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Pulsars act as accurate clocks, sensitive to gravitational redshift and acceleration induced by transiting
clumps of matter. We study the sensitivity of pulsar timing arrays (PTAs) to single transiting compact
objects, focusing on primordial black holes and compact subhalos in the mass range from 10−12 M⊙ to well
above 100 M⊙. We find that the square kilometer array can constrain such objects to be a subdominant
component of the dark matter over this entire mass range, with sensitivity to a dark matter subcomponent
reaching the subpercent level over significant parts of this range. We also find that PTAs offer an
opportunity to probe substantially less dense objects than lensing because of the large effective radius
over which such objects can be observed, and we quantify the subhalo concentration parameters which
can be constrained.
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I. INTRODUCTION

Gravity, as the only known coupling of dark matter (DM)
with ordinary matter, currently provides the sole window
on the nature of DM. It is via gravitational probes that
we have inferred the DM abundance and its behavior as a
cold, collisionless fluid. While these macroscopic proper-
ties of dark matter have, so far, given us relatively limited
information on the theory of DM, it is still possible, despite
the weakness of the gravitational couplings, to unveil much
more about its properties through those interactions. Every
dark matter model predicts small scale structure inside
galaxies, and the type of structure, including their density
profile and radius, gives information on DM’s cosmologi-
cal history, couplings to the visible sector, and to itself.
The most popular DM candidate, the weakly interacting
massive particle (WIMP), predicts a power spectrum with
weak clustering on small scales, which is difficult to
observe experimentally. On the other hand, there are many
models that predict an abundance of gravitationally bound
structure (which we shall refer to as compact objects) on
small scales, and the details of those structures can point to
specific models.
There are many models with dynamics in the early

Universe that give rise to enhanced matter power on
small scales. For example, phase transitions [as for axion

(or scalar) miniclusters [1–9] ], early matter domination
[10–13], and vector bosons produced during inflation [14]
can all generate enhanced small scale structure. Perhaps the
simplest DM substructure consists of primordial black
holes (PBH) [15–17], which are (largely) characterized
by a single parameter, the PBH mass, M. They arise in
many theories with inflationary dynamics producing large
density perturbations on small scales, e.g., Refs. [18–22].
They are one extreme of the generic density profile and
hence serve as a benchmark for gravitational probes of
small scale structure. The most direct astrophysical probes
of DM substructure are currently derived from a wide
variety of lensing experiments. These experiments together
constrain monochromatic compact object abundance in the
mass range 10−10–10 M⊙ to be a subdominant component
of DM. Current searches include lensing of the large
Magellanic cloud (e.g., MACHO [23], EROS [24],
OGLE [25]), Andromeda (e.g., SUBARU [26]), and stars
in the local neighborhood (e.g., from KEPLER [27,28],
and Gaia [29]). Lensing of distant supernovae [30] and
quasars [31] have also been considered.
There are also a variety of constraints specific to PBHs.

From 10−13M⊙ down to 10−15M⊙ (below 10−15 M⊙ PBHs
evaporate in a time shorter than the age of the Universe),
the existence of white dwarfs [32] currently constrains
PBHs, and femtolensing may do so in the future [33] (see
Refs. [34,35] for earlier work). Above 100 M⊙ a variety of
constraints from structure formation and Planck fairly
severely constrain the PBH abundance, see Ref. [36] for
a review. There remains a controversial window between
∼1–100 M⊙ where PBHs [37–39], and not astrophysical
black holes or neutron stars, could give rise to the events in
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LIGO [40]. The event rate due to PBHs seems consistent
with the LIGO event rate, though it has been pointed out
that a myriad of other constraints apply to PBHs in this
mass window, including disruption of compact stellar
systems such as Eriadnus II [41] and Segue I [42].
From this discussion we see that there are three regimes

where current constraints on compact objects are lacking or
limited, and hence where any prospect for setting constraints
is particularly intriguing. First, in the mass window between
∼1–100 M⊙ relevant for LIGO signals, where constraints
exist but there are substantial astrophysical uncertainties.
Second, in the mass window below 10−11 M⊙, where
lensing constraints currently do not apply. Finally, in the
regime where lensing constraints are significant for mono-
chromatic PBHs (10−11–10 M⊙), but also suffer from
astrophysical uncertainties. The constraints in this regime
will not have reach to more diffuse subhalos, owing to the
requirement that the radius of the object be smaller than the
Einstein radius.
In this paper, we explore an astrophysically clean meas-

urement of DM compact objects via pulsar timing measure-
ments across the entire mass window 10−12–100 M⊙, by
combining several different gravitational redshift and timing
effects in measurements of pulsar periods. Pulsars with
millisecond periods, observed over timescales of decades,
are known to be remarkably stable clocks. While their
periods fluctuate over short times, these fluctuations do
not substantially accumulate. In practice one can define a
pulse phase of the signal,

ϕðtÞ ¼ ϕ0 þ νtþ 1

2
_νt2 þ 1

6
ν̈t3 þ � � � ; ð1Þ

where ν is the frequency and _ν, ν̈ are its first and second
derivatives. The most stable pulsars have frequencies of
OðkHzÞ and a spin-down rate of the pulsar _ν=ν, ranging
from roughly 10−23–10−20 Hz, both of which can be fit from
the data. Empirically, it is found that ν̈=ν can be below
10−31 Hz2 [43] and is typically not included in fits to the
data, allowing one to place upper bounds on processes that
would produce a non-negligible ν̈. Furthermore, any process
which induces a modification of the phase

δϕ≡
Z

dt δνðtÞ ð2Þ

can be constrained using pulsar timing measurements.
The quality of pulsar timing data is determined by three

parameters. The first parameter is the root-mean-square
(rms) timing residual trms. This is determined after finding
the frequency νfit and its derivative _νfit, which minimizes
the residual between the timing data tdatan and the timing
model tn, where tn is found via the relation 2πn ¼ ϕðtnÞ
from Eq. (1). This gives

trms ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
n

ðtdatan − tfitn Þ2
s

; ð3Þ

where N is the number of data points, and tfitn is tn with
ν ¼ νfit, _ν ¼ _νfit and all higher order terms dropped.
The minimized residual is typically trms ∼ μ sec. The
other two parameters are the observation time of the
pulsar, T ∼ 10 years, and the time between measurements,
Δt ∼ 2 week (also known as the cadence). Clearly the
pulsars with the most power to constrain substructure are
those with smaller rms noise, longer observation times, and
shorter cadence.
Pulsar timing data can probe DM compact objects since a

transit near the timing system will give rise to a change in
the observed frequency of the pulsar. We consider changes
in the observed frequency of the pulsar due to two effects.
First, there can be a gravitational time delay due to a
changing gravitational potential affecting the photon geo-
desic as it moves along the line of sight; this is known as a
Shapiro time delay, and was proposed as a probe of dark
matter in Ref. [44]. Second, the presence of compact
objects can lead to an acceleration of Earth or the pulsar,
also changing the observed pulsar period; this is the
Doppler effect, and was proposed as a signal of dark
matter in Ref. [45]. These accelerations are optimal for
studying smaller masses and are typically more sensitive
than Shapiro delays, though in some parameter space, as we
will explore in detail, Shapiro delays can be more sensitive
due to the long baseline.
The signal from a transiting compact object will

look different depending on the relevant timescale τ
associated with the motion of the compact objects (here
we use this variable schematically but give it an explicit,
mass-dependent meaning in later sections). If we denote the
observation time of a pulsar as T, then dynamic signals
correspond to τ ≪ T, and will appear as blips in the pulsar
timing data (analogous to glitches which have been
observed in millisecond pulsar data [46,47]). Static signals,
with τ ≫ T, will not be observable as blips but instead as a
non-negligible contribution to the second derivative of the
frequency ν̈.
The idea of using pulsar timing to probe dark matter

substructure has a long history. The static contribution
of the Shapiro time delay was suggested as a probe of
PBHs in Refs. [48,49], while searches for dynamic signals
were considered for single events in Refs. [44,45,50], and
multiple events in Ref. [51]. None of these analyses,
however, considered how the signals were related to
each other in the relevant regime of validity. Our results
extend, and differ from, previous results as follows. First,
we carry out the first analysis to correctly consider all
forms of timing signatures, in the dynamic and static limit,
and for both Doppler and Shapiro effects. We comment
on the interplay between these four signals and their
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complementary sensitivity in different mass ranges. The
comparative analysis has important implications for sig-
nals; for example, in contrast to previous work, we find that
the Doppler signal dominates in the static limit, substan-
tially modifying the derived constraint. Second, we perform
the first study of the single event “blip” signal shapes and
compute these shapes in three dimensions; this extends and
improves on the previous limits derived in Refs. [45,50,52].
Third, we perform projections for current and future pulsar
timing experiments in all of the signal regimes, correctly
incorporating the impact of the measurement cadence on
the constraint for the first time. Lastly, we study the impact
of the size of compact objects, parametrized in terms of the
profile, on the constraints derived. Note that we do not
consider a multievent (or statistical) signal, as studied in
Ref. [51]. While we expect that such an analysis will extend
the reach at the low mass end [below Oð10−9 M⊙Þ for
Doppler signals and below Oð10−4 M⊙Þ for Shapiro
signals], due to the more complicated nature of the signal,
we reserve study for future work [53].
The outline of this paper is as follows. In Sec. II we

describe static and dynamic signatures of transiting com-
pact objects, for both the Doppler and Shapiro effects,
being careful to delineate the dividing line between the
regimes. Next, in Sec. III, we detail the size of the signals
expected in the dynamic and static regimes for both
Doppler and Shapiro signals. Then we present the analytic
and numerical results in Sec. IV, projecting constraints on
the fraction of DM in PBHs (or PBH-like subhalos) which
can be probed using pulsar timing. These results are
extended to more diffuse subhalos in Sec. V, where we
show that PTAs have sensitivity to much more extended
objects than lensing searches. Finally, in Sec. VI, we
summarize our results and suggest ways in which the
analysis can be extended.

II. PULSAR TIMING SIGNATURES FROM
DOPPLER AND SHAPIRO EFFECTS

Transiting compact objects give rise to two different
effects in the time of arrival of pulses from pulsars. The
first, the Doppler effect, arises from an acceleration of Earth
or the pulsar. The Shapiro effect, on the other hand, is a
gravitational redshift effect along the photon geodesic.
Both of these effects cause the photon arrival time to be
shifted from the unperturbed propagation value. The con-
stant terms inside of these time shifts are unobservable as
they can be absorbed by a redefinition of the unperturbed
travel time. We thus consider time-dependent changes that
generate a shift in the pulsar frequency δν. For the Doppler
and Shapiro signals, we have,1

�
δν

ν

�
D
¼ d̂ ·

Z
∇Φ dt; ð4Þ

�
δν

ν

�
S
¼ −2

Z
v ·∇Φ dz; ð5Þ

where Φ is the gravitational potential due to the compact
object and v is its velocity, while d̂ is the direction from
Earth to the pulsar and z parametrizes the path the light
takes from the pulsar to Earth. These expressions can be
simplified by assuming the compact object is a PBH of
mass M, �

δν

ν

�
D
¼ GMd̂ ·

Z
r
r3

dt; ð6Þ

�
δν

ν

�
S
¼ −4GM

_r×
r×

; ð7Þ

where r is the position of the compact object relative to the
pulsar and × subscript denotes crossing with d̂, r× ≡ r × d̂.
Physically, the Doppler delay derives from integrating over
the gravitational field from the compact object and taking
the component of the pulsar (Earth) acceleration towards
Earth (pulsar), while the Shapiro delay depends only on
components of the position and velocity of the compact
object in the direction perpendicular to d̂, as only this gives
a time dependent shift to the metric affecting the photons.
As shown in Appendix A these expressions can be

further simplified to�
δν

ν

�
D
¼ GM

v2τD

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2D

p ðxDb̂ − v̂Þ · d̂; ð8Þ

�
δν

ν

�
S
¼ 4GM

τS

xS
1þ x2S

; ð9Þ

where we have taken the motion of the transiting object
as r ¼ r0 þ vt. We define xD ≡ ðt − tD;0Þ=τD, xS ≡
ðt − tS;0Þ=τS as normalized time variables. Here, the
width of each signal is given by τD ≡ jr0 × vj=v2 and
τS ≡ jv× × r×j=v2×. The times for the passing object to
reach its point of closest approach are given by
tD;0 ≡ −r0 · v=v2, tS;0 ≡ −ðv× · r×Þ=v2×. For the Doppler
delay, the vector pointing from the pulsar to the point of
closest approach is given by bD ≡ r0 þ vtD;0. For the
Shapiro delay the relevant vector points from the line of
sight to the point of closest approach, and is given by
bS ¼ d̂ × ðr× þ v×tS;0Þ. From here on we will drop the
D, S subscripts which will be apparent by context.
The signal shapes are shown in Fig. 1. The Doppler

signal has two components depending on the orientation
of the incoming object, a transient signal (∝ v̂ · d̂) and a

1Here we assume a weak field approximation,Φ ≪ 1, a slowly
varying potential during the interaction timescale [Φðrþ vrÞ≃
ΦðrÞ], where r is the distance of closest approach, and large orbit
eccentricity.
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nontransient signal (∝ b̂ · d̂). The Shapiro signal is always
transient regardless of orientation.
Note that one may be tempted to conclude immediately

that a Shapiro signal is always subdominant to the Doppler
signal, as it is suppressed by v2. However, the Shapiro
signal is amplified by the long baseline (∼kpc) resulting in
a much shorter typical timescale, and is able to probe a
complementary mass window. We consider this in detail in
the next sections.

III. SIGNAL ANALYSIS

Both the Doppler and Shapiro signals have a character-
istic timescale τ, corresponding to the time for the compact
object to pass the line of sight. We note that the signal
width (τ) and time to the center of the blip (t0) are
parametrically the same scale, with the differences being
due to the objects’ orientation.
If τ ≳ T, where T is the observing time, which we define

as the static limit, we will observe only a small section of
the signal, which will have a power series expansion in
small t=τ. As we discussed in Sec. I, in the static limit, the
first two terms in the expansion are unobservable as they
are degenerate with the frequency and its derivative.
However, a traversing compact object can still be detected
by its higher order contributions to Eq. (1) corresponding to
the coefficient of the Oðt2Þ term (this is degenerate with a
measurement of pulsar frequency second derivative, which
is known to be small).
If, on the other hand, τ ≲ T (the dynamic limit), the

whole signal shape is seen and therefore a power series
expansion will no longer hold. Since the typical compact
object spacing is smaller for lower masses, the distance
to the pulsar timing system is also smaller making the
dynamic signal dominantly present at lower masses. In this

limit, one can look for the entire signal shape in pulsar
timing data, analogous to searches for gravitational waves
and stellar microlensing events. Note that deep in this same
regime multiple events will typically transit the line of sight
over the observation period, where a statistical approach is
relevant as proposed in Ref. [51]; we leave analysis of such
a multievent signal for future work [53], where we expect
improved reach at lower masses.
We now compute the observables in pulsar timing

experiments for the four different searches (Doppler
dynamic and static, Shapiro dynamic and static) and their
corresponding signal to noise ratio (SNR). The SNR in
each case can be estimated analytically by assuming that
the constraints are dominated by the object that comes
closest to the pulsar (for the Doppler delay) or the line of
sight (for the Shapiro delay). We call this the closest-object
approximation and it holds in most of the parameter space
for all four searches. We also derive an analytic estimate
for the split between the dynamic and static limits for the
different searches, highlighting their corresponding sensi-
tivity regions.
In the following sections, we apply the following

statistical procedure to determine the reach. In order to
ensure no false positives among the entire pulsar timing
array we need to set a threshold for the SNR. In the absence
of a signal the SNR at each pulsar is a one-sided Gaussian
random variable and therefore we can calculate the
95% confidence threshold value x by

PrðSNR < xÞNP ¼ Erf

�
xffiffiffi
2

p
�

NP ¼ 0.95; ð10Þ

which gives x ¼ 3.66 with NP ¼ 200. We fix the threshold
value to be four for simplicity, which ensures no false
positives with greater than 95% confidence. In our
Monte Carlo simulations, we also require that a signal
manifests in 90% of randomly generated universes.
Correspondingly, in our analytic estimates we use the
90th percentile relevant length scale, denoted by a “min”
subscript, derived in Appendix B.

A. Static limit

In the static regime the constraint is derived from
requiring that ν̈=ν is small enough to be consistent with
the fit shown in Eq. (1). In setting constraints, we assume a
dedicated analysis where ν, _ν, and ν̈ are fit simultaneously
(as opposed to the usual procedure which only fits ν and _ν,
and one assumes ν̈ is small). This is necessary since
otherwise the fits for ν and _ν will absorb part of ν̈,
diminishing the signal.
Assuming the data can be characterized by white

noise and a signal of the form of Eq. (1), the rms
noise can be taken as the uncertainty in each meas-
urement, and the total expected uncertainty obtainable

–10 –5 0 5 10

–1.0

–0.5

0.0

0.5

1.0

FIG. 1. Normalized signal shape observable in pulsar timing
data. In general the Doppler signal is a linear combination of
the two shapes depending on the object’s trajectory, while the
Shapiro signal shape is fixed.
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by a least squares fit on the second derivative is found
to be [43]2

σν̈=ν ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2800Δt

T

r
trms

T3
: ð11Þ

Current pulsar data have an uncertainty of Oð10−31 Hz2Þ
while sensitivities are projected to reachOð10−33 Hz2Þ for
a single pulsar. This allows us to define a suitable SNR,

SNR≡ jν̈=νj
σν̈=ν

> 4: ð12Þ

There are several observational challenges in implement-
ing this analysis. First, in addition to DM compact objects
there are other sources which produce a contribution to ν̈,
such as the existence of dark planets near to the pulsar, as
well as a genuine spin-down of the pulsar [43].3 Given this,
a static search presents challenges as a discovery method,
though it can be reliably used to set constraints on the
existence of compact objects. Interestingly, for some mass
ranges, compact objects predict a static Doppler signal in
conjunction with a dynamic Shapiro signal, discussed later
in this section, which would increase the confidence in the
measurement and potentially provide some information
about the object size (see Sec. V).
We now calculate the expressions for the static contri-

butions of Doppler and Shapiro signal shapes (when the
transiting objects are PBHs), and subsequently estimate
their contribution to ν̈. In the dynamic subsection we will
discuss the division between the static and dynamic signals.

1. Doppler

To obtain the size of the Doppler signal shape, we take
the second time derivative of Eq. (8) evaluated at t ¼ 0, and
use the relation between τ and t0, τ2 þ t20 ¼ r20=v

2, to find

ν̈

ν
¼ GM

v2τ
d̂ ·

�
b̂
3v5τ2

r50
þ v̂

2r20v
3τ − 3v5τ3

r50

�
; ð13Þ

¼ GMv
r30

�
v̂ þ 3

vt0
r0

r̂0

�
· d̂; ð14Þ

where in the final step we used the relation jbj ¼ τv.

Note that a static signal can never be isolated and will
always be due to a collection of compact objects. However,
to understand the sensitivity analytically, we can still make
progress by employing the closest-object approximation.
A concern in this approach is whether the impact of far
away objects is truly small since the number of compact
objects at a given distance grows with distance. However,
this is usually a small effect for two reasons. First, the
signal size has a steep power of r0 in the denominator.
Second, the contribution to ν̈ does not grow coherently
with the number of objects and the contribution from a
single object can be positive or negative (depending on
the object’s trajectory). Nevertheless, we note that this
approach breaks down when the signal is not deep within
the static regime, and where the contribution from multiple
objects is needed to adequately estimate the signal size.
Therefore to estimate the signal size from Eq. (14), we

calculate the minimum typical distance of a DM compact
object. This is derived from the minimum distance of
randomly distributed points, around NP pulsars, to the
closest pulsar, and we assume each compact object is of
massM. The result is derived in Appendix B and we quote
the result here,

rmin ≃ 0.8

�
M

NPfρDM

�1
3

∼
10−2 pc

ðNPfÞ13
�

M
10−6 M⊙

�1
3

: ð15Þ

Roughly speaking, the static signal condition can be taken
as rmin ≳ vT. However, as discussed above, this is the
condition that the static analytic estimates are valid, not that
a static search cannot be performed, as the static analytic
estimates make use of the closest-object approximation; but
when many objects are near the static limit boundary, many
objects make similar contributions to ν̈.
With this expression for rmin we can now estimate the

size of this signal (dropping angular factors),

ν̈

ν
≃
2GMv
r3min

∼ 3 × 10−32
�
NPf
200

�
Hz2: ð16Þ

Notice that the mass dependence has dropped out due to
scaling of the minimum distance asM

1
3. We note that single

pulsar measurements have σν̈=ν ≳ 10−31 Hz2 and so do not
have sufficient sensitivity to see this static signal. However,
as we will see future arrays profit significantly from an
increase in both observation time (as the uncertainty drops
as T−7=2) and from many more pulsars, and so will be
capable of measuring such tiny deviations.
In general, compact objects will generate a signal if

they gravitationally interact with either Earth or the pulsar,
which we label as the “Earth term” and “pulsar term,”
respectively. Using correlations between pulsars one can

2We disagree with the limit setting procedure employed in
Ref. [49] that requires the cubic term in the timing residuals to be
below trms (corresponding to the condition, ν̈=ν≲ 6trms=T3) since
this does not account for the “sampling factor” of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2800Δt=T

p
.

Coincidentally, for pulsar timing array data this is an Oð1Þ
correction for most pulsars since 103 week ∼ 10 yr.

3Objects in our Solar System are not an important background
since they experience a yearly modulation and are fit for in the
analysis.
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reduce the noise that affects only the signals due to a
compact object interacting with Earth. The constraints on a
Doppler signal are, however, always dominated by the
pulsar term, as opposed to the Earth term. This can be
understood in the limit where all pulsars are identical since
in that case for the Earth term, σν̈=ν ∝ 1=

ffiffiffiffiffiffiffi
NP

p
, while the

signal is constant, such that the SNR scales as
ffiffiffiffiffiffiffi
NP

p
. On

other hand, for the pulsar term the noise is independent of
the number of pulsars, while the signal size grows linearly
with NP, such that the SNR scales as NP. Therefore, for
large NP, the pulsar term dominates.

2. Shapiro

The computation of the static Shapiro signal is analogous
to the static Doppler signal. Taking the second time
derivative of Eq. (9), evaluating at t ¼ 0, and simplifying
with t20 þ τ2 ¼ r2×;0=v

2
×, gives

ν̈

ν
¼ 8GMv3×

r3×

�
t0v×
r×

�
3
�
1 −

3τ2

t20

�
: ð17Þ

As expected, ν̈ appears parametrically suppressed com-
pared to the Doppler contribution, though (as commented
previously) this is deceiving due to the different, and
typically smaller, distance scale in the denominator. We
also find the same power of r0 in the denominator,
suggesting that we can again use a closest-object approxi-
mation up to the boundary between the static and dynamic
regimes, where multiple objects are crucial for obtaining
the correct signal size.
In a manner similar to the Doppler case, we compute the

smallest expected distance of a DM compact object to the
line of sight toward some pulsar, r×;min. This is done in
Appendix B with the final result

r×;min ≃ 0.9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

NPfρDMd

s

∼
0.2 pcffiffiffiffiffiffiffiffiffi
NPf

p
�

M
M⊙

�1
2

�
kpc
d

�1
2

: ð18Þ

As before, we are now able to estimate the size of the cubic
ν̈=ν in the closest-object approximation. Omitting angular
factors, this is

ν̈

ν
≃
16GMv3

r3×;min

∼ 8 × 10−33
�
NPf
200

�3
2

�
M⊙

M

�1
2

�
d
kpc

�3
2

Hz2: ð19Þ

Note that the mass dependence does not drop out, as it did
in the Doppler static case. This can be traced to the
geometry involving the distance to the line of sight, which

results in the minimum distance scaling as the square root
(rather than 1=3 power) of the number density of DM
compact objects. This mass scaling agrees with the analysis
of Ref. [49] (though as we commented previously the
constraint on f we obtain does not agree because of a
difference in the limit setting procedure). Because the
Shapiro static signature is small and subdominant to the
Doppler static signal, current pulsar data are unable to
constrain a static signal from DM compact objects.
Nevertheless, in Sec. IV we show that future arrays may
be able to observe such tiny contributions.

B. Dynamic limit

In the dynamic limit a compact object is close enough to
the line of sight that it crosses in a time smaller than the
observation time. This means that pulsar timing experi-
ments see the entire signal shape, rendering the expansions
in the static limit invalid. Specifically, we take the dynamic
constraint to be τ < t0 < T − τ and we note that this
implies τ < T=2. To extract small signals out of a noisy
background we use the prescription employed in gra-
vitational wave searches known as the matched filter
procedure [54,55]. The idea is to take the time-of-arrival
data, apply a filtering procedure (namely, we convolute the
data with the Weiner filter), and extract an optimal signal to
noise ratio (SNR). For simplicity, we work in the limit
Δt ≪ τ; jt0j ≪ T such that the measurement is unaffected
by cadence or finite width effects (adding these is straight-
forward but complicates the expressions). Furthermore, we
assume that the timing residual noise is white with a
variance given by trms, i.e., [54]

hδtðt1Þδtðt2Þi ¼ t2rmsΔtδðt1 − t2Þ; ð20Þ

heδtðfÞeδtðf0Þi ¼ t2rmsΔtδðf − f0Þ: ð21Þ

The signal we consider here is δν=ν ¼ _δt, whose power
spectrum is given by

h _̃δtðfÞ _̃δtðf0Þi ¼ ð2πÞ2t2rmsΔtf2δðf − f0Þ: ð22Þ

Using a one-sided power spectral density for the noise we
identify S _δtðfÞ≡ 8π2t2rmsΔtf2 giving a SNR [54],

SNR2 ¼ 4

Z
∞

0

df
jh̃ðfÞj2
S _δtðfÞ

; ð23Þ

where h̃ðfÞ is the Fourier transform of the δν=ν signal. We
now compute this for the Doppler and Shapiro signals
given in Eqs. (8) and (9).
Unlike the static signal, we expect the backgrounds in

the dynamic case to be less worrisome. Most importantly,
the characteristic signal shape is unlikely to have significant
overlap with other sources of noise. Perhaps the most
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prominent candidates to mimic a dynamic signal are pulsar
glitches, which have recently been observed in millisecond
pulsars [46,47]. However, pulsar glitches are well para-
metrized by an instantaneous peak in the phase with a
subsequent falling exponential. Thus, they have a different
frequency structure than the signals of interest here. A more
troubling background is dark baryonic objects. The bar-
yonic mass distribution is, however, peaked near a solar
mass, whereas the objects we consider in the dynamic limit
have masses M ≲ 10−2 M⊙.

1. Doppler

To find the SNR of the Doppler signal we insert the
signal shape of Eq. (8) into the expression for the SNR in
Eq. (23). This is valid because, in contrast to the static case,
the fitting procedure for ν; _ν is not degenerate with the
signal. This gives an SNR of

SNR ≃

 
GM
τv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3

12t2rmsΔt

s !
b̂ · d̂: ð24Þ

Note that we have dropped the term proportional to v̂ · d̂ in
Eq. (8), as it is parametrically suppressed by τ=T, which is
small in the dynamic limit.
The signal size, as well as the transition between the

dynamic and static regimes, can be understood by employ-
ing the closest-object approximation, as discussed previ-
ously. Inspection of Eq. (24) suggests that a closest object
approximation should hold due to the 1=τ ∝ 1=r0 in the
denominator (and the small spread in the velocity distri-
bution), and we have checked this using a Monte Carlo
simulation, which we discuss in Sec. IV. In order to obtain
an estimate of the SNR, we compute an estimate of the
minimum τ ¼ τmin, generated by a random set of points.
Note that τ also corresponds to the minimum impact
parameter since, jbj ¼ τ=v. We calculate this explicitly
in Appendix B and quote the result here,

τmin ≃
1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

NPfρDMvT

s

∼
20 yrffiffiffiffiffiffiffiffiffi
NPf

p
�

M
10−9 M⊙

�1
2

�
20 yr
T

�1
2

: ð25Þ

Combining Eqs. (24) and (25) gives a good estimate of
the largest SNR for a given mass and DM density. We
can further estimate the condition for the nearest object to
be in the dynamic limit, meaning τmin ≲ T=2,

M ≲ 4 × 10−8 M⊙

�
NPf
200

��
T

20 yr

�
3

: ð26Þ

For such small masses, these signals are sufficiently quick
to appear as a transient in pulsar timing experiments, while

for larger masses the Doppler signal can only appear in a
static search which was detailed previously.
Again one can compare contributions from the pulsar

and Earth terms assuming the pulsars are identical. For
dynamic signals, the Earth term scales as Sn ∝ 1=NP, while
the signal is constant. However, for the pulsar term the
noise is independent of the number of pulsars, while the
signal size grows linearly with NP. Therefore, the SNR
scales identically with NP for the pulsar and Earth term.4

Therefore, deep in the dynamic limit their constraints
should be comparable. However, for the pulsar term the
dynamic condition τ < T=2 is easier to satisfy since
τ ∝ 1=

ffiffiffiffiffiffiffi
NP

p
, whereas for the Earth term τ is independent

of NP. Thus for larger masses we expect the pulsar term to
become more sensitive. For simplicity we only use the
pulsar term but note that one could achieve improved
sensitivity deep in the dynamic limit by studying both of
these contributions.

2. Shapiro

Finally, we arrive at the dynamic Shapiro signal. To find
the SNR of the dynamic Shapiro signal we insert the signal
shape of Eq. (9) into the expression for the SNR in Eq. (23)
as described in Appendix A. This gives a SNR of

SNR ¼ GM

ffiffiffiffiffiffiffiffiffiffiffiffi
32T
t2rmsΔt

s
: ð27Þ

The SNR is independent of τ in the τ ≪ T limit. This can be
understood intuitively. For a transient signal, the SNR
scales linearly with the width of the signal however the
signal size scales as the 1=r-potential and hence 1=τ,
conspiring to produce a SNR independent of τ at leading
order. Nevertheless, keeping higher order terms in the SNR
leads to an expression that eventually decreases as τ
approaches T from below.
Since far objects can produce a signal, the closest object

approximation breaks down more quickly than for the
dynamic Doppler signal, and one should account for the
multiple events in the SNR, reserved for future work [53]
with the methods proposed in Ref. [51]. Accounting for
multiple events necessarily involves a random signal shape
and therefore the matched filter procedure used here will
not be applicable. However, even with a different signal
analysis technique a SNR accounting for the multiple
events is expected to be larger than this SNR, such that
the constraints quoted here are conservative. With a single
blip analysis this independence results in a minimum mass

4This is in contrast to the results presented in Ref. [50], which
claims to achieve more powerful constraints with the Earth term
at lower masses. The discrepancy can be traced to parametrically
different estimates of the impact parameter b. Reference [50]
assumes b ∼ vT, based on dimensional analysis, whereas we
derive more specific estimates.

PULSAR TIMING PROBES OF PRIMORDIAL BLACK HOLES … PHYS. REV. D 100, 023003 (2019)

023003-7



at which no signal will be seen for any given pulsar, which
will later result in a hard cutoff in the projected constraints.
As before, the minimum τ is related to the minimum

impact parameter of a set of randomly generated points near
an infinite line, τ ¼ jbj=v. Thus we obtain a minimum
signal width,

τmin ≃
2

v
M

NPfρDMvTd
;

∼
20 yr
NPf

�
M

10−4 M⊙

��
20 yr
T

��
kpc
d

�
: ð28Þ

We can now use this to estimate the maximum mass which
will generate a dynamic Shapiro signal, τmin ≲ T=2:

M ≲ 10−2 M⊙

�
NPf
200

��
T

20 yr

�
2
�

d
kpc

�
: ð29Þ

IV. CONSTRAINTS ON PRIMORDIAL
BLACK HOLES

We are now prepared to compute the sensitivity of PTAs
to PBHs using the signatures we have discussed. Assuming
a null result, we study the capability of the searches to set
constraints on DM compact objects in the ðM; fÞ plane,
where f ≡ Ω=ΩDM denotes the fraction of dark matter
contained in PBHs of mass M.
Before setting constraints let us briefly comment on

current and future pulsar timing capabilities. To estimate
the capabilities of current pulsars we compiled data from
PPTA [56], EPTA [57], Nanograv [58], as well as the
combined international collaboration, IPTA [59], culminat-
ing in 73 unique pulsars (for 13 of these pulsars no distance
was quoted, so we assume a distance typical of the rest of
the set, 1 kpc from Earth). For the 2015 data releases we
assume an additional three years’ observing time in order
to derive constraints corresponding to current data. In
setting our limits with current data we use parameters
from this set without any additional approximations (in
particular, we do not resort to approximating the current
data as an identical set of pulsars with some chosen
parameters). Since pulsar timing precision improves
quickly with observation time, continuing to observe these
pulsar results in a rapid improvement in the ability of PTAs
to discover DM compact objects. Nevertheless, with the
upcoming construction of the square kilometer array (SKA)
[60] (and its already running precursor, MeerKAT [61]), the
number of high precision millisecond pulsars is expected to
dramatically increase with the potential of uncovering
every millisecond pulsar beaming toward Earth in the
entire Milky Way. The particular capabilities of the future
millisecond pulsar set are not well known, due to uncer-
tainties both in final capabilities of the array and the
number of detectable pulsars in our galaxy. In forming

our projections we use the phase II numbers in Ref. [62]
which correspond to 200 ms pulsars with 50 ns timing, and
2 week cadence. Furthermore, we take the typical distance
of a pulsar from Earth to be 5 kpc. We also present results
for a more optimistic case, where SKA finds 1000 ms
pulsars, with 25 ns timing, which can be observed with
weekly cadence and have a typical distance from the Earth
of 10 kpc. The assumed experimental parameters are
summarized in Table I.
We now present our constraints on f using the analytic

formulas derived in the previous sections. Note that the
analytic formulae drop angular factors, assume a velocity, v,
of 250 km=s, and use the SKA PTA parameters given in
Table I. Four of the subsequent constraint equations arise
from equating the relevant SNR to four. The other two are
simply reformulations of Eqs. (26), and (29), which indicate
the transition between the dynamic and static regions. Our
results are summarized in Fig. 2; these results are generated
with a numerical simulation (detailed further below), but are
consistent, toOð1Þ numbers, with the analytic results quoted
in detail next. The comparison between the analytic results
and numerical simulation is discussed further (with a plot
detailing differences) in Appendix C.
To begin we consider the Doppler search in the dynamic

limit. In this case dropping the angular factors in the SNR
equation, Eq. (24), equating the SNR to four, and sub-
stituting τ ¼ τmin from Eq. (25), constrains f to

fLD;dyn ≲ 0.1

�
10−9 M⊙

M

��
200

NP

��
20 yr
T

�
4

: ð30Þ

The L superscript denotes that this analytic constraint
corresponds to the left-hand side of the triangular
“Doppler-dyn” wedge in Fig. 2, labeled ∝ M−1 at low
masses. This behavior does not continue indefinitely, but is
cut off when the closest object no longer satisfies our
dynamic condition, τmin ≲ T=2, where τmin is given by
Eq. (25). This is equivalent to Eq. (26) and constrains f to

fRD;dyn ≲ 3

�
M

10−7 M⊙

��
200

NP

��
20 yr
T

�
3

; ð31Þ

where the R superscript indicates that this analytic con-
straint corresponds to the right-hand side of the same
triangular wedge in Fig. 2, labeled ∝ M.

TABLE I. Summary of timing parameters that characterize
pulsar timing capabilities. SKA projections are taken from
Ref. [62]. Current constraints are compiled from various sources
[56–58,63] as described in the text.

T [yr] trms [ns] Δt [wk] d [kpc] NP

Current 5–30 50–104 1–4 0.5–5 73
SKA 20 50 2 5 200
Optimistic 20 25 1 10 1000
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We now repeat the above arguments for the other
searches. The Shapiro constraint in the dynamic limit is
obtained from equating the SNR, Eq. (27), to four, which
sets a lower bound on the masses reachable with a single
event,

ML
S;dyn ≈ 3 × 10−4

�
20 yr
T

�1
2

�
trms

50 ns

�
M⊙; ð32Þ

corresponding to the left-hand side of the wedge labeled
“Shapiro-dyn” in Fig. 2.
Furthermore, the dynamic condition, τmin < T=2, with

τmin again given by Eq. (28), can be written, similar to
Eq. (29), as a condition on f as

fRS;dyn ≲ 0.8

�
M

10−2 M⊙

��
200

NP

��
20 yr
T

�
2

; ð33Þ

corresponding to the right-hand side of the Shapiro
dynamic wedge in Fig. 2 labeled ∝ M.
Similarly, analytic scalings in the static limit can also

be derived. Equating Eq. (16) to four and substituting
r0 ¼ rmin from Eq. (15) yields a constraint on f from the
static Doppler search,

fD;stat ≲ 0.4

�
200

NP

��
20 yr
T

�7
2

: ð34Þ

This corresponds to the curve labeled “Doppler-stat” and
∝ M0 in Fig. 2. Likewise equating Eq. (19) to four and
substituting r× ¼ r×;min from Eq. (18) sets the constraint on
f from the static Shapiro search,

fS;stat ≲
�
200

NP

��
M
M⊙

�1
3

�
20 yr
T

�7
3

�
kpc
d

�
; ð35Þ

which corresponds to the “Shapiro-stat” curve in Fig. 2
labeled with scaling ∝ M1=3. Note that, as mentioned
earlier, the scaling of the static results at their low mass
end, where the static approximation is breaking down, is
not trivial since it does not follow the closest-object
approximation. We do not attempt to study this in detail
analytically but note that over most of the interesting
parameter space, the static search in the highly static
regime (τ ≫ T) has the most promising reach.
While the analytic results give the correct scaling and

approximately correct magnitude, to set more rigorous
constraints, which take into account the dark matter
velocity distribution and all angular factors, we employ
a Monte Carlo (MC) simulation which takes the PBHs
to be monochromatic (of a single mass) and randomly
distributed with density ρDM ¼ 0.46 GeV=cm3 [64], and
with a Maxwell Boltzmann velocity distribution with a
mean of 220 km=s. The statistics employed are the same as
discussed in the beginning of Sec. III. In both the dynamic
and static limits we take the signal to be the largest SNR
generated in the entire array of pulsars.
We consider four different scenarios composed of the

different pulsar sets. In the first scenario (SC1) we compute
the constraints for only the current 73 pulsar set, assuming
the search is done today. In scenario two (SC2) we
assume the same set of pulsars, except the observation
time of each is increased by ten years. In the third scenario
(SC3) we consider the current pulsar set observed for 30
more years, and the addition of the set of pulsars from SKA
measured for 20 years. This effectively assumes SKA will
start taking data ten years from now with all current pulsars
continuing to be studied. Lastly, scenario four (SC4) is the
same as scenario three but with the optimistic parameters.
In this case the new pulsar measurements dominate the
current pulsar measurements.

FIG. 2. SKA projected constraints on the DM fraction f for Doppler (blue) and Shapiro (red) signals contained in PBHs. The dynamic
searches are shown in solid lines and static in dashed lines. Each search is labeled with the mass scalings corresponding to the analytic
formulas given in Eqs. (30)–(35).
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We present our full results in Fig. 3. The main peaks at
10−9–10−8 M⊙ and 10−4–10−3 M⊙ arise from the dynamic
Doppler and Shapiro searches. The nonsmooth behavior
of the dynamic Shapiro curves is (largely) due to current
pulsars each having different noise. While for other
searches, the pulsar timing array will have an “effective
noise” leading to smooth curves, the single blip approxi-
mation in Shapiro leads to a sharp cut in sensitivity for
each pulsar in the set at a different mass (as a consequence
of the τ independence of the SNR) leading to the features
shown in the figure. For SC3 and SC4, where the con-
straints dominantly arise from a new (assumed identical) set
of pulsars from SKA, these features do not arise. At larger
masses, the static searches become important with Doppler
static becoming approximately constant at large masses and
static Shapiro only becoming relevant for SC4 (where it
gains due to its large assumed baseline). For comparison we
include constraints from lensing experiments, which, as we
will show in the next section, only apply for very compact
objects. We see that even with the current set of pulsars, a
dedicated search could begin to probe f < 1 within ten
years. With the inclusion of additional pulsars from SKA,
pulsar timing can scan a huge mass range, from as low as
∼10−12 M⊙ and could constrain PBHs to subpercent
fractions of the DM. As already mentioned, in addition
to the correct scalings, we also find that the MC and
analytic results are in agreement up to Oð1Þ factors, with
the main differences being due to the angular factors, as
well as all PBHs sharing a uniform velocity in the analytic
approximation.
Lastly, we note that there are several ways that these

constraints could be drastically improved besides the
addition of pulsars with better timing parameters, as can

be seen in Eqs. (30), (32), (34), and (35). For example,
if a millisecond pulsar is found much farther away (say
d ∼ 10–100 kpc), the constraints from the Shapiro delay
will improve, while a pulsar in a DM dense region (such as
near the Galactic Center or in globular clusters) will yield
stronger constraints for all proposed signals.

V. CONSTRAINTS ON SUBHALOS

We now turn to constraining more diffuse DM subhalos,
which as we now show, can be detected using the proposed
searches for compact objects. In principle, diffuse subhalo
signals can be calculated using the same procedure we
invoked for compact objects, namely, computing δν=ν for
the Doppler and Shapiro signals, and finding the SNR using
Eqs. (12) or (23), depending on the mass range of interest.
The induced strain by a passing object is only dependent on
the gradient of the gravitational potential due to the passing
object [see Eqs. (4) and (5)]. For a subhalo a distance r
from the pulsar timing system, Gauss’s law states that the
gradient of the potential is given by

∇ΦðrÞ ¼ GMðrÞr
r3

; ð36Þ

MðrÞ ¼ 4π

Z
r

0

r02ρðr0Þdr0; ð37Þ

where the integral runs from the center of the subhalo to the
point of interest. Substituting this expression into (4) or (5)
gives δν=ν for a generic DM subhalo profile. Computing
the signal shape and size is, however, rather involved; after
all,MðrÞ is time dependent as the halo moves. On the other
hand, one can set conservative bounds by replacing M in

FIG. 3. PTA projected constraints on PBH-like DM compact objects of mass M and DM fraction f combining all proposed searches.
The scenarios (labeled SC1-4) are described in the text and are roughly given by current capabilities (blue), current capabilities with 10
more years of measurement on the same pulsars (red), SKA capabilities (orange), and an optimistic scenario where SKA finds a large
number of high performing pulsars (green). The dark gray region corresponds to the unphysical case of f > 1. For reference we also
show the constraint from lensing (dashed black).
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Eqs. (14), (17), (24), and (27), by the minimum MðrÞ over
the time of observation, which is calculated at the point of
closest approach of the halo to the pulsar (Doppler) or line
of sight (Shapiro).
The above lower bound is a particularly good estimate

for dynamic signals. In this case the signal shape can be
split up into two components, the one from the inner ring
encapsulated by the impact parameter b and an additional
piece for the outer ring:

δν

ν
¼ δν

ν

����
MðbÞ

þ δν

ν

����
ring

: ð38Þ

A matched filtering prescription is optimized to look for
a specific signal shape and hence would remove (part of)
the additional contribution from the ring, leaving behind
primarily a signal from the inner circle of radius b. While a
more sophisticated analysis could improve and include
these effects, it is beyond the scope of this work.
In the case of static signals, the noncompactness of the

subhalo manifests itself as additional contributions in time
derivatives of MðrÞ in both the Doppler and Shapiro
signals, as well as a deviation in the integral over the line
of sight, in the case of Shapiro. We have verified that these
corrections contribute Oð1Þ to the lower bound evaluated
simply by taking MðrÞ as evaluated at the initial position,
Mðr0Þ.
To relate the limits computed earlier for PBHs to

subhalos, it is convenient to define a sensitivity distance,
which is the typical distance of a compact object to the
pulsar (Doppler) or line of sight (Shapiro) in order to induce
a particular SNR (e.g., four). Limits on a particular DM
fraction at a given mass are set when the minimum distance
is smaller than this sensitivity distance.

The sensitivity distance in the case of the dynamic
Doppler signal can be computed using Eq. (24), and
substituting SKA parameters given in Table I while taking
v ∼ 10−3, gives

rPTA∼10−3 pc×

�
M

10−9M⊙

�
ðDoppler dynamicÞ: ð39Þ

The Shapiro dynamic sensitivity distance is a more com-
plicated function of mass, as the SNR is τ independent in
the τ ≪ T limit. The curve shown in Fig. 4 is derived by
taking the SNR given in Appendix A and finding the r, M
curve which satisfies SNRðτ ¼ r=v;MÞ ¼ 4.
In the static limit, Eqs. (14) and (17) give the distances

rPTA ∼ 10−3 pc ×

8>><>>:
�

M
10−8 M⊙

	1
3 ðDoppler staticÞ�

M
10−3 M⊙

	1
3 ðShapiro staticÞ

: ð40Þ

We plot the sensitivity distances as a function of mass in
Fig. 4. Note that in Fig. 4 the dynamic curves end at r ¼ vT
since, if the object passes at larger r, it would not satisfy the
dynamic condition discussed earlier.
If the subhalo radius is smaller than the sensitivity

distance then its effects on pulsar timing searches are
identical to a PBH of the same mass. On the other hand, if
the DM subhalo has a radius larger than the sensitivity
distance, it may still be constrained if renc, the inversion
of MðrÞ, is less than the sensitivity distance for some
mass M. Physically, this means that the whole subhalo is
too diffuse to measure but the core may be compact enough
to measure.

FIG. 4. Sensitivity distance (as defined in the text) as a function of the compact object massM for PTA Doppler and Shapiro searches,
as well as supernova and stellar lensing. The red curves in the left and right panels are the mass enclosed functions, renc, for the NFWand
UCMH-like profiles (defined in the text), respectively, for three different concentration parameters c, and two different viral masses,
Mvir ¼ 10−7 M⊙, 10−1 M⊙. Where these red curves intersect the sensitivity distance curves corresponds to the effective subhalo
enclosed mass M� to which the various searches are sensitive. See text for more details.
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To explore this possibility we consider two halo profiles
of the generic form,

ρðr;MvirÞ ¼
ρs

ðr=rsÞαð1þ r=rsÞβ
; ð41Þ

where Mvir is the virial mass of the halo, c≡ rvir=rs is the
concentration parameter, rvir ≡ ð3Mvir=800πρcÞ1=3 is the
virial radius, and ρs is an overall normalization factor fixed
by requiring that the total mass inside of the virial radius is
the virial mass. The standard NFW profile corresponds to
taking α ¼ 1, β ¼ 2, and an ultracompact minihalo [65,66]
corresponds to α ¼ 9=4, β ¼ 0 (though see, e.g., Ref. [67]
which suggests an α ¼ 3=2, β ¼ 3=2 profile can be a better
fit to numerical simulations for halos produced from
gravitational collapse of some primordial power spectra).
In Fig. 4 left (right) we plot renc for NFW (UCMH-like

α ¼ 9=4, β ¼ 3=4) halos of virial mass Mvir ¼ 10−7 M⊙,
10−1 M⊙ and concentration parameters c ¼ 100, 108 and
the PBH-limit, c → ∞. For a given subhalo, if renc passes
below a particular sensitivity curve at a mass M� then
the search is sensitive to an effective subhalo of mass M�.
These M� mass subhalos make up f� ¼ fM�=Mvir of
the DM. Hence the limits of interest, ðMvir; fÞ, can be
(conservatively) extracted from ðM�; f�Þ, which is con-
strained for PBHs. Thus, finally we obtain

f ¼ f�
Mvir

M� ¼ fPBHðM�ÞMvir

M� ; ð42Þ

where fPBHðM�Þ it the limit extracted from Fig. 3. As we
can see in Fig. 4, a Doppler search is sensitive to the largest
radii, followed by a Shapiro delay search.
A similar procedure can be adopted to translate micro-

lensing constraints for PBHs to subhalos. This time the

sensitivity radius corresponds the Einstein radius rE above
which microlensing experiments will not see modulations
in the source brightness. The Einstein radius for a source
and lens at distance DS and DL, respectively, is given by

rE ≃
�
4GM

ðDS −DLÞDL

DS

�
1=2

: ð43Þ

The sources considered by microlensing experiments range
from nearby stars [27,28], the karge Magellanic Ccloud
(e.g., Refs. [23,24]), Andromeda (e.g., Ref. [26]), and even
distant supernova [30]. For stellar sources, the distances
are Oð1–100 kpcÞ while supernovae are sensitive to much
larger distances,OðGpcÞ. The typical Einstein radii of these
sources are

rE ∼

8<: 10−6 pc
�

M
10−4 M⊙

	1
2 ðStellar lensingÞ

10−2 pc
�

M
10 M⊙

	1
2 ðSupernovae lensingÞ

; ð44Þ

and are illustrated in Fig. 4. For diffuse halos with radii
much larger than this distance microlensing is unable to
see a significant signal. Note that because the Einstein
radii are much smaller than the PTA sensitivity distance,
time delays due to the creation of multiple source images
(as considered in Ref. [33]) are subdominant to the effects
considered here.
Finally, we use Eq. (42) and the intersections in Fig. 4 to

find limits on the dark matter fraction f as a function of the
total DM subhalo mass, Mvir, in Fig. 5 for the SKA pulsar
set defined in Sec. IV as SC3. The lensing constraints are
scaled in the same way as pulsar timing, where we take the
sensitivity line to be the characteristic Einstein radius from
objects in the Andromeda galaxy for the Subaru constraint

FIG. 5. Comparison of the reach of pulsar timing data in scenario SC3 (red) to lensing (gray) experiments, for NFW halos of different
concentration parameters, c. With concentration parameters below 108, PTA searches rapidly become more sensitive than lensing
searches. The PTA constraints are cut off when renc never crosses the sensitivity radius for any M. For the concentration parameters
chosen, this only occurs for the Doppler dynamic search leading to a sharp rise in the constraints at Mvir ¼ 10−9 M⊙ for c ¼ 100.
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and from objects in the Milky Way for the MACHO/Eros/
Ogle constraint curve.
We observe in Fig. 5 that in the PBH-limit, in most of

the mass range, constraints in SC3 are stronger for lensing
compared to pulsar timing; however as the concentration
parameter is decreased, lensing drops off in sensitivity
relative to PTAs. We find that for NFW halos with c ¼ 108

the Subaru search is only sensitive to halos of M ≳
10−9 M⊙. For a CDM-inspired [68] concentration param-
eter c ¼ 100, we no longer observe any sensitivity from
lensing, while PTAs can constrain a non-negligible f. Note,
however, that this sensitivity occurs only for very low halo
masses (significantly below an Earth mass) where one
expects halo disruption. On the other hand, for slightly
higher concentration parameters c ¼ 103, sensitivity to
f < 1 occurs similarly to c ¼ 100 for low mass halos,
but also (from a static Doppler search) for M ≳ 10−3 M⊙.
While our analysis of diffuse halos is schematic and

suffers from Oð1Þ corrections, it serves to emphasize the
complementarity between lensing and pulsar timing
probes. Fully exploiting the potential of PTAs to constrain
diffuse halos and specific models of structure formation is
an intriguing problem which we leave for future work [53].

VI. CONCLUSIONS

In this work we considered pulsar timing constraints on
DM compact objects, focusing on primordial black holes and
subhalos. We studied pulsar timing signatures over the mass
range from 10−12 M⊙ to 100 M⊙ finding that, depending on
anobjectsmass, different searches are required to detect it.We
examined four different types of searches, dynamic and static
signals, each arising from Doppler and Shapiro time delays.
Importantly, we computed the signals in three-dimensions
and highlighted their relation to one another. Furthermore,
using a Monte Carlo analysis we performed projections for
pulsar timing capabilities using current and future pulsar
timing experiments and understood their scaling using
analytic techniques. With dedicated searches we found that
current pulsar timingarrays can, over the next decade, set non-
negligible constraints through dynamic searches. Farther into
the future, we expect subpercent level constraints over the
entire range with upcoming pulsar timing arrays.
There are two primary ways in which the capabilities of

detecting DM compact objects from pulsar timing can be
drastically improved. First, we assumed that all DM
compact objects are in regions with DM density compa-
rable to our local density. If instead pulsars are discovered
in DM-dense regions (e.g., close to the Galactic Center
or within dwarf galaxies), then it is possible to quickly
improve the power of Doppler signals. Similarly if pulsars
are discovered with a line of sight passing through a DM-
dense region, then the capabilities of a Shapiro search will
be greatly enhanced. Second, the Shapiro search potential is
sensitive to the distance to the pulsar (in the case of uniform

density, limits on the fraction of the DM constrained scale
linearly with the baseline), such that if pulsars are dis-
covered significantly farther from our local neighborhood
(e.g., extra-galactic pulsars), then the Shapiro search will
quickly become more powerful.
The constraints studied here apply to substructure which

has survived to the present day, and we do not attempt to
relate these substructures to specific astrophysical or particle
physics models. Relating structure on such small scales to a
model is a challenging exercise due to the uncertainties on
the survival of low-mass subhalos to the present epoch.
Previously, Refs. [51,52] considered evolution of subhalos in
a vanilla cold DM (CDM) paradigm with stable clustering
and spherical halo models to predict halo substructure,
and came to opposite conclusions about the feasibility of
detecting DM substructure in the CDM model with PTAs.
The difference in the conclusions of these papers is likely
partly due to the DM clustering model and partly due
to a difference of methods with respect PTA constraints.
Utilizing the methods proposed in this paper, we plan to
consider PTA constraints on vanilla CDM, and other models
such as axion miniclusters, in future work [53]. If theory
predictions can be made reliably, pulsar timing will become
a powerful tool to probe the nature of DM.
Finally, we note that our analysis was entirely focused

on single events. For lower masses (below ∼10−9 M⊙ for
the Doppler dynamic search and below ∼10−4 M⊙ for the
Shapiro dynamic search), we expect multievent signals that
are not detectable as single events to become important.
Nevertheless, they may leave an imprint in pulsar timing
arrays that can be detected using a statistical prescription as
considered in Ref. [51].We leave further study of this limit to
futurework [53]. Taken together, however, a coherent picture
is emerging for how compact objects can be constrained
across a huge mass range with one observational tool.
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APPENDIX A: SIMPLIFICATION OF DOPPLER
AND SHAPIRO SIGNALS AND SNR

This Appendix contains many of the details for the
results presented in Sec. II, on the signal shapes for the
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Doppler and Shapiro delays. In both cases, we work in the
limit where the trajectory of the compact object is unaf-
fected by the presence of the pulsar-Earth system (this
amounts to assuming highly unbound orbits for the
Doppler signal and a large baseline for the Shapiro signal).
In either case we define a “time until blip center” t0 and a
“signal width” τ, corresponding to the dot product and
cross product of the distance-velocity vectors, respectively.

1. Doppler

a. Signal

We begin by considering the Doppler effect, where our
goal is to compute the velocity of the pulsar as a function
of time,

vP ¼ GM
Z

r
r3
dt; ðA1Þ

where r is the vector pointing from the pulsar to the
compact object and is taken to be unaffected by the
presence of the pulsar, r ¼ r0 þ vt. It is convenient to
introduce the time variables

t0 ≡ −
r0 · v
v2

; τ≡ jr0 × vj
v2

; ðA2Þ

such that t20 þ τ2 ¼ r20=v
2. In this case the magnitude of the

position is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − v2t20 þ v2ðt − t0Þ2

q
¼ vτð1þ x2Þ1=2; ðA3Þ

where we have defined a normalized time x≡ ðt − t0Þ=τ.
This gives a resultant strain,

δν

ν
¼ GM

v3τ2

Z
dx

1

ð1þ x2Þ3=2 ½r0 þ vðτxþ t0Þ� · d̂

¼ GM
v2τ

1

ð1þ x2Þ1=2 ðxb̂ − v̂Þ · d̂; ðA4Þ

where we defined the impact parameter vector b≡
r0 þ t0v, obeying jbj ¼ vτ. We thus obtain the result
in Eq. (8).

b. SNR

Here we derive Eq. (24) from the signal Eq. (A4) in the
τ; jt0j ≪ T limit. The signal must be windowed in order to
account for the finite time of the experiment and we do this
with a top-hat function in the time domain. The SNR from
Eq. (23) in the jt0j ≪ T limit then becomes

SNR2 ¼ G2M2

2π2v4t2rmsΔt
ðb̂ · d̂Þ2

Z
∞

0

Z
T=2τ

−T=2τ

Z
T=2τ

−T=2τ
df dx dy

×
e2πifτðx−yÞ

f2
xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ x2Þð1þ y2Þ
p ; ðA5Þ

the frequency integral can be regulated with a fictitious
“mass” term in the denominator parametrized by ϵ,Z

∞

0

df
e2πifτðx−yÞ

f2 þ ϵ2
¼ −π2τjx − yj þ � � � ; ðA6Þ

where the ellipses denote terms that are odd in x or y and
therefore vanish when the x, y integrals are taken (including
the divergent piece). Inserting this into the above and
carrying out the x, y integrals we find the τ ≪ T limit,

SNR ≃
GM
τv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3

12t2rmsΔt

s
b̂ · d̂; ðA7Þ

in agreement with Eq. (24).

2. Shapiro

a. Signal

We now compute the signal shape in the case of a
Shapiro time delay starting with Eq. (5). The gradient of the
PBH potential Φ is evaluated along the line of sight (taken
in the ẑ direction), giving

δν

ν
¼ −2GM

Z
_r
r2
dz: ðA8Þ

It is convenient to use coordinates that make the cylindrical
symmetry of the problem manifest, r× ≡ r × d̂ and
v× ≡ v × d̂, which results in time variables with the same
interpretations as for Doppler:

t0 ≡ −
r×;0 · v×

v2×
; τ≡ jr×;0 × v×j

v2×
: ðA9Þ

Carrying out the integral for signals close to the line of sight
we can rewrite the strain in terms of these coordinates as

δν

ν
¼ −4GM

_r×
r×

: ðA10Þ

As in the Doppler signal we can rewrite the magnitude of
the signal shape as

r× ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20;× − v2×t20 þ v2×ðt − t0Þ2

q
ðA11Þ

¼ v×τð1þ x2Þ1=2: ðA12Þ
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We have again defined x≡ ðt − t0Þ=τ. Inserting this
into (A10) gives the signal shape

δν

ν
¼ −

4GM
τ

x
1þ x2

: ðA13Þ

b. SNR

Here we derive Eq. (27) from Eq. (A13) in the jt0j; τ ≪ T
limit. Analogous to our approach in deriving the Doppler
SNR, in the time domain we window our function for a
finite observing time, giving

SNR2 ¼ 8G2M2

π2t2rmsΔt

Z
∞

0

Z
T=2τ

−T=2τ

Z
T=2τ

−T=2τ
df dx dy

×
e2πifτðx−yÞ

f2
xy

ð1þ x2Þð1þ y2Þ : ðA14Þ

As for the Doppler signal we regulate using (A6). In the
τ ≪ T limit the SNR becomes

SNR ≃ GM

ffiffiffiffiffiffiffiffiffiffiffiffi
32T
t2rmsΔt

s
; ðA15Þ

in agreement with Eq. (27).

APPENDIX B: MINIMUM DISTANCE
STATISTICS

This Appendix is dedicated to deriving the minimum
distances and times quoted in Sec. III. Each of the signals
considered (Doppler and Shapiro, dynamic and static)
depends on the relevant distance of objects described by
a random variable, B. The dominant signal comes from the
object which has the minimal B, and therefore to gain an
analytic understanding of the dominant signal we calculate
the 100 × pth percentile of Bmin ≡min ðB1; B2;…; BNÞ.
Every statistic of Bmin can be calculated with its cumulative
distribution function (CDF) FBmin

, and because the Bi’s are
independent and identically distributed random variables
we can solve for FBmin

solely in terms of FB:

FBmin
ðbÞ≡1−PrðBmin≥bÞ

¼1−PrðB1≥b∩B2≥b∩…Þ
¼1−ðPrðB1≥bÞÞN ¼1−ð1−FBðbÞÞN: ðB1Þ

The 100 × pth percentile of Bmin is calculated by solving
FBmin

ðbpÞ ¼ p. For each signal we take N objects popu-
lated inside the relevant volume. At the end of this
Appendix we show the comparison between calculating
the constraints on f using the distances derived here and
our Monte Carlo simulation.

1. Doppler

a. Static

For this signal the relevant distance is simply the distance
from the object to a pulsar (we take the pulsar to define the
origin). Assuming the objects are uniformly distributed in a
sphere of radius one means FBðbÞ ¼ b3. Therefore, in the
large N limit,

bp ¼
�
−
ln ð1 − pÞ

N

�1
3

: ðB2Þ

For a sphere of radius R, we multiply bp by R and take
N ¼ 4πNPnR3=3, giving

bp ¼ −
�
3

4π

ln ð1 − pÞ
NPn

�1
3

: ðB3Þ

Substituting p ¼ 0.9 gives Eq. (15).

b. Dynamic

Here the relevant distance is the impact parameter of
the passing object. Being only concerned with an order of
magnitude estimate, we simplify the problem of finding the
CDF of B by taking the objects to move in the same
direction. The impact parameter is then uniformly distrib-
uted across the cross sectional area. Therefore inside of a
circle of radius one, in the cross section centered at the
pulsar, the CDF of B is FB ¼ b2 and therefore in the large
N limit,

bp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ln ð1 − pÞ

N

r
: ðB4Þ

To find N we calculate how many objects are in the
dynamic limit. The dynamic limit is defined by T − τ >
t0 > τ. Geometrically, this constrains how far an object can
be as a function of its impact parameter and defines a
conical volume. Therefore in time T, N ¼ NPnπvTR2=3.
Multiplying (B4) by R and substituting in N gives

bp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3

π

ln ð1 − pÞ
NPnvT

s
: ðB5Þ

Substituting p ¼ 0.9 and dividing by v gives Eq. (25).

2. Shapiro

a. Static

The relevant distance here is the distance from a PBH to
the central axis of a cylinder. Assuming the objects are
uniformly distributed in a cylinder of radius one, and length
d, means FBðbÞ ¼ b2. Therefore in the large N limit,

PULSAR TIMING PROBES OF PRIMORDIAL BLACK HOLES … PHYS. REV. D 100, 023003 (2019)

023003-15



bp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ln ð1 − pÞ

N

r
: ðB6Þ

Taking N ¼ NPnπdR2, while multiplying by R for a
cylinder of radius R, gives

bp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln ð1 − pÞ

π

1

NPnd

s
: ðB7Þ

Taking p ¼ 0.9 gives Eq. (18).

b. Dynamic

Analogous to the Doppler dynamic signal, the relevant
distance here is the impact parameter defined from the
central axis of a cylinder. Again, being only concerned with
an order of magnitude estimate, we simplify the problem of
finding the CDF of B by taking the objects to move in the
same direction. The impact parameter is then uniformly
distributed across the cross sectional area. Therefore, inside
a rectangle of width d and height one, the CDF of B is
FB ¼ 2b such that in the large N limit,

bp ¼ −
lnð1 − pÞ

2N
: ðB8Þ

The dynamic limit is defined by T − τ > t0 > τ.
Geometrically this constrains how far an object can be
as a function of its impact parameter, defining a parallelo-
gram. Therefore in time T, N ¼ NPnvTdD=2. Multiplying
(B8) by D, for a cylinder of diameter D, and substituting N
gives

bp ¼ −
ln ð1 − pÞ
NPnvTd

: ðB9Þ

Taking p ¼ 0.9 and dividing by v gives Eq. (28).

APPENDIX C: COMPARISON OF ANALYTIC
AND MONTE CARLO CONSTRAINTS

We now make an explicit comparison in Fig. 6 between
the analytic and numeric results presented in Sec. IV. Six of
the eight analytic curves are described by Eqs. (30), (32),
(34), and (35) for the four signal types, and by Eqs. (31)
and (33) which are the boundary of the dynamic regimes.
The other two (dotted) curves are rmin ¼ vT, where rmin is
found in Eq. (15), and r×;min ¼ vT, where r×;min is found in
Eq. (18). At first glance these lines seem to be in disagree-
ment with the Monte Carlo method. However one must
remember that these only indicate when the closest object is
in the static limit, and the Monte Carlo method is summing
the contributions to ν̈ of every object. Therefore this left-
hand side tells us where we would should expect the
Monte Carlo and analytic methods to start diverging,
consistent with what is observed.
As can be seen in Fig. 6, at least deep in the static or

dynamic regimes where analytic approximations are
expected to hold, the analytic estimates differ from the
full Monte Carlo results by Oð1Þ factors in the scaling
regimes. This is due to the two main differences in the
analytic and Monte Carlo results. The first difference is that
in the full Monte Carlo method the velocity of each object
is drawn from a Maxwell Boltzmann distribution whereas
the analytic results assume v ¼ 250 km=s. The second
difference is because analytic results drop the angular
dependence of some expressions, such as b̂ · d̂ in Eq. (24).

FIG. 6. Comparison of the analytic estimates (solid) and the full Monte Carlo approach (dashed) for SKA PTA parameters given in
Table I. The analytic estimate agrees with the numerical results toOð1Þ corrections except on the left-hand side of the static constraints,
where the closest-object approximation breaks down.
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