the data to 1024 Hz. This is
safe to do since all compact binary merger signals accu-
mulate more than ~99% of their matched-filtering SNR
below 512 Hz at the O1 detector sensitivity, and since we
already budget for 1% losses in the template bank. This
choice reduces the sizes of the template banks and saves us
computational time during triggering, at the expense of a
negligible loss in sensitivity. We also apply a high-pass filter
to the data (implemented as a fourth-order Butterworth filter
with f ., = 15 Hz, applied from the left and the right to
preserve phases). This removes low-frequency artifacts in
the data (that could later trigger our flagging procedure in
Sec. III C) and is safe to do since we only use frequencies
f > 20 Hz in building the template bank.

Finally, we construct the whitening filter from the
estimated PSD and use it to whiten the data. The whitening
filter typically has most of its power at small lags, but
exhibits a long tail at large lags due to spectral lines in the
data. Our procedure for inpainting bad data segments
(described in Sec. III D) requires that the whitening filter
have finite support; hence we zero the filter at large lags
(while ensuring that we retain 299.9% of its weight,
typically the filter is left with an impulse response length
of ~16 s). Zeroing the whitening filter in the time domain
corresponds to convolution with a sinc function in the
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frequency domain, which fills in the lines; thus, the filter
does not reject spectral lines completely. Hence, we take
care that our flagging procedure does not trigger on spectral
lines in the data.

C. Identifying bad data segments

Advanced LIGO data contain intermittent loud disturb-
ances that are not marked by the provided data quality
flags. We need to flag and remove these segments to
prevent them from polluting our search, while taking care
to preserve astrophysical signals of interest. This is the
fourth analysis of the data, and hence we assume that any
new signals we find will have an integrated matched filter
SNR p < 30 1in a single detector. This assumption allows us
to bound the influence of a true signal on our procedure.

We devise several complementary tests to flag bad
data segments. We design our tests to satisfy the following
conditions:

(1) The test statistics have analytically known distribu-

tions for Gaussian random noise.

(2) The thresholds are set to values of the test statistics
achieved by waveforms with single-detector p = 30
in noiseless data. Signals at this SNR have a
probability of ~0.5 of triggering a single test in
the presence of Gaussian random noise. We found
empirically that signals satisfying p < 20 are almost
always retained.

(3) If the above thresholds are too low, they are adjusted
so that a single test is triggered at most once per five
files due to Gaussian random noise alone. This is
important for template banks with long waveforms.

(4) The tests are safeguarded from being triggered by
PSD drifts over long timescales (¢ 2 10 s), which can
manifest as excess power over shorter timescales.

These conditions ensure that we are sensitive to gravita-
tional waves while not overflagging the data. It is
important that the tests be done at the single-detector
level in order to avoid biasing the calculation of the
background using time slides.

Our tests trigger on the following anomalies: (a) outliers in
the whitened data stream, (b) sine-Gaussian transients in
particular bands, (c) excess power localized to particular
bands and timescales, and (d) excess power (summed over
frequencies) on particular timescales. We picked timescales
and frequency bands for the tests based on inspecting the
spectrograms of the bad segments; Table II details the choices.

The data have spectral lines at which the PSD is several
orders of magnitude higher than in the continuum. The
power in these lines often significantly varies in a non-
Gaussian manner within a single file. The lines do not
contribute to the matched-filtering overlap, since the PSD is
effectively infinite at their frequencies. Hence it is prefer-
able that varying lines do not trigger our tests.

We detect sine-Gaussian artifacts in a given band by
matched filtering with a complex waveform that saturates

TABLE II. Summary of tests for identifying bad data segments.
For each test, we show the frequency band and timescale of the
disturbance that it is sensitive to and the length of the data we
excise around the disturbance.

Frequency Excess Hole
Test type band (Hz) duration (s) duration (s)
Whitened outlier [20, 512] 1073 0.6
Excess power [20, 512] 0.2 0.2
[20, 512] 1 1
[55, 65] 1 1
[70, 80] 1 1
[40, 60] 1 1
[40, 60] 0.5 0.5
[20, 50] 1 1
[100, 180] 1 1
[25, 70] 0.1 0.1
[20, 180] 0.05 0.05
[60, 180] 0.025 0.025
[25, 70] 0.2 1
Sine-Gaussian® [55, 65] e 0.1
[20, 60] 0.1
[100, 140] 0.1
[50, 150] 0.1
[70, 110] 0.1
[50, 90] 0.1
[125, 175] 0.1
[75, 125] 0.1

Sine-Gaussian transients saturate the uncertainty principle,
and hence their duration is fixed given their bandwidth.

the time-frequency uncertainty principle and contains most
of its power in the band. We apply notch filters to the sine-
Gaussian template to remove any overlap with spectral
lines. We flag any outliers in the matched-filtering results
above a threshold defined to satisfy the aforementioned
conditions (see the second paragraph of Sec. III C), which
is a procedure safe to any relevant events.

We detect excess power using a spectrogram (computed
using the spectrogram function in scipy.signal
with its default Tukey window). We sum the power in the
frequency ranges of interest, disregarding frequency bins
that overlap with varying lines. For Gaussian random noise,
this sum has a chi-squared distribution. This is not achieved
in practice unless correcting for the effects of PSD changes.
We make the excess power statistic robust to the drifting of
the PSD by comparing the instantaneous excess power with
a local moving-average power baseline.

The simplest test is to look for outliers in the whitened
strain, since individual samples should be independent and
normally distributed with unit variance. We flag segments
of whitened data, with a safety margin in time, around
outliers above a chosen threshold.

Whenever one or more of these tests fire, we excise
the offending segments (which we refer to as “holes”)
and inpaint the raw data within as described in Sec. III D.
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In practice, we observe that the outlier test often does not
catch all of the “bad” data, in which case the inpainted and
whitened data contain further outliers. Hence, we iterate
over the “identify bad segments, inpaint, whiten” cycle
multiple (<7) times, increasing the safety margin in time
by successively larger multiples of 0.1 s, until the process
converges.

We treat any part of the data that was marked with any of
the LIGO quality flags as if it contained large disturbances.
After all the data quality tests done in this section, we are
left with roughly 46 days of coincident on-time between the
detectors, with slight changes from bank to bank, as all the
test thresholds are waveform dependent.

D. Inpainting bad data segments

The matched-filtering score for a template 4 with data d
with a noise covariance matrix C is

= hicld = 4_23%7 (7)

where f denotes the frequencies, and in the last equality we
assumed that the noise is diagonal in Fourier space. The
tests described in Sec. III C flag bad data segments that we
would like to mask. The operator C~! (the “blueing filter’)
is not diagonal in the time domain; when viewed as a linear
filter operating on the data, its impulse response length
(typically ~32 s) is set by the PSD spectral lines and the
chunktime used to estimate the PSD. Thus the scores
evaluated using Eq. (7) can be significantly affected even
tens of seconds away from a masked segment.

To deal with this problem, if we consider a fraction of the
data of length N, in which we have masked N, samples, we
filter the data with a filter /' and define a new score by

Z =h'C™'Fd. (8)
The filter F is given by
F=1-wWM'wic, 9)

where the matrix W has one column of length N, for every
sample that is masked with all the entries zero except for a 1
at the position of the masked sample and M is the N;, x N,
matrix M = WTC~'W. The computationally expensive part
of this filtering procedure is to invert the matrix M.

The filter F is such that the score Z is independent of the
value of the template waveform / inside masked segments.
That is to say, F can be obtained by demanding that C~' Fd
be identically zero inside the masked regions. F is a
projection operator (F? = F) that commutes with C~!,
ie,C'F=FI'Cc! and depends only on the mask and the
covariance matrix C. In particular, it is independent of the
waveform £, and thus it can be computed once and for all
before performing matched filtering. Note also that for
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FIG. 2. Effect of masking and inpainting glitches. Top panel: A
segment of whitened strain data (in units of the noise standard
deviation) that has an identified glitch. The orange line is the
standard deviation ¢ over a running window of 100 samples and
is typically close to unity as expected for whitened data. Second
panel: Gating the glitch with an inverse Tukey window (green)
and then whitening generates artifacts in the whitened data, even
outside the window. For example, ¢ remains above 1.1 for
approximately 2 s to each side of the glitch. Third panel: The
inpainted whitened data have unit variance outside the hole
(shaded). Bottom panel: After inpainting, the “blued” strain is
identically zero inside the hole, so overlaps with templates do not
depend on what is inside the hole.

computing F, it is not important that C~! be the exact noise
covariance; it just needs to be consistently used to define
the scores in the section of data.

We can also derive F as the solution of several related
linear algebra problems. We can model the presence of the
mask as if the data had an additional source of noise inside
the masked region, and we take the limit of zero additional
noise outside the holes and infinite additional noise inside.
The filtered data d = Fd equal the original data outside the
masked segments, and the best linear prediction for the data
inside the hole is based only on the data outside (Wiener
filter). It can also be thought of as the d that minimizes

1-~ ~
7 :EdTC‘ld (10)

subject to the constraint that d equals the original data
outside the mask, but can take any value inside. The
computation of F is explained in detail in Ref. [10].
Figure 2 shows an example of a small section of the data
containing a glitch artifact. We show the difference between
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“gating” the bad data by applying a window function to it,
and creating a hole and inpainting it with the algorithm we
described. We can see that gating substantially changes the
standard deviation of the samples in the hole and the few
seconds surrounding it, which can potentially create spu-
rious triggers and can damage any real signals that happen
to be in the data at the same time. In our method, the
“blued” data are set to be identically zero inside the hole.

E. Matched filtering

Given the whitened, hole-filled data, we compute the
overlaps with all templates in the template bank and register
the times and templates when the SNR? is above a
triggering threshold. The choice of the threshold was
driven by the requirement to produce a manageable number
of triggers per file, and it was generally in the range 20 <
SNR? ., < 25 for the various banks and sub-banks.

In order for the statistics of the overlaps to have a standard
complex normal distribution, we need to apply two correc-
tions: one is for the PSD drift and one for the existence of
holes (masked data segments). As we show in Ref. [10], the
PSD correction depends only on the amplitude of the
waveform, and hence we precompute it for each represen-
tative A(f). The other correction is waveform dependent,
and accounts for the change in the variance due to the
missing cycles in the hole. We evaluate it under the
stationary phase approximation, which assumes that there
are many waveform cycles inside the hole, which is a valid
assumption only for lang waveforms, and hence we use
overlaps in the vicinity of holes only for waveforms that are
longer than 10 s. We also ignore overlaps where more than
half of the variance (and hence SNR?) is inside holes as these
are anyway a negligible part of the volume (and are also
nondeclarable even if they contain a genuine candidate).

In order to compute the overlaps and hole variance
corrections efficiently, we first notice that the waveform
is shorter than a typical data segment, so we can use the
overlap-save method in order to reduce the Fast Fourier
Transform sizes. Because the maximum frequency of the
whitened data is taken to be 512 Hz, all information about
matching the template to the data is in the complex overlaps
we compute. Looking at single overlaps and comparing to
the triggering threshold is not sufficient since the SNR could
be reduced by as much as 10% due to subsample shifts in the
GW arrival time (we down-sampled the data to 1024 Hz). We
recover this sensitivity by first setting a lower SNR bar, and
sinc-interpolating the overlaps (by a factor of 4) within each
contiguous segment above this lower bar, before checking
for overlaps above the (higher) triggering threshold.

F. Applying corrections due to the varying power
spectral density of the noise

The power spectral density of the LIGO detectors
can slightly vary with time. These changes may be hard
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FIG. 3. Itis necessary to track the drifting PSD on timescales of

seconds. In blue we show the power spectrum of the square of the
absolute value of the overlaps with a template in the BBH 0 bank
for a representative set of files. It reaches the level of Gaussian
fluctuations only close to ~0.1 Hz and has a red-noise power
spectrum fit by a power law (red dashed curve). The orange curve
shows the PSD drift correction we apply to the data, which
correctly traces the actual fluctuations in the standard deviation of
the overlaps up to the Gaussian floor.

to track and would inevitably result in PSD misestimation.
As Ref. [10] shows, if we misestimate the PSD by a factor
(14 e(f)), the information loss in matched filtering scales
as O(e?), but the overlap’s standard deviation differs by
O(e). This means that O(100) segments of data are
required in order to measure the PSD well enough to
aim for discarding less than 1% sensitivity. In order to
resolve the lines well enough to aim for the same loss,
tens of seconds of data are required. Therefore, an order
of a thousand seconds is needed for estimating the PSD.
We choose to measure the PSD using the Welch method, in
which the signal is cut into overlapping segments, and the
PSD power at frequency f is the (scaled) median of all
the power estimates at this frequency from all the segments.
It turns out, though, that the PSD varies on timescales as
short as ~10 s, as seen in Fig. 3.

While at first sight it may seem impossible to both
capture the width of the lines and track the fast variation in
the PSD, we accomplish it by correcting the first order
effect of PSD misestimation on timescales that are as short
as the PSD changes, to a precision of ~1%.

This correction is basically a local estimate of the
standard deviation of the overlaps and is derived (along
with some other nice properties it has) in Ref. [10].
In Fig. 4, we present a histogram of the distribution of
the local variance estimates. Notice the large deviations
from unity in both directions. We note that the tail reaches
values as high as 1.5; at such high values, there are visible
disturbances in the spectrogram, sometimes referred to
as glitches. However, at values in the range [0.85, 1.2], the
data mostly behave in a regular fashion, and there is no
apparent sign something bad is going on in the spectrogram
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FIG. 4. Estimated changes to the variance of the overlap
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antee a 2% precision. Measurement errors are shown by shuffling
the overlaps in time and calculating the local averages. Vertical
lines are one standard deviation away from the mean for each
distribution. It is evident that the variance changes we are tracking
are not random measurement fluctuations and can lead to severe
changes in the significance assessment of a particular event.
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FIG. 5. Effect of the PSD drift correction on the trigger
distribution. Trigger distributions of binary black hole merger
waveforms in bank BBH 0 (M € [2.6,5] M) and a sub-bank
from BBH 3 (M € [20,40] M), in the Hanford detector, before
applying any vetoes.

of the data. These changes can cause substantial loss of
sensitivity in binary coalescence analyses that neglect this
effect.”

To illustrate why correcting for these variance estimates
is crucial for determining the exact significance of a
candidate event, we point out that the most economic
way of creating a (spurious) p = 8 event is to wait for a
lucky time where the PSD misestimation is large (say, 1.2)
and then create a (genuine) p = 7.3 fluctuation. In Fig. 5,

lRecently, we were informed that fluctuations in the SNR
integral (due to short-timescale variations in the PSD) at
comparable levels were previously noted, but the mitigation
steps were not incorporated into the search pipelines used in the
catalog paper (Thomas Dent, private communication).

we see that the tail of the trigger distribution is substantially
inflated if the PSD drift is not corrected.

G. Coincidence analysis of the two detectors

After all single-detector triggers above a critical p? are
collected, we need to find pairs of triggers that share the
same template and have a time-lag difference that is less
than 10 ms. In order to generate background coincident
triggers, we also need to collect trigger pairs with all other
considered time slides (we choose integer jumps of 0.1 s in
the range [—1000 s, 1000 s]). We collect the background
events and the physical events by the following process:
First, we define that a real trigger has p? > 0.9p2,, — 5
where p,. 1s the maximum trigger in the segment of 0.01 s.
The reason for this choice is that triggers that are too close
to a major erratic event are not declarable and that if there is
a glitch that slipped through our net, we do not want a large
amount of accompanying triggers to coincide with random
fluctuations in the other detector. This massively reduces
the load of the subsequent stages.

We then take each remaining trigger and insert it into a
dictionary according to the template key. This would allow
us to immediately find all the times at which this template
triggered. Using queries to the dictionary, we find all the
pairs of triggers that belong to either the background or the
foreground group and pass the threshold p - This thresh-
old depends on the bank via computing the Gaussian noise
threshold for obtaining one significant event per O1, and
then multiplying by the bank effectualness, to guarantee that
every trigger that can acquire the one-per-O1 significance
after optimization is included.

We now view the H1 component of all pairs of triggers
and group them to groups of 0.1 s. We use the less stringent
version of the veto to vet the trigger with the highest SNR in
each group, and upon failure discard the entire group (the
logic here is that similar triggers are all passing or failing
the veto together). We do the same for the L1 component of
all remaining trigger pairs.

We then optimize every trigger by computing the over-
laps with the data of every template in the subgrid ¢ values
(see Sec. III H). We further sinc interpolate with a long
support to obtain further time resolution for the overlaps.
We then choose the subgrid template that maximizes the
quadrature sum of the single-detector SNRs. This trigger
pair is now vetoed with the stringent veto. If a trigger pair
passes all these, it is registered.

H. Refining triggers on a finer template grid

The template bank is organized as a regular grid, which
facilitates refinement in places of interest. This enables us
to squeeze more sensitivity and imitate the strategy of a
continuous template bank, which is more objective than an
arbitrarily chosen grid. The effectualness achieved by the
top 99.9% of injections with the template banks used for the
search varies between 0.9 and 0.96. Refining the grid by a
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factor of 2 in each dimension would bring it to >0.96 in
all cases, but would also substantially increase the number
of waveforms in the bank (which in turn increases the
computational complexity and memory requirements of our
search). We therefore take the approach of refining every
candidate and background trigger pair. Since we know the
maximum amount of SNR increase that is possible for a
real event, we refine all candidates that have a score that is
high enough to have a chance of reaching a FAR of 1/01
after refinement. We greatly speed up the candidate refine-
ment by calculating the likelihood using the relative
binning method [16] (using the original grid-point trigger
as the reference waveform). Table I reports the improve-
ment in effectualness achieved by this procedure for our
banks.

I. Vetoing triggers

The matched-filtering score is the optimal statistic for
detecting signals buried in Gaussian random noise. As
emphasized in the previous sections, the LIGO strain data
are not well described by purely Gaussian random noise,
and hence, the matched-filtering score may be triggered
(i.e., pushed above the Gaussian-noise significance thresh-
old) by either transient or prolonged disturbances in the
detector. Our pipeline attempts to reject these candidates
by identifying bad segments at the preprocessing level
(Sec. III C) or downweighting the scores by their large
(empirically measured) variance (Sec. III F). However, this
is not enough to bring us down to the Gaussian detection
limit, especially for the heavier black hole banks. Thus, we
need additional vetoes at the final stage to reject glitches.
We use vetoes that are based on the quality of the
neighboring data, as well as that of the signal.

Our most selective vetoes are based on signal quality,
and we check that the matched-filtering SNR builds up the
right way with frequency. We perform the following tests:

(1) We subtract the best-fit waveforms from the data and

repeat the excess power tests of Sec. III C, but with
lower thresholds computed using waveforms with
p = 3 (and bounded to fire once per 10 files due to
Gaussian noise). Moreover, when we see excess
power in a particular band and at a particular time,
we only reject candidates with power at the same
time in their best-fit waveforms (in order to avoid
vetoing candidates due to unrelated excess power).

(2) We split the best-fit waveform into disjoint chunks

and check for consistency between their individual
matched-filtering scores. This test is similar in phi-
losophy to the chi-squared veto described in Ref. [17],
but improves upon it by accounting for the misesti-
mation of the PSD (which is an inevitable conse-
quence of PSD drift) and by projecting out the effects
of a small mismatch with the template bank grid.

(3) We empirically find triggers that systematically miss

the low-frequency parts of the waveforms or have

large scores at intermediate frequencies. The check
described above is agnostic to the way the matched-
filtering scores in various chunks disagree and hence
is not the most selective test for these triggers. We
reject these triggers by using “split tests” that opti-
mally contrast scores within two sets of chunks.
The final two tests are the most selective vetoes, and hence
their thresholds must be set with care. Our method for
constructing template banks enables us to set these thresh-
olds in a rigorous and statistically well-defined manner to
ensure a given worst-case false-positive probability, which,
accounting for the inefficiency in the bank, is achieved with
adversarial template mismatches. Hence we set the worst-
case false-positive probability of 1072 for each of these tests.
The details of the tests, and the methods to set thresholds, are
described in Ref. [11]. We note that all hardware injections
that triggered passed the single-detector signal-based veto.

The data-quality vetoes are relatively simple in nature.

They are motivated by segments with excess power (as
observed in spectrograms) that slip through the combina-
tion of the flagging procedure (of Sec. III C) and PSD drift
correction (of Sec. III F). The tests are as follows:

(1) Sometimes, our flagging procedure only partially
marks the bad segments, in which case short
templates (such as those of the heavier black hole
banks) can trigger on the adjoining unflagged
data. This is mitigated by our choice, described
in Sec. IIIE, to discard candidates with short
waveforms in the vicinity of holes in our data
(in practice, we reject waveforms < 10 s long
within 1 s of a hole).

(2) There are rare bad segments on timescales of
~5-10 s, which is too long for our flagging pro-
cedure but too short for the PSD drift correction. We
flag segments of duration 25 s with a statistically
significant number of loud triggers (p> = 30) that are
local maxima within subintervals of 0.1 s. We set a
generous threshold that should be reached at most
once per run (approximately accounting for corre-
lations between templates) within Gaussian noise
and that is robust to astrophysical events (due to the
maximization over time).

(3) Finally, we account for rare cases with significant
PSD drifts on finer timescales than the ones used
while triggering (described in Sec. Il F and Ref. [10]).
When this PSD drift is statistically significant, we
veto coincidence candidates (both at zero lag and in
time slides) whose combined incoherent scores, after
accounting for the finer PSD drift correction, are
brought down below our collection threshold.

Figure 6 shows the cumulative effect of our vetoes on the

score distribution of the triggers in the BBH 3 bank, which
contains short waveforms of heavy binary black hole
mergers. Also shown are the hardware injections present
in the data stream and GW150914 which belongs to this
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FIG. 6. The impact of signal and data quality vetoes on the
distribution of Hanford detector triggers in the BBH 3 bank.
GWI151216 is deep in the Gaussian part of the distribution with
P = 39.4 and is not shown in this plot.

bank’s chirp mass range. We note that the veto retained
every hardware injection in this chirp mass domain that
passed the flagging procedure of Sec. III C. It is interesting
to note that GW 150914 does not stand out from the single-
detector trigger distribution before the application of the
veto and is clearly detected even without resorting to
coincidence after it.

J. Incoherent ranking
When constructing a statistic to rank events an important
part is P(p#, pi |Hy), the probability of obtaining a trigger
with squared SNRs (p#;, p? ) in each detector under the null
hypothesis H,. Under the assumption that the noise in both
detectors is independent,

P(piy. pi|Ho) = P(p|Ho) P(pi | Ho). (11)
If the noise in each detector were Gaussian,
log P(p|H,) = —p?*/2 + const (12)
and

log P(pu. pLIHo) = —(pfy + p7)/2 + const.  (13)

Under this assumption it is optimal to use p¥ + p? to
rank candidate events. Unfortunately this is an invalid
assumption for two reasons: Firstly, even for Gaussian
noise, at high SNR the maximization over templates, phase
and arrival time leads to

log P(p|Hy) = —p?/2 + clog(p) + const,  (14)
where the constant ¢ depends on the bank dimension.

However, in practice this is a minor correction; the more
substantial problem is the non-Gaussian tail of the noise,

the so-called glitches. In the high-SNR limit P(p|H,) is
much larger than the Gaussian prediction.

The non-Gaussian tail in the p distribution has an
important consequence when combining the scores of
multiple detectors. If we were simply to use p§; + pi as
a score, we would be ranking coincidences in which the
trigger in one of the detectors is coming from this non-
Gaussian tail, as we would be misjudging its probability by
many orders of magnitude.

To correct this problem we empirically determine
log[P(p;|Hy)] for each detector. We do so by taking our
triggers and ranking them according to decreasing p; for
each detector i. We then model

P(p?|Hy) o Rank(p?). (15)

which is a good approximation for distributions with
exponential or polynomial tails. We denote

p? = ~2log P(p}|H). (16)
Assuming independence, we can use

p* = =2log P(piy. pi|Ho) = piy + Pt (17)

as a robust approximation of the optimal score. In principle,
a parametric model for the probability density might
outperform the rank estimate, but practical reasons such
as too few surviving glitches made such estimates prone
to fine-tuning. Moreover, at the high SNR parts of the
distribution, single-detector glitches find background in
many time slides, which makes it problematic to estimate
the uncertainty in any such procedure. For this reason, and
to maintain simplicity, we chose to use the rank function as
a proxy for the single-detector trigger probability distribu-
tion function.

Figure 7 shows the relation between p and our new rank-
based score p for both LIGO detectors and triggers in bank
BBH 2. This mapping is dependent on the bank as the
prevalence of non-Gaussian glitch triggers is very different
as one changes the length of the templates, i.e., the target
chirp mass of the bank. p and p agree at low values (they
only differ by a conventional additive constant), but as p
increases, p saturates due to the tail in the distribution of
triggers.

In Fig. 8 we show the two-dimensional histogram of the
background obtained by adding 20 000 unphysical time
shifts between detectors to the O1 LIGO data (so as to
recreate an equivalent of 20 000 O1 observing runs) for
banks BBH 2 and BBH 3. In the left panels we show the
distribution of background triggers using p as the score.
The tail of non-Gaussian glitches is clearly visible, leading
to an overproduction of triggers where the SNR in one
detector is much larger than in the other. In the right panels
we show the distribution of the same triggers but now using
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FIG. 7. Relation between our new rank-based score p and the
SNR p, for the Hanford detector. The initial linear dependence
reflects the Gaussian part of the trigger distribution; the curve
saturates due to the non-Gaussian glitch tail. This effect is more
prominent in the higher-mass banks, which are more sensitive to
glitches.

our rank score to bin them. The lines of constant probability
are now straight. Our subthreshold candidates in these
banks are shown together with GW 151012, which is a clear
outlier, and with GW151216.

For reference, in Fig. 8 we show the line corresponding
to a false alarm rate of one event per Ol observing run
based on this statistic. For example, for BBH 2 this
corresponds to i ~ p? ~ 37 if divided evenly among both
detectors. Figure 7 shows that for this threshold SNR values
the relation between p and p is still linear. This demon-
strates that although very visible in the histograms, at the
detection limit the background is still dominated by the
Gaussian part of the noise. The presence of the non-
Gaussian glitches does not significantly overproduce the
background at the detection threshold. It is also important
to note that when we demand that the parameters of the
events in both detectors be consistent, according to our
so-called coherent score described in the next section, many
of these outlier events are heavily down-weighted.

K. Coherent score

In this section we further improve the statistic used to
rank candidates by exploiting the information encapsulated
in the relative phases, amplitudes and arrival times to the
different detectors. We begin with the standard expression:

P(p}. p}. At, A, t|H,(T))
Hy)

max

18
T P(ph. ot AL At (s)

where 7' is a template in the continuous template bank.
Because the maximization procedure on 7 is done inco-
herently, and prior to the application of all these terms, we
will drop it from the notation. Note that in principle we
should have maximized the full expression, but for practical
reasons we decided to do the maximization prior to the
coherent analysis. In favor of this approximation stands the

fact that to linear order, the phase and time shifts are built to
be orthogonal to the template identity [9], so the template’s
fine optimization is expected to preserve the ¢ and &t
of a candidate to high accuracy. We further develop this
expression using the Bayes rule (and using some basic
independence arguments):

P(piy, pi, AL, A, 1|Hy) = P(piy, pi, Ag, Atlny/ny, Hy)
x P(t|Hy, ngi(1) + ni (1))
P(piy. pi» At, A, t|Hy) = P(piy. pi|Ho) P(Ag, At|H,),
(19)

where n; is the momentary response of detector i computed
from the measured PSD, PSD drift correction and the
overlap of the waveform with holes using the data of
detector i. A¢ is the difference between detectors in the
overlap phase of matched filtering the best-fit 7 with the
data. At is the difference in arrival time of the maximum
score between the detectors. P(p, p? |Hy) was computed
using the ranking approximation detailed in Sec. II1J.

P(A¢, At|H,) is taken to be the uniform distribution by
symmetry. Here we note that in principle, P(p;|t, Hy) can
be nonuniform, if there are bad times where glitches
conglomerate. Also, glitches could have a waveform model
that prefers a particular phase for a particular template. We
currently choose not to introduce these complications
(other than the bad times veto applied in Sec. IILI).

P(p¥, p}, A, At|ny/ny, H,) is measured by drawing
samples that are uniformly distributed in volume out to
a distance where the expected value of the SNR is 4,
calculating the detector response, and adding noise with the
standard complex normal distribution. Out of these samples,
we have created a binned histogram of the observed mean-
ingful values Az, A¢, p3;, pi; the probability of an observed
configuration given the signal hypothesis is proportional to
the histogram’s occupancy. The same number of samples is
used for all values of ny/n; so that the pipeline’s preference
for detecting events with equal response between the
detectors could be evaluated. This is very similar to the
coherent score used in [18].

The term

P(t|H,. ny(1) + ni (1)) & (nfy +nf)*?  (20)

reflects the changes in sensitivity in the detector as a
function of time. Including it allows us to analyze different
segments of data with very different sensitivities, including
multiple runs together (say O1 and O2) while maintaining a
consistent detection bar, down-weighting the significance
of spurious events from less sensitive detector times. One
important note is that once we include this term, the FAR
does not have units of inverse time, but units of inverse
volume time.
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Left panels: Two-dimensional histogram of the SNR? = p? of the background for the BBH 2 (top) and BBH 3 (bottom) banks

obtained by shifting the data in time so as to recreate 2 x 10* O1 observing runs. The non-Gaussian glitch tail is clearly visible at high
SNR. Right panels: A similar histogram but using the rank-based score 5*. The lines of constant probability are straight (solid contours).
We show the line corresponding to one event per O1 for this statistic for each bank. Our subthreshold candidates in these banks are
shown together with GW151012 and GW151216. GW150914 is too far to the upper right to be included in these histograms.

L. Determination of FAR

We combine the two detectors in different time slides
with unphysical shifts between —1000 and 1000 s in jumps
of 0.1 s to obtain an empirical measurement of the inverse
false alarm rate of up to 2 x 10* observing runs. To these
unphysical shifts we apply all stages detailed above, exactly
as we do the zero-lag data. Because the optimization and
veto stages are computationally expensive, we cannot
operate them on all trigger pairs for all time-slide shifts.
We ensure that any trigger that has the potential of entering
the background distribution with an inverse FAR that is
better than 1 per observing run is vetoed, optimized and
ranked coherently.

M. Determination of the probability of a source
being of astrophysical origin

While the FAR is largely agnostic of the astrophysical
rates (beyond the use of the model in constructing the
detection statistic) and is objectively and accurately
measurable through time slides, it is hard to convert to
an assessment of the astrophysical origin of a particular
event. Such an assessment depends both on the exact
(potentially multidimensional) noise probability density at
the event’s location (in contrast with the one-dimensional
cumulative probability density the FAR depends on) and
the exact probability density given the astrophysical
model, including the unknown rate (also as a function
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FIG. 9. Significance assessment of GW151012. In blue, the
cumulative histogram of the coherent scores of background
events in bank BBH 2 is presented. The flattening at low values
is an artifact of the threshold used while collecting background
triggers. GW151012 is clearly detected with high significance.
We show that its FAR is smaller than 1 in 2 x 10* O1 observing
runs. Extrapolation of the background distribution yields a FAR
of roughly one in 5 x 10° O1. We note that at this low rate, many
more time slides are required for exact assessment of the FAR.

of physical parameters). Essentially, if all exact details in
the model were known, the probability of an event being
of astrophysical origin would be exactly computable,
but in the presence of rate uncertainties, especially when
considering the rate as a function of physical parameters,
the determination of p,y, may be dominated by rate
uncertainties and astrophysical prejudice. Nevertheless,
the objectivity of p,y, to ranking functions and its
immunity to the existence of the few last glitches that
are left after our heavy vetoing are compelling, and we
therefore proceed in computing it.

To do that, we strictly assume that all templates inside a
bank are equally probable (even though parameter depen-
dent rate differences probably exist). We further assume

that the background probability density is uniform in time
and phase, an assumption that we find is extremely good
when the SNR value is in the region where the Gaussian
noise is dominant.

We then compute the rate at which we observe such an
event in coincidence between the two detectors:

R(event|Ho) = RyoP(At. Ad. piy. pi|Ho)

P(pii|Ho)P(pi |Hy)
27T ’

= Rbg (21)

where T is the allowed physical time shift between the
detector, and P(p}|H,), P(p}|H,) were fit using

P(p?|Hy) = (a; + pip?)e 2. (22)
a; and f; are fit to the background computed from time
slides in the region close to the (pZ, p? ) combination of the
event. We find this approximation robust in all cases where
the event is close to the detection threshold and when the

difference between p# and p? is not big.
We then compute the rate ratio

R(event|H,)  P(At,Adp,pi,pi|H,)

R~ 100

W = —
P(pfy +pi > 100|H,)

(23)

using the table constructed in Sec. III K. Here, R. o9 =
R(p%4 + pt > 100|H |, ny, ny) is the astrophysical rate of
detecting gravitational wave mergers in the event’s bank,
with the detector sensitivity at the time of the event.
Because R. ¢ can be easily estimated and updated using
a list of known astrophysical events, it is assumed to be
known. We then provide the estimate for the event’s
astrophysical origin to be

TABLE III. Events and subthreshold candidates in all of the binary black hole banks.

Name Bank M(My)* GPS time” 4 pi  FAR™' (O1)° prtim (days) Rojoo(days™)  Pagro
GWI151226 BBH 1 9.74 1135136350.585 120.0 52.1 >20000 . ‘e 1
GW151012 BBH 2 18 1128678900.428  55.66  46.75 >20000 7 x 10°¢ 0.01 0.9998°
GWI150914 BBH 3 28 1126259462.411 396.1  184.3 >20000 .4 1
GW151216" BBH 3 29 1134293073.164 394 34.8 52 74+2 0.033 0.71
151231 BBH 3 30 1135557647.145  37.5 25.2 0.98 54+£04 0.033 0.15
151011 BBH 4 58 1128626886.595  24.5 39.9 1.1 161 0.01 0.14

*Posterior samples from parameter estimation runs for all the O1 and O2 events can be found at https:/github.com/jroulet/

02_samples.

Times are given as the linear-free times, that is, the times corresponding to when the waveforms generated by the bank were

orthogonal to the time shift component given the fiducial PSD.

“The FARs given are computed within each bank. The inverse false alarm rate is given in terms of “O1” to reflect the volumetric
weighting of events using the momentary detector sensitivity. Under the approximation of constant sensitivity of the detectors during the

observing runs, the unit O1 corresponds to roughly 46 days.

We found no credible way of computing the probability density of the background distribution at these high SNRs.
*Estimating p,go for GW151012 required some extrapolation of the background trigger distribution.

A new event we are reporting in a companion paper [19].
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P(event|H,)
P(event|H,) + P(event|H)

Pasuo(€VeNt) =

W
R>100 R(event|H,)

pu— W :
1+ R 100 Rieventiy)

(24)

For ease of future interpretation of the results, we report in
Sec. IV both W/R(event|H,) and the computed p g0
using our best knowledge of R. (, at the time of writing.

IV. RESULTS OF THE BBH SEARCH

Here we report all the signals and subthreshold candi-
dates found in the search. We report the FAR in units
of “O1” to reflect the fact that there was a volumetric
correction factor in the coherent score. If we assume the
sensitivity of the first observing run to be roughly constant,
then the “O1” unit can be converted to roughly 46 days, the
effective coincident time we used in the analysis (that has
some variation across banks due to differences in the data
flagging thresholds). There was no background trigger
with a better coherent score than GW150914, GW151012
(see Fig. 9) and GW 151226 in their respective banks, so we
obtain only an upper limit on the FAR of 1/(2000001) for
all of these events, with an effective p,q,, = 1 for all of
them. We report their recovered squared SNR for each
detector. We further found an additional event, GW 151216,
with a FAR of 1/(5201), reported in greater detail in a
companion paper [19]. These and two additional subthresh-
old candidates with a FAR of approximately 1/01 are
reported in Table III.

V. CONCLUSIONS AND DISCUSSION

In this paper we presented an overview of a new and
independent pipeline to analyze the publicly available data
from the first observing run of Advanced LIGO. We used
this pipeline to identify a new gravitational merger event in
the O1 data. In companion papers we will provide additional
details of our techniques and implementation choices and
further characterize our search by providing simple estimates

of the space-time volume searched as a function of param-
eters. We believe this pipeline is significantly more sensitive
than those used by the LIGO and Virgo collaborations, or
Ref. [7] due to our improved mitigation of systematics in the
data. However, all the pipelines are complicated enough that
it would require a concerted collaborative effort to quantify
the differences for individual events with different param-
eters and signal-to-noise ratios.

There are several areas for future development and
improvements in this pipeline, including precise determi-
nation of the merger rate/sensitive volume, analysis of
single-detector triggers, and triggers with subthreshold
candidates in the other detector. For future runs, it also
remains to incorporate more than two detectors into the
ranking of coincident triggers in our pipeline.
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