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An important part of cosmological model fitting relies on correlating distance indicators of objects
(for example, type Ia supernovae) with their redshift, often illustrated on a Hubble diagram. Comparing the
observed correlation with a homogeneous model is one of the key pieces of evidence for dark energy.
The presence of cosmic structures introduces a bias and scatter, mainly due to gravitational lensing and
peculiar velocities but also due to smaller nonlinear relativistic contributions that are more difficult
to account for. For the first time we perform ray tracing onto halos in a relativistic N-body simulation.
Our simulation is the largest that takes into account all leading-order corrections from general relativity in
the evolution of structure, and we present a novel methodology for working out the nonlinear projection of
that structure onto the observer’s past light cone. We show that the mean of the bias in the Hubble diagram
is indeed as small as expected from perturbation theory. However, the distribution of sources is significantly
skewed with a very long tail of highly magnified objects, and we illustrate that the bias of cosmological
parameters strongly depends on the function of distance which we consider.
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I. INTRODUCTION

How light propagation in the inhomogeneous Universe
affects our interpretation of observed data in terms of a
cosmic expansion history is an important problem in
cosmology [1–3]. Most lines of sight pass mainly through
low-density regions, and most sources are therefore demag-
nified compared to the mean, with relatively few signifi-
cantly magnified ones in compensation. Do these
competing effects exactly cancel, or do they leave a residual
bias in the Hubble diagram?
The main factors are gravitational lensing of the source

by the intervening matter and the fact that redshift is
affected by peculiar motion. These effects have relatively
simple Newtonian counterparts, but there are a host of
complicated relativistic corrections once light propagation
is worked out in more detail. There are selection effects too:
We are much more likely to observe sources in halos; some
objects are obscured from view by bright clusters and so on.
Within perturbation theory it is relatively easy to predict the

expectation value of the bias in the Hubble diagram for a
random direction: This is significant for the luminosity
distance as a function of redshift, DLðzÞ, but remains small
for the function 1=D2

LðzÞ [2,4–8]. Depending on what is
used for model fitting, this alone can lead to percent
changes in parameter estimation [3]. As we shall show,
the shape of the probability distribution function (PDF) for
any of those observables is much more important than the
shift in their mean. Because the perturbative prediction of
the shift of the mean in DLðzÞ requires a relativistic
calculation, simulating the full PDF will also have important
features that can only be accessed using a relativistic ray
tracer.
In this paper we address this question for the first time

using a comprehensive nonperturbative relativistic numeri-
cal calculation. In a first step, we carry out a high-resolution
N-body simulation of cosmic structure formation using the
relativistic particle-mesh N-body code gevolution [9]. For a
chosen observer, we extract the complete particle and
metric information on the past light cone. A halo catalog
is constructed from the particle distribution, and we use a
ray-tracing algorithm to characterize the null rays that
connect each source with the observer nonperturbatively
using the metric on the light cone. This provides us with a
theoretical model of the observed Hubble diagram and
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the PDF for observables such as distance or apparent
magnitude.
Light-cone effects have been studied with Newtonian

simulations (e.g. [10–14]), using the Newtonian limit of
general relativity (GR) and often many additional approx-
imations. The former is expected to be very accurate in the
context of ΛCDM cosmology, but certain gauge issues
on very large scales are commonly ignored [15,16]. Ray
tracing has also been applied in post-Newtonian settings
[17] and in the context of numerical relativity [18]. While
these approaches require fewer assumptions, the cosmo-
logical scenarios studied so far remain crude. The scope of
our work considerably extends beyond each of these
previous achievements. Our relativistic simulations model
spacetime and the matter distribution with unprecedented
accuracy, and our novel ray-tracing method maps these to a
statistical ensemble of observed sources using equations
that are formally exact in the scalar sector of gravity and
that additionally include frame dragging. For simplicity, we
consider dark matter halos as a proxy for the astrophysical
objects that can be observed and avoid the complications of
baryonic effects.

II. SIMULATIONS

Our results are based on a relativistic N-body simulation
for a cosmological volume of ð2.4 Gpc=hÞ3 containing an
unprecedented 4.5 × 1011 mass elements of 2.6×109M⊙=h.
The metric is sampled on a regular Cartesian grid of 76803

points, providing a spatial resolution of 312.5 kpc=h. This
allows a robust detection of dark matter halos down to about
5 × 1011 M⊙=h. We choose a baseline ΛCDM cosmology
with h ¼ 0.67556, Ωc ¼ 0.2638, Ωb ¼ 0.048275, and a
radiation density that includes massless neutrinos with
Neff ¼ 3.046. Linear initial conditions are computed with
CLASS [19] at redshift zini ¼ 127, assuming a primordial
power spectrum with amplitude As ¼ 2.215 × 10−9 (at the
pivot scale 0.05 Mpc−1) and spectral index ns ¼ 0.9619.
In order to extract observations we choose an arbitrary

observer position and identify a circular pencil beam
covering 450 deg2 of the past light cone to a comoving
distance of 4.5 Gpc=h. This is achieved by allowing the
pencil beam—which occupies only one-third of the avail-
able volume—to cross through the (periodic) simulation
box twice while carefully avoiding replications. Finite-
volume effects are determined by the scale of the box and
can only affect sources beyond redshift z ∼ 1. As the
simulation proceeds, we record the position and velocity
of each particle as it crosses the light cone of the back-
ground model—sufficient information to construct a linear
segment of the world line that crosses the true light cone.
Metric perturbations are instead recorded on spherical

shells of fixed comoving radius, spaced at the grid resolution
of 312.5 kpc=h and discretized using HEALPix [20],
at a spatial resolution comparable to the Cartesian mesh.

We identify the three simulation time steps for which the
coordinate times are closest to the look-back time, and record
the respective values of the metric perturbations interpolated
to the pixel locations (using cloud-in-cell interpolation).
Since the Shapiro delay is never larger than our time step,
we have the full knowledge of the metric on the true light
cone, at the full resolution (in space and time) of our
simulation.
In a first postprocessing step we use the ROCKSTAR

friends-of-friends halo finder [21] to construct a halo
catalog on the light cone. The 450 deg2 field of view
contains about 11 million halos above our mass cut of
5 × 1011 M⊙=h. We then determine the observed redshift
and luminosity distance for each halo by numerically
integrating the geodesic and Sachs equations for the ray
that connects the halo with the observation event. Similar to
[14] we do not resort to the Born approximation and instead
employ a shooting method to determine the correct
boundary conditions for each ray. The method starts with
the zeroth-order guess for the observed angle, integrates the
ray from the observer backwards in time until it reaches the
comoving distance of the halo, and corrects the shooting
angle according to the distance by which the ray missed its
target. The halo position is also corrected for the delay of
the photon, but this is a minute effect. This process is then
repeated until convergence is achieved.

III. OPTICAL EQUATIONS

Here we derive the equations that govern the propagation
of an infinitesimal light beam through the perturbed
geometry of spacetime; see [22] for a textbook introduc-
tion. We work in Poisson gauge where the line element can
be written as ds2¼a2½−e2ψdτ2−2Bidxidτþðe−2ϕδijþhijÞ
dxidxj�, where ψ , ϕ are the two gravitational potentials,
Bi is transverse and governs frame dragging, and hij is
transverse and traceless and describes spin-two perturba-
tions. In terms of ϕ and ψ the optical equations are exact.
Note that Bi is typically at least 2 orders of magnitude
smaller than ϕ or ψ, and we therefore only keep its leading-
order contribution. Its effect on the observed redshift is
generally negligible, whereas the luminosity distance is
affected at the level of 0.01% (half width at half maximum)
for halos at redshift z ∼ 2. Our simulations also compute hij
but this perturbation is even smaller; we therefore choose to
neglect it. The same is true for the difference between ϕ and
ψ which is of similar magnitude. Both contributions could
be easily included in our ray-tracing method, but they
would have no effect on our results.
The null vector kμ tangent to the photon geodesic and the

screen vectors (the Sachs basis) eμA (A ¼ 1, 2) with
gμνe

μ
Ae

ν
B ¼ δAB; gμνe

μ
Ak

ν ¼ 0 are parallel-transported along
the null ray. For convenience we also define the complex
screen vector eμ ¼ eμ1 þ ieμ2. The null geodesic equation
determines the path of the beam, while tidal effects change
the shape of the beam according to the Sachs equations
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dθ
dλ

þ θ2 þ σσ� ¼ −
1

2
Rμνkμkν;

dDA

dλ
¼ θDA;

dσ
dλ

þ 2θσ ¼ −
1

2
Cαμβνeαkμeβkν; ð1Þ

where λ is the affine parameter, Rμν and Cαμβν denote the
Ricci and Weyl tensors, respectively, and we use the optical
scalars, i.e., the expansion θ, the complex shear σ¼σ1þiσ2,
and the area distance DA.
Let us introduce the direction vector ni as

dxi

dτ
¼ ki

k0
¼ eψþϕni þ δijBj; ð2Þ

which implies the normalization δijninj ¼ 1. We also
define two vectors aligned with the screen basis to form
a normalized spatial triad, δijẽiAn

j ¼ 0, δijẽiAẽ
j
B ¼ δAB,

with aeμA ¼ ðβ; eϕẽiA þ βeψþϕniÞ, where β parametrizes
the freedom to choose the timelike direction to which the
screen basis is orthogonal, i.e. all possible boosts along the
direction of the ray. Since we will choose an observer at
rest w.r.t. the CMB, β will be of the order of a metric
perturbation and can be treated on the same footing.
In order to arrive at a convenient system of coupled

ordinary differential equations (ODEs), we exploit con-
formal invariance by using the rescaled quantities k̃0 ¼
k0a2e−2ϕ, D̃A ¼ DAeϕ=a, and σ̃ ¼ σD2

Ae
2ϕ=ða2k0Þ. The

null geodesic equation then becomes

d ln k̃0

dτ
þ ðψ þ ϕÞ0 þ 2ni∂ieψþϕ þ ninj∂iBj ¼ 0; ð3Þ

dni

dτ
− ðninj − δijÞ½∂jeψþϕ þ nk∂jBk� ¼ 0; ð4Þ

and the parallel transport for ẽiA is solved by

dẽiA
dτ

− niẽjAð∂jeψþϕ þ nk∂ðjBkÞÞ − ẽjAδ
ik∂ ½jBk� ¼ 0: ð5Þ

Furthermore, the Sachs equations give

d2D̃A

dτ2
þ d ln k̃0

dτ
dD̃A

dτ
þ
�
1

2
ninj∂iB0

j þ
1

2
niΔBi

−
1

2
ðninj − δijÞeϕþψ∂i∂jeϕþψ

�
D̃A þ σ̃σ̃�

D̃A
3
¼ 0; ð6Þ

and

dσ̃
dτ

þ d ln k̃0

dτ
σ̃ ¼ −

D̃2
A

2
ðẽi1ẽj1 − ẽi2ẽ

j
2 þ iẽi1ẽ

j
2 þ iẽi2ẽ

j
1Þ

×

�
eϕþψ∂i∂jðeϕþψ þ nkBkÞ −

d
dτ

∂ðiBjÞ

�
:

ð7Þ

These equations are exact in ϕ and ψ but first order in Bi.
The solutions are determined by setting appropriate “final
conditions” at the observer and integrating the set of ODEs
backwards in time. Assuming that the observer has vanish-
ing peculiar momentum in our coordinate system, the final
conditions for the area distance and shear are

D̃AðτoÞ ¼ 0;
dD̃A

dτ

����
o
¼ −eϕþψ jo; σ̃ðτoÞ ¼ 0: ð8Þ

The observables can be computed in any other inertial
frame by applying an appropriate Lorentz boost. Such a
frame transformation changes the observed redshift accord-
ing to the special-relativistic Doppler effect, while the
observed angles and area distances are subject to relativistic
aberration. Both are straightforward transformations of the
PDFs.
The final conditions for k̃0 are given by an arbitrary

reference frequency, e.g. the frequency of a spectral line
that is used to determine the source redshift. For conven-
ience we choose k̃0ðτoÞ ¼ ae−2ϕ−ψ jo such that the observed
redshift of a source becomes

1þ z ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δijqiqj
a2

þ e−2ϕ

s
−
niqi
a

!
k̃0

a
e3ϕþψ

�����
s

; ð9Þ

where qi is the canonical peculiar momentum per unit mass
for the source. Explicitly, qi ¼ m−1

s ∂L=∂ðdxis=dτÞ, where
ms is the mass of the source and L is the Lagrangian
describing the motion of its center of mass xis. In the
nonrelativistic limit δijqj=a ∼ dxis=dτ, but the above equa-
tion holds for arbitrary qi.

IV. HUBBLE DIAGRAM

The top panel of Fig. 1 shows the ratioDL=D̄LðzÞ, where
DL ¼ ð1þ zÞ2DA and D̄L denote the observed luminosity
distance and its value in a homogeneous Friedmann-
Lemaître (FL) model at the same observed redshift, respec-
tively. At low redshift the scatter is mainly due to peculiar
motion, showing some indication of correlated bulk motion.
On the other hand, at higher redshifts the lensing effects
dominate, and we have some halos that are strongly
magnified while many more are slightly demagnified.
The normalized distribution of the ratio DL=D̄LðzÞ is

shown in Fig. 2 for four redshift bins. Even though the
mean stays close to unity for all cases, at higher redshifts,
they become increasingly non-Gaussian with a negative
skew and a long tail due to the aforementioned lensing
effect. We perform a resolution study on a smaller simu-
lation volume and expect that the shapes are converged
w.r.t. numerical effects. This PDF has already been studied
by various authors in the past, e.g. [23–26], but we present
the first fully nonperturbative and relativistic calculation of
DLðzÞ. For z≳ 1 the peak of the distribution is shifted by
≳1%while the shift of the mean, shown in the bottom panel
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of Fig. 1 for several choices of functionsDðDLÞ, is small as
predicted from second-order perturbation theory. The PDFs
for all choices of D have a skewed shape that is important
and can bias cosmological fits as we discuss next. It is
however possible to reduce the bias by binning sources in
redshift [24], which “Gaussianizes” the likelihood.

V. FITS TO COSMOLOGICAL PARAMETERS

To study the impact on cosmological parameter estima-
tion in more detail, we perform a “naive” fit to standard
candles such as supernovae (SNe), using an uncorrelated
Gaussian likelihood,

pðDjθÞ ¼
Y
SNe

1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2tot

p exp

�
−
1

2

ðD̄ −DÞ2
σ2tot

�
: ð10Þ

The product runs over all SNe in a sample, the distance D̄ is
(a function of) the usual FL luminosity distance for the
values of the cosmological parameters θc ¼ fH0;Ωm;ΩΛg
to the redshift z of a supernova, andD is the actual distance
to that supernova as obtained from our ray tracer. The total
error σ2tot is composed of three contributions, σ2tot ¼ σ2z=zþ
σ20 þ σ2l z, where σ2z corresponds to a low-redshift contri-
bution to the error from peculiar velocities, σ2l models
(approximately) a high-redshift contribution from lensing,
and σ20 is a constant “intrinsic dispersion” error. When we
use D ¼ μ (see below), σ2tot is an absolute error, while for
other choices it is a relative error, i.e. σ2tot → σ2totD2. This
relatively standard error model is used for example in [27]
for D ¼ μ. We estimate the σi simultaneously with the
cosmological parameters; i.e. our parameter set is θ ¼ θc ∪
fσz; σ0; σlg, with a logarithmic prior for the errors and for
H0, and flat priors for the Ωi.
In order to obtain an artificial supernovalike sample,

we pick N ¼ 5 × 105 halos with uniform distribution in
redshift in the range z ∈ ½0.023; 3�. Usually in supernovae
analysis the function D is the distance modulus μ ¼ 5log10
ðDL=1 MpcÞ þ 25. Here we use μ and several other
choices, D ¼ DL, D ¼ D2

L, D ¼ 1=DL and D ¼ 1=D2
L.

According to [8], some of these are expected to be less
impacted by lensing than μ, but in a way that depends on
the averaging performed. As we effectively average over
directions for a single realization, the least affected choice
should be 1=D2

L (see Fig. 1, bottom panel). With a Markov-
chain Monte Carlo approach we sample from the posterior
of θ. In Fig. 3 we show marginalized 2d contours for

FIG. 2. Histograms of the ratio DL=D̄LðzÞ for four different
redshift bins.

FIG. 1. The top panel shows the luminosity distance DL vs.
redshift z for ∼107 halos within a 450 deg2 field of view
(the color gradient illustrates the logarithmic point density) in
relation to the luminosity distance D̄LðzÞ of the homogeneous
ΛCDM model at the same redshift. The bottom panel shows the
bias of the source average for various distance functions.

FIG. 3. Constraints onΩm andΩK from fits to various functions
of the luminosity distance (smaller contours at the top, with D2

L
being the leftmost contour, and then following the order of the
legend until 1=D2

L on the right). When binning in redshift, the
bias is reduced at the price of an increase in error bars (larger
contours at the bottom for μ on the left and 1=D2

L at the right—the
other functions of the luminosity distance would line up as for the
smaller contours). The use of 1=D2

L as distance measure com-
bined with redshift binning is able to remove the bias from the
lensing of supernovae.
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fΩm;ΩK ¼ 1 −Ωm − ΩΛg. The parameter values used in
the N-body simulation are indicated by dashed lines. The
constraints that we recover depend on the choice of
distance function, but they are biased for all choices
typically at the 1% level. As the mean of the distances
shows only a small deviation from the true background
distance (cf. Fig. 1), we expect that most of this bias is
due to the non-Gaussian nature of the likelihood shown
in Fig. 2. It would of course be desirable to exploit this
non-Gaussian shape since it contains information on the
clustering of the dark matter, but for now we instead always
bin 1000 supernovae adjacent in redshift into a single data
point that, thanks to the central limit theorem, now has a
much more Gaussian PDF. Indeed, as we can see from the
larger, lower contours in Fig. 3, this does reduce the bias (it
should be noted that we did not try to optimize the binning
for the trade-off of bias versus contour size). The remaining
parameter shift is now due to the impact of lensing on the
mean of the distance measure. But only if we combine
redshift binning with the use of 1=D2

L do we manage to
obtain an unbiased parameter inference without having to
model the lensing in detail. Our full light cone only exists
for a single observer position, but we performed a range of
tests to verify that our conclusions do not change for other
samples: We selected different halos for our supernovalike
sample, creating effectively new data sets, and we also
started at higher redshifts, zmin ¼ 0.1, 0.2 and 0.3, instead
of the value of zmin ¼ 0.023 commonly used, to test for
dependence on the local observer environment.

VI. CONCLUSIONS

For the first time we provide a nonperturbative and fully
relativistic numerical calculation of the observed luminos-
ity distance and redshift for a realistic cosmological source
catalog in ΛCDM cosmology. The catalog is comprised
of dark matter halos from a large, high-resolution N-body
simulation that fully captures the general relativistic
dynamics and provides an accurate description of the
metric on the past light cone of an observer. The observ-
ables are computed by integrating the optical equations
along the true photon trajectories obtained by a shooting

method. While we work in a weak-field context that allows
us to neglect certain terms, at no point do we take a
Newtonian limit. We solve the scalar part of the geodesic
and optical equations exactly, while we keep the frame-
dragging terms only to leading order and neglect gravita-
tional waves altogether.
Our numerical experiment provides conclusive evidence

that the relativistic evolution of inhomogeneities, once
consistently combined with the kinematics of light propa-
gation on the inhomogeneous spacetime geometry, does not
lead to an unexpectedly large bias of the distance-redshift
correlation. This corroborates the conclusions of [1–6,28].
On the other hand, inhomogeneities introduce a significant
non-Gaussian scatter that can give a large standard error
on the mean when only a small sample of sources is
available. But even for large, high-quality samples this
scatter can bias the inferred cosmological parameters at the
percent level. This can only be avoided if the shape of the
distribution is properly characterized and included in
the analysis, or by binning the supernovae in redshift to
obtain a more Gaussian scatter. In either case we should
also use 1=D2

L as distance measure to minimize the bias
in the mean distance. Finally, we want to stress that our
approach is conceptually muchmore powerful than previous
ones because it can be consistently extended beyond the
ΛCDM concordance model, including settings that have no
suitable Newtonian or quasistatic limit [29]. An exploration
of this potential is left to future work.
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