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The ladder Bethe-Salpeter equation of a bound ð1=2Þþ system, composed by a fermion and a scalar
boson, is solved in Minkowski space, for the first time. The formal tools are the same already successfully
adopted for two-scalar and two-fermion systems, namely the Nakanishi integral representation of the
Bethe-Salpeter amplitude and the light-front projection of the fulfilled equation. Numerical results are
presented and discussed for two interaction kernels: (i) a massive scalar exchange and (ii) a massive vector
exchange, illustrating both the correlation between binding energies and the interaction coupling constants,
as well as the valence content of the interacting state, through the valence probabilities and the light-front
momentum distributions. In the case of the scalar exchange, an interesting side effect, to be ascribed to the
repulsion generated by the small components of the Dirac spinor, is pointed out, while for the vector
exchange the manifestation of the helicity conservation opens new interesting questions to be addressed
within a fully nonperturbative framework, as well as the onset of a scale-invariant regime.
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I. INTRODUCTION

Within the relativistic quantum field theory, the intrinsi-
cally nonperturbative nature of a bound system can be
suitably treated by an integral equation, like the homo-
geneous Bethe-Salpeter equation (BSE) [1]. As it is well

known, the path-integral approach on the Euclidean lattice
is the main tool for addressing the nonperturbative regime.
However, efforts to get actual solutions of the BSE in
Minkowski space, where the physical processes take place,
are highly desirable. In order to carry out in its full glory the
program of constructing a continuous approach, able to
yield a phenomenological description of the dynamics
inside bound systems in Minkowski space, one has to
consider fundamental ingredients in the BSE, that make us
immediately understand the big challenge to be faced.
Schematically, main ingredients in the BSE are in order:
(i) the dressed propagators of the constituents and quanta
and (ii) the fully dressed interaction kernel, constructed
from the two-particle-irreducible diagrams. This means that
in order to get a refined description of the dynamics inside a
composite relativistic system one cannot limit to consider
the BSE, but one has to widen the framework including the
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Dyson-Schwinger equations (DSEs) for the self-energies
and, in principle, an infinite tower of DSEs that consistently
determine the above ingredients. In view of establishing a
workable set of integral equations for studying the adopted
Lagrangian, a coherent truncation scheme of the afore-
mentioned infinite DSE tower, but able to preserve the
symmetries dictated by the investigated interaction, is a
prerequisite (see, e.g., Ref. [2], for a recent study of the
issue, and references quoted therein). Since more than two
decades, the Euclidean space has been the elective one
where successful efforts have been carried out for devel-
oping the above sketched framework, based on both BSE
and DSEs for the self-energies, with a well-controlled set of
approximations, like the so-called rainbow-ladder approxi-
mation. Starting from the seminal review [3], where the
general framework was illustrated by presenting the for-
malism for both QED and QCD together with some first
results, very soon the applications to hadron physics
became more and more sophisticated. As a matter of fact,
the main features of the non-Abelian gauge theory of the
strong interaction, like confinement and dynamical sym-
metry breaking, were addressed in an extended way (see,
e.g., Refs. [4,5]), providing constant improvements in the
description of hadron observables, like mesonic and bar-
yonic spectra as well as electromagnetic properties in the
spacelike region, directly addressable in the Euclidean
space (see, e.g., Refs. [6–9]). The interested reader can
straightforwardly realize the huge amount of improvements
reached in both formalism and obtained results by the
continuous approach in the Euclidean space (a recent
introduction to the numerical methods can be found in
Ref. [10]) and appreciate the attempts to extend the BSEþ
DSE framework to the Minkowski space, for investigating
lightlike and timelike quantities (considering also a due
cross-check for the spacelike ones).
On the Minkowski side, though the necessity of elab-

orating a similar framework is universally recognized (see,
e.g., Refs. [3,9], just to mention reviews well distant in
time) one has a rather elementary stage in the development,
basically (i) one does not take into account self-energies
and vertex corrections and (ii) considers interaction kernels
mainly in ladder approximation (at most with cross-ladder
contributions). Nonetheless non trivial results can be
achieved, as briefly illustrated below, particularly with
regard to the evaluation of both longitudinal and transverse
light-front momentum distributions, not directly address-
able within a Euclidean framework without introducing
ad hoc paths to be carefully treated, like, e.g., analytic
continuations (with all the well-known caveats about
the singularities in the complex plane) or resummation
of infinite Mellin moments. In order to bring the
Minkowskian approach to the level of sophistication of
the Euclidean one, we need to build a systematic study of
systems with different degrees of freedom, so that we can
gain the physical intuition useful for guiding the next step,

i.e., the application of the approach to the gap equation (as
some groups are elaborating, e.g., Refs. [11,12]). Indeed,
one could even devise an intermediate step, helpful for
phenomenological applications, by adopting the proposal
contained in Ref. [13], where pion observables were
evaluated by using a Bethe-Salpeter (BS) amplitude in
Minkowski space (notice that in the quoted work an ansatz
was considered), together with a dressed quark propagator
extracted from lattice data.
In this work, we illustrate how to solve the homogeneous

BSE, in ladder approximation without vertex and self-
energy corrections, for a fermion-scalar system with
positive parity, i.e., with quantum numbers Jπ ¼ ð1=2Þþ,
directly in Minkowski space. Indeed, the achievements
illustrated in what follows are part of a more general
investigation of the BSE in Minkowski space, carried out
within an approach based on (i) the so-called Nakanishi
integral representation (NIR) of the BS amplitude (see, e.g.,
Ref. [14] for the general presentation of the framework
applied to the n-leg transition amplitudes) and (ii) the light-
front (LF) projection of the BSE, i.e., its restriction to a
vanishing relative LF time (an introduction to this tech-
nique and its application to the BSE is given in [15]). This
approach, together with the analogous one developed by
Carbonell and Karmanov (see, e.g., [16–18]), has already
achieved relevant outcomes, addressing (i) two-scalar sys-
tems both in bound states and at the zero-energy limit
[15,19–21] and (ii) the two-fermion bound state in a 0þ
channel [22,23]. To summarize the results of the previous
studies and of the present one, we can state that such an
approach is able to yield actual solutions of theBSE, directly
in Minkowski space. Therefore, one can be confident to
reach a consistent (with the set of assumptions discussed in
what follows) and reliable description of the inner dynamics
of relativistic systems, such that it becomes feasible the
evaluation of relevant quantities, like the valence component
of the system. Within the BSE approach, one can obtain a
nonperturbative description of the dynamics inside the
system, in a space endowed with a SOð3; 1Þ symmetry,
since an integral equation is able to sum up all the infinite
contributions generated by the interaction kernel, though
truncated at a given order in the coupling constant
Noteworthy, there are efforts to go beyond the ladder
approximation by including the cross-ladder diagrams as
shown in Refs. [17,24,25], as well as to explore the formal
inversion of the NIR, as in Ref. [26], for eventually
exploiting a Wick-rotated formulation of the BSE. It should
be pointed out that the inversion is an ill-posed problem that
needs nontrivial elaborations to be accomplished. For
instance, in Ref. [27] (for a recent Bayesian approach to
the inversion, see Ref. [28]), the challenge of the inversion
has been well illustrated, showing how the pion parton
distribution function could be evaluated starting from a
Euclidean framework where both the quark-antiquark BSE
and the quark gap-equation are taken into account.
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The target of our investigation is the ð1=2Þþ bound
system, composed by a fermion and a scalar. As a prototype
of such a system one could consider a mock nucleon
composed by a quark and a pointlike scalar diquark (see,
e.g., Ref. [4,9] and references quoted therein for a general
introduction to the description of a baryon in terms of
confined quark and extended diquarks, with the last feature
needed for implementing the correct statistics), or even a
more exotic bound system as the ghost quark one inves-
tigated, e.g., in Ref. [29]. In order to broad our study, we
allowed the constituents to interact through two possible
interaction Lagrangians: (i) L ¼ λsFψ̄ψχ þ λsSϕ

�ϕχ and

(ii) L ¼ λvFψ̄=Vψ − iλvSϕ
�∂↔μϕVμ, where only the coupling

constant λsS has a mass dimension, while the other three
couplings are dimensionless. The fields ψ and ϕ describe
the fermionic and bosonic constituents, respectively, while
χ and Vμ are the fields of the exchanged scalar and vector
bosons. It is worth noticing that in the mock nucleon
(representing only a first step in the avenue for developing
a Minkowskian approach for investigating an actual
nucleon), the only explicit vector boson exchange is
between the quark and the pointlike diquark, while in
the modern approach the nucleon is bound by a quark
exchange and the gluon exchange is buried in the inter-
action kernel [4,9,30]. Hence, at the present stage, one can
obtain the description of a massive quark-diquark system
only in the region dominated by the one-gluon exchange as
it is discussed in Sec. IV, while for the massless ghost-quark
bound system it is necessary at least to dress the interaction
in order to break the scale invariance that the bare vertex
brings about.
The BS amplitude for the system we are addressing is

Φπðk;p;JzÞ¼
Z

d4xeik·xh0jTfψðx=2Þϕð−x=2Þgjp;J;Jz;πi;

ð1Þ

where p ¼ pF þ pS is the total four momentum of the
system, with p2 ¼ M2 (M is the mass of the bound system),
while the relative four momentum is given by k ¼ η1pF −
η2pS (N.B. η1 þ η2 ¼ 1). We use ηi ¼ 1=2, obtaining

pFðSÞ ¼
p
2
� k:

The conjugate BS amplitude is obtained analyzing the
residue of the four-leg Green’s function at the bound pole
(assuming for the sake of simplicity, to be only one), and it
reads

Φ̄πðk; p; JzÞ ¼
Z

d4xe−ik·x

× hπ; Jz; J;pjTfψ̄ðx=2Þϕ�ð−x=2Þgj0i: ð2Þ

As it is well known, the BS amplitude for a bound state
fulfills the following homogeneous BSE, where we discard,
at the present stage of our investigation, both self-energy
and vertex corrections,

Φπðk; p; JzÞ ¼ G0ðp=2 − kÞSðp=2þ kÞ

×
Z

d4k0

ð2πÞ4 iK
Ldðk; k0; pÞΦπðk0; p; JzÞ; ð3Þ

with the relevant propagators given by

G0ðqÞ¼ i
1

ðq2−m2
Sþ iϵÞ ; SðqÞ¼ i

=qþmF

ðq2−m2
Fþ iϵÞ : ð4Þ

In our calculations in ladder approximation, we adopt the
following momentum-dependent kernels for scalar and
vector exchanges:

iKLd
s ðk; k0; pÞ ¼ −iλsSλsF

1

ðk − k0Þ2 − μ2 þ iϵ
; ð5Þ

and

iKLd
v ðk; k0; pÞ ¼ −iλvSλvF

ð=p − =k − =k0Þ
ðk − k0Þ2 − μ2 þ iϵ

; ð6Þ

with μ the mass of the exchanged boson.
Actually the interaction kernel for the scalar case does

not depend upon the total momentum of the system, while
in the vector-exchange case it does, since the bosonic
current is the sum of the initial and final momenta.
Moreover, it should be pointed out that the propagator
of the exchanged vector is given in the Feynman gauge.
Aim of the present work is to study Eq. (3) by using both

the NIR of the BS amplitude and the LF-projection
technique in order to obtain an eigen equation formally
equivalent to the initial BSE. After that, one can proceed to
numerically solve the eigenvalue problem and calculate
several quantities and functions through which it is possible
to investigate more deeply the inner dynamics. In particu-
lar, in correspondence to the two aforementioned inter-
actions, one can calculate, e.g., (i) the relevant correlation
between the binding energy of the system and the coupling
constant, (ii) the probability of the valence component, as
well as (iii) the longitudinal and transverse LF-momentum
distributions. The peculiar features of the LF distributions
allow one to shed some light on intriguing effects, that
noteworthy manifest themselves after carrying out non-
trivial dynamical calculations. The proposed physical
interpretations, in terms of small components of the
constituent fermion and its polarization, seem to herald
new interesting analysis, particularly for the vector inter-
action, where the onset of a scale-invariant regime could
appear beside a clear evidence of the effect of the helicity
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conservation, for the larger values of the binding energy
considered in the present work.
The paper is organized as follows. In Sec. II, the general

formalism of NIR is introduced and the eigenvalue problem
formally equivalent to the ladder BSE is worked out; in
Sec. III, the probability and the LF distributions are
defined; in Sec. IV, the numerical results are thoroughly
presented and discussed. Finally, in Sec. V, conclusions are
drawn and some interesting perspectives shortly illustrated.

II. BSE AND THE NAKANISHI INTEGRAL
REPRESENTATION

In order to solve Eq. (3), one proceeds through three main
steps (for the two-fermion system see, e.g., [18,22,23]),
namely (i) writing down the most general expression of the
BS amplitude Φπðk; p; JzÞ for the system under scrutiny,
(ii) introducing the NIR, and (iii) projecting Eq. (3) onto the
null-plane xþ ¼ x0 þ x3 ¼ 0. This series of operations
allows to get the desired solutions in Minkowski space.
The fermion-scalar BS amplitude has a Dirac index, and

after exploiting Lorentz invariance, parity, and the Dirac
equation for the whole system, it can be written as follows:

Φπðk; p; JzÞ ¼ ½O1ðkÞϕ1ðk; pÞ þO2ðkÞϕ2ðk; pÞ�Uðp; JzÞ;
ð7Þ

where ϕi are unknown scalar functions that depend upon
the available momenta and are determined by solving the
BSE. The operators Oi act on the spinor U (with normali-
zation ŪU ¼ 1) and one has

O1ðkÞ¼ I; O2ðkÞ¼
=k
M
; ð=p−MÞUðp;JzÞ¼0: ð8Þ

In order to get the equations fulfilled by the scalar functions
ϕiðk; pÞ, one can multiply both sides of Eq. (3) by OiðkÞ,
and evaluate the following traces, N ij and T ij:

N ij¼Tr

�
OiðkÞOjðkÞ

ð=pþMÞ
2M

�

T sðvÞ
ij ðk;k0;pÞ¼Tr

�
OiðkÞð=pFþmFÞΓsðvÞOjðk0Þ

ð=pþMÞ
2M

�
;

ð9Þ

where Γs ¼ 1 and Γv ¼ =p − =k − =k0. Through this formal
elaboration, one is able to transform Eq. (3) into an
equivalent coupled system of integral equations for the

scalar functions ϕsðvÞ
i ðk; pÞ, viz

ϕsðvÞ
i ðk; pÞ ¼ i

ðp=2 − kÞ2 −m2
S þ iϵ

i
ðp=2þ kÞ2 −m2

F þ iϵ

×
Z

d4k0

ð2πÞ4
ð−iλsðvÞS λsðvÞF Þ

ðk − k0Þ2 − μ2 þ iϵ

×
X
j¼1;2

CsðvÞij ðk; k0; pÞϕsðvÞ
j ðk0; pÞ; ð10Þ

with

CsðvÞ1j ðk; k0; pÞ ¼ M2

2

k2T sðvÞ
1j − ðk · pÞT sðvÞ

2j

k2M2 − ðp · kÞ2

CsðvÞ2j ðk; k0; pÞ ¼ −
M2

2

ðk · pÞT sðvÞ
1j −M2T sðvÞ

2j

k2M2 − ðp · kÞ2 : ð11Þ

For the sake of simplicity, in what follows we drop out the
notation sðvÞ, indicating the type of interacting kernel one
is considering, but it will be restored when needed. The
actual expressions of Cijðk; k0; pÞ for the scalar and vector
exchanges are given in Appendices A and B, respectively.
As in the case of a system composed by two scalars

[16,17,19–21] or by two fermions [18,22,23]), one can
introduce the NIR for each scalar function ϕiðk; pÞ1

ϕiðk; pÞ ¼
Z

∞

−∞
dγ0

Z
1

−1
dz0

giðγ0; z0; κ2Þ
½k2 þ z0p · k − κ2 − γ0 þ iϵ�3 ;

ð12Þ

where the real functions giðγ; z; κ2Þ are called Nakanishi
weight functions (NWFs), that depend upon real variables,
and

κ2 ¼ m̄2 −
M2

4
; ð13Þ

with m̄ ¼ ðmF þmSÞ=2.
In order to complete this first part, we mention that in

Appendix C the actual expression of the BS-amplitude
normalization, both in terms of the scalar functions ϕi and
the NWFs gi, is presented.

A. Determining the Nakanishi weight functions

The appealing motivation for using the expressions in
Eq. (12) as trial functions for solving the homogeneous
BSE is the possibility to make apparent the analytic
structure of the BS amplitude, as dictated by the analysis
performed by Nakanishi in a perturbative framework [14].

1Let us remind that the general Dirac structure of an n-leg
transition amplitude, with spin d.o.f. involved, stems from the
combinations of the Dirac structures in the numerators of each
loop. This observation leads to the Dirac structure of the
amplitude shown in Eq. (7).
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It is important to stress that the validity of this procedure is
numerically demonstrated a posteriori, i.e., at the end of the
formal elaboration we are going to carry out, without
further assumptions beyond the one shown in Eq. (12). As a
matter of fact, one eventually gets a generalized eigenvalue
problem, and if one finds solutions, acceptable from the
physical point of view (i.e., real eigenvalues), then one can
state that the expression in Eq. (12) is flexible enough to
obtain actual solutions of the equivalent BSE.
The last main step is the so-called LF projection of the

BSE, since it is based on the introduction of LF coordinates
k� ¼ k0 � kz. As it is well known, a practical advantage in
adopting these variables is the possibility to split multifold
poles in the variable k0 in poles for the variables kþ and k−.
This simple observation (that can be rephrased in a different
formal environment given in Refs. [16,18], where the
explicitly covariant LF framework is adopted) becomes
crucial for obtaining a substantial simplification of the
analytical integrations one has to face with in what follows
(for the sake of comparison see the two-scalar case
presented in Ref. [31]). The LF projection of the BSE
amounts to integrate both sides of Eq. (10) on k− (see, e.g.,
[15] and references therein quoted). Notice that such a
formal step means to restrict the relative LF time to a
vanishing value. The main advantage of applying the
LF projection (or the equivalent approach in Refs. [16,18])
is given by the formally exact reduction of the

four-dimensional (4D) BSE into an equivalent coupled
system for determining the NWFs giðγ; z; κ2Þ. However,
one should bear in mind that the LF projection of the
BS amplitude produces another important outcome, since
it allows one to obtain the valence component of the
interacting state, so that a probabilistic content can be
usefully established in the BS approach.
The LF projection of the scalar functions ϕi, Eq. (12),

reads (see [19,22,23] for details)

Z
∞

−∞

dk−

2π

Z
∞

−∞
dγ0

Z
1

−1
dz0

giðγ0;z0;κ2Þ
½k2þ z0p ·k−κ2− γ0 þ iϵ�3

¼−i
M

Z
∞

−∞
dγ0

giðγ0;z;κ2Þ
½γ0 þ γþð1− z2Þκ2þ z2m̄2− iϵ�2 ; ð14Þ

where γ ¼ jk⊥j2, z ¼ −2kþ=M.
Let us apply the LF projection also to the rhs of Eq. (10),

in strict analogy to the fermionic case [22,23], but with a
substantial simplification in the treatment of the LF
singularities, generated by the behavior along the arc for
large k− in the complex plane (see also Ref. [32] for the first
discussion of those singularities and the method to fix
them). In particular, the mentioned LF singularities do not
affect the fermion-scalar case, and one can write the
following coupled system:

Z
∞

γmin

dγ0
giðγ0; z; κ2Þ

½γ0 þ γ þ ð1 − z2Þκ2 þ z2m̄2 − iϵ�2 ¼
λFλS
2ð4πÞ2

1

D0ðγ; zÞ
Z

1

0

dvv2
Z

∞

γmin

dγ0
Z

1

−1
dz0

X
j¼1;2

gjðγ0; z0; κ2Þ

×

�ð1þ zÞ2Bijðk−u Þθðz0 − zÞ
D2

uðz0; z; m2
SÞ

þ ð1 − zÞ2Bijðk−d Þθðz − z0Þ
D2

dðz0; z; m2
FÞ

�
; ð15Þ

where

D0ðγ; zÞ ¼ γ þ ð1 − z2Þκ2 þ ðΔ − zm̄Þ2; ð16Þ

and γmin ¼ −2zm̄jΔj þ Δ2, with Δ ¼ ðmS −mFÞ=2. The lower extremum γmin is determined in order to avoid a free
propagation in the BS amplitude of a bound state, i.e., by requiring the absence of cuts. The denominator Du (for z0 > z) is

Duðz0;z;m2
SÞ¼vð1−vÞðz0−zÞ

�
γ−ð1−z2ÞM

2

4
þm2

S

�
þð1þzÞ

�
vð1−vÞ

�
γþz2

M2

4

�
þvðγ0 þκ2Þþv2z02

M2

4
þð1−vÞμ2

�
.

ð17Þ

Notice that

lim
z0→z

Duðz0; z; m2
SÞ

ð1þ zÞ ¼ vð1 − vÞγ þ vz2
M2

4
þ vðγ0 þ κ2Þ þ ð1 − vÞμ2; ð18Þ

and therefore, in this limiting case, the factor ð1þ zÞ2 in the numerator is exactly canceled.
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When z>z0, the denominator is Ddðz0;z;m2
FÞ¼Duð−z0;

−z;m2
FÞ, and the same limit for z0 → z is obtained for

Ddðz0; z; m2
FÞ=ð1 − zÞ.

Moreover, in Eq. (15), one has

B11ðk−uðdÞÞ ¼ cð0Þ11 þcð1Þ11 k
−
uðdÞ; B12ðk−uðdÞÞ ¼ cð0Þ12 þcð1Þ12 k

−
uðdÞ

B21ðk−uðdÞÞ ¼ cð0Þ21 ; B22ðk−uðdÞÞ ¼ cð0Þ22 þcð1Þ22 k
−
uðdÞ; ð19Þ

where the coefficients cðiÞjk for scalar and vector exchanges
are given in Appendices A and B, respectively, and

k−u ¼ M
2
−
2ðγ þm2

SÞ
Mð1þ zÞ ¼ p−

2
− p−

S;on;

k−d ¼ −
M
2
þ 2ðγ þm2

FÞ
Mð1 − zÞ ¼ −

p−

2
þ p−

F;on: ð20Þ

It is very important to remind that k−u corresponds to
have the scalar constituent on its mass shell, and hence
the fermion is highly virtual, while for k−d the opposite
happens.
The key point is to recognize Eq. (15) as a generalized

eigenvalue problem. The eigenvectors are the pair of NWFs
fg1; g2g, and the corresponding eigenvalues are the product
of the coupling constants λFλS (or quantities proportional
to them, see below). Once the mass M of the system is
assigned, one can proceed through standard numerical
methods (cf. Sec. IV). Indeed, the coupled system
depends nonlinearly upon the mass of the system, that
can be written as

M ¼ 2m̄ − B;

where B is the binding energy. The acceptable values of
B=m̄ fall in the range [0, 2] (see Refs. [33,34] for a
discussion of the critical behavior of a ϕ3 model).

III. PROBABILITY AND LF-MOMENTUM
DISTRIBUTIONS OF THE VALENCE

COMPONENT

As it is well known, the BS amplitude does not have a
probabilistic interpretation, while exploiting an LF Fock
expansion of the interacting state [35] one can retrieve a
probabilistic framework, so important and helpful for our
physical intuition. To accomplish this, one exploits the LF
wave functions, i.e., the amplitudes of the Fock expansion
of the interacting states (in the present case jð1=2Þþi). They
are invariant under LF boosts and fulfill the following
normalization constraint (see Appendix D for notations and
details):

2ð2πÞ3
X
n

Z
½dξi�½d2κi⊥�jψJπ

n ðfξign; fκi⊥gn; fσignF ; JzÞj2

¼ 1; ð21Þ

where (i) ψJπ
n are the LF wave functions, i.e., the ampli-

tudes of the Fock state with n particles (fermions and
bosons) and (ii) fξi; κi⊥g are the LF-boost invariant
kinematical variables of the ith particles [35]. The LF
wave function with the lowest number of constituents, i.e.,
one fermion and one scalar, is the valence wave function.
From Eq. (21), it follows that the probability to find the
valence component in the interacting state with J ¼ 1=2
and given Jz is (see also Appendix D)

Pval ¼
1

ð2πÞ3
X
σ1

Z
1

0

dξ
2ξð1−ξÞ

Z
d2κ⊥jψJπ

n¼2ðξ;κ⊥;σ1;JzÞj2:

ð22Þ

After establishing the definitions within the Fock-expan-
sion framework, it is compelling to find the relation
between the valence component and the BS amplitude,
given its relevance in the application to hadron physics. In
view of this, it is useful to recall that the intrinsic
description of the system contained in the valence compo-
nent is the one living onto the xþ ¼ 0 hyperplane, as one
can straightforwardly realize performing the 4D Fourier
transform of the valence component, that has no depend-
ence on k− (conjugated to the LF-time xþ). Moreover, one
of the external legs of the BS amplitude is a fermion, and
one should avoid any possible kinematical singularity
related to the instantaneous propagation (i.e., with
xþ ¼ 0), since the valence component does not have such
an analytic behavior. This amounts to cut in the fermionic
propagator the term γþ=ð2kþÞ. The announced relation is
(see Appendix D for more details)

ψJπ
n¼2ðξ;κ⊥;σ1;JzÞ

¼ ð1−ξÞ
ffiffiffiffiffiffiffi
mF

2

r Z
dk−

2π
ūαðq̃1;σ1ÞγþαβΦπ

βðk;p;JzÞ; ð23Þ

with q̃1 ≡ fξpþ; κ⊥g and p⊥ ¼ 0.
By introducing in the rhs of Eq. (23) the expression of

the BS amplitude (7), one finds the following components
of the valence wave function in terms of the scalar functions
ϕiðk; pÞ [cf. Eq. (14)]:

ϕ̃iðξ;γ;κ2Þ¼ iM
Z

∞

−∞

dk−

2π
ϕiðk;pÞ

¼
Z

∞

−∞
dγ0

giðγ0;z;κ2Þ
½γ0 þ γþð1− z2Þκ2þ z2m̄2− iϵ�2 ;

ð24Þ

where

ξ ¼ qþ1
pþ ¼ kþ

pþ þ 1

2
¼ 1 − z

2
: ð25Þ
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Hence, for the LF valence wave function, one writes

ψJπ
n¼2ðqþ1 =pþ;q1⊥;σ1;JzÞ¼−ið1−ξÞ

ffiffiffiffiffiffiffi
ξ

2M

r �
δσ1;Jz

�
ϕ̃1ðξ;γ;κ2Þ−

z
2
ϕ̃2ðξ;γ;κ2Þ

�
−δ−σ1;Jz2Jz

kxþ i2Jzky
M

ϕ̃2ðξ;γ;κ2Þ
�
: ð26Þ

Notably, in Eq. (26), the two contributions stemming from the configurations with the spins of the constituent and the
system aligned or antialigned are well identified. Finally combining Eqs. (22) and (26), one writes

Pval ¼ PA
val þ PnoA

val ; ð27Þ

where the probabilities of the aligned and antialigned configurations are given by

PA
val ¼

1

32Mπ2

Z
1

0

dξð1 − ξÞ
Z

∞

0

dγ

�
ϕ̃1ðξ; γ; κ2Þ −

z
2
ϕ̃2ðξ; γ; κ2Þ

�
2

PnoA
val ¼ 1

32Mπ2

Z
1

0

dξð1 − ξÞ
Z

∞

0

dγ
γ

M2
ϕ̃2
2ðξ; γ; κ2Þ: ð28Þ

Another set of quantities quite relevant for understanding the dynamics in the valence component, and consequently
interesting from the experimental point of view, is given by the LF valence distributions, that describe (i) the probability
distribution to find a constituent with a given longitudinal fraction ξ and (ii) the probability distribution to find a constituent
with transverse momentum γ ¼ jk⊥j2. They are defined for the fermionic constituent as follows:

ϕFðξÞ ¼ 1

32Mπ2
ð1 − ξÞ

Z
∞

0

dγ

��
ϕ̃1ðξ; γ; κ2Þ −

z
2
ϕ̃2ðξ; γ; κ2Þ

�
2

þ γ

M2
ϕ̃2
2ðξ; γ; κ2Þ

�
; ð29Þ

PFðγÞ ¼ 1

32Mπ2

Z
1

0

dξð1 − ξÞ
��

ϕ̃1ðξ; γ; κ2Þ −
z
2
ϕ̃2ðξ; γ; κ2Þ

�
2

þ γ

M2
ϕ̃2
2ðξ; γ; κ2Þ

�
; ð30Þ

and are normalized to Pval. One can easily recognize the
two contributions: the aligned and the antialigned ones.

IV. NUMERICAL RESULTS

The numerical method for solving the coupled system in
Eq. (15) strictly follows the one already adopted for the
two-fermion case [22,23]. Basically, one expands the
NWFs on an orthonormal basis given by the Cartesian
product of Laguerre polynomials and Gegenbauer ones, in
order to take care of the dependence upon γ and z,
respectively. Unfortunately, in the case of the fermion-
boson system one cannot exploit the symmetry under the
exchange of the two constituents (i.e., z → −z) for con-
straining the symmetry of the BS amplitude, and in turn
of the NWFs (particularly the odd or even dependence
upon z). Hence, the adopted orthonormal basis contains
both symmetric and antisymmetric Gegenbauer polyno-
mials. The expansion of the gi reads

giðγ; z; κ2Þ ¼
X∞
m¼0

X∞
n¼0

Ai
mnðκ2ÞGνi

mðzÞJ nðγÞ; ð31Þ

where (i) Ai
mn are suitable coefficients to be determined by

solving the generalized eigen-problem given by the coupled

system (15), (ii) Gνi
mðzÞ are related to the Gegenbauer

polynomialsCνi
mðzÞ, and while (iii) J nðγÞ are given in terms

of the Laguerre polynomials LnðaγÞ. In particular, one has

Gν
nðzÞ ¼ ð1 − z2ÞqΓðνÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ νÞ

21−2νπΓðnþ 2νÞ

s
Cν
nðzÞ;

J nðγÞ ¼
ffiffiffi
a

p
LnðaγÞe−aγ=2; ð32Þ

where q ¼ ð2ν − 1Þ=4 has been taken equal to 1 for g1 and
3 for g2, respectively. The parameter a governs the falloff of
the NWFs for large γ, and it turns out that whenM becomes
smaller and smaller, decreasing its value is helpful from the
numerical point of view. Indeed, for smaller values of the
mass, the system is more compact, and therefore the kinetic
energy increases, emphasizing the relevance of the tail in γ
of the NWFs. In order to speed up the convergence of the
integration on γ, this variable has been rescaled by a factor
a0, i.e., γ → γ=a0. In the actual calculation, a0 has been
chosen equal to 12, while a ¼ 6.
Two general observations are in order: (i) after intro-

ducing the above expansion and the proper projection, the
lhs of (15) reduces to a symmetric real matrix applied to a
vector containing the coefficients of the expansion, while
the rhs contains a nonsymmetric matrix, and (ii) the
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eigenvalues can be real or complex conjugated. In con-
clusion, one symbolically writes

LðMÞv ¼ αRðMÞv; ð33Þ

where the nonlinear dependence upon the mass of the
system, M, is present in both sides. The search of the
eigenvalues, i.e., the coupling constant compatible with
the assigned mass M, proceeds by looking for the lowest
real eigenvalue, which corresponds to the shallowest well
able to support a bound system with massM, if one exploits
a physical intuition based on a simple, nonrelativistic
instance. The smallest eigenvalue is obtained by using
first a low number of basis functions in the expansion in
Eq. (31) and then checking the stability of the result by
increasing the basis. To determine the eigenvectors, i.e., the
coefficients in the expansion (31), requests more care. For
getting more stable results, following Ref. [16], a small
quantity ϵ ¼ 10−8 has been added to the diagonal elements
of the lhs matrix, and furthermore both sides of Eq. (15)
have been multiplied by a factor ð1 − z2Þp, that helps to
enforce the constraint at the extrema of the variable z. The
used values for the exponent p is 1 for the scalar exchange
and 2 for the vector one. Finally, the following numerical
results correspond to the maximal values for m and n in
Eq. (31) NLag ¼ NGeg ¼ 56.

A. Scalar interaction

In order to get rid of the dimensional dependence on the
mass, the coupling constant for the scalar exchange is
defined as follows:

αS ¼ λsFλ
s
S

8πmS
: ð34Þ

Notice that the factor 8π is twice the familiar 4π, in order to
match the nonrelativistic reduction of the Born term in the
fermion-scalar scattering, properly taking into account the
different relativistic normalization of fermionic and bosonic
states. Table I shows the coupling constants for the case
of a scalar exchange and equal-mass constituents, i.e.,
mF ¼ mS. In particular, the presented results correspond to
binding energies in unit mass B=m̄ ∈ ½0.1; 1� and two
values of the exchanged-boson mass μ=m̄ ¼ 0.15, 0.50.
For the sake of comparison, in Table I, it is also shown the
analogous set of results evaluated after Wick rotating the
relative variables k0 and k00 in Eq. (10), namely without
inserting LF coordinates, but keeping the standard ones and
changing both k0 → ik0 and k00 → ik00. It is worth noticing
that the values of the dimensionless coupling constant for
the scalar exchange are larger than the ones shown in
Table III, corresponding to the vector exchange. Such a
difference can be seen also for the two-fermion case [23],
and it can be ascribed to the repulsion generated by the
small component of the fermion spinor when a scalar vertex

is involved. As a matter of fact, the scalar interaction meets
a difficulty to bind a system, when it becomes more and
more compact (i.e., B increases). In order to identify the
source of the repulsion that opposes the binding, one
should analyze the low M behavior of the coefficients
Bijðk−uðdÞÞ given in Eq. (19). After inserting the coefficients

shown in Eq. (A2) and k−uðdÞ from Eq. (20), one gets that

only B12ðk−u Þ is always negative for mS > M=2 and it
becomes larger and larger (in modulus) for M → 0 (strong
coupling limit), viz

B12ðk−u Þ¼−
z0v
2

�
M
2
þmF

�

−
ð1−vÞ
Mð1þ zÞ

�
2γþð1− zÞ

�
m2

S−
M2

4

�
þ z2

M2

2

�
:

ð35Þ

The numerical checks, obtained after omitting this negative
term, show an almost 40% reduction of the coupling αS, for
μ=m̄ ¼ 0.5 and B=m̄ ¼ 1, with Pval ¼ 0.82, and the calcu-
lations can be even extended to B=m̄ > 1without any large
increase of the coupling constant, as well as a smoother
growing of Pval. The physical source of the repulsion can be
heuristically understood once we recall that the fermion-
scalar vertex, when initial and final fermions are on-mass
shell, contains the scalar density ūu, and the Dirac matrix γ0

generates a minus sign in front of the contribution produced
by the small components. Hence, a repulsion is produced.
Moreover, one should expect that the repulsive effect of
the small components of the fermion spinor is driven
by the kinetic energy, since the scalar density is written
in terms of the large Dirac component, f, and the small one,
g, as follows: ρs¼ ūu∼ jfðkÞj2− jgðkÞj2∼ρv−2jkfðkÞj2=
ðEþmÞ2, with the vector density given by ρv ¼
u†u ∼ jfðkÞj2 þ jgðkÞj2.
For illustrative purpose, in Fig. 1, the NWFs for the

scalar exchange with μ=m̄ ¼ 0.15 and equal-mass

TABLE I. Scalar coupling αS, Eq. (34), for mF ¼ mS and
μ=m̄ ¼ 0.15, 0.50 [with m̄ ¼ ðmS þmFÞ=2]. First column: the
binding energy in unit mass of m̄, i.e., B=m̄. Second and fourth
columns: coupling constants αSM, obtained by solving the BSE (3)
in Minkowski space through Eq. (15). Third and fifth columns:
Wick-rotated results, αSWR (see text).

B=m̄ αSMð0.15Þ αSWRð0.15Þ αSMð0.50Þ αSWRð0.50Þ
0.10 1.506 1.506 2.656 2.656
0.20 2.297 2.297 3.624 3.624
0.30 3.047 3.047 4.535 4.535
0.40 3.796 3.796 5.451 5.451
0.50 4.568 4.568 6.404 6.404
0.80 7.239 7.239 9.879 9.879
1.00 9.778 9.778 13.738 13.738
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constituents are presented as a function of (i) γ and fixed
z ¼ 0 and (ii) z and fixed γ ¼ 0, respectively. Interestingly,
the difference between g1 and g2 increases for large binding
energies. Indeed, such an effect could be related to the
weight in front of ϕ2, i.e., the factor =k=M [cf. Eq. (7)]. As a
matter of fact, for increasing B=m̄ the average size of the
system decreases and large values of the kinetic energy
(related to the relative momentum k) become more and
more likely, and in order to avoid a blowing contribution
from the second term in Eq. (7), the amplitude ϕ2 should
decrease. The same happens for larger values of μ=m̄, since
the system becomes more compact, given the shrinking of
the range of the interaction. It is worth mentioning that the
NWFs can have wild oscillatory behaviors, that fade out in
a smooth pattern of the LF distributions, discussed in what
follows, given the filtering role played by the integral
kernel in Eq. (24). Such an effect is well known in the
analysis of signals where the generalized Stieltjes trans-
forms are commonly adopted (see, e.g., Ref. [36]).
The relevance of the valence component in the Fock

expansion of the interacting state is illustrated in Table II,

where the valence probabilities, defined in Eq. (22), are
shown together with the two contributions from the
possible configurations of the spin of the system and the
spin of the constituent, namely (i) aligned or (ii) antialigned.
In the second case, one must have a component of the
orbital angular momentum L ¼ 1 in order to get a third
component of the total momentum equal to Jz ¼ �1=2.
The valence probabilities start to behave in an unexpected
way when the binding increases. This seems to indicate that
the repulsion we mentioned above damps the coupling of
the valence state with the higher Fock components, and
consequently the valence probability increases. Indeed, the
large kinetic energy needed to allow a compact system (the
size is related to the inverse of the binding energy) is more
efficiently shared on a two-constituent Fock state than on
multiparticle ones.
Further insights can be gained from the analysis the

LF-momentum distributions, presented in what follows.
In Figs. 2 and 3, the longitudinal and transverse LF

distributions [cf. Eqs. (29) and (30)] are shown for the
fermion in the valence component, with μ=m̄ ¼ 0.15, 0.50,

0 0.1 0.2 0.3 0.4 0.5
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FIG. 1. The Nakanishi weight functions gi for an equal-mass ð1=2Þþ system and the interaction mediated by a scalar boson with
μ=m̄ ¼ 0.15. Left side: the calculations with B=m̄ ¼ 0.1. Right side: calculations with B=m̄ ¼ 1. Solid line: g1. Dotted line: g2. upper
panels: gi vs γ, and z ¼ 0. Lower panels: gi vs z, and γ ¼ 0. Notice that the normalization factor is the same for both NWFs, namely
g1ð0; 0; κ2Þ.
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and three values of the binding energy B=m̄ ¼ 0.1, 0.5, 1.
The longitudinal distribution shows a peak around ξ ¼ 0.5
for B=m̄ ¼ 0.1 that broadens and sizably reduces its height

(slightly shifting towards lower values of ξ), when the
binding energy and/or the mass of the exchanged boson
increase. The behavior substantially follows the increasing
pattern of the antialigned probability (that involves the
orbital L ¼ 1 component). This observation suggests that
the fermion, to be considered almost massless for large
kinetic energy, tends toward a positive helicity. Indeed, the
increasing of the tail at ξ ≥ 0.8 (for B=m̄ > 1 a sizable
bump appears) is given by the aligned configuration, and
the large values of ξ mean a Cartesian three momentum
aligned along the positive z-axis. Differently, the antia-
ligned configuration dominates the probability at small
values of ξ (i.e., a Cartesian three momentum along the
negative direction of the z-axis), and again one recovers a
preferred positive helicity. Notice that also the transverse
distribution follows a pattern correlated to the growing of
the average kinetic energy, as it happens for bigger values
of B=m̄ and/or the exchanged-boson mass.
As a final remark, we mention that the values of

the average hξi follows a slightly decreasing pattern from
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FIG. 2. Longitudinal LF distributions for a fermion in the valence component for μ=m̄ ¼ 0.15 (left panel) and for μ=m̄ ¼ 0.50 (right
panel), in the case of a scalar exchange. Solid line: B=m̄ ¼ 0.1. Dotted red line: B=m̄ ¼ 0.5. Dashed blue line: B=m̄ ¼ 1.0.

TABLE II. Valence probabilities [see Eq. (22)], for the scalar
exchange with mF ¼ mS and μ=m̄ ¼ 0.15, 0.50. The two con-
tributions, PnoA

val and PA
val, corresponding to the configurations

where the spin of the constituent is antialigned or aligned to the
spin of the system, are also shown. First column: the binding
energy in unit mass of m̄.

μ=m̄ ¼ 0.15 μ=m̄ ¼ 0.50

B=m̄ Pval PnoA
val PA

val Pval PnoA
val PA

val

0.10 0.81 0.02 0.79 0.88 0.03 0.85
0.20 0.77 0.03 0.74 0.85 0.05 0.80
0.30 0.76 0.05 0.71 0.84 0.07 0.77
0.40 0.75 0.06 0.69 0.83 0.09 0.74
0.50 0.76 0.07 0.69 0.83 0.11 0.72
0.80 0.81 0.13 0.68 0.88 0.18 0.70
1.00 0.90 0.19 0.71 0.98 0.25 0.73
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FIG. 3. Transverse LF distributions for a fermion in the valence component for μ=m̄ ¼ 0.15 (left panel) and for μ=m̄ ¼ 0.50 (right
panel), in the case of a scalar exchange. Solid line: B=m̄ ¼ 0.1. Dotted red line: B=m̄ ¼ 0.5. Dashed blue line: B=m̄ ¼ 1.0.
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0.5 for B=m̄ ¼ 0.1 to 0.41 at B=m̄ ¼ 1, almost irrespective
of the value of μ=m̄, while for hγ=m̄2i one goes from
0.09 to 0.47 with μ=m̄ ¼ 0.15, and from 0.15 to 0.64
with μ=m̄ ¼ 0.50.

B. Vector interaction

For the vector exchange case, the coupling constant is
defined as

αV ¼ λvFλ
v
S

8π
; ð36Þ

and it does not contain any mass in the denominator, given
the dimensionless nature of the vertex constants in the
interaction Lagrangian. Being dimensionless the vertex
constants, the BSEs both in Euclidean and in Minkowski
spaces, as well as the system of integral equations for the
NWF, have the property to be invariant under a scale
transformation in the ultraviolet region. Such a symmetry
imposes amaximum value for the coupling constant, beyond
which the invariance is broken. One encounters a similar
situation in the fermion-fermion bound state problem in the
ladder approximation both in Euclidean [37] and in
Minkowski space [18]. Here, we adopt a conservative point
of view and present calculations for moderate bindings,
leaving the detailed study of the scale invariance breaking,
that should establish at larger bindings, for a futurework [38].
Our results in Minkowski space, shown in Table III up to
B=m̄ ¼ 0.5, nicely agreewith theWick-rotated calculations,
analogously to what happens for the scalar-exchange case.
In Table IV, the valence probabilities are shown for the

vector exchange. In the range of B=m̄we have investigated,
as dictated by the onset of a scale-invariant regime, they
smoothly decrease.
Figures 4 and 5 illustrate the peculiar pattern of the

longitudinal and transverse LF distributions, respectively.
As already noticed for the scalar case, for increasingB=m̄ the
size of the system decreases and the average kinetic energy
of the constituents becomes bigger and bigger. This favors
the orbital L ¼ 1 component of the valence wave function
and produces an increasing behavior of the nonaligned
configuration, mainly close at ξ ¼ 0. As shown in Fig. 4, the
longitudinal distribution acquires a particular shape for
increasing B=m̄, emphasizing what we have started to see
in the scalar-exchange case. The calculations show that the
dominant contribution for ξ → 1 is given by the aligned
configuration and for ξ → 0 by the antialigned one. After

TABLE IV. The same as in Table II, but for the vector
exchange.

μ=m̄ ¼ 0.0 μ=m̄ ¼ 0.15 μ=m̄ ¼ 0.50

B=m̄ Pval PnoA
val PA

val Pval PnoA
val PA

val Pval PnoA
val PA

val

0.10 0.69 0.01 0.68 0.73 0.02 0.71 0.75 0.04 0.71
0.20 0.62 0.02 0.60 0.64 0.03 0.61 0.66 0.05 0.61
0.30 0.57 0.03 0.54 0.58 0.04 0.54 0.60 0.06 0.54
0.40 0.53 0.04 0.49 0.54 0.05 0.49 0.55 0.07 0.48
0.50 0.50 0.05 0.45 0.50 0.05 0.45 0.52 0.07 0.45

TABLE III. Vector coupling αV , Eq. (36), for mF ¼ mS and
μ=m̄ ¼ 0, 0.15, 0.50. First column: the binding energy in unit
mass of m̄, i.e., B=m̄. Second, fourth, and sixth columns:
coupling constants αVM, obtained by solving the BSE (3) in
Minkowski space through Eq. (15). Third, fifth and seventh
columns: Wick-rotated results, αVWR, with a numerical uncertainty
for B=m̄ ¼ 0.5 due to some instabilities in the Gaussian quad-
rature adopted.

B=m̄ αVMð0Þ αVWRð0Þ αVMð0.15Þ αVWRð0.15Þ αVMð0.50Þ αVWRð0.50Þ
0.10 0.513 0.513 0.608 0.609 0.849 0.854
0.20 0.758 0.761 0.823 0.823 1.009 1.015
0.30 0.936 0.938 0.979 0.978 1.127 1.129
0.40 1.074 1.074 1.107 1.097 1.225 1.216
0.50 1.189 1.18� .03 1.214 1.19� .03 1.311 1.28� .04
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FIG. 4. Longitudinal LF distributions for a fermion in the valence component for μ=m̄ ¼ 0.15 (left panel) and for μ=m̄ ¼ 0.50 (right
panel), in the case of a vector exchange. Solid line: B=m̄ ¼ 0.1. Dotted red line: B=m̄ ¼ 0.3. Dashed blue line: B=m̄ ¼ 0.5.
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recalling that for ξ → 1 and ξ → 0, the fermion has a
maximal Cartesian component along its spin, one can say
that the fermion in both cases has a positive helicity. Such a
result can be interpreted in the light of the conservation of
the angular momentum within the LF quantum-field theory,
or equivalently of the helicity conservation for the vector
interaction (see Ref. [39] for a recent work elucidating this
issue). In conclusion, it is gratifying that the outcome of a
nontrivial dynamical calculation is in full agreementwith the
physical expectation from a conservation law.
The transverse distributions show the familiar falloff that

becomes less and less pronounced for increasing B=m̄,
following what we have already learned about the increas-
ing of the kinetic energy.
For the sake of completeness, we quote also the average

values of hξi and hγ=m̄2i. In particular, hξi follows a
slightly increasing pattern from 0.51 for B=m̄ ¼ 0.1 to 0.55
at B=m̄ ¼ 1.0 (almost irrespective of for μ=m̄), and hγ=m̄2i
ranges from 0.17 to 5.9 (for μ=m̄ ¼ 0.50, the corresponding
values are 0.44 and 6.8).

It is worth noticing that the onset of the helicity
conservation should be investigated in more detail, in
particular by exploring the impact of a non-pointlike
interaction vertex, i.e., different from the one assumed in
the present work.
In Fig. 6, the LF distributions for a fermion-scalar system

with different masses of the constituents are presented. In
order to start a first survey of a mock nucleon we have
chosen a mass ratio mS=mF ¼ 2 and a binding energy
B=m̄ ¼ 0.1 (e.g., MN=m̄ ¼ 1.9). Also in this case we
adopted μ=m̄ ¼ 0.15 and μ=m̄ ¼ 0.50. The corresponding
values for the coupling constants are αV ¼ 0.648 and
αV ¼ 0.898, respectively, while for the valence probabil-
ities we have found Pval ¼ 0.75 and Pval ¼ 0.77, that
means a quite large valence component. It is very rewarding
and of phenomenological interest to recognize the signature
of the scale invariance in the behavior of the tail of the
transverse-momentum distributions. As a matter of fact,
extending the calculations for γ=m̄2 > 40 the falloff can be
described by C1=γ2.26 for μ=m̄ ¼ 0.15, and C2=γ2.43 for
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FIG. 5. Transverse LF distributions for a fermion in the valence component for μ=m̄ ¼ 0.15 (left panel) and for μ=m̄ ¼ 0.50 (right
panel), in the case of a vector exchange. Solid line: B=m̄ ¼ 0.1. Dotted red line: B=m̄ ¼ 0.3. Dashed blue line: B=m̄ ¼ 0.5.
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FIG. 6. Light-front distributions for a fermion in the valence component of the state ð1=2Þþ, with a mass ratio mS=mF ¼ 2 and a
binding B=m̄ ¼ 0.1. Left panel: longitudinal distribution. Right panel transverse-momentum distribution. Solid line: μ=m̄ ¼ 0.15.
Dotted line: μ=m̄ ¼ 0.50.
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μ=m̄ ¼ 0.50, in agreement with the values predicted by the
scale invariance analysis in Ref. [38]. Indeed, even if the
model is elementary, since both self-energy and vertex
corrections are absent and only the one-vector exchange is
taken into account (notice that such an interaction should
govern the tail of the momentum distributions, also in more
refined approaches), this kind of analysis could suggest the
proper framework, where a study of the scale invariance
could be started, analyzing the departures from the eval-
uations we are providing.

V. CONCLUSIONS

The present study of the ladder Bethe-Salpeter equation
describing an interacting system, composed by a fermion
and a scalar, has been performed by adopting an approach
based on the Nakanishi integral representation of the BS
amplitude and the light-front framework. In particular, two
interactions have been applied: (i) the scalar interaction and
(ii) the vector one (in Feynman gauge). This model, though
simple, already allows one to start a dynamical investiga-
tion of intrinsic features, like (i) in the scalar exchange case,
the repulsive effects that could pose a limitation to the use
of the ladder kernel in the strong-coupling regime, and
(ii) in the vector case, the effects of the helicity conserva-
tion, as well as of the scale-invariant regime and beyond,
that will be investigated elsewhere [38].
Moreover, one has to emphasize the absence of the

exchange symmetry, working for the two-scalar and two-
fermion systems.
The coupling constants for assigned masses of the

interacting system have been obtained as an outcome of
an eigenvalue problem, formally deduced from the initial
BSE, and compared with the corresponding results where
the BSE is solved after introducing a Wick rotation. The
agreement, as in the case of two-scalar [16,19] and two-
fermion systems [18,22,23], is very good, and adds more
and more confidence in the adopted approach.
To conclude, a benefit of any technique able to solve the

BSE in Minkowski space is the direct access to the LF
distributions, that have been shown in Figs. 2–6. For the
equal-mass case, the very peculiar behavior of the longi-
tudinal distributions, with a particular emphasis for the
vector interaction, has allowed us to point out the nice role
played by the two possible configurations of the constituent

and system spins. In the case of the vector interaction, when
states of large momentum are more and more populated for
increasing values of the coupling constant, the fermion
longitudinal distribution sizably cumulates close to ξ → 0
and ξ → 1, yielding a clear evidence of the action of the
helicity conservation law. Furthermore, it should be inter-
esting to notice that the relative weight of the orbital L ¼ 1
(antialigned configuration) with respect to the L ¼ 0 one
(aligned configuration) is around 10% for both interactions,
at B=m̄ ¼ 0.5, with an increasing behavior for increasing
binding energies. The unequal-mass case with a vector-
exchange interaction, i.e., a mock nucleon composed by a
quark and a scalar pointlike diquark, with mass ratio
mS=mF ¼ 2, yields the possibility to investigate the extent
to which the scale invariance could affect the hadron
dynamics. Indeed, our calculations, that necessarily lead
to a scale-invariant behavior of the transverse-momentum
distribution (cf. Fig. 6), should be considered as a reference
line for more refined phenomenological studies. Finally,
we should point out that massless fermion-scalar systems
(e.g., a ghost-quark bound state as in Ref. [29]) can be
addressed only by introducing a new scale other than
the masses of constituents and quanta, like the one asso-
ciated to an extended interaction vertex (cf. the results in
Refs. [22,23]). This very interesting study has to be
postponed to another work, where, both vertex and self-
energy corrections have to be carefully treated.
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APPENDIX A: COEFFICIENTS FOR THE
SCALAR-BOSON EXCHANGE

The coefficients in Eq. (10) for the exchange of a scalar
boson are given by

C11 ¼
1

2
M þmF

C12 ¼
ðk0 · pÞ
M

−
1

M2k2 − ðk · pÞ2
�ðk0 · pÞ

M
k2½M2bþ ðk · pÞ� − ðk0 · kÞM½ðk · pÞbþ k2�

�
C21 ¼ M

C22 ¼
M

M2k2 − ðk · pÞ2 fðk
0 · pÞ½k2 þ bðk · pÞ� − ðk0 · kÞ½M2bþ ðk · pÞ�g; ðA1Þ
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where

b ¼ 1

2
−
mF

M
:

The nonvanishing coefficients in Eq. (19) are given by

cð0Þ11 ¼ M
2
a

cð0Þ12 ¼ −
z0v
2

M
2
a − ð1 − vÞ 1

M

�
γ þ zM2

4

�
; cð1Þ12 ¼ ð1 − vÞ

2
ð1 − zÞ

cð0Þ21 ¼ M

cð0Þ22 ¼ −M
z0v
2

− ð1 − vÞMb; ðA2Þ

with

a ¼ 1þ 2
mF

M
:

APPENDIX B: COEFFICIENTS FOR THE VECTOR-BOSON EXCHANGE

The coefficients in Eq. (10) for the exchange of a vector boson are given by

C11 ¼
M2

2
a − k2 − ðk · pÞ − ðk0 · pÞ

þ M2

2½k2M2 − ðk · pÞ2�
�
ð2 − aÞ½ðk0 · pÞk2 − ðk · k0Þðk · pÞ� þ 2

k2

M2
½ðk0 · pÞðk · pÞ − ðk · k0ÞM2�

�

C12 ¼ −
a
2
k02 − ðk0 · kÞ þ ða − 1Þðk0 · pÞ

þ M2

2½k2M2 − ðk · pÞ2�
��

ð2 − aÞ − 2
k2

M2

�
½ðk0 · pÞk2 − ðk0 · kÞðk · pÞ� þ a

k2

M2
½ðk0 · pÞðk · pÞ − ðk0 · kÞM2�

�

C21 ¼ ð2 − aÞM
2

2
þM2 −

M2

2½k2M2 − ðk · pÞ2� fð2 − aÞ½ðk0 · pÞðk · pÞ − ðk · k0ÞM2� þ 2½ðk0 · pÞk2 − ðk · k0Þðk · pÞ�g

C22 ¼ −k02 − ðk0 · kÞ þ 2ðk0 · pÞ

−
M2

2½k2M2 − ðk · pÞ2�
�
ð2 − aÞ½ðk0 · pÞðk · pÞ − ðk · k0ÞM2� þ

�
a − 2

ðk · pÞ
M2

�
½ðk0 · pÞk2 − ðk · k0Þðk · pÞ�

�
; ðB1Þ

where

a ¼ 1þ 2mF

M
: ðB2Þ
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The coefficients in Eq. (19) are given by

cð0Þ11 ¼ M2

2

�
aþ vz0

a
2
þ ð2 − vÞ z

2

�
þ ð2 − vÞγ

cð1Þ11 ¼ −
M
2
ð2 − vÞð1 − zÞ

cð0Þ12 ¼ a
2

�
γð1 − vÞð2þ vÞ þ 2vðγ0 þ κ2Þ þ 2ð1 − vÞμ2þM2

4
ðvz0 − 2Þ½z − vðz − z0Þ�

�
þ
�
γ þ z

M2

4

��
1 − v − z0

v
2

�

cð1Þ12 ¼ M
2

�
að1 − vÞ

�
1þ zþ ðz − z0Þ v

2

�
− ð1 − zÞ

�
1 − v − z0

v
2

��

cð0Þ21 ¼ M2

2
½ð2 − vÞð2 − aÞ þ 2þ z0v�

cð0Þ22 ¼ γð1 − vÞð2þ vÞ þ 2vðγ0 þ κ2Þ þ 2ð1 − vÞμ2 þM2

2

�
ð1 − vÞ

�
zz0

v
2
− zþ 2 − a

�
þ z0

v
2
ðz0v − 4þ aÞ

�

cð1Þ22 ¼ M
2
ð1 − vÞ½vðz − z0Þ þ 2ð1þ zÞ�: ðB3Þ

APPENDIX C: THE NORMALIZATION OF THE BS AMPLITUDE

The normalization of the BS amplitude is obtained by applying the standard expression illustrated, e.g., in Ref. [40], but
adapted to the fermion-scalar case. In particular, recalling that we disregard the self-energy effects, one has the following
normalization constraint:

Z
d4q
ð2πÞ4

Z
d4k
ð2πÞ4 Φ̄

α
pðq; J0zÞ

∂
∂pμ

½G−1
0 ðk; pÞð2πÞ4δ4ðq − kÞ − iKðq; k; pÞ�

				
p2
on

Φβ
pðk; JzÞ ¼ i2pμδJ0z;Jzδαβ; ðC1Þ

where

G−1
0 ðk; pÞ ¼ −

�
p2

4
þ k2 − p · k −m2

S

�
ð=p=2þ =k −mFÞ: ðC2Þ

Depending upon the actual expression of the interaction kernel in ladder approximation, one has or not a contribution for the
derivative of K. Finally, it is worth mentioning that in ladder approximation the normalization amounts to the charge
normalization.

1. Scalar-exchange kernel

Let us consider the scalar-exchange case. In ladder approximation, the interaction kernelK does not depend upon p, and
therefore does not contribute to the derivative in Eq. (C1). By inserting the BS amplitude as given in Eq. (7), one remains in
the scalar case with

Z
d4k
ð2πÞ4 Ū

αðp;J0zÞ
�
ϕ1ðkÞþ

=k
M

ϕ2ðkÞ
���

m2
S−

3

4
M2−k2þ2p ·k

�
=pþð2p ·k−M2Þð=k−mFÞ

��
ϕ1ðkÞþ

=k
M

ϕ2ðkÞ
�
Uβðp;JzÞ

¼ i4M2δJ0z;Jzδαβ: ðC3Þ

In the CM frame, after multiplying with the proper spinors and summing over J0z and Jz, one gets

Z
d4k
ð2πÞ4

ð=pþMÞ
2M

�
ϕ1ðkÞþ

=k
M

ϕ2ðkÞ
���

m2
S−

3

4
M2−k2þ2p ·k

�
=pþð2p ·k−M2Þð=k−mFÞ

��
ϕ1ðkÞþ

=k
M

ϕ2ðkÞ
�ð=pþMÞ

2M

¼ i4M2
ð=pþMÞ
2M

; ðC4Þ
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where

X
Jz

Uðp; JzÞŪðp; JzÞ ¼
ð=pþMÞ

2M
;

and Ūðp; JzÞUðp; JzÞ ¼ 1.
Finally, one evaluates the traces, takes care of the NIR for ϕi [Eq. (12)] and performs the 4D integration by exploiting

standard tricks (see, e.g., [19]), obtaining the following normalization constraint:

M
ð8πÞ2

Z
∞

γmin

dγ00
Z

∞

γmin

dγ0
Z

1

−1
dz00

Z
1

−1
dz0

Z
1

0

dvv2ð1 − vÞ2 1

A4
fN11g1ðγ00; z00; κ2Þg1ðγ0; z0; κ2Þ

þ N12g1ðγ00; z00; κ2Þg2ðγ0; z0; κ2Þ þ N22g2ðγ00; z00; κ2Þg2ðγ0; z0; κ2Þg ¼ 1; ðC5Þ

where

N11 ¼ C þ A
2M2

N12 ¼ −2
�
λC þ A

2M2

�
1þ 3λþmF

M

��

N22 ¼ λ2C þ 3

2

A2

M4
−

A
2M2

�
2
mF

M
−
m2

S

M2
þ 3

4
þ 3λ

�
2
mF

M
þ 1

�
þ 3λ2

�
; ðC6Þ

with

C ¼ 3

2

�
m2

S

M2
−
3

4
þmF

M
− λ

�
1 − 2

mF

M

�
þ λ2

�
A ¼ κ2ð1 − 4λ2Þ þ vγ00 þ ð1 − vÞγ0 þ ð2λm̄ − ΔÞ2;
λ ¼ ½vz00 þ ð1 − vÞz0�=2: ðC7Þ

2. Vector-exchange kernel

In the vector-exchange case, the interaction kernel K acquires a dependence upon the total momentum p, and therefore
one has

∂
∂pμ

½iKðk; k0; pÞ� ¼ −iλvSλvF
γμ

ðk − k0Þ2 − μ2 þ iϵ
: ðC8Þ

After performing steps similar to the ones done for the scalar exchange, one obtains a contribution generated
by the derivative in Eq. (C8), that has to be added to the one shown in the lhs of Eq. (C5). The actual form of this
new contribution is

1

2M2ð4πÞ3
λvSλ

v
F

8π

Z
∞

γmin

dγ0
Z

1

−1
dz0

Z
∞

γmin

dγ
Z

1

−1
dz

Z
1

0

dvv2
Z

1

0

dξ
ξ2ð1−ξÞ
fD3−iϵg3

×

�
Mag1ðγ0;z0;κ2Þg1ðγ;z;κ2Þ−Mbg1ðγ0;z0;κ2Þg2ðγ;z;κ2Þþg2ðγ0;z0;κ2Þg2ðγ;z;κ2Þ

�
z0vb

M
4
þ 1

2aM
ð1−vÞ

�
D3þb2

M2

2

���
;

ðC9Þ

where

D3 ¼
M2

4
b2 þ aξðγ þ κ2Þ þ að1 − ξÞ

�
v2z02

M2

4
þ vðγ0 þ κ2Þ þ ð1 − vÞμ2

�
a ¼ ξþ ð1 − ξÞvð1 − vÞ; b ¼ ξzþ ð1 − ξÞvð1 − vÞz0: ðC10Þ
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APPENDIX D: THE VALENCE COMPONENT

In this Appendix, the relation between the BS amplitude and the valence component of the fermion-scalar interacting
state is discussed with some detail.
For illustrative purpose, we assume a scalar exchange and write the Fock expansion of the fermion-scalar interacting

system as follows:

jp̃;M; JJz; π; i ¼ 2ð2πÞ3
X
n≥2

Xn−1
nF¼1

X
fσignF

Z
½dξi�

Z
½dκi⊥�ψJπ

n ðfξign; fκi⊥gn; fσignF ; JzÞjfξipþ; κi þ ξip⊥gn; fσignFi; ðD1Þ

where the integration symbols mean

Z
½dξi�≡

Yn
i¼1

Z
dξi

2ð2πÞξi
δ

�
1 −

Xn
j¼1

ξj

�
;

Z
½dκi⊥�≡

Yn
i¼1

Z
dκi⊥
ð2πÞ2 δ

2

�Xn
j¼1

κj⊥
�
: ðD2Þ

In Eq. (D1), the generic Fock state contains nF and nS fermionic and scalar constituents, respectively, and nE exchanged
bosons. It is given by (recall that n ¼ nF þ nS þ nE)

jfq̃ign; fσignFi ¼ ð2πÞ3n=2 1ffiffiffiffiffiffiffi
nF!

p 1ffiffiffiffiffiffiffi
nS!

p 1ffiffiffiffiffiffiffi
nE!

p ΠnS
j¼1

ffiffiffiffiffiffiffiffi
2qþj

q
a†ðq̃jÞΠnE

l¼1

ffiffiffiffiffiffiffiffi
2qþl

q
c†ðq̃lÞΠnF

r¼1

ffiffiffiffiffiffiffiffi
2qþr

p
b†ðq̃r; σrÞj0i: ðD3Þ

In the above equation, a†ðq̃jÞ and c†ðq̃lÞ are the creation operators of constituent scalars and exchanged bosons,
respectively, while the operators b†ðq̃r; σrÞ create fermions. In Eq. (D3), the symbols fOigl indicate O1;O2;…;Ol. The
normalization reads

hfσ0ignF ; fq̃0ignjfq̃ignfσignFi ¼ ð2πÞ3nnS!nE!nF!
Yn
l¼1

2qþl δ
3ðq̃l − q̃0lÞδσl;σ0l : ðD4Þ

Notice that if nF is odd (even) then J ¼ ð2mþ 1Þ=2 (J ¼ 2m).
In Eq. (D1), the functions ψJπ

n are the LF wave amplitudes (aka LF wave functions), and the first one, i.e., the amplitude
of the Fock state with the lowest number of constituents and no exchanged boson, is the valence wave function.
The normalization of the full interacting state is taken to be

hπ; J0z; J;M; p̃0jp̃;M; J; Jz; πi ¼ 2pþð2πÞ3δ3ðp̃0 − p̃ÞδJ0z;Jzhπ; Jz; J;MjM; J; Jz; πi; ðD5Þ

where hπ; Jz; J;MjM; J; Jz; πi is the normalization of the intrinsic part of the state.
On the other hand, from Eq. (D1), one can write

hπ;Jz;J;M;p̃0jp̃;M;J;Jz;πi¼ ½2pþð2πÞ3�2
X
n≥2

X
fσignF

Yn
i¼2

Z
d3q̃i

2qþi ð2πÞ3
δ3
�Xn

i¼1

q̃i− p̃

�

×δ3
�Xn

i¼1

q̃i− p̃0
�
jψJπ

n ðfξign;fqi⊥gn;fσignF ;JzÞj2

¼ 2pþð2πÞ3δ3ðp̃0− p̃Þ2ð2πÞ3
X
n≥2

X
fσignF

Z
½dξi�½d2qi⊥�jψJπ

n ðfξign;fqi⊥gn;fσignF ;JzÞj2: ðD6Þ

If the intrinsic state is normalized, then combining Eqs. (D5) and (D6), one can deduce the following normalization of the
LF wave functions, ψJπ

n , viz:
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2ð2πÞ3
X
n≥2

X
fσignF

Z
½dξi�½d2qi⊥�jψJπ

n ðfξign; fqi⊥gn; fσignF ; JzÞj2 ¼ 1: ðD7Þ

Such a normalization of the LF amplitudes is the key point for introducing a probabilistic description for a relativistic
interacting state. In particular, the probability to find the valence component in the bound state with J ¼ 1=2 and third
component Jz is given by

Pval ¼ 2ð2πÞ3
X
σ1

Z
dξ1

2ð2πÞξ1

Z
dξ2

2ð2πÞξ2
δð1 − ξ1 − ξ2Þ

Z
d2κ1⊥
ð2πÞ2

Z
d2κ2⊥
ð2πÞ2 δ

2ðκ1⊥ þ κ2⊥ÞjψJπ
n¼2ðξ1; ξ2; κ1⊥; κ2⊥; σ1; JzÞj2

¼ 1

ð2πÞ3
X
σ1

Z
dξ

2ξð1 − ξÞ
Z

d2κ⊥jψJπ
n¼2ðξ; κ⊥; σ1; JzÞj2; ðD8Þ

where the notation has been simplified, putting ξ ¼ ξ1 and κ⊥ ¼ κ1⊥.
Notice that the valence probability is equal for Jz ¼ �1=2.
To establish the relation between ψJπ

n¼2ðξ; κ⊥; σ1; JzÞ and the BS amplitude (cf., e.g., [19]) one has to project the Fock
expansion in Eq. (D1) as follows:

hq̃2q̃1σ1jp̃;M; J; Jz; πi ¼ ð2πÞ32
ffiffiffiffiffiffiffiffiffiffiffi
qþ1 q

þ
2

q
2ð2πÞ3

X
σ

Z
dξ

ð2πÞ24ξð1 − ξÞ
Z

dκ⊥
ð2πÞ4 ψ

Jπ
n¼2ðξ; κ⊥; σ; JzÞ

× h0jaðq̃2Þbðq̃1; σ1Þb†ðk̃; σÞa†ðk̃0Þj0ið2πÞ32pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξð1 − ξÞ

p
¼ 2ð2πÞ3pþδðqþ1 þ qþ2 − pþÞδ2ðq1⊥ þ q2⊥ − p⊥ÞψJπ

n¼2ðξ;q1⊥; σ; JzÞ; ðD9Þ

where k̃≡ fξpþ; κ⊥ þ ξp⊥g and k̃0 ≡ fð1 − ξÞpþ;−κ⊥ þ ð1 − ξÞp⊥g. Following Yan [32], the creation and annihilation
operators have to be defined in terms of the independent degrees of freedom. In particular, the fermionic operators are
expressed through the good component of the field, ψ ðþÞðx̃; xþÞ, on the hyperplane xþ ¼ 0, i.e., Λþψðx̃; xþ ¼ 0Þ with
Λþ ¼ γ0γþ=2. Hence, one gets

ψ ðþÞðx̃; xþ ¼ 0Þ ¼
X
σ

Z
dkþ

ffiffiffiffiffiffi
m
kþ

r Z
d2k⊥
ð2πÞ3=2 θðk

þÞ½bðk̃; σÞe−ik̃·x̃uðþÞðk̃; σÞ þ d†ðk̃; σÞeik̃·x̃vðþÞðk̃; σÞ�; ðD10Þ

where the LF spinors (recall that ūu ¼ 1, since in Appendix C the BS norm has been evaluated by usingP
σūσuσ ¼ ð=pþMÞ=2M) are such that

uðþÞðk̃; σÞ ¼ Λþuðk̃; σÞ

uðþÞ†ðk̃; σÞuðþÞðk̃; σÞ ¼ 1

2
ūðk̃; σÞγþuðk̃; σÞ ¼ kþ

2m
: ðD11Þ

For instance, the annihilation operator is

ð2πÞ3=2
ffiffiffiffiffiffi
qþ

m

r
bðq̃; σ0Þ ¼

Z
dx̃eiq̃·x̃uðþÞ†ðq̃; σ0Þψ ðþÞðx̃; xþ ¼ 0Þ: ðD12Þ

For the scalar case, where there is not the issue of the independent degrees of freedom (see also [19]), the field is

φðx̃; 0Þ ¼
Z

dkþffiffiffiffiffiffiffiffi
2kþ

p d2k⊥
ð2πÞ3=2 θðk

þÞðaðk̃Þe−ik̃·x̃ þ a†ðk̃Þeik̃·x̃Þ; ðD13Þ

and
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ð2πÞ3=2
ffiffiffiffiffiffi
2

qþ

s
aðq̃Þ ¼

Z
dx̃eiq̃·x̃φðx̃; 0Þ; ðD14Þ

with qþ ≥ 0.
Combining the above results, one gets

hq̃2q̃1σ1jp̃;M; J; Jz; πi ¼ ð2πÞ32
ffiffiffiffiffiffiffiffiffiffiffi
qþ1 q

þ
2

q
h0jaðq̃2Þbðq̃1; σ1Þjp̃;M; J;Jz; πi

¼ qþ2
ffiffiffiffiffiffiffiffiffi
2mF

p Z
dx̃2eiq̃2·x̃2

Z
dx̃1eiq̃1·x̃1h0jϕðx̃2; 0ÞuðþÞ†ðq̃1; σ1Þψ ðþÞðx̃1; 0Þjp̃;M; J; Jz; πi

¼ qþ2

ffiffiffiffiffiffiffi
mF

2

r Z
dx̃2eiq̃2·x̃2

Z
dx̃1eiq̃1·x̃1 ūαðq̃1; σ1Þγþαβh0jϕðx̃2; 0Þψβðx̃1; 0Þjp̃;M; J; Jz; πi: ðD15Þ

Finally, by exploiting the translation invariance of the matrix element one has

hq̃2q̃1σ1jp̃;M; J; Jz; πi ¼ 2ð2πÞ3δ3ðq̃1 þ q̃2 − p̃Þqþ2
ffiffiffiffiffiffiffi
mF

2

r

×
Z

dx̃eiðq̃1−q̃2Þ·x̃=2ūαðq̃1; σ1Þγþαβh0jϕð−x̃=2; 0Þψβðx̃=2; 0Þjp̃;M; J; Jz; πi: ðD16Þ

Combining Eqs. (D9) and (D16), one writes the valence wave function as follows:

pþψJπ
n¼2ðqþ1 =pþ;q1⊥; σ1; JzÞ ¼ qþ2

ffiffiffiffiffiffiffi
mF

2

r Z
dxþ

2
δðxþ=2Þ

Z
dx̃eiðq̃1−q̃2Þ·x̃=2

× ūαðq̃1; σ1Þγþαβh0jϕð−x̃=2;−xþ=2Þψβðx̃=2; xþ=2ÞjM; J; Jz; πi ¼ qþ2

ffiffiffiffiffiffiffi
mF

2

r Z
dk−

2π

×
Z

d4xeik·xūαðq̃1; σ1Þγþαβh0jϕð−x̃=2;−xþ=2Þψβðx̃=2; xþ=2ÞjM; J; Jz; πi

¼ qþ2

ffiffiffiffiffiffiffi
mF

2

r Z
dk−

2π
ūαðq̃1; σ1ÞγþαβΦπ

βðk; p; JzÞ; ðD17Þ

where it has been exploited

lim
ðx0þx3Þ→0�

½γþ�αβh0jTfϕð−x=2Þψβðx=2ÞgjM; J; Jz; πi ¼ ½γþ�αβh0jϕð−x̃=2; 0�Þψβðx̃=2; 0�ÞjM; J; Jz; πi; ðD18Þ

and nondiscontinuity in xþ ¼ 0 has been assumed. After introducing the BS amplitude given in Eq. (7), one gets the
following expression of the valence wave function (recall qþ1 =p

þ ¼ ξ, k⊥ ¼ ðq1⊥ − q2⊥Þ=2 and p⊥ ¼ 0):

ψJπ
n¼2ðξ;k⊥; σ1; JzÞ ¼

qþ2
pþ

ffiffiffiffiffiffiffi
mF

2

r Z
dk−

2π
ūαðq̃1; σ1ÞγþαβΦπ

βðk; p; JzÞ

¼ −
i
M

ð1 − ξÞ
ffiffiffiffiffiffiffi
mF

2

r
ūðq̃1; σ1Þ

�
γþϕ̃1ðξ; γ; κ2Þ þ γþ

=̄k
M

ϕ̃2ðξ; γ; κ2Þ
�
Uðp̃; JzÞ; ðD19Þ

where k̄≡ f0; kþ;k⊥g. To achieve the final expression one can use LF spinors, that can be obtained by applying the LF
boosts to the spinors in the CM frame (see for details Ref. [35], where a different normalization for the LF spinors has been
used, i.e., ūu ¼ 2m). Hence, one can rewrite Eq. (D19) emphasizing the contributions where the spins of constituent and the
spin of the system are aligned or antialigned. The relevant LF spinors are
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uðq̃1; σ1Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mFq

þ
1

p ½qþ1 þ βmF þ k⊥ · α⊥�
�

χσ1

2σ1χ
σ1

�

Uðp̃; JzÞ ¼
1

2M
M½1þ β�

�
χJz

2JzχJz

�
¼

�
χJz

0

�
; ðD20Þ

where χσ are the usual two-component spinors. After some lengthy manipulations, one gets

ψJπ
n¼2ðξ;k⊥; σ1; JzÞ ¼ −ið1 − ξÞ

ffiffiffiffiffiffiffi
ξ

2M

r �
δσ1;Jz

�
ϕ̃1ðξ; γ; κ2Þ −

z
2
ϕ̃2ðξ; γ; κ2Þ

�
− δ−σ1;Jz2Jz

kx þ i2Jzky
M

ϕ̃2ðξ; γ; κ2Þ
�
; ðD21Þ

with γ ¼ jk⊥j2.

1. Valence probability and LF distributions

From Eq. (D21), one can obtain the expression of the valence probability, given by

Pval ¼
1

ð2πÞ3
X
σ1

Z
dξ

2ξð1 − ξÞ
Z

d2k⊥jψJπ
n¼2ðξ;k⊥; σ1; JzÞj2

¼ 1

4Mð2πÞ3
Z

dξð1 − ξÞ
Z

d2k⊥
��

ϕ̃1ðξ; γ; κ2Þ −
z
2
ϕ̃2ðξ; γ; κ2Þ

�
2

þ jk⊥j2
M2

ϕ̃2
2ðξ; γ; κ2Þ

�

¼ 1

32Mπ2

Z
dξð1 − ξÞ

Z
dγ

��
ϕ̃1ðξ; γ; κ2Þ −

z
2
ϕ̃2ðξ; γ; κ2Þ

�
2

þ γ

M2
ϕ̃2
2ðξ; γ; κ2Þ

�
: ðD22Þ

The two contributions, from the aligned configuration and the antialigned one, can be easily singled out.
The LF valence distributions describe (i) the probability distribution to find a constituent with a given longitudinal

fraction ξ and (ii) the probability to find a constituent with transverse momentum
ffiffiffi
γ

p ¼ jk⊥j. They are defined for the
fermionic constituent as follows:

ϕFðξÞ ¼ 1

32Mπ2
ð1 − ξÞ

Z
dγ

��
ϕ̃1ðξ; γ; κ2Þ −

z
2
ϕ̃2ðξ; γ; κ2Þ

�
2

þ γ

M2
ϕ̃2
2ðξ; γ; κ2Þ

�

PFðγÞ ¼ 1

32Mπ2

Z
dξð1 − ξÞ

��
ϕ̃1ðξ; γ; κ2Þ −

z
2
ϕ̃2ðξ; γ; κ2Þ

�
2

þ γ

M2
ϕ̃2
2ðξ; γ; κ2Þ

�
; ðD23Þ

and are normalized to Pval.
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[40] D. Lurié, A. J. Macfarlane, and Y. Takahashi, Normalization
of Bethe-Salpeter wave functions, Phys. Rev. 140, B1091
(1965).

SOLVING THE BETHE-SALPETER EQUATION IN MINKOWSKI … PHYS. REV. D 100, 016021 (2019)

016021-21

https://doi.org/10.1016/j.cpc.2018.05.020
https://doi.org/10.1016/j.cpc.2018.05.020
https://doi.org/10.1088/1126-6708/2003/02/001
https://doi.org/10.1088/1126-6708/2003/02/001
https://doi.org/10.1016/j.physletb.2016.12.058
https://doi.org/10.1103/PhysRevD.85.036009
https://doi.org/10.1103/PhysRevD.85.036009
https://doi.org/10.1140/epja/i2005-10193-0
https://doi.org/10.1140/epja/i2005-10193-0
https://doi.org/10.1140/epja/i2005-10194-y
https://doi.org/10.1140/epja/i2005-10194-y
https://doi.org/10.1140/epja/i2010-11055-4
https://doi.org/10.1140/epja/i2010-11055-4
https://doi.org/10.1103/PhysRevD.89.016010
https://doi.org/10.1140/epjc/s10052-015-3616-1
https://doi.org/10.1016/j.physletb.2016.05.066
https://doi.org/10.1103/PhysRevD.94.071901
https://doi.org/10.1103/PhysRevD.94.071901
https://doi.org/10.1140/epjc/s10052-017-5351-2
https://doi.org/10.1140/epjc/s10052-017-5351-2
https://doi.org/10.1016/j.nuclphysbps.2006.08.068
https://doi.org/10.1016/j.nuclphysbps.2006.08.068
https://doi.org/10.1103/PhysRevD.95.056012
https://doi.org/10.1016/j.physletb.2017.04.016
https://doi.org/10.1016/j.physletb.2017.04.016
https://doi.org/10.1103/PhysRevLett.110.132001
https://doi.org/10.1016/j.physletb.2017.04.077
https://doi.org/10.1016/j.physletb.2011.06.073
https://doi.org/10.1016/j.physletb.2011.06.073
https://doi.org/10.1016/0370-2693(92)90154-V
https://doi.org/10.1103/PhysRevD.56.5071
https://doi.org/10.1103/PhysRevD.7.1780
https://doi.org/10.1103/PhysRevD.7.1780
https://doi.org/10.1103/PhysRev.117.886
https://doi.org/10.1103/PhysRevC.60.055210
https://doi.org/10.1103/PhysRevC.60.055210
https://doi.org/10.1103/PhysRevC.61.069901
https://doi.org/10.1103/PhysRevC.61.069901
https://doi.org/10.1016/S0370-1573(97)00089-6
https://doi.org/10.1063/1.348634
https://doi.org/10.1063/1.348634
https://doi.org/10.1007/s00601-008-0196-8
https://doi.org/10.1103/PhysRevD.95.065035
https://doi.org/10.1103/PhysRevD.95.065035
https://doi.org/10.1103/PhysRev.140.B1091
https://doi.org/10.1103/PhysRev.140.B1091

