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This work has been motivated through the paper [42] by S. Dey on the nonclassical properties of the
deformed harmonic oscillators. We study the dynamics of the nonclassical properties and nonlocal
correlation for deformed coherent states superposition (DCSS) subjects to decoherence effect due to a
dissipative interaction in deformed spaces. We consider two types of deformations, q deformation that
describes a large class of deformed harmonic oscillators and L deformation that enters in the real
possibilities of trapped ion systems. We find that such a kind of superposition, that gives rise to a richer
phase space structure, the nonclassicality, squeezing, and entanglement can survive and they are robust
against decoherence. The present results show that DCSS have less optical noise under dissipative
dynamics in comparison with the usual Schrödinger cat states and may open new perspectives for the
experimental observation of macro realism in quantum mechanics.
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I. INTRODUCTION

In the last four decades, coherent states have been played a
crucial role and offered a surprisingly rich structure in
different branches of physics. These states have been firstly
introduced by Schrödinger in order to give the connection
between the quantum and classical formulations using
quantum harmonic oscillator states [1]. These introduced
states are described by Heisenberg Lie algebra whose
generators are defined in terms of the annihilation and
creation operators for the harmonic oscillator. Glauber
employed these states to give a new description of the
optical lights as an eigenstate of the annihilation operator
âjαi ¼ αjαi [2]. Klauder developed a set of continuous
states in which the basic theory of coherent states for
arbitrary Lie groups was considered. These extensions
provide several important physical applications. Later, the
coherent states related to any Lie group (not only associated
to the case of Heisenberg-Weyl group for harmonic oscil-
lators) have been introduced by Perelomov [3,4] and
Gilmore [5]. A particular case of these states are the spin
coherent states related the SU(2) group and Peremelov and
Barut-Girardello coherent states which are associated to the
SU(1,1) group. These states describe a large set of quantum
systems providing many applications in theoretical and
mathematical physics [6–11].
Over last two decades, there have been several exper-

imental demonstrations of nonclassical effect, such as

photon antibunching [12], sub-Poissonian statistics [13],
and squeezing [14]. Moreover, there exist interesting
quantum effects, and related quantum states that are hard
to prepare and to detect, namely superposition states
exhibiting quantum interference effects [15]. Such states
display the striking consequences of the superposition
principle of quantum mechanics. Transient electronic states
of this type have recently been prepared via pulsed
excitation of atomic Rydberg wave packets [16].
Furthermore, superpositions of coherent states can be
prepared in the motion of a trapped ion [17] with respect
to the nonclassical effects, the coherent states turn out to
define the limit between the classical and nonclassical
behavior, so that they do not display any of these interesting
features. In the squeezed light, we can squeeze the
uncertainty region in one quadrature [18]. Several related
studies have been conducted and used of the nature of
nonclassical photons such as to enhance spectral resolution
[19], quantum imaging [20], subwavelength measurement
of atomic separation and discuss on antibunching [21], new
coherent effects due to dipole-dipole interaction [22], and
provide interesting effects on spatial propagation and
quantum noise [23–27]. The nonclassical light is a popular
field of research, and scientists are interested to discover
more the underlying truth of quantum world.
Every natural object is in contact with its environment,

so its dynamics is that of an open system; thus, the
interaction between composite quantum systems and its
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environment and understanding the dynamics for different
physical quantities have attracted more interest. This
interaction results in the system experiencing quantum
noise which shows up in the system exhibiting fluctuations,
decoherence, and possibly irreversible dissipative dynam-
ics. On a fundamental level, time is basically physical
quantity. So, the dynamical evolution is an important
property of system, which makes the finite-time quantum
interesting in the own right [28]. Awell-known example is
that in most of the models used to describe quantum open
systems, the coherence of a state decays asymptotically to
zero, where the entanglement dynamics exhibits entangle-
ment sudden death in the decoherent environment [29]. The
environment noise presented in the physical systems often
determines the performance of quantum properties.
Therefore, it is important to develop methods to estimate
the level of noise in order to avoid the decay phenomenon
under decoherence. Determining the environment param-
eters on a quantum system will be the main step to control
its spoiling effects.
The feature of quantum mechanics which most distin-

guishes it from classical mechanics is the coherent super-
position of distinct physical states. Many of the less
intuitive aspects of quantum theory can be traced to this
feature. The famous Schrödinger cat argument highlights
problems of interpretation where macroscopic superposi-
tion states are allowed [30]. In fact, such states are widely
used in new quantum technology and rapidly collapse to a
classical mixture exhibiting interference features [31,32]. A
key requirement of quantum information processing with
DCSS is the generation of cat states in free propagating
optical fields. This has been known to be extremely
demanding using current technology because strong non-
linearity or precise photon counting measurements are
required. Nonclassical effects are useful in quantum infor-
mation theory. Squeezed states are highly nonclassical.
However, sometimes they are difficult to generate, as there
is no generalized setting available in the literature to
construct them. Additional complications arise when one
considers the underlying space-time structure to be non-
commutative, where the space-time coordinates do not
commute any more. The most commonly studied version
of these space-time structures consists of replacing the
standard set of commutation relations for the canonical
coordinates xμ by noncommutative versions, such as
½xμ; xν� ¼ iℏθμν, where θμν is taken to be a constant
antisymmetric tensor. More interesting structures, leading
for instance to minimal length and generalized versions of
Heisenberg’s uncertainty relations, are obtained when θμν is
taken to be a function of the momenta and coordinates, e.g.,
[33–35]. Nonclassical states of the electromagnetic field
and of the atomic center-of-mass motion have played an
important role in recent year, due to their relation with
fundamental problems in quantum mechanics and to the
many possible applications, ranging from high-resolution

spectroscopy to low noise communication of quantum
computation. However, the generation of these states is
usually a demanding experimental challenge. One of the
most difficult tasks is the suppression of decoherence
effects originating from the interaction of the quantum
system under consideration with its environment [36].
More recently, much effort has been dedicated to the
theoretical investigation of the entanglement and non-
classicality in noncommutative systems [37–41]. Here,
we investigate the dynamics of the nonclassical properties
and nonlocal correlation in deformed coherent states super-
position (DCSS) within deformed spaces. We consider two
types of deformation and explore the influence of the
physical parameters on nonclassicality, squeezing, and
entanglement in the presence of decoherence effect when
the states are emerged initially in a vacuum environment.
To the best of our knowledge, this paper is considered as the
first one that includes and studies the effect of decoherence
on theses topics. This study shows a new result and explains
the time evolution of the entanglement and nonclassicality
properties in deformed spaces under the dissipative envi-
ronment. In comparison with the aforementioned papers,
our present work from the phenomenological viewpoint
might be more practical to explain some experimental
observations of the dissipation on the nonclassical and
entanglement in noncommutative systems subject to a
realistic environment providing more hints for future inves-
tigation on this topic.
The paper is organized as follows. In Sec. II, we give

the main properties of the deformed-states superposition.
The definition of the deformed commutator relation and the
coherent states associated with the deformed boson oper-
ators in q- and L-deformed space for two kinds of
deformations are summarized. In Sec. III, we study the
nonclassicality and entanglement in the DCSS under
decoherence effect due to a dissipative interaction.
A summary and some conclusions are given in Sec. IV.

II. DEFORMED-STATES SUPERPOSITION

Several advantages of utilizing DCSS over the unde-
formed case, like the enhancement of the squeezing of the
quadrature beyond the nondeformed case and improvement
of various tasks in quantum optics and information. We
choose to study the time variation of the classical properties
for Schrödinger cat states in a deformed space under
decoherence effect using numerous quantum quantifiers.
The interferometric setup generally consists of different
steps. The first is the preparation step where the input state
is chosen as a coherent superposition states, ρint. In this
context, we will demonstrate that moderate size of DCSS
offers advantage in comparison with usual Schrödinger cat
state. This needs to consider how such states could be
implemented in order to realize this advantage. After the
preparation step, the output mixed state ρout is subjected to
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dissipation effect. Finally, the output state is measured for
the nonclassical properties and entanglement (see Fig. 1).
The aim of this manuscript is to describe the behavior of

the nonclassical properties for a nonlinear oscillator
described through Schorödinger cat states in deformed
spaces, like the f oscillator, plunged in a bath modeled by
an assembly of harmonic oscillators. We choose here a f-
deformed algebra which has been shown to be related to the
noncommutative space-time structures leading to the exist-
ence of minimal lengths and minimal momenta as a result
of generalized uncertainty relation [42]. We identify several
advantages of utilizing these kind of deformed spaces
rather than the usual quantum mechanical systems. The
Hamiltonian of an f-deformed oscillator may be taken, in
the case of unitary frequency and natural units, as

H ¼ ℏ
2
ðA†Aþ AA†Þ; ð1Þ

where the operators A and A† result as a distortion of the
usual annihilation and creation operators a and a†. The
operators A and A† therefore obey the following nonlinear
commutator algebras [43]:

½A; n� ¼ A; ½A†; n� ¼ −A†; ð2Þ

as for the usual nondeformed boson operators. Note that in
this definition one does not require A and A† to be related to
n in the usual way, i.e., in general A†A ≠ n. The vacuum
state j0i does not contain quanta, therefore nj0i ¼ 0 and
Aj0i ¼ 0. The product A†A preserves the number of
quanta; consequently, it is necessarily a function of n. A
convenient notation of a box function is introduced A†A ¼
½n� (read “box n). Similarly, AA† is also a function of n and
it can be shown that AA† ¼ ½nþ 1�. The deformed com-
mutation relation is defined by

AA† − A†A ¼ ½nþ 1� − ½n�: ð3Þ

The q-deformed oscillators may be considered as special
cases of the so-called f oscillators, where the f-oscillator
operators have been defined by

A ¼ afðnÞ ¼ fðnþ 1Þa;
A† ¼ fðnÞa† ¼ a†fðnþ 1Þ; ð4Þ

and

½A; A†� ¼ ðnþ 1Þf2ðnþ 1Þ − nf2ðnÞ; ð5Þ

where fðnÞ is an operator-valued function of the Hermitian
number operator n ¼ a†a. The nonlinearity arises from
fðnÞ. The function f, which is a characteristic for the
deformation, has a dependence on a deformation parameter
q such that when the deformation disappears, then
fðnÞ ¼ 1. The deformed algebra reduces to the Heisenberg
algebra

½a; a†� ¼ 1; ½n; a� ¼ −a and ½n; a†� ¼ a†: ð6Þ

Transformation (4) of the operators a; a† to A; A† represents
a nonlinear noncanonical transformation, since it does not
preserve the commutation relation, i.e., ½A; A†� ≠ 1. The
operators A† and A act as raising and lowering in the
noncommutative space

A†jni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nþ 1�f

q
jnþ 1i;

Ajni ¼
ffiffiffiffiffiffiffiffi
½n�f

q
jn − 1i: ð7Þ

The states jni form an orthonormal basis in deformed
Hilbert space spanned by the vectors jψi ¼ P∞

n¼0 cnjni
with cn ∈ C such that hψ jψi ¼ P∞

n¼0 jcnj2 < ∞.
In analogy to the Glauber states, the f-coherent states are

therefore defined as the right eigenvector of the f-deformed
bosonic field A,

Ajξ; fi ¼ ξjξ; fi; ð8Þ

where ξ is a complex eigenvalue, which is however allowed
as A is non-Hermitian. In general, it can be made dependent
on continuous parameters, in such a way that, for given
particular values, the usual algebra is recovered. The f-
coherent state can be written as

jξ;fi ¼N f

X∞
n¼0

ξnffiffiffiffiffiffiffiffiffi
½n�f!

q jni; N f ¼ ½expf½jξj2��−1
2; ð9Þ

and we have introduced

FIG. 1. It shows an interferometric setup for the DCSS. The
input state is fed into an interferometer through one channel
which is subjected to a dissipative effect during the evolution.
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expf½x� ¼
X∞
n¼0

xn

½n�f!
;

½n�f!¼ ½nf2ðnÞ�× ½ðn−1Þf2ðn−1Þ�× � � �× ½fð1Þ�: ð10Þ

The function expf is a deformed version of the usual
exponential function. They become coincident when f is
the identity. Notice that expf½x�expf½y� ≠ expf½xþ y�, i.e.,
we have a nonextensive exponential which can be found in
many physical problems. Then, let us consider two types of
deformations. The q deformation defined by [44]

fðnÞ ¼
�
1

n
1 − q−n

q − 1

�
−1
2

; q ∈ R; ð11Þ

and the deformation given by [45]

fðnÞ ¼ L1
nðη2Þ

ðnþ 1ÞL0
nðη2Þ

; η ∈ R; ð12Þ

which we are going to name L deformation, since Lm
n

indicates the associate Laguerre polynomial. It is worth
noting that such L deformation naturally arises in ion-
trapped systems [45]. These states emerge as stationary
states of the motion of an appropriately laser-driven trapped
ion, which is in the resolved sideband limit and far from the
Lamb-Dicke regime [45]. Clearly, fðnÞ ¼ 1 when η ¼ 0
and in this case nonlinear coherent states become the
standard coherent states. However, when η ≠ 0, nonlinear-
ity starts developing with the degree of nonlinearity
depending on the magnitude of η.
We focus on the nonclassical properties and entangle-

ment for two kinds of deformations and different strength
regimes of the DCSS under dissipative Markovian dynam-
ics. In Fig. 1, the input state is chosen to be

jΨi ¼ N þðjξ; fi þ j − ξ; fiÞ;
N þ ¼ ½2þ 2N 2

fexpf½−jξj2��−
1
2: ð13Þ

The search for physically inspired Hamiltonians, which
may display definite features about q-deformation effects,
is still open. Concrete applications of the formalism have
been explored more recently [46–49] and these comple-
ment previous mathematical efforts, such as studies of
generalized q-deformed oscillators [50,51]. Moreover, it is
shown that the q deformation plays a significant role in
understanding higher-order effects in the many-body inter-
action [52]. Then, the notion of deformed coherent states
was straightforwardly introduced, and the generation of
such nonlinear coherent states enters in the real possibilities
of trapped systems. Microlasers (and especially single-
atom lasers) are known to be sources of nonclassical
light. It has already been shown that a single-atom laser,
considered within the scope of the strong-coupling regime,

can produce special kind of nonlinear coherent states,
namely, Mittag-Leffler coherent states [53].
In the following, we shall determine the dynamical

behavior of the DCSS in the realistic scenario of the
photon loss. In other words, we wish to see how the
DCSS resists to photon loss in comparison with the usual
Schrödinger cat states for different values of physical
parameters in the presence of loss. To this end, we
introduce the decoherence effects due to a dissipative
interaction with the environment. This can be described
by the following master equation of the Lindblad form:

_ρout ¼ γaρouta† −
γ

2
fa†a; ρg; ð14Þ

where γ is the damping rate, and we have set the bath
temperature equal to zero. The decoherence effect on the
state ρoutð0Þ ¼ jΨoutihΨoutj can be described in the follow-
ing way [54]:

ρoutðtÞ ¼
X∞
k¼0

ΓkðtÞρoutð0ÞΓ†
kðtÞ; ð15Þ

where

ΓkðtÞ¼
X∞
n¼k

�
n

k

�1
2½ηðtÞ�ðn−kÞ=2½1−ηðtÞ�k=2jn−kihnj; ð16Þ

with ηðtÞ ¼ e−γt. Here, we are not interested in the
dynamics in the presence of a deformed Hamiltonian
[54]. Using the truncated density matrix ρoutðtÞ for different
input states, we obtain numerically the nonclassical proper-
ties and nonlocal correlation under decoherence effect.
The results show that DCSS, for both q-deformed and
L-deformed cases, clearly preserves the loss of nonclassical
and correlation properties achieved by undeformed sates
under decoherence effect, for a wide range of the dimen-
sionless time. This effect wins out the fact that, by a proper
choice of the physical parameters, the photon losses due to
dissipative do not destroy the coherence in their super-
position and maintain their nonclassical properties.

III. PHYSICAL PROPERTIES OF
DEFORMED CAT STATES

In this section, we will calculate the photon distribution
function, Mandel’s parameter, and quadrature dispersion in
the introduced deformed-states superposition under
decoherence. It is possible to calculate these quantities
explicitly [55,56]. Since

a ¼
X∞
n¼0

ffiffiffi
n

p jn − 1ihnj; ð17Þ

a† ¼
X∞
n¼0

ffiffiffi
n

p jnihn − 1j; ð18Þ
the same Fock space is a carrier space for A and A†, i.e.,
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A ¼
X∞
n¼0

ffiffiffi
n

p
fðnÞjn − 1ihnj; ð19Þ

A† ¼
X∞
n¼0

ffiffiffi
n

p
f�ðnÞjnihn − 1j: ð20Þ

We will take advantage of equations, which gives the
expression

a ¼ 1

fðnþ 1ÞA;

and

a† ¼ A† 1

fðnþ 1Þ : ð21Þ

A. Photon number function

To obtain the photon distribution function, we have to
calculate the probability Pn to have n photons in the
deformed cat state with the density operator ρ̂. This
probability is given by

PnðtÞ ¼ Tr½ρ̂ðtÞjnihnj�: ð22Þ

The function Pn may be obtained in we calculate the
generating function for the matrix element ρ̂mnðtÞ of the
density operator ρ̂ðtÞ in the Fock basis. For usual harmonic
oscillators, this generating function is the matrix element of
the density operator in the coherent state basis

hβjρ̂ðtÞjαi ¼ exp

�
−
jαj2
2

−
jβj2
2

� X∞
m;n¼0

β̄mαnffiffiffiffiffiffiffiffiffiffi
m!n!

p ρmn; ð23Þ

and

PnðtÞ ¼ ρnnðtÞ: ð24Þ

The function hαjρ̂ðtÞjαi is theQ function of the system with
the density operator ρ̂ðtÞ. The coherent state jαi is the
normalized eigenstate of the annihilation operator

ajαi ¼ αjαi: ð25Þ

Using Eq. (15), we obtain for the photon distribution
function Pn

PnðtÞ ¼ ðN fN þÞ2
X∞
k¼0

ðnþ kÞ!
n!k!

½ηðtÞ�n½1 − ηðtÞ�k

×

�ð1þ ð−1ÞnþkÞ2
½nþ k�f!

jξj2nþ2k

�
: ð26Þ

The expression (26) is a partial case of the matrix elements
of the density operator in Fock states basis.
In Figs. 2 and 3, we display the photon distribution

function in the absence of decoherence effect by choosing
different values of the q deformation and L deformation,
respectively. From the figures, we can observe that the
probability of finding odd and even photons in DCSS is
strictly dependent on the value and kind of the deformation
in the deformed space, which provides a strong evidence of
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FIG. 2. Photon distribution function of the DCSS as a function
of the number of photon for q deformation in the absence of
decoherence effect (t ¼ 0). (a) is for q ¼ 0.95 and jξj ¼ 3, (b) is
for q ¼ 1 and jξj ¼ 3, (c) is for q ¼ 0.8 and jξj ¼ 3, and (d) is for
q ¼ 0.5 and jξj ¼ 3.

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

n

P
n

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

n

P
n

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

n

P
n

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

n

P
n

(a) (b)

(c) (d)

FIG. 3. Photon distribution function of the DCSS as a function
of the number of photon for L deformation in the absence of
decoherence effect (t ¼ 0). (a) is for η ¼ 0.85 and jξj ¼ 1, (b) is
for η ¼ 0.8 and jξj ¼ 1, (c) is for η ¼ 0.7 and jξj ¼ 1, and (d) is
for η ¼ 0 and jξj ¼ 1.
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nonclassicality. In Fig. 4, we plot the photon distribution
function as a function of the dimensionless time γt for
various values of the different physical parameters. We
immediately see that the probability decreases with increas-
ing time and it reaches a minimum value as the time
becomes significantly large. Interestingly, we find that the
amount of the probability for the different kinds of
deformations is shown to be large than the usual case
(q ¼ 1 and η ¼ 0). Furthermore, the larger the value of jξj
is, the larger the value of the critical time for which the
probability is minimal.

B. Photon counting statistics

We now investigate the influence of decoherence
effect on the sub-Poissonian statistics of the radiation field.
For this purpose, we calculate the Mandel’s parameter
defined by

QðtÞ ¼ ðhnðtÞ2i − hnðtÞi2Þ
hnðtÞi − 1: ð27Þ

For Q < 0 (Q > 0), the statistics is sub-Poissonian (super-
Poissonian); Q ¼ 0 stands for Poissonian statistics. Since
hnðtÞi ¼ P∞

n¼0 nPnðtÞ and hnðtÞ2i ¼ P∞
n¼0 n

2PnðtÞ, we
have

QðtÞ ¼ ðP∞
n¼0 n

2PnðtÞÞ − ðP∞
n¼0 nPnðtÞÞ2P∞

n¼0 nPnðtÞ
− 1; ð28Þ

where the probability of finding n photons in the radiation
field is given by Eq. (26).
Figure 5 shows the parameter QðtÞ as a function of the

dimensionless time γt for various values of the deformed
parameters (q and η) and the amplitude ξ. It is worth noting
that a remarkable behavior of the parameter QðtÞ under
decoherence is strictly related to initial nature of the photon
distribution in the DCSS. When Q > 0 at t ¼ 0, the
parameter QðtÞ decreases monotonically with increasing
γt and approaches zero (Q ≃ 0 for large values of times). So
we therefore find that the decoherence leads to decrease the
degree of the nonclassicality in the DCSS. When Q < 0 at
t ¼ 0, the Mandel’s parameter increases with increasing
time γt and vanishes as the time becomes significantly
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FIG. 4. Photon distribution function as a function of dimen-
sionless time γt for various values of the deformed parameter and
amplitude for both q deformation and L deformation. (a) The
time evolution of the photon distribution function for various
values of the parameter q with jξj ¼ 3 and n ¼ 4. The blue line is
for q ¼ 1, red line is for q ¼ 0.95, black line is for q ¼ 0.8, and
green line is for q ¼ 0.5. (b) The time evolution of the photon
distribution function for various values of jξj with q ¼ 0.8 and
n ¼ 4. The blue line is for jξj ¼ 1.5, red line is for jξj ¼ 2, black
line is for jξj ¼ 3, and green line is for jξj ¼ 4. (c) The time
evolution of the photon distribution function for various values of
the parameter ηwith jξj ¼ 1 and n ¼ 8. The blue line is for η ¼ 0,
red line is for η ¼ 0.7, black line is for η ¼ 0.8, and green line is
for η ¼ 0.85. (d) The time evolution of the photon distribution
function for various values of jξj with η ¼ 0.7 and n ¼ 8. The
blue line is for jξj ¼ 0.8, red line is for jξj ¼ 0.9, black line is for
jξj ¼ 1, and green line is for jξj ¼ 1.2.
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FIG. 5. Mandel’s parameter as a function of dimensionless time
γt for various values of the deformed parameter and amplitude for
both q deformation and L deformation. (a) The time evolution of
the Mandel’s parameter for various values of the parameter qwith
jξj ¼ 3. The blue line is for q ¼ 1, red line is for q ¼ 0.95, black
line is for q ¼ 0.8, and green line is for q ¼ 0.5. (b) The time
evolution of the Mandel’s parameter for various values of jξj with
q ¼ 0.8. The blue line is for jξj ¼ 1.5, red line is for ξ ¼ 2, black
line is for jξj ¼ 3, and green line is for jξj ¼ 4. (c) The time
evolution of the Mandel’s parameter for various values of the
parameter η with jξj ¼ 1. The blue line is for η ¼ 0, red line is for
η ¼ 0.7, black line is for η ¼ 0.8, and green line is for η ¼ 0.85.
(d) The time evolution of the Mandel’s parameter for various
values of jξjwith η ¼ 0.7. The blue line is for jξj ¼ 0.8, red line is
for jξj ¼ 0.9, black line is for jξj ¼ 1, and green line is for
jξj ¼ 1.2.
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large. The nonclassicality is determined by the values of
deformed parameter and the amplitude. If one considers the
q-deformed case, the photon distribution remains sub-
Poissonian where the states are highly nonclassical for
larger value of jξj and as q gets farther from the undeformed
case, the Mandel’s parameter becomes more and more
negative, which does not happen for the usual Schrödinger
cat states. While in the case of L deformation, the physical
parameters act differently exhibiting super-Poissonian dis-
tribution. From these results, we find that the preservation
and enhancement of the nonclassicality in the deformed
space under decoherence effect can benefit from the
combination of the deformed parameter and the amplitude.
In other words, the impact of the decoherence on the
photon distribution of DCSS depends on the kind of
deformation in the deformed space. It is worth to mention
here that we have examined the Mandel’s parameter for a
wide range of deformed parameter and amplitude and
obtained the same qualitative behavior.

C. Quadrature squeezing

Here we study the dynamical behavior of the quadrature
squeezing of the DCSS. In order to do so, let us consider
the following hermitian quadrature operators [42,57]:

X1 ¼
Aþ A†

2
; Y1 ¼

A − A†

2i
: ð29Þ

The operators X1 and Y1 satisfy the following uncertainty
relation:

hΔX2
1ihΔY2

1i ≥
1

16
; ð30Þ

where the variance of X1 is defined as hΔX2
1i ¼

hX2
1i − hX1i2. A state of the radiation field is squeezed

when

hΔX2
1i <

1

4
; ð31Þ

or

hΔY2
1i <

1

4
; ð32Þ

which can be expressed in terms of the annihilation and
creation operators, A and A†. The expectation values of X1

and X2
1 are determined by

hX1i¼
1

2
Tr½ρðtÞðAþA†Þ�

¼ 1

2

�X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nþ1�f

q
ρnþ1;nðtÞþ

X
n

ffiffiffiffiffiffiffiffi
½n�f

q
ρn−1;nðtÞ

�
;

and

hX2
1i ¼

1

4
Tr½ρðtÞðA2þAA†þA†AþðA†Þ2Þ�

¼ 1

4

�X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nþ 1�f½nþ 2�f

q
ρnþ2;nðtÞþ

X
n

½n�fρn;nðtÞ

þ
X
n

½nþ 1�fρn;nðtÞþ
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n�f½n− 1�f

q
ρn−2;nðtÞ

�
;

and similarly for the other quadrature Y1, we have

hY1i ¼
1

2i
Tr½ρðtÞðA−A†Þ�

¼ 1

2i

�X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nþ 1�f

q
ρnþ1;nðtÞ−

X
n

ffiffiffiffiffiffiffiffi
½n�f

q
ρn−1;nðtÞ

�
;

and

hY2
1i¼−

1

4
Tr½ρðtÞðA2−AA†−A†AþðA†Þ2Þ�

¼−
1

4

�X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nþ1�f½nþ2�f

q
ρnþ2;nðtÞ−

X
n

½n�fρn;nðtÞ

−
X
n

½nþ1�fρn;nðtÞþ
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n�f½n−1�f

q
ρn−2;nðtÞ

�
;

where

ρm;nðtÞ ¼ ðN þN fÞ2
X∞
k¼0

��
mþ k

k

��
nþ k

k

��1
2½ηðtÞ�m2

× ½ηðtÞ�n2½1 − ηðtÞ�k
�
ξðmþkÞ þ ð−ξÞðmþkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½mþ k�f!
q

�

×

�
ξ̄ðnþkÞ þ ð−ξ̄ÞðnþkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½nþ k�f!
q

�
:

We now evaluate the inequalities in Eqs. (31) and (32),
and the results are represented in Fig. 6. In Fig. 6, we have
displayed the graphs of hΔX2

1i and hΔY2
1i as a function of

the time γt for the two kinds of deformations with different
values of the physical parameters. We observe that while
the curve of hΔX2

1i is greater than 1=4 that of hΔY2
1i is less

than 1=4 for a wide range of γt. Thus, by a proper choice of
the physical parameters, one of the inequalities in (31) and
(32) is satisfied. This implies that the quadrature squeezing
of DCSS may result much more robust against decoherence
than their undeformed version for a wide range of the time
interval.
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D. Quantum entanglement

Due to the promise of quantum computation, there is
currently considerable interest in the relationship between
entanglement, decoherence, entropy, and measurement.
Motivated by quantum information theory several authors
have recently investigated entanglement in quantum many-
body systems [58–60]. It is often stated that decoherence or
a measurement causes a system to become entangled with
its environment. The purpose of this paper is to make these
ideas quantitative by a study of the model, the DCSS

model. This describes a DCSS interacting with an infinite
collection of harmonic oscillators that model the environ-
ments responsible for decoherence and dissipation.
Specifically, we show how the entanglement between a
superposition state of the deformed states and the envi-
ronment changed in terms of the physical parameters. One
interesting result is that we find that the DCSS becomes
maximally entangled with the environment depending on
the values of the amplitude and deformed parameter. The
entanglement of the DCSS-environment state under dis-
sipative Markovian dynamics can be quantified in terms of
the von Neumann entropy since the whole state is pure,
which is generally defined for a bipartite state ρSE as

SðtÞ ¼ −TrðρSðtÞ ln ρSðtÞÞ ¼ −
X
i

riðtÞ ln riðtÞ; ð33Þ

where ρSðtÞ ¼ TrEðρSEðtÞÞ is the reduced density matrix of
DCSS, and riðtÞ is its eigenvalues.
In Fig. 7, the von Neumann entropy is displayed as a

function of the dimensionless time for various values of
deformation parameter and amplitude. Solid line is for
jξj ¼ 1 and dashed line is for jξj ¼ 3. We observe that the
von Neuman entropy exhibits a sudden rise to the maximal
value, indicating that the dissipative interaction effect may
enhance the correlation between the DCSS and its envi-
ronment in this range of time, and suppressed to the zero
value as the time becomes significantly large. We also find
that the degree of entanglement for the q deformation and L
deformation is shown to be large than the undeformed case.
Furthermore, the increase in the value of the amplitude ξ
may retard the entanglement loss between the DCSS and its
environment during the time evolution. The vanishing
phenomenon of the entanglement with time reflects
that the DCSS-environment state becomes unentangled,
which can understood as following: in the Markovian
dynamics, the correlations between the open system and
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FIG. 7. The von Neumann entropy for the DCSS field under
dissipative effect [54] is plotted as a function of time γt for
various values of the amplitude jξj. Solid line is for jξj ¼ 1 and
dashed line is for jξj ¼ 3. The red curve is for undeformed case
(q ¼ 1 or η ¼ 0), black curve is for q deformation (q ¼ 0.5), and
blue curve is for L deformation (η ¼ 0.7).
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FIG. 6. Quadrature squeezing as a function of dimensionless
time γt for various values of the deformed parameter and
amplitude for both q deformation and L deformation. (a) The
time evolution of the quadrature squeezing for various values of
the parameter q with jξj ¼ 3. The blue line is for hΔX2

1i with
q ¼ 1, dash-dotted red line is for hΔX2

1i with q ¼ 0.8, dashed
black line is for hΔX2

1i with q ¼ 0.5, dotted green line is for
hΔY2

1i with q ¼ 1, red long dashed line is for hΔY2
1i with

q ¼ 0.8, and black long dashed line is for hΔY2
1i with q ¼ 0.5.

(b) The time evolution of the quadrature squeezing for various
values of jξj with q ¼ 0.8. The blue line is for hΔX2

1i with
jξj ¼ 1.5, dash-dotted red line is for hΔX2

1i with jξj ¼ 2, dashed
black line is for hΔX2

1iwith jξj ¼ 3, dotted green line is for hΔY2
1i

with jξj ¼ 1.5, red long dashed line is for hΔY2
1iwith jξj ¼ 2, and

black long dashed line is for hΔY2
1i with jξj ¼ 3. (c) The time

evolution of the quadrature squeezing for various values of the
parameter η with jξj ¼ 1. The blue line is for hΔX2

1i with η ¼ 0,
dash-dotted red line is for hΔX2

1i with η ¼ 0.3, dashed black line
is for hΔX2

1i with η ¼ 0.5, dotted green line is for hΔY2
1i with

η ¼ 0, red long dashed line is for hΔY2
1i with η ¼ 0.3, and black

long dashed line is for hΔY2
1iwith η ¼ 0.5. (d) The time evolution

of the quadrature squeezing for various values of jξjwith η ¼ 0.3.
The blue line is for hΔX2

1i with jξj ¼ 0.8, dash-dotted red line is
for hΔX2

1i with jξj ¼ 1, dashed black line is for hΔX2
1i with

jξj ¼ 1.2, dotted green line is for hΔY2
1i with jξj ¼ 0.8, red long

dashed line is for hΔY2
1i with ξ ¼ 1, and black long dashed line is

for hΔY2
1i with jξj ¼ 1.2.
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its environment as well as the changes in the environmental
state due to the interaction do not have a significant
influence on the subsequent evolution of the open system
as the time tends to infinity. This picture is often introduced
relying on qualitative considerations, possibly assuming
that the total state at time can be effectively represented as a
product state between the state of the open system and a
fixed state of the environment. For long times, losses finally
transfers all photons from the system to the environment,
leaving with a pure of the system vacuum which of course
is not entangled state.

IV. CONCLUSION

We have studied the time evolution of several like
nonclassical properties and entanglement in DCSS subjects
to dissipative interaction in q- and L-deformed space. We
have explored several advantages of utilizing this kind of
noncommutative space for cat states rather than the usual
quantum mechanical systems under decoherence effect. We
have shown that such kind of superposition, the non-
classicality and entanglement phenomena can be more
robust against decoherence than the usual Schrödinger
cat states. These states, due to their nonlinear character,
give rise to a richer phase space structure, part of which can
more easily survive against decoherence. In particular, we
have found that by a proper choice of the deformed
parameter and the amplitude of cat states in noncommu-
tative space leads to preserve the squeezing of the quad-
rature, sub-Poissonian and super-Poissonian distribution,

and nonlocal correlation beyond the ordinary case under
decoherence effect. Interestingly, the degree of those
properties for q deformation and L deformation is shown
to be interesting in comparison with usual case as the
amplitude becomes significantly large. The present results
may open new preservatives for the experimental obser-
vation of macroscopic realism in quantum mechanics in the
framework of deformed algebra which has been shown to
be related to the noncommutative space-time structures,
leading to the existence of minimal lengths and minimal
momenta as a result of generalized uncertainty relation.
These results may be experimentally realized and contrib-
ute to new advance technology to produce DCSS, which
may open new perspectives for future research avenues. In
comparison with some recent work on the dissipation of the
DCSS system, our present work from the phenomenologi-
cal viewpoint might be more practical to explain some
experimental observations of the dissipation on the non-
classicality and entanglement subject to a realistic envi-
ronment providing more hints for future investigation on
this topic. We note that we treat here the time evolution of
nonclassical properties and nonlocal correlation under the
effect of zero-temperature reservoir. Certainly, a study of
how the thermal bath affects these properties will make a
useful contribution to more understanding the dynamics of
these properties in the decoherence process. Another
interesting line of research is the dynamic behavior of
the properties under the action of a non-Markovian regime
considering the memory effect of the environment.
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