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In this work, we systematically study the radiative decays and magnetic moments of the
charmed and bottom vector mesons with chiral perturbation theory up to one-loop level. We
present the results in the SU(2) and SU(3) cases with the mass splitting in loop diagrams kept
and unkept, respectively. The obtained decay rates for D� and B� mesons in the SU(3) case with the
mass splitting kept are ΓD̄�0→D̄0γ ¼ 16.2þ6.5

−6.0 keV, ΓD�−→D−γ ¼ 0.73þ0.7
−0.3 keV, ΓD�−

s →D−
s γ ¼ 0.32þ0.3

−0.3 keV,

and ΓB�þ→Bþγ ¼ 0.58þ0.2
−0.2 keV, ΓB�0→B0γ ¼ 0.23þ0.06

−0.06 keV, ΓB�0
s →B0

sγ
¼ 0.04þ0.03

−0.03 keV. The decay width for

D�− → D−γ is consistent with the experimental measurement. As a byproduct, the full widths of D̄�0 and
D�−

s are ΓtotðD̄�0Þ ≃ 77.7þ26.7
−20.5 keV and ΓtotðD�−

s Þ ≃ 0.62þ0.45
−0.50 keV, respectively. We also calculate the

magnetic moments of the heavy vector mesons. The analytical chiral expressions derived in our work shall
be helpful for the extrapolations of lattice QCD simulations in the future.

DOI: 10.1103/PhysRevD.100.016019

I. INTRODUCTION

Electromagnetic form factors play a very important role
in mapping out the internal structures of nucleons, offering
valuable information about the distribution of the constitu-
ent quarks and the gluon degree of freedom in nucleons
[1–4]. Probing the shape and inner structure of hadrons still
remains an intriguing and challenging topic. Especially in
recent decades, a large number of exotic states have been
observed in experiments, many of which cannot be readily
reconciled with the predictions of the conventional quark
models [5–7].
Magnetic moments can be related to the form factors by

extrapolating the form factor GMðq2Þ to zero moment
transfer [8]. Unlike protons and neutrons, the vast majority
of hadronic states are unstable against strong interactions
[9]. Thus, their magnetic moments cannot be directly
measured in the conventional ways due to their very short
lifetime. Therefore, the radiative transition becomes a very

effective way to help us catch a glimpse of quark dynamics
in the hadrons. In addition, the quark model cannot give the
nonanalytic dependence of the magnetic moments, such as
the logX term. These terms are much more difficult to
naively estimate and may sometimes be singular in order to
give the much enhanced contributions which cannot be
predicted accurately unless carefully calculated.
In this work, we focus on the charmed and bottom vector

mesons, i.e., (D̄�0, D�−, D�−
s ) and (B�þ, B�0, B�0

s ). As a
consequence of heavy quark spin symmetry, the mass shifts
between these spin triplets and singlets are generally small.
Because of the small phase space, the dominant decay
channels are one-pion emission transitions and radiative
decays for the charmed vector mesons, while only radiative
decays are allowed for the bottom vector mesons.
From Ref. [9], only the width of D�� → D�γ is known

by combining the decay branching ratio and the total width
of D��. For the other radiative decay modes, only the
branching ratios are available, and the absolute widths are
still absent in experiments. Even worse, there is no
experimental information for the radiative transitions of
the B� mesons.
Many theoretical methods have been applied to study the

radiative decays of the D� and B� mesons, such as various
quark models [10–15], heavy quark effective theory and the
vector meson dominance model [16], quark-potential
models [17–22], QCD sum rules [23–25], lattice QCD
simulations [26], the constituent quark-meson model [27],
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chiral effective field theory [28–31], the extended Nambu–
Jona-Lasinio model [32,33], and so on.
Here, we adopt the SU(3) chiral perturbation theory

(χPT) to investigate the radiative decay properties and
magnetic moments of the D� and B� mesons. The frame-
work of χPT has been widely used to study the radiative
decays and magnetic moments of the charmed and bottom
vector mesons1 [28–31], the octet baryons [34,35], the
doubly charmed and bottom heavy baryons [36–39], and
the singly heavy baryons [40–43], as well as the related
chiral quark-soliton model for singly heavy baryons
[44,45]. In our calculations, we construct the effective
Lagrangians with chiral symmetry and heavy quark sym-
metry up to Oðp4Þ. There are two independent low-energy
constants (LECs) at the leading order, which correspond to
the contributions from the light quark and heavy quark
electromagnetic currents, respectively. These two LECs
can be estimated with the quark model or other theoretical
methods. The contributions from the tree diagrams at next-
to-leading order can be absorbed into the ones from leading
order. At next-to-next-to-leading order, the tree diagram
incorporates three independent LECs, which cannot be
determined due to lack of experimental data. We present
our numerical results up to Oðp4Þ, and we consider the
contributions from Oðp4Þ tree diagrams as errors.
Our numerical results are calculated in both the SU(2)

and SU(3) cases with the mass splitting kept and unkept in
loop diagrams. The partial decay widths of D�− → D−γ
predicted in different scenarios are consistent with the
experimental data.
This paper is organized as follows: The definitions of the

electromagnetic form factors and magnetic moments are
given in Sec. II. The effective Lagrangians are constructed
in Sec. III. The analytical expressions and numerical results
for the transition magnetic moments and magnetic
moments are presented in Secs. IV and V, respectively.
A summary is given in Sec. VI. Some supplemental
materials for the B� mesons, the loop integrals, and an
estimation of the light quark mass with the vector meson
dominance model are collected in the Appendixes A, B,
and C, respectively.

II. ELECTROMAGNETIC FORM FACTORS
AND MAGNETIC MOMENTS

We first consider the radiative transition process
V → Pγ, where V stands for the vector mesons (D� or
B�), and P denotes the pseudoscalar mesons (D or B).

The M1 transition form factor μ0ðq2Þ can be defined
through a covariant expression of the hadronic matrix
elements [31],

hPðp0ÞjJμemðq2ÞjVðp; εVÞi ¼ eμ0ðq2ÞϵμναβpνqαεVβ; ð1Þ

where Jμem is the electromagnetic current at the hadronic
level, qα ¼ ðp − p0Þα is the transferred momentum, and εVβ
denotes the polarization vector of the initial vector meson.
The interaction Hamiltonian can then be written as

Hint ¼
Z

d3xeAμJ
μ
em; ð2Þ

where Aμ is the photon field.
For a heavy meson M that is composed of a heavy

antiquark Q̄ and a light quark q, the ground spin doublet
ðP;P�Þ can be represented by a 4 × 4 Dirac-type matrixH.
We use HðpÞ and HðvÞ to denote the heavy meson fields
in relativistic and heavy meson effective theory (HMET)
convention, respectively. They can be related with each
other by

jHðpÞi ¼ ffiffiffiffiffiffiffi
mH

p ½jHðvÞi þOð1=mHÞ�: ð3Þ

Then, in the framework of HMET, Eq. (1) can be reex-
pressed as

hPðp0ÞjJμemjVðp;εVÞi¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mVmP

p
μ0ðq2ÞϵμναβvνqαεVβ; ð4Þ

where the recoil effect is negligible in the above equation.
With the above preparation, one can easily get the

expression of the decay rate,

Γ½V → Pγ� ¼ 1

3

Z
dΩq̂

1

32π2
jqj
m2

V

X
jMj2; ð5Þ

where M represents the transition amplitude, and a sum
over the final-state photon polarization and an average over
the initial V polarization have been performed.
Explicitly, we have

Γ½V → Pγ� ¼ α

3

mP

mV
jμ0ð0Þj2jqj3; ð6Þ

where α ¼ 1=137 is the fine-structure constant. The tran-
sition magnetic moment μV→Pγ can be defined as

μV→Pγ ¼
e
2
μ0ð0Þ: ð7Þ

In the following, we derive the magnetic moment
of a vector meson. The matrix elements of Jμemðq2Þ are
defined in terms of the standard Lorentz covariant decom-
position [46]:

1In Refs. [28,29], Cho et al. and Cheng et al. calculated the
decay widths of D� → Dγ and B� → Bγ, respectively, at the tree
level in the heavy hadron chiral theory. Our Lagrangians are the
same as those in Refs. [28,29] at leading order. In Ref. [30],
Amundson et al. investigated the same process with the same
framework to next-to-leading order. But the heavy quark spin
symmetry breaking effect is ignored.
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Gμðq2Þ ¼ hVðp0; ε0�ÞjJμemðq2ÞjVðp; εÞi
¼ −G1ðq2Þðε · ε0�Þðpþ p0Þμ
þ G2ðq2Þ½ðε · qÞε0�μ − ðε0� · qÞεμ�

þ G3ðq2Þ
ðε · qÞðε0� · qÞ

2m2
V

ðpþ p0Þμ: ð8Þ

This expression can be simplified under the Breit frame.
In our calculations, we define

qμ ¼ðp−p0Þμ ¼ð0;QÞ; Q¼Qẑ; pμ ¼
�
p0;

1

2
Q

�
;

p0μ ¼
�
p0;−

1

2
Q

�
; −q2 ¼Q2 ≥ 0; p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V þ
1

4
Q2

r
:

A straightforward derivation under the Breit frame gives the
time component of Gμðq2Þ as

G0ðQ2Þ¼ 2p0

�
GCðQ2Þðε ·ε0�Þ

þGQðQ2Þ
2m2

V

�
ðε ·QÞðε0� ·QÞ−1

3
ðε ·ε0�ÞQ2

��
; ð9Þ

where GC and GQ represent charge and quadrupole form
factors, respectively. In deriving Eq. (9), we have used the
transverse condition of the initial- and final-state polariza-
tion vectors; i.e., p · ε ¼ 0 and p0 · ε0� ¼ 0.
Similarly, the space component of Gμðq2Þ is

GðQ2Þ ¼ G2ðQ2Þ½ðε0� · QÞε − ðε · QÞε0��

¼ 2p0
GMðQ2Þ
2mV

½ðε0� · QÞε − ðε · QÞε0��; ð10Þ

where GM is the magnetic dipole form factor. The expres-
sions of GC, GQ, and GM read

GC ¼ G1 þ
2

3
ηGQ;

GQ ¼ G3 þ G2ð1þ ηÞ−1 þ 1

2
G1ð1þ ηÞ−1;

GM ¼ G2; ð11Þ

where η ¼ Q2=ð4m2
VÞ.

III. EFFECTIVE LAGRANGIANS

A. The leading-order chiral Lagrangians

We first introduce the Lagrangian of Goldstone bosons
and photon. The octet of the light pseudoscalar field is
represented by the field UðxÞ ¼ eiϕ=fϕ with

ϕ ¼

0
BBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþffiffiffi

2
p

π− −π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
K0ffiffiffi

2
p

K−
ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCCA; ð12Þ

where the η field denotes the octet η8. In the SU(3) quark
model, the ηmeson is regarded as the mixing of the octet η8
and the singlet η0 with jηi ¼ cos θjη8i − sin θjη0i [47],
where θ ≃ −19.1° is determined by the experimental
measurements [48,49]. Because the mixing angle is not
very large and the η field only serves as the quantum
fluctuations in the loops, the mixing effect is ignored in our
calculations.
The definitions of the chiral connection and axial-vector

current are

Γμ ≡ 1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�; ð13Þ

uμ ≡ i
2
½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�; ð14Þ

where

u2 ¼ U ¼ exp

�
iϕ
fϕ

�
; rμ ¼ lμ ¼ −eQAμ; ð15Þ

and Q ¼ Ql ¼ diagð2=3;−1=3;−1=3Þ represents the elec-
tric charge matrix of the light current Jlμ ,

Jlμ ¼ 2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμs: ð16Þ

Here, fϕ is the decay constant of the light pseudoscalar
mesons. The experimental values of fϕ for ϕ ¼ π, K, and η
are fπ ¼ 92.4 MeV, fK ¼ 113 MeV, and fη ¼ 116 MeV,
respectively.
The leading-order ½Oðp2Þ� Lagrangian for the interaction

of the light pseudoscalars and photon reads [36–38]

Lð2Þ
ϕγ ¼ f2ϕ

4
Tr½∇μUð∇μUÞ†�; ð17Þ

where

∇μU ¼ ∂μU − irμU þ iUlμ: ð18Þ

We use TrðXÞ and hXi to denote the traces for X in flavor
space and spinor space, respectively.
We construct the effective Lagrangian for the heavy

mesons with the superfield H. For a heavy meson com-
posed of a heavy antiquark Q̄ and a light quark q, the
superfield H is defined as
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H ¼ ðP�
μγ

μ þ iPγ5Þ
1 − =v
2

;

H̄ ¼ γ0H†γ0 ¼ 1 − =v
2

ðP�†
μ γμ þ iP†γ5Þ; ð19Þ

where for the charmed mesons

P ¼ ðD̄0; D−; D−
s Þ; P� ¼ ðD̄0�; D�−; D�−

s Þ; ð20Þ

and for the bottom mesons

P ¼ ðBþ; B0; B0
sÞ; P� ¼ ðB�þ; B�0; B�0

s Þ: ð21Þ

The leading-order Lagrangians for describing the inter-
actions between the heavy matter field and light pseudo-
scalars are [50,51]

Lð1Þ
Hϕ¼−ihH̄v ·DHi−1

8
ΔhH̄σμνHσμνiþghH̄=uγ5Hi; ð22Þ

where the covariant derivative Dμ ¼ ∂μ þ Γμ. Here, the
electric charge matrix in Γμ should be replaced by those
corresponding to the heavy mesons. For instance, Q ¼
QD ¼ diagð0;−1;−1Þ for ðD̄�0; D�−; D�−

s Þ, andQ ¼ QB ¼
diagð1; 0; 0Þ for ðB�þ; B�0; B�0

s Þ, respectively. The second
term in Eq. (22) is due to the mass difference between
P and P�, and Δ ¼ mP� −mP stands for the mass splitting.
g represents the axial coupling constant. For the D meson,
its value can be extracted by the partial decay width of
D�þ → D0πþ [9,52], while for the B meson, g can only be
determined via theoretical methods, such as the quark
model [31] and lattice QCD [53,54].
We also need the Lagrangians to describe the (transition)

magnetic moments at the tree level, which can be written
as [36–38]

Lð2Þ
Hγ ¼ ãhH̄σμνf̃þμνHi þ ahHσμνH̄iTrðfþμνÞ; ð23Þ

where ã and a are two LECs. The first and second terms
correspond to the contributions from the light quark and the
heavy antiquark, respectively. The field strength tensors f̃þμν
and fþμν are defined as

fRμν ¼ fLμν ¼ −eQð∂μAν − ∂νAμÞ;
f�μν ¼ u†fRμνu� ufLμνu†;

f̃�μν ¼ f�μν −
1

3
Trðf�μνÞ; ð24Þ

where Q ¼ QD for the D mesons and Q ¼ QB for the B
mesons. From Eq. (24), we can see that f̃þμν is proportional
to Ql and traceless. fþμν is not traceless, because it contains
the electric charge matrix of the heavy mesons. One can
also understand Eq. (23) from the standpoint of group
representation theory. Recall that 3 ⊗ 3̄ ¼ 1 ⊕ 8, and the

operator f̃þμν transforms as the adjoint representation. Thus,
the two terms in Eq. (23) correspond to 8 ⊗ 8 → 1 and
1 ⊗ 1 → 1, respectively.
In the following, we construct the Lagrangian for the

interactions of the heavy mesons and light pseudoscalar
mesons at Oðp2Þ, which will contribute to the Oðp4Þ
magnetic moment at the one-loop level [36–38]:

Lð2Þ
Hϕϕ ¼ ibhH̄σμν½uμ; uν�Hi: ð25Þ

Actually, the tensor structure sandwiched between H̄
and H in Eq. (25) can also be fuμ; uνg and TrðuμuνÞ.
For the SU(3) group representations,

3 ⊗ 3̄ ¼ 1 ⊕ 8;

8 ⊗ 8 ¼ 1 ⊕ 81 ⊕ 82 ⊕ 10 ⊕ 10 ⊕ 27: ð26Þ

The axial-vector current uμ (or uν) transforms as the adjoint
representation; thus TrðuμuνÞ, ½uμ; uν�, and fuμ; uνg belong
to the 1, 81, and 82 flavor representations, respectively. But
TrðuμuνÞ and fuμ; uνg would vanish when they are con-
tracted with σμν, because of the symmetric Lorentz indices
μ and ν. Therefore, only one independent term containing
½uμ; uν� survives in Eq. (25).

B. The next-to-leading-order chiral Lagrangians

The electromagnetic chiral Lagrangians at Oðp3Þ
read [43]

Lð3Þ
Hγ ¼−ic̃hH̄σμνv ·∇f̃þμνHi− ichHσμνH̄iv ·∇TrðfþμνÞ:

ð27Þ

The structure is similar to those in Eq. (23). The possible
contributions that include the covariant derivative Dμ can
be absorbed into the LECs c̃ and c with the equation of
motion of the heavy mesons. Meanwhile, the contributions
from Eq. (27) can be absorbed into Eq. (23) by renorm-
alizing the LECs ã and a, i.e.,

ã ↣ ãþ c̃v · q; a ↣ aþ cv · q: ð28Þ

C. The next-to-next-to-leading-order
chiral Lagrangians

At this order, we also employ group represen-
tation methods to construct the electromagnetic chiral
Lagrangians (one can find the possible flavor structures
in Table I). The detailed form reads [36–38]

Lð4Þ
Hγ ¼ d̃hHσμνχ̃þH̄iTrðfþμνÞ þ d̄hH̄σμνHiTrðf̃þμνχ̃þÞ

þ dhH̄σμνfχ̃þ; f̃þμνgHi; ð29Þ
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where a spurion χ� is introduced as

χ ¼ 2B0diagðmu;md;msÞ ¼ diagðm2
π; m2

π; 2m2
K −m2

πÞ;
χ� ¼ u†χu† � uχ†u:

At the leading order,

χþ ¼ diagð2m2
π; 2m2

π; 4m2
K − 2m2

πÞ;

χ̃þ ¼ χþ −
1

3
TrðχþÞ: ð30Þ

In principle, there should be six independent terms in
Eq. (29) as the possible flavor structures listed in Table I.
However, the terms TrðχþÞ, TrðfþμνÞ and TrðχþÞf̃þμν can also
be absorbed into Eq. (23) by renormalizing ã and a,
respectively. Another term ½χ̃þ; f̃þμν� vanishes since both
χ̃þ and f̃þμν are diagonal matrices at the leading order.
Therefore, only three terms are retained in Eq. (29).

IV. RADIATIVE TRANSITIONS

A. Power counting and analytical expressions
for the transition from factors

The standard power-counting scheme gives the chiral
order of a Feynman diagram as

O ¼ 4NL − 2IM − IH þ
X
n

nNn; ð31Þ

where NL, IM, and IH are the numbers of loops, internal
light pseudoscalar lines, and internal heavy meson lines,
respectively. Nn is the number of vertices governed by the
nth-order Lagrangians. Usually, the order of the (transition)
magnetic moment is

Oμ ¼ O − 1: ð32Þ

Therefore, the transition form factors of V → Pγ can be
expressed as follows:

μ0V→Pγ ¼ ½μ0ð1Þtree � þ ½μ0ð2Þloop� þ ½μ0ð3Þtree þ μ0ð3Þloop�; ð33Þ

where the numbers in the parentheses are the chiral
order Oμ.
We first study the V → Pγ transitions. The tree diagrams

are illustrated in Fig. 1. By expanding the Lagrangians
in Eqs. (23) and (29), we can easily get the transition
amplitudes of Figs. 1(a) and 1(b), respectively. We can

extract the q2-independent form factor μ0 at the tree level by
comparing the transition amplitudes with Eqs. (1) and (4).
The expressions read

μ0ðaÞ
D̄�0→D̄0γ

¼ 16

3
ðã − 3aÞ; ð34Þ

μ0ðaÞD�−→D−γ ¼ −
8

3
ðãþ 6aÞ; ð35Þ

μ0ðaÞD�−
s →D−

s γ
¼ −

8

3
ðãþ 6aÞ; ð36Þ

μ0ðbÞ
D̄�0→D̄0γ

¼ −
32

9
ðm2

K −m2
πÞð−6d̃þ 3d̄þ 4dÞ; ð37Þ

μ0ðbÞD�−→D−γ ¼ −
32

9
ðm2

K −m2
πÞð−6d̃þ 3d̄ − 2dÞ; ð38Þ

μ0ðbÞD�−
s →D−

s γ
¼ −

32

9
ðm2

K −m2
πÞð12d̃þ 3d̄þ 4dÞ: ð39Þ

We show the analytical expressions for the D mesons and
display the expressions for the B mesons in Appendix A.
The one-loop Feynman diagrams that contribute to the

transition processes are shown in Fig. 2. Here, we need to
deal with the loop integrals when extracting the
q2-dependent form factors from the transition amplitudes.
Various types of loop integrals J have been defined and
given in Appendix B. In the following equations, we list the
transition form factors of Figs. 2(a)–2(j) in a compact form,
correspondingly:

μ0ðaÞ ¼
X
ϕ

CðaÞϕ

g2

f2ϕ
fJ T

21ðmϕ; E; qÞgr; ð40Þ

μ0ðbÞ ¼
X
ϕ

CðbÞϕ

ã
f2ϕ

fJ c
0ðmϕÞgr; ð41Þ

TABLE I. The possible flavor structures of the Oðp4Þ Lagrangians that contribute to the magnetic moments.

Group representations 1 ⊗ 1 → 1 1 ⊗ 8 → 8 8 ⊗ 1 → 8 8 ⊗ 8 → 1 8 ⊗ 8 → 81 8 ⊗ 8 → 82

Flavor structures TrðχþÞTrðfþμνÞ TrðχþÞf̃þμν χ̃þTrðfþμνÞ Trðχ̃þf̃þμνÞ ½χ̃þ; f̃þμν� fχ̃þ; f̃þμνg

(a) (b)

FIG. 1. The diagrams for the V → Pγ transitions at the tree
level. The thick solid, thin solid, and wiggly lines represent the
vector meson V, pseudoscalar meson P, and photon γ, respec-
tively. The solid circle and solid square in diagrams (a) and (b)
correspond to the Oðp2Þ and Oðp4Þ vertices, respectively.
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μ0ðcÞ ¼
X
ϕ

CðcÞϕ

b
f2ϕ

fJ F
22ðmϕ; qÞgr; ð42Þ

μ0ðdÞ ¼
X
ϕ

CðdÞϕ

g2

f2ϕ
fJ g

22ðmϕ; E; E − q0Þgr; ð43Þ

μ0ðeÞ ¼
X
ϕ

CðeÞϕ

g2

f2ϕ
fJ g

22ðmϕ; E þ Δ; E − q0Þgr; ð44Þ

μ0ðfÞ ¼ μðgÞ ¼ 0; ð45Þ

μ0ðhÞ ¼
X
ϕ

CðhÞϕ

g2

f2ϕ
fð1 −DÞ∂ωJ a

22ðmϕ;ωÞjω→−Δgr; ð46Þ

μ0ðiÞþðjÞ ¼
X
ϕ

CðijÞϕ

g2

f2ϕ

�
½∂ωJ a

22ðmϕ;ωÞ

þ 2∂δJ a
22ðmϕ; δÞ�

			δ→E

ω→EþΔ

�
r
; ð47Þ

where the summations over ϕ denote the possible con-
tributions from the light pseudoscalars (ϕ could be π, K, η)

in the loops. CðxÞϕ ðx ¼ a;…; jÞ are the flavor-dependent
coefficients, and their values are given in Tables II and III.
In the J functions, mϕ is the mass of the corresponding
particle in the loop. E is the residual energy of heavy
mesons, which is defined as E ¼ EDð�Þ −mDð�Þ . E is set to be
zero in our calculations. q denotes the transferred momen-
tum carried by the photon. D is the dimension in dimen-
sional regularization. fXgr represents the finite part of X,

which is defined in Appendix B. The coefficients CðijÞϕ can
be obtained via the relation

CðijÞϕ ¼ −CðhÞϕ : ð48Þ

B. Estimation of the leading-order LECs

In μ0ð1Þtree , there exist two Oðp2Þ LECs, ã and a [see
Eq. (23)]. Another Oðp2Þ LEC b [see Eq. (25)] resides in

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 2. The diagrams for the V → Pγ transitions at the one-loop level, where the dashed line represents the light pseudoscalar mesons.
Other notations are same as those in Fig. 1.

TABLE II. The flavor-dependent coefficients CðxÞϕ ðx ¼ a;…; dÞ in Eqs. (40)–(43) for the D̄� mesons.

Decay modes CðaÞπ CðaÞK CðbÞπ CðbÞK CðcÞπ CðcÞK CðdÞπ CðdÞK CðdÞη

D̄�0 → D̄0γ 2 2 −4 −4 4 4 24a 8
3
ð6a − ãÞ 8

9
ð3aþ ãÞ

D�− → D−γ −2 0 4 0 −4 0 4ð6aþ ãÞ 8
3
ð6a − ãÞ 4

9
ð6a − ãÞ

D�−
s → D−

s γ 0 −2 0 4 0 −4 0 8
3
ð12aþ ãÞ 16

9
ð6a − ãÞ

TABLE III. The flavor-dependent coefficients CðxÞϕ ðx ¼ e;…; jÞ in Eqs. (44)–(47) for the D̄� mesons.

Decay modes CðeÞπ CðeÞK CðeÞη CðhÞπ CðhÞK CðhÞη

D̄�0 → D̄0γ 12a 4
3
ð6aþ ãÞ 4

9
ð3a − ãÞ 2ðã − 3aÞ 4

3
ðã − 3aÞ 2

9
ðã − 3aÞ

D�− → D−γ 2ð6a − ãÞ 4
3
ð6aþ ãÞ 2

9
ð6aþ ãÞ −ðãþ 6aÞ − 2

3
ðãþ 6aÞ − 1

9
ðãþ 6aÞ

D�−
s → D−

s γ 0 4
3
ð12a − ãÞ 8

9
ð6aþ ãÞ 0 − 4

3
ðãþ 6aÞ − 4

9
ðãþ 6aÞ

BO WANG, BIN YANG, LU MENG, and SHI-LIN ZHU PHYS. REV. D 100, 016019 (2019)

016019-6



μ0ð3Þloop. In the following, we estimate the values of ã, a, and b
with the quark model and resonance saturation model,
respectively. It is hard to determine the other higher-

order LECs (d̃, d̄, and d) in μ0ð3Þtree for the moment
because of very limited experimental data. Therefore,

we consider the contributions from μ0ð3Þtree as errors of our
numerical results.
We first demonstrate how to determine ã and a from the

scenario of a constituent quark model. In this model, the
transition matrix element of V → Pγ in the rest frame of
the initial state can be written as [29]

hPjLemjVi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mVmP

p hPj
X
i

ei
2mi

σjVi ·B; ð49Þ

where ei and mi are the electric charge and mass of the ith
quark in the heavy meson, and σ and B are the Pauli matrix
and magnetic field, respectively. For simplicity, we choose
the direction of the magnetic field B to be along the z axis.
In order to work out Eq. (49), we need the flavor-spin wave
functions of V and P, which read

jVi ¼ 1ffiffiffi
2

p jQ̄↑q↓þ Q̄↓q↑i; ð50Þ

jPi ¼ 1ffiffiffi
2

p jQ̄↑q↓ − Q̄↓q↑i: ð51Þ

Inserting Eqs. (50) and (51) into Eq. (49), one can obtain

hPjLemjVi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mVmP

p ðμQ̄ − μqÞ; ð52Þ

where μi ¼ ei=ð2miÞ. Matching Eq. (52) with the leading-
order transition amplitudes [i.e., replacing μ0ðq2Þ in Eq. (4)
with the expressions in Eqs. (34)–(36), and making use of
BkðqÞ ¼ −iϵijkqiAjðqÞ], one can easily get

ã ¼ −
1

8mq
; a ¼ 1

24mQ̄
; ð53Þ

where mq and mQ̄ are the masses of the light constituent
quark and the heavy antiquark in heavy mesons (in
Appendix C, we also give an estimation of the light quark
masswith thevectormesondominancemodel), respectively.
Next, we evaluate the value of LEC b in Eq. (25) using

the resonance saturation model [55,56]. A diagrammatic
presentation of the resonance saturation scheme is illus-
trated in Fig. 3. We need the interaction Lagrangians for
VPρ and ρππðϕKKÞ. The VPρ Lagrangian can be obtained
with local hidden symmetry [31], which reads

LHρ ¼ iβhH̄vμðVμ − ρμÞHi þ iλhH̄σμνFμνðρÞHi; ð54Þ

where

FμνðρÞ ¼ ∂μρν − ∂νρμ þ ½ρμ; ρν�; ρμ ¼ i
gvffiffiffi
2

p ρ̂μ ð55Þ

and

ρ̂μ ¼

0
BBB@

ρ0þωffiffi
2

p ρþ K�þ

ρ− −ρ0þωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA

μ

: ð56Þ

The ρππðϕKKÞ Lagrangian reads [31]

Lvϕ ¼ f2ϕaTrðΓð0Þ
μ ρμ þ ρμΓð0Þ

μ Þ; a ¼ 2; ð57Þ

where the expression of Γð0Þ
μ can be extracted from the

chiral connection defined in Eq. (13) by omitting the
photon field.
With the above preparations, we use the amplitude of

Fig. 3(a) governed by the Lagrangians in Eqs. (54) and (57)
to match the amplitude of Fig. 3(b) depicted by the
Lagrangian in Eq. (25). We can get the b explicitly:

b ¼ −
2λg2vf2ϕ
m2

v
; ð58Þ

where gv ¼ 5.8, λ ¼ 0.56 GeV−1 [57]. mv is the mass of
the exchanged light vector meson, such as mρ ¼ 0.77 GeV
and mϕ ¼ 1.02 GeV [9]. The sign of b is determined with
the quark model.
The numerical values of the parameters are [9,36–38,

52,53]

mπ ¼ 0.139GeV; mK ¼ 0.494GeV; mη¼ 0.548GeV;

mu ¼md¼ 0.336GeV; ms ¼ 0.54GeV;

mc ¼ 1.66GeV; mb¼ 4.73GeV;

g¼
�
0.59�0.01�0.07 forD�Dπ coupling

0.516�0.05�0.033 for B�Bπ coupling
;

Δ¼
�
0.142GeV formD�0 −mD0

0.045GeV formB�0 −mB0

: ð59Þ

Since the masses of the mesons have been precisely
measured in experiments [9], we do not quote their minor

(a) (b)

FIG. 3. A diagrammatic presentation of the resonance satu-
ration scheme. The thick wiggly line in diagram (a) denotes the
light vector meson ρ or ϕ, and other notations are same as those in
Fig. 2.
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errors. The masses of the constituent quarks are adopted
from previous works [36–38]. Generally, it is hard to give
the errors of the masses of the constituent quarks, because
these values used in different quark models vary a lot. In
this work, we try to give a conservative estimation by
setting 10% ×mq as the parameter errors. The axial
constant g for the D�Dπ coupling is extracted from the
experimental result of the CLEO Collaboration [52]. The
B�Bπ coupling is quoted from the unquenched lattice
result [53].

C. Numerical results and discussions

With the parameters listed above, we first show the
transition magnetic moments of V → Pγ calculated under
the SU(2) and SU(3) symmetries2 in the upper-half parts of

Tables IV and V, correspondingly. In Tables IV and V, the
transition magnetic moments μV→Pγ are given order by
order. As expected, the convergence of the chiral expansion
in the SU(2) case is better than that in SU(3). Besides, we
also calculate the μV→Pγ with the mass splitting Δ in the
propagators of the loop diagrams both kept and unkept. The
influence of Δ in the charm sector is more significant than
that in the bottom sector, because the mass difference of the
charmed mesons is larger than that of the bottom mesons.
In the SU(2) case, the mass splitting Δ only appears in

the loop diagrams. The transition magnetic moments at
Oμðp1Þ remain unchanged no matter if we chooseΔ ¼ 0 or
Δ ≠ 0. At Oμðp2Þ, the correction from the finite mass
splitting (Δ ≠ 0) is about 40% and 20% for μD̄�→D̄γ and
μB�→Bγ , respectively. Such a correction is also significant at
Oμðp3Þ. Similar behavior is observed in the SU(3) case at
each order. In Table VI, we show the contribution of each
loop diagram to the transition magnetic moment of D̄�0 →
D̄γ in different cases. The contributions of the diagrams in
Figs. 2(f) and 2(g) vanish in the heavy quark limit. Except

TABLE IV. The transition magnetic moments and magnetic moments of the charmed and bottom vector mesons calculated in the
SU(2) case order by order (in units of μN).

Δ ¼ 0 Δ ≠ 0

Physical quantity Oμðp1Þ tree Oμðp2Þ loop Oμðp3Þ loop Total Oμðp1Þ tree Oμðp2Þ loop Oμðp3Þ loop Total

μD̄�0→D̄0γ −2.24 0.21 −0.10 −2.13 −2.24 0.29 0.04 −1.91
μD�−→D−γ 0.55 −0.21 0.05 0.39 0.55 −0.29 0.02 0.28
μB�þ→Bþγ −1.80 0.16 −0.09 −1.73 −1.80 0.19 −0.07 −1.68
μB�0→B0γ 0.99 −0.16 0.046 0.88 0.99 −0.19 0.04 0.84
μD̄�0 1.48 −0.21 0.11 1.38 1.48 0.07 0.05 1.60
μD�− −1.31 0.21 −0.05 −1.14 −1.31 −0.07 −0.007 −1.39
μB�þ 1.93 −0.16 0.09 1.86 1.93 −0.13 0.09 1.90
μB�0 −0.86 0.16 −0.05 −0.75 −0.86 0.13 −0.05 −0.78

TABLE V. The transition magnetic moments and magnetic moments of charmed and bottom vector mesons calculated in the SU(3)
case order by order (in units of μN).

Δ ¼ 0 Δ ≠ 0

Physical quantity Oμðp1Þ tree Oμðp2Þ loop Oμðp3Þ loop Total Oμðp1Þ tree Oμðp2Þ loop Oμðp3Þ loop Total

μD̄�0→D̄0γ −2.24 0.71 −0.34 −1.86 −2.24 0.81 −0.13 −1.57
μD�−→D−γ 0.55 −0.21 0.19 0.54 0.55 −0.29 0.08 0.34
μD�−

s →D−
s γ 0.20 −0.50 0.15 −0.15 0.20 −0.51 0.10 −0.21

μB�þ→Bþγ −1.80 0.55 −0.34 −1.58 −1.80 0.58 −0.30 −1.52
μB�0→B0γ 0.99 −0.16 0.17 1.0 0.99 −0.19 0.14 0.95
μB�0

s →B0
s γ

0.65 −0.39 0.13 0.38 0.65 −0.39 0.11 0.36
μD̄�0 1.48 −0.71 0.40 1.18 1.48 −0.40 0.40 1.48
μD�− −1.31 0.21 −0.21 −1.31 −1.31 −0.07 −0.24 −1.62
μD�−

s
−0.96 0.50 −0.16 −0.62 −0.96 0.47 −0.21 −0.69

μB�þ 1.93 −0.55 0.34 1.71 1.93 −0.52 0.36 1.77
μB�0 −0.86 0.16 −0.17 −0.87 −0.86 0.13 −0.19 −0.92
μB�0

s
−0.51 0.39 −0.13 −0.25 −0.51 0.38 −0.14 −0.27

2Here, SU(2) and SU(3) symmetries only imply that the
effective Lagrangians are constructed under these two sym-
metries. The SU(3) breaking effect is included explicitly in
our calculations. For example, we use mu;d;s and the physical
masses of π, K, and η in Eq. (59) as inputs.

BO WANG, BIN YANG, LU MENG, and SHI-LIN ZHU PHYS. REV. D 100, 016019 (2019)

016019-8



for the diagrams in Figs. 2(b) and 2(c), other diagrams that
contain the heavy meson internal line are affected by the
mass splitting Δ. For the charmed vector mesons, Δ > mπ ,
so the loop integrals with the nonanalytic structures

log y2þm2
π−Δ2−iε
λ2

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − Δ2 − iε
p

(see Appendix B)
would largely impact the numerical result. This is vividly
reflected in Table VI. However, for the bottom vector
mesons, Δ ≃ 1=3mπ , so the influence of Δ on the bottom
sector is not so obvious.
The corresponding decay widths evaluated in different

cases are illustrated in Table VIII. The errors in our
calculations can stem from many sources, such as quark
masses, hadron masses, coupling constants, higher-order
contributions, and so on. As shown in Ref. [9], the errors of
the hadron masses that appear in this work are very small,
so we ignore their effects. Meanwhile, the axial coupling
constant extracted from the experiments and lattice QCD
are also very small. Furthermore, the convergence of chiral
expansion works very well in our calculations. Therefore,
we consider two main error sources. The first one is the

contribution of theOðp4Þ Lagrangians [see Eq. (29)]. Since
the LECs in Eq. (29) cannot be fixed at present, we adopt
the nonanalytic dominance approximation to give an
estimation of the Oðp4Þ tree diagram [58]. The second
one is the uncertainty from the quark models. For example,
the masses of constituent quarks are different in various
models (see Table VII). We take this uncertainty into
account. The change of the quark masses would lead to
a 10% variation of the leading-order LECs.
From Table VIII, we see that the decay rate for D�− →

D−γ calculated in different scenarios agrees with the
experimental data. The branching ratios for the other decay
channels cannot be obtained due to the absence of the total
widths of these states in experiments at present. We also
compare our results with other model predictions, such as
the light-front quark model [14], the relativistic indepen-
dent quark model [15], the relativistic quark model [19] and
the QCD sum rules [25]. The results in these literatures are
consistent with our calculations. Furthermore, the results
from the extended Bag model [21,22], lattice QCD sim-
ulations [26], and extended Nambu-Jona-Lasinio model
[32] are also compatible with ours.
Up to now, only the full width of D�� and the branching

ratio ofD�� → D�γ were available in Ref. [9]. The lifetime
of D̄�0 and D�−

s has not been measured yet. The con-
vergence of the chiral expansion for transition magnetic
moments calculated in the SU(3) case with Δ ≠ 0 is very
reasonable. Therefore, as a byproduct, we use the following
relation with our results in SU(3) and Δ ≠ 0 as inputs to
estimate the full widths of these two states:

TABLE VI. The contribution of each loop diagram to the transition magnetic moment of D̄�0 → D̄γ in different cases (in units of μN).

Cases (a) (b) (c) (d) (e) (f) (g) (h) (iþ j)

SU(2) Δ ¼ 0 0.21 −0.085 0.062 0.012 0.006 0 0 −0.045 −0.053
Δ ≠ 0 0.29 −0.085 0.062 −0.0016 0.0021 0 0 0.073 −0.0082

SU(3) Δ ¼ 0 0.71 −0.37 0.27 0.088 −0.00017 0 0 −0.13 −0.19
Δ ≠ 0 0.81 −0.37 0.27 0.033 −0.0038 0 0 0.13 −0.19

TABLE VII. The masses of the constituent quarks adopted in
different works (in units of GeV).

mu md ms mc mb

Kamal [11] 0.34 0.34 0.55 1.8 � � �
Ebert [19] 0.33 0.33 0.5 1.55 4.88
Cheng [29] 0.338 0.322 0.51 1.6 5.0
Eichten [59] 0.335 0.335 0.45 1.84 5.17

TABLE VIII. The radiative decay widths for V → Pγ (in units of keV). Brexpt and Γexpt denote the branching ratio and decay width
measured in experiments. Γ1;…;4 are the model predictions.

SU(2) SU(3) Experimental data and model predictions

Decay modes Δ ¼ 0 Δ ≠ 0 Δ ¼ 0 Δ ≠ 0 BrexptjΓexpt [9] Γ1 [14] Γ2 [15] Γ3 [19] Γ4 [25]

D̄�0 → D̄0γ 30.0þ7.3
−6.6 23.9þ5.0

−6.3 22.9þ8.2
−7.0 16.2þ6.5

−6.0 ð38.1� 2.9Þ%j � � � 20.0� 0.3 26.5 11.5 12.9� 2

D�− → D−γ 1.0þ0.9
−0.6 0.5þ0.5

−0.4 1.8þ1.3
−0.9 0.73þ0.7

−0.3 ð1.6� 0.4Þ%j1.33� 0.33 0.9� 0.02 0.93 1.04 0.23� 0.1

D�−
s → D−

s γ � � � � � � 0.15þ0.5
−0.1 0.32þ0.3

−0.3 ð94.2� 0.7Þ%j � � � 0.18� 0.01 0.21 0.19 0.13� 0.05

B�þ → Bþγ 0.75þ0.2
−0.2 0.71þ0.2

−0.2 0.63þ0.2
−0.2 0.58þ0.2

−0.2 � � � j � � � 0.4� 0.03 0.58 0.19 0.13� 0.03

B�0 → B0γ 0.19þ0.05
−0.05 0.18þ0.05

−0.05 0.25þ0.06
−0.06 0.23þ0.06

−0.06 � � � j � � � 0.13� 0.01 0.18 0.07 0.38� 0.06

B�0
s → B0

sγ � � � � � � 0.05þ0.03
−0.03 0.04þ0.03

−0.03 � � � j � � � 0.068� 0.017 0.12 0.05 0.22� 0.04
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BrðD�� → D�γÞexpt
BrðD̄�0 → D̄0γÞexpt

¼ ΓðD�� → D�γÞ
ΓðD̄�0 → D̄0γÞ

ΓtotðD̄�0Þ
ΓtotðD��Þ ; ð60Þ

where the total width ΓtotðD̄�0Þ in the above equation can be
extracted with the predicted ΓðD̄�0 → D̄0γÞ. Analogously,
ΓtotðD��

s Þ can also be calculated the sameway as in the case
of D̄�0. The full widths of D̄�0 and D�−

s are estimated to be

ΓtotðD̄�0Þ≃77.7þ26.7
−20.5 keV; ΓtotðD�−

s Þ≃0.62þ0.45
−0.50 keV;

ð61Þ
respectively.

V. MAGNETIC MOMENTS

The anomalous magnetic moments of nucleons reveal
that the proton and neutron are not elementary particles,
and they have internal substructures. As in the case of
nucleons, the magnetic moments of D� and B� also encode
important information about their underlying substructures.

A. Analytical expressions for the magnetic moments

We have studied the radiative transitions V → Pγ in the
previous section. The decay rate for D�− → D−γ is con-
sistent with the experimental data. So we adopt the same set
of parameters to calculate the magnetic moments of the D�

and B� mesons. The Oðp2Þ and Oðp4Þ tree-level Feynman
diagrams that contribute to the magnetic moments are
displayed in Fig. 4.
In the following, we write out the magnetic moments of

the D� mesons from Figs. 4(a) and 4(b):

μðaÞ
D̄�0 ¼ −

8

3
eðãþ 3aÞ; ð62Þ

μðaÞD�− ¼ −
4

3
eð−ãþ 6aÞ; ð63Þ

μðaÞD�−
s
¼ −

4

3
eð−ãþ 6aÞ; ð64Þ

μðbÞD̄�0 ¼ 16

9
eðm2

K −m2
πÞð6d̃þ 3d̄þ 4dÞ; ð65Þ

μðbÞD�− ¼ 16

9
eðm2

K −m2
πÞð6d̃þ 3d̄ − 2dÞ; ð66Þ

μðbÞD�−
s
¼ 16

9
eðm2

K −m2
πÞð−12d̃þ 3d̄þ 4dÞ: ð67Þ

The magnetic moments from the one-loop diagrams in
Fig. 5 are given as

(a) (b) (c) (e)

(f) (h)

(k)

(j)

(n) (o)

(d)

(g) (i)

(l) (m)

FIG. 5. One-loop Feynman diagrams that contribute to the magnetic moments of the heavy vector mesons. Notations are the same as
those in Fig. 2.

(a) (b)

FIG. 4. Tree-level Feynman diagrams that contribute to the
magnetic moments of the heavy vector mesons. Notations are
same as those in Fig. 1.
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μðaÞ ¼
X
ϕ

eCðaÞϕ

g2

f2ϕ
J T

21ðmϕ; E þ Δ; qÞ; ð68Þ

μðbÞ ¼
X
ϕ

eCðbÞϕ

g2

f2ϕ
J T

21ðmϕ; E; qÞ; ð69Þ

μðcÞ ¼
X
ϕ

eCðcÞϕ

ã
f2ϕ

J c
0ðmϕÞ; ð70Þ

μðdÞ ¼
X
ϕ

eCðdÞϕ

b
f2ϕ

J F
22ðmϕ; qÞ; ð71Þ

μðeÞ ¼
X
ϕ

eCðeÞϕ

g2

f2ϕ
J g

22ðmϕ; E þ Δ; E − q0Þ; ð72Þ

μðfÞ ¼
X
ϕ

eCðfÞϕ

g2

f2ϕ
J g

22ðmϕ; E; E þ Δ − q0Þ; ð73Þ

μðgÞ ¼
X
ϕ

eCðgÞϕ

g2

f2ϕ
J g

22ðmϕ; E; E − q0Þ; ð74Þ

μðhÞ ¼ μðiÞ ¼ μðjÞ ¼ μðkÞ ¼ 0; ð75Þ

μðlÞþðmÞ ¼ μðnÞþðoÞ ¼
X
ϕ

eCðlmÞ
ϕ

g2

f2ϕ
f½∂ωJ a

22ðmϕ;ωÞ

þ 2∂δJ a
22ðmϕ; δÞ�jδ→E

ω→EþΔgr; ð76Þ

where the values of the coefficients CðxÞϕ ðx ¼ a;…; oÞ for
the D� mesons are listed in Tables IX and X. In Eqs. (68)
and (69), we have used the relation J T

31 ¼ − 1
2
J T

21 when

q2 ¼ 0 [58]. The unlisted coefficients CðbÞϕ and CðfÞϕ can be
obtained by the relation

CðbÞϕ ¼ CðaÞϕ ; CðfÞϕ ¼ CðeÞϕ : ð77Þ

Analogously to the transition form factors μ0V→Pγ in
Eq. (33), the magnetic moments μV can be written as

μV ¼ ½μð1Þtree� þ ½μð2Þloop� þ ½μð3Þtree þ μð3Þloop�; ð78Þ

where μð1Þtree, μ
ð2Þ
loop, and μð3Þloop can be calculated by using the

parameters in Eq. (59) as inputs.

B. Numerical results and discussions

The numerical results for the magnetic moments μV
calculated in the SU(2) and SU(3) cases are given order by
order in the lower-half parts of Tables IV and V, respec-
tively. We see that the convergence of the chiral expansion
in the SU(2) case remains very good, and the convergence
is also reasonable in SU(3).
In the SU(2) case, the magnetic moments at Oμðp1Þ are

independent of Δ. The Δ ≠ 0 correction reduces μV at
Oμðp2Þ and Oμðp3Þ. Consequently, the total results are
increased. In the heavy quark limit, there exists a strict
relationship between μV and μV→Pγ at each order; i.e.,
jμV j ¼ jμV→Pγj when we take D ¼ 4 and Δ ¼ 0 in the loop
functions. Both the radiative transitions and magnetic
moments of the heavy vector mesons are solely governed
by the light quark, since the heavy quark decouples
completely.
In the SU(3) case, one notices a similar variation trend

at Oμðp2Þ as in SU(2). At Oμðp3Þ, there is a moderate
increase when the mass splitting is included. The total
results are enhanced in the Δ ≠ 0 case. It is interesting to
diagnose the convergence of the chiral expansion for
magnetic moments from a straightforward dimensional
analysis.

TABLE IX. The flavor-dependent coefficients CðxÞϕ ðx ¼ a; c; d; eÞ in Eqs. (68)–(72) for the D̄� mesons.

States CðaÞπ CðaÞK CðcÞπ CðcÞK CðdÞπ CðdÞK CðeÞπ CðeÞK CðeÞη

D̄�0 − 1
2

− 1
2

2 2 −2 −2 6a 2
3
ð6aþ ãÞ 2

9
ð3a − ãÞ

D�− 1
2

0 −2 0 2 0 6a − ã 2
3
ð6aþ ãÞ 1

9
ð6aþ ãÞ

D�−
s 0 1

2
0 −2 0 2 0 2

3
ð12a − ãÞ 4

9
ð6aþ ãÞ

TABLE X. The flavor-dependent coefficients CðxÞϕ ðx ¼ g; lþmÞ in Eqs. (74)–(76) for the D̄� mesons.

States CðgÞπ CðgÞK CðgÞη CðlmÞ
π CðlmÞ

K CðlmÞ
η

D̄�0 6a 2
3
ð6a − ãÞ 2

9
ð3aþ ãÞ (ãþ 3a) 2

3
ðãþ 3aÞ 1

9
ðãþ 3aÞ

D�− 6aþ ã 2
3
ð6a − ãÞ 1

9
ð6a − ãÞ 1

2
ð6a − ãÞ 1

3
ð6a − ãÞ 1

18
ð6a − ãÞ

D�−
s 0 2

3
ð12aþ ãÞ 4

9
ð6a − ãÞ 0 2

3
ð6a − ãÞ 2

9
ð6a − ãÞ
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The magnetic moments μV at leading order (LO), next-
to-leading order (NLO), and next-to-next-to-leading order
(NNLO) can be parametrized as follows:

LO∶ A
1

mq
þ B

1

mQ
;

NLO∶ C
mϕ

Λ2
χ
;

NNLO∶
�
D

1

mq
þ E

1

mQ

�
×
m2

ϕ

Λ2
χ
; ð79Þ

where the coefficients A;…; E are order-one dimensionless
constants. Λχ ∼ 1 GeV denotes the chiral breaking scale.
For the D�− and B�0 mesons, the internal light pseudo-

scalar lines in the Oðp3Þ loop diagrams [Figs. 5(a)
and 5(b)] can only be the charged pions. But for
the Oðp4Þ wave function renormalization diagrams
[Figs. 5(l)–5(o)], K and η would contribute to the loops.
Since mK=mπ≃3.5 and mη=mπ ≃ 4.0, the Oðp4Þ contribu-
tion would be enhanced to the samemagnitude as theOðp3Þ
correction from the SU(3) violation effect. Let us take the
D�− meson as an example. In the strict heavy quark limit, the
contributions of Figs. 5(a) and 5(b) are equal. However, for
the charmed mesons, the mass splittingΔ > mπ . Hence, the
amplitudes of Figs. 5(a) and 5(b) are of similar size but with
opposite signs, which makes the contributions of these two
diagrams forD�− largely cancel with each other. This effect
does not contribute to the transition magnetic moments,
because there is only a single one-loop diagram with Δ ¼ 0

atOðp3Þ level [see Fig. 2(a)]. Moreover, the influence of the
mass splitting on the magnetic properties of the B� meson is
not obvious due to Δ ≪ mϕ in the bottom sector.
The magnetic moments for the D̄� and B� mesons

calculated in different cases are shown in Table XI, where

the errors also stem from μð3Þtree, i.e., Oðp4Þ Lagrangians and
quark models. The magnetic moments of the vector Q̄u,
Q̄d, and Q̄s states given by the bag model [20,22] and the
Nambu–Jona-Lasinio model [33] are compatible with our
predictions.

VI. SUMMARY

For the ground vector Q̄q states, heavy quark spin
symmetry implies that the mass splitting between the spin
triplets V and the spin singlets P is very small, of the same
order as the pion mass mπ . Thus, the decay modes of V are
largely restricted. For the ground-state charmed vector
mesons, the dominant decay channels are V → Pπ and
V → Pγ. For the bq̄ states, the only dominant decay modes
are V → Pγ.
In this work, we calculate the decay rates of V → Pγ for

the charmed and bottom vector mesons. Our result for
D�− → D−γ is in accordance with the experimental meas-
urement. We also investigate the convergence of the chiral
expansion of the transition magnetic moments in the SU(2)
and SU(3) cases with the mass splitting both kept and
unkept. The results indicate that the convergence in the
SU(2) case is very good, and it is likewise reasonable for
SU(3). The effect of the mass splitting for the charmed
mesons is more significant than that for the bottom mesons.
The radiative decay widths of the D� and B� mesons from
other theoretical models and lattice QCD simulations
also are consistent with ours. As a byproduct, the full
widths of D̄�0 and D�−

s are estimated to be 77.7þ26.7
−20.5 keV

and 0.62þ0.45
−0.50 keV, respectively.

In this work, we also calculate the magnetic moments of
the D� and B� mesons. Our results agree with the
predictions of the bag model [20,22] and the NJL model
[33]. The magnetic moments of heavy vector mesons are
good platforms to probe their inner structures. For example,
the magnetic moment of D̄�0 should be zero if we use the
classical formula μ ¼ e

2mS (where e, m, and S denote the
charge, mass, and spin, respectively). The large anomalous
magnetic moment of D̄�0 clearly demonstrates that it is not
a point particle.
In summary, we have systematically studied the radiative

transitions and magnetic moments of charmed and bottom
vector mesons with χPT up toOðp4Þ. Our numerical results
are presented up to this order with different scenarios. The
LECs ã, a and b in theOðp2ÞLagrangians are estimatedwith

TABLE XI. The magnetic moments of the charmed and bottom vector mesons (in units of nucleon magnetons μN), and a comparison
with the bag model (Bag), extended Nambu–Jona-Lasinio model (NJL) and extended bag model (Extended Bag) predictions.

SU(2) SU(3) The results from other theoretical works

States Δ ¼ 0 Δ ≠ 0 Δ ¼ 0 Δ ≠ 0 Bag [20] NJL [33] Extended Bag [22]

D̄�0 1.38þ0.25
−0.25 1.60þ0.25

−0.25 1.18þ0.25
−0.25 1.48þ0.22

−0.38 0.89 � � � 1.28

D�− −1.14þ0.15
−0.15 −1.39þ0.15

−0.15 −1.31þ0.20
−0.15 −1.62þ0.24

−0.08 −1.17 −1.16 −1.13
D�−

s � � � � � � −0.62þ0.15
−0.15 −0.69þ0.22

−0.10 −1.03 −0.98 −0.93

B�þ
1.86þ0.25

−0.25 1.90þ0.20
−0.20 1.71þ0.25

−0.25 1.77þ0.25
−0.30 1.54 1.47 1.56

B�0 −0.75þ0.11
−0.11 −0.78þ0.11

−0.11 −0.87þ0.13
−0.11 −0.92þ0.15

−0.11 −0.64 � � � −0.69
B�0
s � � � � � � −0.25þ0.11

−0.11 −0.27þ0.13
−0.10 −0.47 � � � −0.51
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the quark model and the resonance saturation model,
respectively. We notice that the one-loop chiral correction
plays a very important role in mediating the (transition)
magnetic moments. Our result indicates that the quark
model prediction is not enough to describe the magnetic
properties of the charmed and bottom vector mesons.
The quark dynamics of the light degree of freedom that is
related with the spontaneous breaking of chiral symmetry is
non-negligible.
The present investigations of the radiative decays of D�

and B� shall be helpful for future measurements at facilities
such as Belle II and LHCb. Furthermore, the analytical
expressions derived in χPT shall be helpful for the chiral
extrapolations of lattice QCD simulations on the electro-
magnetic transitions and magnetic moments of heavy
vector mesons.
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APPENDIX A: SOME SUPPLEMENTAL
MATERIALS FOR THE B� MESONS

The transition form factors from Figs. 1(a) and 1(b) for
the B� mesons read

μ0ðaÞB�þ→Bþγ ¼
8

3
ð3aþ 2ãÞ; ðA1Þ

μ0ðaÞ
B�0→B0γ

¼ 8

3
ð3a − ãÞ; ðA2Þ

μ0ðaÞ
B�0
s →B0

sγ
¼ 8

3
ð3a − ãÞ; ðA3Þ

μ0ðbÞB�þ→Bþγ ¼ −
32

9
ðm2

K −m2
πÞð3d̃þ 3d̄þ 4dÞ; ðA4Þ

μ0ðbÞ
B�0→B0γ

¼ −
32

9
ðm2

K −m2
πÞð3d̃þ 3d̄ − 2dÞ; ðA5Þ

μ0ðbÞ
B�0
s →B0

sγ
¼ −

32

9
ðm2

K −m2
πÞð−6d̃þ 3d̄þ 4dÞ: ðA6Þ

The magnetic moments from Figs. 4(a) and 4(b) for the
B� mesons read

μðaÞB�þ ¼ 4

3
eð−2ãþ 3aÞ; ðA7Þ

μðaÞ
B�0 ¼ 4

3
eðãþ 3aÞ; ðA8Þ

μðaÞ
B�0
s
¼ 8

3
eðãþ 3aÞ; ðA9Þ

μðbÞB�þ ¼ 16

9
eðm2

K −m2
πÞð−3d̃þ 3d̄þ 4dÞ; ðA10Þ

μðbÞ
B�0 ¼ 16

9
eðm2

K −m2
πÞð−3d̃þ 3d̄ − 2dÞ; ðA11Þ

μðbÞB�0
s
¼ 16

9
eðm2

K −m2
πÞð6d̃þ 3d̄þ 4dÞ: ðA12Þ

The flavor-dependent coefficients CðxÞϕ in Eqs. (40)–(47)
and Eqs. (68)–(76) for the B� mesons are listed in
Tables XII and XIII and Tables XIV and XV, respectively.

TABLE XII. The flavor-dependent coefficients CðxÞϕ ðx ¼ a;…; dÞ in Eqs. (40)–(43) for the B� mesons.

Decay modes CðaÞπ CðaÞK CðbÞπ CðbÞK CðcÞπ CðcÞK CðdÞπ CðdÞK CðdÞη

B�þ → Bþγ 2 2 −4 −4 4 4 −12a − 8
3
ð3aþ ãÞ − 4

9
ð3a − 2ãÞ

B�0 → B0γ −2 0 4 0 −4 0 −4ð3a − ãÞ − 8
3
ð3aþ ãÞ − 4

9
ð3aþ ãÞ

B�0
s → B0

sγ 0 −2 0 4 0 −4 0 − 8
3
ð6a − ãÞ − 16

9
ð3aþ ãÞ

TABLE XIII. The flavor-dependent coefficients CðxÞϕ ðx ¼ e;…; jÞ in Eqs. (44)–(47) for the B� mesons.

Decay modes CðeÞπ CðeÞK CðeÞη CðhÞπ CðhÞK CðhÞη

B�þ → Bþγ −6a − 4
3
ð3a − ãÞ − 2

9
ð3aþ 2ãÞ 3aþ 2ã 2

3
ð3aþ 2ãÞ 1

9
ð3aþ 2ãÞ

B�0 → B0γ −2ð3aþ ãÞ − 4
3
ð3a − ãÞ − 2

9
ð3a − ãÞ 3a − ã 2

3
ð3a − ãÞ 1

9
ð3a − ãÞ

B�0
s → B0

sγ 0 − 4
3
ð6aþ ãÞ − 8

9
ð3a − ãÞ 0 4

3
ð3a − ãÞ 4

9
ð3a − ãÞ
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APPENDIX B: LOOP INTEGRALS

Here, we show the detailed forms of the J functions
used in the text. One can find the complete forms in
Ref. [58].

i
Z

dDlλ4−D

ð2πÞD
1

l2 −m2 þ iε
≡ J c

0ðmÞ; ðB1Þ

i
Z

dDlλ4−D

ð2πÞD
lαlβ

ðv · lþ ωþ iεÞðl2 −m2 þ iεÞ
≡ ½vαvβJ a

21 þ gαβJ a
22�ðm;ωÞ; ðB2Þ

i
Z

dDlλ4−D

ð2πÞD
lαlβ

ðv · lþ ωþ iεÞ½v · lþ δþ iε�ðl2 −m2 þ iεÞ
≡ ½vαvβJ g

21 þ gαβJ g
22�ðm;ω; δÞ; ðB3Þ

i
Z

dDlλ4−D

ð2πÞD
lαlβ

ðl2 −m2 þ iεÞ½ðlþ qÞ2 −m2 þ iε�
≡ ½qαqβJ F

21 þ gαβJ F
22�ðm; qÞ; ðB4Þ

i
Z

dDlλ4−D

ð2πÞD
lαlβ

ðv · lþωþ iεÞðl2−m2þ iεÞ½ðlþqÞ2−m2þ iε�
≡ ½gαβJ T

21þqαqβJ T
22þvαvβJ T

23þðq∨vÞJ T
24�ðm;ω;qÞ;

ðB5Þ

where q∨v≡ qαvβ þ qβvα. The J functions defined above
can be calculated with the dimensional regularization in D
dimensions. In the following, we write out the expressions
of the used J functions:

J c
0ðmÞ ¼ 2m2Lþ m2

16π2
ln
m2

λ2
; ðB6Þ

J a
22ðm;ωÞ ¼ 2ω

�
m2 −

2

3
ω2

�
Lþ 1

16π2

Z
0

−ω
Δ̃ ln

Δ̃
λ2

dy

þ 1

24π
Ã3=2; ðB7Þ

J g
22ðm;ω;δÞ¼

(
1

δ−ω ½J a
22ðm;ωÞ−J a

22ðm;δÞ� if ω≠ δ

− ∂
∂xJ a

22ðm;xÞjx→ωð or δÞ if ω¼ δ
;

ðB8Þ

J F
22ðm; qÞ ¼

�
m2 −

q2

6

�
Lþ 1

32π2

Z
1

0

Δ̄ ln
Δ̄
λ2

dx; ðB9Þ

J T
21ðm;ω; qÞ ¼ 2ωLþ 1

16π2

Z
1

0

dx
Z

0

−ω

�
1þ ln

Δ
λ2

�
dy

þ 1

16π

Z
1

0

A1=2dx; ðB10Þ

where Δ̃ ¼ y2 þ Ã, Ã ¼ m2 − ω2 − iε; Δ̄ ¼ xðx − 1Þq2 þ
m2 − iε; Δ ¼ y2 þ A, A ¼ xðx − 1Þq2 þm2 − ðω−
xq0Þ2 − iε.
L is defined as

L ¼ 1

16π2

�
1

D − 4
þ 1

2
ðγE − 1 − ln 4πÞ

�
; ðB11Þ

where γE is the Euler-Mascheroni constant 0.5772157. We
adopt the modified minimal subtraction ðMSÞ scheme to
renormalize the loop integrals, which is equivalent to
making use of the following relation:

TABLE XIV. The flavor-dependent coefficients CðxÞϕ ðx ¼ a; c; d; eÞ in Eqs. (68)–(72) for the B� mesons.

States CðaÞπ CðaÞK CðcÞπ CðcÞK CðdÞπ CðdÞK CðeÞπ CðeÞK CðeÞη

B�þ − 1
2

− 1
2

2 2 −2 −2 −3a − 2
3
ð3a − ãÞ − 1

9
ð3aþ 2ãÞ

B�0 1
2

0 −2 0 2 0 −ð3aþ ãÞ − 2
3
ð3a − ãÞ − 1

9
ð3a − ãÞ

B�0
s 0 1

2
0 −2 0 2 0 − 2

3
ð6aþ ãÞ − 4

9
ð3a − ãÞ

TABLE XV. The flavor-dependent coefficients CðxÞϕ ðx ¼ g; lþmÞ in Eqs. (74)–(76) for the B� mesons.

States CðgÞπ CðgÞK CðgÞη CðlmÞ
π CðlmÞ

K CðlmÞ
η

B�þ −3a − 2
3
ð3aþ ãÞ − 1

9
ð3a − 2ãÞ 1

2
ð2ã − 3aÞ 1

3
ð2ã − 3aÞ 1

18
ð2ã − 3aÞ

B�0 −ð3a − ãÞ − 2
3
ð3aþ ãÞ − 1

9
ð3aþ ãÞ − 1

2
ð3aþ ãÞ − 1

3
ð3aþ ãÞ − 1

18
ð3aþ ãÞ

B�0
s 0 − 2

3
ð6a − ãÞ − 4

9
ð3aþ ãÞ 0 − 2

3
ð3aþ ãÞ − 2

9
ð3aþ ãÞ
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fXgr ¼ lim
D→4

�
X − L

∂
∂LX

�
þ 1

16π2
lim
D→4

� ∂
∂D

∂
∂LX

�
;

ðB12Þ

where fXgr represents the finite part of X.

APPENDIX C: ESTIMATING THE LIGHT
QUARK MASS WITH THE VECTOR MESON

DOMINANCE MODEL

In general, the transition form factor of V → Pγ at the
leading order can be parameterized as follows:

μ0̄Qq ¼ QQ̄
1

ΛQ̄
−Qq

1

Λq
; ðC1Þ

where QQ̄ and Qq denote the charge matrices of Q̄ and q,
respectively.ΛQ̄ andΛq are the mass parameters that can be
understood as the masses of the constituent quarks in the
quark model. Heavy quark symmetry guarantees ΛQ̄ ≈mQ̄

(see the discussions in Ref. [51]). However, the photon
coupling to the light quark part of the electromagnetic
current is not fixed by the heavy quark symmetry; thus, the
Λq is not a “well defined” constant—its value is largely
model dependent to some extent. Here, we adopt the vector
meson dominance (VMD) model [3,16] to estimate the
value of Λq.
In the VMD model, the light quark part of the electro-

magnetic current hPjJlμ jVi can be expressed as follows by
inserting the light vector resonance V:

hPaðp0ÞjJlμðq2ÞjVaðp;εVÞi

¼ iea
X
V;λ

h0jq̄aγμqajVðq;ελVÞi
q2−m2

V
hPaðp0ÞVðq;ελVÞjVaðp;εVÞi;

ðC2Þ

where the hPaVjVai vertex is given in Eq. (54). [A
diagrammatic presentation of Eq. (C2) is shown in
Fig. 6.] The matrix element h0jq̄aγμqajVðq; ελVÞi can be
calculated by assuming the SU(3) symmetry with

h0jq̄aγμqajVðq; ελVÞi ¼ fVε
μ
VTrðVTaÞ; ðC3Þ

where fV and εV denote the decay constant and polariza-
tion vector of the light vector meson, respectively.
ðTaÞlm ¼ δalδam, and a ¼ 1, 2, 3 for u, d, s, respectively.
The fV can be determined by the electromagnetic decay
V → eþe−. fρ ¼ 0.17 GeV2 for the ρ meson, and fϕ ¼
0.25 GeV2 for the ϕ meson [16].
Following the same procedure in obtaining Eq. (53), one

can get

Λ−1
q ¼ 2

ffiffiffi
2

p
gvλ

ffiffiffiffiffiffiffi
mV

mP

r
fV
m2

V
; ðC4Þ

where the values of gv and λ are the same as those in
Eq. (58). One can obtain Λq by considering the SU(3)-
breaking effect in Eq. (C4), eventually:

Λu ¼ Λd ¼ 0.366 GeV; Λs ¼ 0.596 GeV: ðC5Þ
These values are very close to the mu, md, and ms given
in Eq. (59).
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