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In this work, we systematically study the radiative decays and magnetic moments of the
charmed and bottom vector mesons with chiral perturbation theory up to one-loop level. We
present the results in the SU(2) and SU(3) cases with the mass splitting in loop diagrams kept
and unkept, respectively. The obtained decay rates for D* and B* mesons in the SU(3) case with the
mass splitting kept are I'po_po, = 16.287 keV, T p-, = 0.7307 keV, I'p_p-, = 0.32107 keV,
and s p+, = 058707 keV, [po_po, = 0237008 keV, [pao_po, = 0.047003 keV. The decay width for
D*~ — D~y is consistent with the experimental measurement. As a byproduct, the full widths of D** and
D}~ are T (D) 7771381 keV and T (Di™) ~0.62704 keV, respectively. We also calculate the
magnetic moments of the heavy vector mesons. The analytical chiral expressions derived in our work shall

be helpful for the extrapolations of lattice QCD simulations in the future.
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I. INTRODUCTION

Electromagnetic form factors play a very important role
in mapping out the internal structures of nucleons, offering
valuable information about the distribution of the constitu-
ent quarks and the gluon degree of freedom in nucleons
[1-4]. Probing the shape and inner structure of hadrons still
remains an intriguing and challenging topic. Especially in
recent decades, a large number of exotic states have been
observed in experiments, many of which cannot be readily
reconciled with the predictions of the conventional quark
models [5-7].

Magnetic moments can be related to the form factors by
extrapolating the form factor G, (q*) to zero moment
transfer [8]. Unlike protons and neutrons, the vast majority
of hadronic states are unstable against strong interactions
[9]. Thus, their magnetic moments cannot be directly
measured in the conventional ways due to their very short
lifetime. Therefore, the radiative transition becomes a very
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effective way to help us catch a glimpse of quark dynamics
in the hadrons. In addition, the quark model cannot give the
nonanalytic dependence of the magnetic moments, such as
the log X term. These terms are much more difficult to
naively estimate and may sometimes be singular in order to
give the much enhanced contributions which cannot be
predicted accurately unless carefully calculated.

In this work, we focus on the charmed and bottom vector
mesons, i.e., (D*°, D*~, D7) and (B**, B*°, B?). As a
consequence of heavy quark spin symmetry, the mass shifts
between these spin triplets and singlets are generally small.
Because of the small phase space, the dominant decay
channels are one-pion emission transitions and radiative
decays for the charmed vector mesons, while only radiative
decays are allowed for the bottom vector mesons.

From Ref. [9], only the width of D** — D%y is known
by combining the decay branching ratio and the total width
of D**. For the other radiative decay modes, only the
branching ratios are available, and the absolute widths are
still absent in experiments. Even worse, there is no
experimental information for the radiative transitions of
the B* mesons.

Many theoretical methods have been applied to study the
radiative decays of the D* and B* mesons, such as various
quark models [10-15], heavy quark effective theory and the
vector meson dominance model [16], quark-potential
models [17-22], QCD sum rules [23-25], lattice QCD
simulations [26], the constituent quark-meson model [27],
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chiral effective field theory [28-31], the extended Nambu—
Jona-Lasinio model [32,33], and so on.

Here, we adopt the SU(3) chiral perturbation theory
(¥PT) to investigate the radiative decay properties and
magnetic moments of the D* and B* mesons. The frame-
work of yPT has been widely used to study the radiative
decays and ma%netic moments of the charmed and bottom
vector mesons [28-31], the octet baryons [34,35], the
doubly charmed and bottom heavy baryons [36-39], and
the singly heavy baryons [40—43], as well as the related
chiral quark-soliton model for singly heavy baryons
[44,45]. In our calculations, we construct the effective
Lagrangians with chiral symmetry and heavy quark sym-
metry up to O(p*). There are two independent low-energy
constants (LECs) at the leading order, which correspond to
the contributions from the light quark and heavy quark
electromagnetic currents, respectively. These two LECs
can be estimated with the quark model or other theoretical
methods. The contributions from the tree diagrams at next-
to-leading order can be absorbed into the ones from leading
order. At next-to-next-to-leading order, the tree diagram
incorporates three independent LECs, which cannot be
determined due to lack of experimental data. We present
our numerical results up to O(p*), and we consider the
contributions from O(p*) tree diagrams as errors.

Our numerical results are calculated in both the SU(2)
and SU(3) cases with the mass splitting kept and unkept in
loop diagrams. The partial decay widths of D*~ — D7y
predicted in different scenarios are consistent with the
experimental data.

This paper is organized as follows: The definitions of the
electromagnetic form factors and magnetic moments are
given in Sec. II. The effective Lagrangians are constructed
in Sec. III. The analytical expressions and numerical results
for the transition magnetic moments and magnetic
moments are presented in Secs. IV and V, respectively.
A summary is given in Sec. VI. Some supplemental
materials for the B* mesons, the loop integrals, and an
estimation of the light quark mass with the vector meson
dominance model are collected in the Appendixes A, B,
and C, respectively.

II. ELECTROMAGNETIC FORM FACTORS
AND MAGNETIC MOMENTS

We first consider the radiative transition process
V — Py, where V stands for the vector mesons (D* or
B*), and P denotes the pseudoscalar mesons (D or B).

In Refs. [28,29], Cho et al. and Cheng et al. calculated the
decay widths of D* — Dy and B* — By, respectively, at the tree
level in the heavy hadron chiral theory. Our Lagrangians are the
same as those in Refs. [28,29] at leading order. In Ref. [30],
Amundson et al. investigated the same process with the same
framework to next-to-leading order. But the heavy quark spin
symmetry breaking effect is ignored.

The M1 transition form factor p'(g*) can be defined
through a covariant expression of the hadronic matrix
elements [31],

(PP ) en(@®)|V(p.ev)) = ew'(a*)e* P pLgeevs. (1)

where J%,, is the electromagnetic current at the hadronic

level, g, = (p — p’), is the transferred momentum, and £y,

denotes the polarization vector of the initial vector meson.
The interaction Hamiltonian can then be written as

Hip :/d3xeA#J’ém, (2)

where A, is the photon field.

For a heavy meson M that is composed of a heavy
antiquark Q and a light quark ¢, the ground spin doublet
(P, P*) can be represented by a 4 x 4 Dirac-type matrix H.
We use H(p) and H(v) to denote the heavy meson fields
in relativistic and heavy meson effective theory (HMET)
convention, respectively. They can be related with each
other by

[H(p)) = vmu[[H(v)) + O(1/my)). (3)

Then, in the framework of HMET, Eq. (1) can be reex-
pressed as

(P(P)en|V(p.ey)) = ey/mympp' (¢)e" P v,q.ev5. (4)

where the recoil effect is negligible in the above equation.
With the above preparation, one can easily get the
expression of the decay rate,

LS~ e, ()

1

3

where M represents the transition amplitude, and a sum

over the final-state photon polarization and an average over

the initial V polarization have been performed.
Explicitly, we have

am
[V = Py = LW Ol (©)

where a = 1/137 is the fine-structure constant. The tran-
sition magnetic moment uy_,p, can be defined as

ﬂV—»Py = gﬂ/(O) (7)

In the following, we derive the magnetic moment
of a vector meson. The matrix elements of J%,(¢*) are
defined in terms of the standard Lorentz covariant decom-
position [46]:
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G (q*) = (V(p'. ) em(q?) |V (p. €))
==G(¢*)(e- ) p+p)V
+0:(q?)[(e- g)e™ = (€" - q)e]

+G3(q?) %ﬁ:m (p+r)y.  (8)

This expression can be simplified under the Breit frame.
In our calculations, we define

1
#=p-rr=00. 0-0: p=(r0),

1 1
p”‘=<p°,—§Q>, —?=0?20, p'=\/mj+70%

A straightforward derivation under the Breit frame gives the
time component of G#(g?) as

() =2p°{gc(Q2)(€'8’*)
Go(0%)

2
2my,

+ (- 0)(e" Q) —(e-e)0| V. (9)
| e’

where G and G, represent charge and quadrupole form
factors, respectively. In deriving Eq. (9), we have used the
transverse condition of the initial- and final-state polariza-
tion vectors; i.e., p-e=0and p’-&* = 0.

Similarly, the space component of G#(g?) is

G(Q%) = G2(@*)[(e" - Q)e — (¢ - Q)]

o0 ) (e e (e e, (10)

2mV

where G, is the magnetic dipole form factor. The expres-
sions of G¢, Gy, and Gy, read

2
gc = g1 +§7]ng

1
Go=Gs+G(1+n)! +§g1(1 + )7,
Iu = G2, (11)

where 1 = Q?/(4m?).

III. EFFECTIVE LAGRANGIANS

A. The leading-order chiral Lagrangians

We first introduce the Lagrangian of Goldstone bosons
and photon. The octet of the light pseudoscalar field is
represented by the field U(x) = ¢'#//+ with

ﬂ0+¢%’1 V2mt V2K*
b= V2r —1 + 1 V2KY |, (12)

— 0 2

V2K V2K — AN

where the # field denotes the octet #g. In the SU(3) quark
model, the # meson is regarded as the mixing of the octet #g
and the singlet 5, with |) = cosO|ng) —sinO|ny) [47],
where 6~ —19.1° is determined by the experimental
measurements [48,49]. Because the mixing angle is not
very large and the 7 field only serves as the quantum
fluctuations in the loops, the mixing effect is ignored in our
calculations.

The definitions of the chiral connection and axial-vector
current are

L,

| =

[u*(a,, —ir,)u+u(d, - ilﬂ)uT], (13)

i
u, =

W=5 [u*((?” —ir,)u—u(0, — ilﬂ)zﬂ], (14)

where

I/l2 =U= exp(}—¢>, ry = l” = _eQA/u (15)
¢

and Q = Q, = diag(2/3,-1/3,—1/3) represents the elec-
tric charge matrix of the light current J,f ,

1

_ 1.
3 dy,d — =5y,s. (16)

2_
Jf:—uyﬂu 35

3
Here, f, is the decay constant of the light pseudoscalar
mesons. The experimental values of f, for ¢ = z, K, and
are f, =924 MeV, fx =113 MeV, and f, = 116 MeV,
respectively.
The leading-order [O(p?)] Lagrangian for the interaction
of the light pseudoscalars and photon reads [36—38]

f2
Ly = fTr[V”U(V”U)T], (17)
where
VU =0,U—-ir,U+iUl, (18)

We use Tr(X) and (X) to denote the traces for X in flavor
space and spinor space, respectively.

We construct the effective Lagrangian for the heavy
mesons with the superfield 7. For a heavy meson com-
posed of a heavy antiquark Q and a light quark ¢, the
superfield H is defined as
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-7
2 b

H = (Puy" + iPys)
-7

M=y "My =—— (Pl +iPTys). (19)
where for the charmed mesons
P = (D°, D™, D7), P* = (D%,D*,D:7), (20)
and for the bottom mesons
P = (B*,B° BY), P* = (B**,B*, BY). (21)

The leading-order Lagrangians for describing the inter-
actions between the heavy matter field and light pseudo-
scalars are [50,51]

_ 1 )
ﬁ% =—i(Hv-DH) —§A<’H6"”Haﬂy> +g(HitysH), (22)

where the covariant derivative D, = 9, +T',. Here, the
electric charge matrix in I', should be replaced by those
corresponding to the heavy mesons. For instance, Q =
Qp = diag(0, -1, 1) for (D*°, D*~,D}™),and Q = Qp =
diag(1,0,0) for (B**, B0, Bi"), respectively. The second
term in Eq. (22) is due to the mass difference between
P and P*, and A = mp- — mp stands for the mass splitting.
g represents the axial coupling constant. For the D meson,
its value can be extracted by the partial decay width of
D*t = D%zt [9,52], while for the B meson, g can only be
determined via theoretical methods, such as the quark
model [31] and lattice QCD [53,54].

We also need the Lagrangians to describe the (transition)
magnetic moments at the tree level, which can be written
as [36-38]

LY = a(Ho" i H) + a(Ho" H)Tr(f4,),  (23)
where a and a are two LECs. The first and second terms
correspond to the contributions from the light quark and the
heavy antiquark, respectively. The field strength tensors ]‘j,,
and f,, are defined as

/[fv = ;Lfy = _eQ(aﬂAv - aI/AM)’
f,f,/ =uf ffbu +u /’;,/uT,
~ 1
f;:::u :fi/—gTI'(fi,), (24)
where Q = Qp, for the D mesons and Q = Qjp for the B
mesons. From Eq. (24), we can see that f;, is proportional
to Q; and traceless. f,/, is not traceless, because it contains
the electric charge matrix of the heavy mesons. One can
also understand Eq. (23) from the standpoint of group
representation theory. Recall that 3 3=1¢8, and the

operator f;r,, transforms as the adjoint representation. Thus,
the two terms in Eq. (23) correspond to 8 ® 8 — 1 and
1 ® 1 — 1, respectively.

In the following, we construct the Lagrangian for the
interactions of the heavy mesons and light pseudoscalar
mesons at O(p?), which will contribute to the O(p*)
magnetic moment at the one-loop level [36-38]:

Lihy = ib(Fo™[u,. u,|H). (25)
Actually, the tensor structure sandwiched between H
and H in Eq. (25) can also be {u,,u,} and Tr(u,u,).
For the SU(3) group representations,

33=16638,

SR8=108 ®8 10D 10D27. (26)
The axial-vector current u,, (or u,) transforms as the adjoint
representation; thus Tr(u,u, ), [u,. u,], and {u,, u,} belong
to the 1, 8, and 8, flavor representations, respectively. But
Tr(u,u,) and {u,,u,} would vanish when they are con-
tracted with ¢/, because of the symmetric Lorentz indices
u and v. Therefore, only one independent term containing
[u,, u,] survives in Eq. (25).

B. The next-to-leading-order chiral Lagrangians

The electromagnetic chiral Lagrangians at O(p?)
read [43]

L) =it (o v- Vi, H) —ic(Ho" H)v-VTr(f},).
(27)

The structure is similar to those in Eq. (23). The possible
contributions that include the covariant derivative D, can
be absorbed into the LECs ¢ and ¢ with the equation of
motion of the heavy mesons. Meanwhile, the contributions
from Eq. (27) can be absorbed into Eq. (23) by renorm-
alizing the LECs a and a, i.e.,

(28)

a-a-+cv-q, a=-a-+cv-q.

C. The next-to-next-to-leading-order
chiral Lagrangians

At this order, we also employ group represen-
tation methods to construct the electromagnetic chiral
Lagrangians (one can find the possible flavor structures
in Table I). The detailed form reads [36-38]

L) = d(Homg HYTr(f},) + Ao H) Te(F i)

+d{Ho" {7.. F i} H). (29)
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TABLE 1. The possible flavor structures of the O(p*) Lagrangians that contribute to the magnetic moments.
Group representations I1I®1—-1 1®8—-38 8®1 -8 E®8—1 8® 8 =8 E8®8 =8,
Flavor structures Tr(r ) Te(fn) Te(y)F o 24 Ti(f) Te(7. /) 7 Fin] {7+ fin}

where a spurion y is introduced as

2

x = 2Bydiag(m,, my, m,) = diag(m?2, m2,2m% — m2),

v =ulyu' +uytu.
At the leading order,

X = diag(2m2,2m?2, 4m%( —2m2),

X+ :)(Jr_%Tr()H)- (30)

In principle, there should be six independent terms in
Eq. (29) as the possible flavor structures listed in Table 1.
However, the terms Tr(y, ), Tr(f,) and Tr(y . ) f,;, can also
be absorbed into Eq. (23) by renormalizing & and a,
respectively. Another term [7,, f,;,] vanishes since both
7+ and f;u are diagonal matrices at the leading order.
Therefore, only three terms are retained in Eq. (29).

IV. RADIATIVE TRANSITIONS

A. Power counting and analytical expressions
for the transition from factors

The standard power-counting scheme gives the chiral
order of a Feynman diagram as

O=4N, =2y —Iy+ Y nN,. (31)

where N;, I, and [y are the numbers of loops, internal
light pseudoscalar lines, and internal heavy meson lines,
respectively. N, is the number of vertices governed by the
nth-order Lagrangians. Usually, the order of the (transition)
magnetic moment is

0,=0-1. (32)
Therefore, the transition form factors of V — Py can be
expressed as follows:

1 2 3 3
Wyopy = [l + o] + il + o], (33)

where the numbers in the parentheses are the chiral
order O,.

We first study the V — Py transitions. The tree diagrams
are illustrated in Fig. 1. By expanding the Lagrangians
in Egs. (23) and (29), we can easily get the transition
amplitudes of Figs. 1(a) and 1(b), respectively. We can

extract the g*>-independent form factor 4/’ at the tree level by
comparing the transition amplitudes with Eqgs. (1) and (4).
The expressions read

Ky, = 5 (a =) (34)

) ey = g(a + 6a), (35)

5 by = 5@+ 6a), (36)

K, = = (e~ m2)(~6+ 3+ 4d), (37)
p— % (m — m2)(=6d +3d —2d),  (38)
W, = —%(m%( m2)(12d + 3d + 4d).  (39)

We show the analytical expressions for the D mesons and
display the expressions for the B mesons in Appendix A.

The one-loop Feynman diagrams that contribute to the
transition processes are shown in Fig. 2. Here, we need to
deal with the loop integrals when extracting the
g*-dependent form factors from the transition amplitudes.
Various types of loop integrals 7 have been defined and
given in Appendix B. In the following equations, we list the
transition form factors of Figs. 2(a)-2(j) in a compact form,
correspondingly:

2
=ZC&“)1%{J£1<m¢,&q>},, (40)
¢ ¢

anﬁ fz {jo my)}r (41)

(@) (b)

FIG. 1. The diagrams for the V — Py transitions at the tree
level. The thick solid, thin solid, and wiggly lines represent the
vector meson V, pseudoscalar meson P, and photon y, respec-
tively. The solid circle and solid square in diagrams (a) and (b)
correspond to the O(p?) and O(p*) vertices, respectively.
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(®) @ (h) ) )

FIG. 2. The diagrams for the V — Py transitions at the one-loop level, where the dashed line represents the light pseudoscalar mesons.
Other notations are same as those in Fig. 1.

o) 0 where the summations over ¢ denote the possible con-
Z ¢ f% {‘722 My )} (42) tributions from the light pseudoscalars (¢ could be 7, K, 1)
in the loops. C(g,f) (x=a,...,j) are the flavor-dependent
th/) 2 { T5(my, E.E—qo)},  (43) coefficients, anq their Val.ues are given in Tables II and .III.
In the J functions, my is the mass of the corresponding

particle in the loop. £ is the residual energy of heavy

(44) mesons, which is defined as £ = E ) — m ). € is set to be
zero in our calculations. ¢ denotes the transferred momen-

tum carried by the photon. D is the dimension in dimen-

Z% 7 AT €+ 8,E - q0)},

W) = o) — 0, (45) sional regularization. {X}, represents the finite part of X,
which is defined in Appendix B. The coefficients Cfﬁ” ) can
2 . . :
h 9 ” be obtained via the relation
" =30 o (1= D), T (g 0)lema ) (40)
ey =-cl. (48)

chﬁ 12 { [0, T 5, (my, @)
¢ B. Estimation of the leading-order LECs

+285L7‘212(m,,),6)]’5ﬁg } , 47 In 4, there exist two O(p?) LECs, & and a [see
o=E+A Eq. (23)]. Another O(p?) LEC b [see Eq. (25)] resides in

TABLE II. The flavor-dependent coefficients C((;) (x=a,...,d) in Egs. (40)—(43) for the D* mesons.

Decay modes c cﬁ?) e C%a) e ng) ci C(d) C,%d)

D*0 - DO 2 2 -4 —4 4 4 24a 8(6a—a) 8(3a+a)
D*~ = D7y -2 0 4 0 —4 0 4(6a + a) 8(6a—a) §(6a —a)
D~ — Dyy 0 -2 0 4 0 —4 0 8(12a +a) % (6a —a)

TABLE III. The flavor-dependent coefficients CE/,’O (x=e,....j) in Egs. (44)—(47) for the D* mesons.

Decay modes cw Cgf) C,(f) e C%') C,gh)

D* — D% 12a 1(6a + a) $(3a—a) 2(a - 3a) $(@-3a) (@ -3a)
D'~ > D7y 2(6a — a) $(6a + a) 2(6a+a) —(a+ 6a) —2(a+6a) —3(a+6a)
Di™ - Dyy 0 $(12a - a) 8(6a+a) 0 —3(a+6a) —3(a+6a)
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y{g?p In the following, we estimate the values of @, a, and b

with the quark model and resonance saturation model,
respectively. It is hard to determine the other higher-

order LECs (d, d, and d) in ,ugse) for the moment
because of very limited experimental data. Therefore,
we consider the contributions from //ngg as errors of our
numerical results.

We first demonstrate how to determine @ and a from the
scenario of a constituent quark model. In this model, the
transition matrix element of V — Py in the rest frame of
the initial state can be written as [29]

€;

<P|£em|V>=2\/meP<PIZ V) -B, (49)

2ml'

where e; and m; are the electric charge and mass of the ith
quark in the heavy meson, and 6 and B are the Pauli matrix
and magnetic field, respectively. For simplicity, we choose
the direction of the magnetic field B to be along the z axis.
In order to work out Eq. (49), we need the flavor-spin wave
functions of V and P, which read

V) = %Qm + 0lgh). (50)
1P) = %@m “0lat). (51)

Inserting Egs. (50) and (51) into Eq. (49), one can obtain

<P|£em‘v> = 2\/ meP(ﬂQ _luq)v (52)

where y; = e;/(2m;). Matching Eq. (52) with the leading-
order transition amplitudes [i.e., replacing 4’ (¢?) in Eq. (4)
with the expressions in Egs. (34)—(36), and making use of
B*(q) = —ie'*q'A’(q)], one can easily get

1 1

Zl:— a:—’
24mg

(53)

= b
8m,

where m, and mg are the masses of the light constituent
quark and the heavy antiquark in heavy mesons (in
Appendix C, we also give an estimation of the light quark
mass with the vector meson dominance model), respectively.

Next, we evaluate the value of LEC b in Eq. (25) using
the resonance saturation model [55,56]. A diagrammatic
presentation of the resonance saturation scheme is illus-
trated in Fig. 3. We need the interaction Lagrangians for
VPp and prr(¢pKK). The VPp Lagrangian can be obtained
with local hidden symmetry [31], which reads

L:Hp = iﬁ<7:[1)” (Vy —/’y)H> + M<’HG}WF;W(:0)H>’ (54)

where

S :'l’ 5 5
§ g <m;

(a) (b)

FIG. 3. A diagrammatic presentation of the resonance satu-
ration scheme. The thick wiggly line in diagram (a) denotes the
light vector meson p or ¢, and other notations are same as those in
Fig. 2.

Fu(p) =0up, =000+ lpwepl). pu=i22p, (55)

Vo
and
/’(i/gw ot K K
pr=1| p %;’” KO | . (56)

K I_(*O ¢
The prz(¢pKK) Lagrangian reads [31]

Loy = a0 0 +pT)), a=2.  (57)

where the expression of FLO) can be extracted from the

chiral connection defined in Eq. (13) by omitting the
photon field.

With the above preparations, we use the amplitude of
Fig. 3(a) governed by the Lagrangians in Egs. (54) and (57)
to match the amplitude of Fig. 3(b) depicted by the
Lagrangian in Eq. (25). We can get the b explicitly:

g3

m2

b= (58)
where g, = 5.8, A = 0.56 GeV~! [57]. m, is the mass of
the exchanged light vector meson, such as m, = 0.77 GeV
and my = 1.02 GeV [9]. The sign of b is determined with
the quark model.

The numerical values of the parameters are [9,36-38,
52,53]

m,=0.139GeV, mg=0.494GeV, m,=0.548GeV,
m, =my=0.336GeV, m;=0.54GeV,
m,=1.66GeV, m;,=4.73GeV,

for D* Dz coupling

0.59+0.01+0.07

9= { 0.51640.0540.033 for B* Bz coupling ’
0.142 GeV for mpo —mpo
{0.045 GeV for myo—mpy

(59)

Since the masses of the mesons have been precisely
measured in experiments [9], we do not quote their minor

016019-7



BO WANG, BIN YANG, LU MENG, and SHI-LIN ZHU

PHYS. REV. D 100, 016019 (2019)

TABLE IV. The transition magnetic moments and magnetic moments of the charmed and bottom vector mesons calculated in the

SU(2) case order by order (in units of py).

A=0 A#0
Physical quantity ~ O,(p') ree  O,(p*) loop  O,(p?) loop  Total ~ O,(p') ee  O,(p?) loop  O,(p?) loop  Total
HDH_po, —2.24 0.21 —0.10 -2.13 —-2.24 0.29 0.04 -1.91
DDy 0.55 -0.21 0.05 0.39 0.55 -0.29 0.02 0.28
HB By —1.80 0.16 —0.09 -1.73 —1.80 0.19 -0.07 —1.68
Hpo_ o, 0.99 —0.16 0.046 0.88 0.99 -0.19 0.04 0.84
Uy 1.48 —0.21 0.11 1.38 1.48 0.07 0.05 1.60
Up— -1.31 0.21 —0.05 -1.14 —-1.31 -0.07 —0.007 -1.39
g 1.93 —0.16 0.09 1.86 1.93 -0.13 0.09 1.90
Hpo —0.86 0.16 —0.05 -0.75 -0.86 0.13 —0.05 —0.78

TABLE V. The transition magnetic moments and magnetic moments of charmed and bottom vector mesons calculated in the SU(3)

case order by order (in units of puy).

A=0 A#0
Physical quantity ~ O,(p') ree  O,(p*) loop  O,(p?) loop  Total  O,(p') ee  O,(p?) loop  O,(p?) loop  Total
KD Doy —-2.24 0.71 —-0.34 —1.86 —-2.24 0.81 -0.13 —1.57
HD==Dy 0.55 —0.21 0.19 0.54 0.55 -0.29 0.08 0.34
HUD:-—Dy 0.20 —0.50 0.15 —0.15 0.20 —0.51 0.10 -0.21
Up Bty —1.80 0.55 —0.34 —1.58 —1.80 0.58 —-0.30 —-1.52
Ko g0, 0.99 —0.16 0.17 1.0 0.99 -0.19 0.14 0.95
KB g0y 0.65 —0.39 0.13 0.38 0.65 -0.39 0.11 0.36
Ui 1.48 —0.71 0.40 1.18 1.48 —0.40 0.40 1.48
Up— —-1.31 0.21 -0.21 —1.31 —1.31 -0.07 —-0.24 —-1.62
Hp:- —0.96 0.50 —0.16 -0.62 -0.96 0.47 -0.21 —-0.69
Up+ 1.93 —0.55 0.34 1.71 1.93 -0.52 0.36 1.77
o —0.86 0.16 —0.17 —0.87 —0.86 0.13 -0.19 -0.92
Mo —0.51 0.39 —0.13 —0.25 —0.51 0.38 -0.14 —-0.27

errors. The masses of the constituent quarks are adopted
from previous works [36-38]. Generally, it is hard to give
the errors of the masses of the constituent quarks, because
these values used in different quark models vary a lot. In
this work, we try to give a conservative estimation by
setting 10% x m, as the parameter errors. The axial
constant g for the D*Dx coupling is extracted from the
experimental result of the CLEO Collaboration [52]. The
B*Br coupling is quoted from the unquenched lattice
result [53].

C. Numerical results and discussions

With the parameters listed above, we first show the
transition magnetic moments of V — Py calculated under
the SU(2) and SU(3) symmetries2 in the upper-half parts of

’Here, SU(2) and SU(3) symmetries only imply that the
effective Lagrangians are constructed under these two sym-
metries. The SU(3) breaking effect is included explicitly in
our calculations. For example, we use m, 4, and the physical
masses of 7, K, and # in Eq. (59) as inputs.

Tables IV and 'V, correspondingly. In Tables IV and V, the
transition magnetic moments yy_p, are given order by
order. As expected, the convergence of the chiral expansion
in the SU(2) case is better than that in SU(3). Besides, we
also calculate the uy_ p, with the mass splitting A in the
propagators of the loop diagrams both kept and unkept. The
influence of A in the charm sector is more significant than
that in the bottom sector, because the mass difference of the
charmed mesons is larger than that of the bottom mesons.

In the SU(2) case, the mass splitting A only appears in
the loop diagrams. The transition magnetic moments at
O, (p') remain unchanged no matter if we choose A = 0 or
A #0. At O,(p*), the correction from the finite mass
splitting (A # 0) is about 40% and 20% for up-_,p, and
M- py> respectively. Such a correction is also significant at
O,(p?). Similar behavior is observed in the SU(3) case at
each order. In Table VI, we show the contribution of each
loop diagram to the transition magnetic moment of D*0 —
Dy in different cases. The contributions of the diagrams in
Figs. 2(f) and 2(g) vanish in the heavy quark limit. Except
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TABLE VI. The contribution of each loop diagram to the transition magnetic moment of D*© — Dy in different cases (in units of y).
Cases (a) (b) (c) () (f) (9) (h) (i+))
SU2) A=0 0.21 —0.085 0.062 0.012 0.006 0 0 —0.045 —0.053
A#0 0.29 —0.085 0.062 —-0.0016 0.0021 0 0 0.073 —0.0082
SU@3) A=0 0.71 -0.37 0.27 0.088 —0.00017 0 0 —0.13 —-0.19
A#0 0.81 -0.37 0.27 0.033 —0.0038 0 0 0.13 —-0.19

for the diagrams in Figs. 2(b) and 2(c), other diagrams that
contain the heavy meson internal line are affected by the
mass splitting A. For the charmed vector mesons, A > m_,

so the loop integrals with the nonanalytic structures

logw and \/m2— A*—ie (see Appendix B)

would largely impact the numerical result. This is vividly
reflected in Table VI. However, for the bottom vector
mesons, A ~ 1/3m,, so the influence of A on the bottom
sector is not so obvious.

The corresponding decay widths evaluated in different
cases are illustrated in Table VIII. The errors in our
calculations can stem from many sources, such as quark
masses, hadron masses, coupling constants, higher-order
contributions, and so on. As shown in Ref. [9], the errors of
the hadron masses that appear in this work are very small,
so we ignore their effects. Meanwhile, the axial coupling
constant extracted from the experiments and lattice QCD
are also very small. Furthermore, the convergence of chiral
expansion works very well in our calculations. Therefore,
we consider two main error sources. The first one is the

TABLE VII. The masses of the constituent quarks adopted in
different works (in units of GeV).

m, mgy my m. my,
Kamal [11] 0.34 0.34 0.55 1.8 e
Ebert [19] 0.33 0.33 0.5 1.55 4.88
Cheng [29] 0.338 0.322 0.51 1.6 5.0
Eichten [59] 0.335 0.335 0.45 1.84 5.17

TABLE VIIL
measured in experiments. I},

4 are the model predictions.

contribution of the O( p4) Lagrangians [see Eq. (29)]. Since
the LECs in Eq. (29) cannot be fixed at present, we adopt
the nonanalytic dominance approximation to give an
estimation of the O(p*) tree diagram [58]. The second
one is the uncertainty from the quark models. For example,
the masses of constituent quarks are different in various
models (see Table VII). We take this uncertainty into
account. The change of the quark masses would lead to
a 10% variation of the leading-order LECs.

From Table VIII, we see that the decay rate for D*~ —
D~y calculated in different scenarios agrees with the
experimental data. The branching ratios for the other decay
channels cannot be obtained due to the absence of the total
widths of these states in experiments at present. We also
compare our results with other model predictions, such as
the light-front quark model [14], the relativistic indepen-
dent quark model [15], the relativistic quark model [19] and
the QCD sum rules [25]. The results in these literatures are
consistent with our calculations. Furthermore, the results
from the extended Bag model [21,22], lattice QCD sim-
ulations [26], and extended Nambu-Jona-Lasinio model
[32] are also compatible with ours.

Up to now, only the full width of D** and the branching
ratio of D** — D¥y were available in Ref. [9]. The lifetime
of D' and D~ has not been measured yet. The con-
vergence of the chiral expansion for transition magnetic
moments calculated in the SU(3) case with A # 0 is very
reasonable. Therefore, as a byproduct, we use the following
relation with our results in SU(3) and A # 0 as inputs to
estimate the full widths of these two states:

The radiative decay widths for V — Py (in units of keV). Bre, and I, denote the branching ratio and decay width

SUQR) SUQB) Experimental data and model predictions

Decay modes A =0 A#0 A=0 A#0 Brexpt|lﬁexpt [9] I, [14] I, [15] I3 [19] I, [25]

D — D% 300173 239139 229152 16278 (38.14£29)%|--- 200403 265 115 129 +2
D =Dy 10702 05505 1873 073707 (1.6£04)%[1.334£033 094002 093  1.04 023+0.1
Di~ = Dyy 0.15%07  0.32503 (9424£0.7)%|---  018+£001 021 019 0.13£005
B*" =Bty 075537 071593 0.63703 0.58703 cee ] 04+0.03 0.8 0.19 0.13+0.03
B — B% 0197007 0.18150% 025500 023700 S IRE 0.13£001 0.18  0.07 0.38+0.06
B - By 0.05%50; 0.041503 e 0.068£0.017 0.12 005 022+0.04
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A. Analytical expressions for the magnetic moments

We have studied the radiative transitions V — Py in the
previous section. The decay rate for D*~ — D~y is con-
sistent with the experimental data. So we adopt the same set
(a) (b) of parameters to calculate the magnetic moments of the D*
and B* mesons. The O(p?) and O(p*) tree-level Feynman
diagrams that contribute to the magnetic moments are
displayed in Fig. 4.

In the following, we write out the magnetic moments of
the D* mesons from Figs. 4(a) and 4(b):

FIG. 4. Tree-level Feynman diagrams that contribute to the
magnetic moments of the heavy vector mesons. Notations are
same as those in Fig. 1.

Br(D** — Di},)expt . (D - Dil’) Ftot(D*O)

= . (60) o 8
Br(D* = D%)ey  T(D* — D%) [ (D) ully = ~5¢la+3a), (62)
where the total width I, (D*°) in the above equation can be w 4
extracted with the predicted I'(D*® — D%). Analogously, Fp- =3¢ (—a+6a), (63)
[oi(D:¥) can also be calculated the same way as in the case
<0 : *0 *— : 4
of D*¥. The full widths of D*” and D}~ are estimated to be ﬂgf)— -2 e(=ii + 6a), (64)
(D) 2777387 keV,  To(Di7)~0.62105) keV,
16 ~ -
(61) U, = 5 elm —m3)(6d +3d +4d).  (65)
respectively.
() _ E 2 2N(E] i
V. MAGNETIC MOMENTS Hp= =g elmi =) (6d +3d =2d). - (66)
The anomalous magnetic moments of nucleons reveal ) 16 ) 5 - -
that the proton and neutron are not elementary particles, Hp:- = ?e (mg —mz)(—=12d +3d +4d).  (67)
and they have internal substructures. As in the case of
nucleons, the magnetic moments of D* and B* also encode The magnetic moments from the one-loop diagrams in

important information about their underlying substructures. ~ Fig. 5 are given as

(a) (b) (c) (d) (e)
() (€9) (h) ® ()

) M (m) (m) (0)

FIG.5. One-loop Feynman diagrams that contribute to the magnetic moments of the heavy vector mesons. Notations are the same as
those in Fig. 2.

016019-10



RADIATIVE TRANSITIONS AND MAGNETIC MOMENTS OF ...

PHYS. REV. D 100, 016019 (2019)

TABLE IX. The flavor-dependent coefficients Cf;) (x =a,c,d,e) in Egs. (68)—~(72) for the D* mesons.
States ¢ ¢l c clo ¢ cld cw clo i)
D0 -1 -1 2 2 -2 -2 6a (6a + a) t(3a—a)
D 1 0 -2 0 2 0 6a—a 2(6a + @) 1(6a+a)
D~ 0 1 0 -2 0 2 0 2(12a - a) t(6a+ a)
TABLE X. The flavor-dependent coefficients CE;) (x = g,1 -+ m) in Egs. (74)~(76) for the D* mesons.
States Y e cy e ey )"
D 6a %(6a — a) $(3a+a) (@+ 3a) 2(a+3a) §(a+3a)
D*~ 6a +a 2(6a - a) §(6a —a) 3 (6a—a) 1(6a —a) = (6a—a)
D~ 0 2(12a + a) §(6a —a) 0 2(6a —a) % (6a —a)
) C(b) — C(“) C(f) — C(e) (77)
g ¢ ¢ ¢ ¢ -
> eC; f—zjzl(m,,,,é' +A,q) (68)
p)
Analogously to the transition form factors uy_p, in
Eq. (33), the magnetic moments uy can be written as
Z C¢ j21 (my.E.q). (69)
¢ 1 2 3 3
v = i)+ igop) + e+ Hongl . (78)
ZeC{/) 2 j 0(my), (70) where yfrle)e, ul(g())p, and ,ul(sgp can be calculated by using the
’ parameters in Eq. (59) as inputs.
cld) .q), 71 . . .
Z ¢ f2 '722 My 4) (71) B. Numerical results and discussions
The numerical results for the magnetic moments py,
2 . .
_ ()9 g AE— 7 calculated in the SU(2) and SU(3) cases are given order by
%ec‘/’ 7 Tn(mg, &+ 8,E=qo), (72) order in the lower-half parts of Tables IV and V, respec-
tively. We see that the convergence of the chiral expansion
in the SU(2) case remains very good, and the convergence
Zec¢ f2 % (my,E,.E+ A —qq), (73) is also reasonable in SU(3).
4 ¢ In the SU(2) case, the magnetic moments at O,(p') are
independent of A. The A # 0 correction reduces uy at
ZeC¢ 7 j 9, (my. E.€ — qy), (74)  O,(p?) and O,(p?). Consequently, the total results are
¢ ¢ increased. In the heavy quark limit, there exists a strict
4 = g0 = i) = o — o, (75) relationship between py and py_p, at each order; ie.,
luy| = |y p,| when we take D = 4 and A = 0 in the loop
l functions. Both the radiative transitions and magnetic
pDm) — Z C ) fz { 00T, (my, ®) moments of the heavy vector mesons are solely governed
by the light quark, since the heavy quark decouples
20, T (76)  completely.
2V era In the SU(3) case, one notices a similar variation trend
2 . 3 :
where the values of the coefficients C.") (x=a,...,0) for at O0,(p) as in SUQ). At O, (p°), there is a moderate

the D* mesons are listed in Tables IX and X. In Egs. (68)
and (69), we have used the relation J%, = —1 77, when

g*> = 0 [58]. The unlisted coefficients C((ﬁb) and C((ﬁf) can be
obtained by the relation

increase when the mass splitting is included. The total
results are enhanced in the A # O case. It is interesting to
diagnose the convergence of the chiral expansion for
magnetic moments from a straightforward dimensional
analysis.
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TABLE XI.

The magnetic moments of the charmed and bottom vector mesons (in units of nucleon magnetons yy ), and a comparison

with the bag model (Bag), extended Nambu—Jona-Lasinio model (NJL) and extended bag model (Extended Bag) predictions.

SUR) SUQB) The results from other theoretical works
States A=0 A#0 A=0 A#0 Bag [20] NIJL [33] Extended Bag [22]
D 1.381033 1.601033 1183033 1481038 0.89 e 1.28
K= 0.15 0.1 0.20 0.24
D —1.147012 —-1.3902 —1.3.1:()),1155 —1.623(,]_%82 -1.17 -1.16 -1.13
Di~ - e -0.6270-12 -0.69"3 -1.03 -0.98 -0.93
B 1.861033 1.907030 1715932 177505 1.54 1.47 1.56
B0 -0.75:94 -0.78-311 -0.87-013 -0.921 01 -0.64 -0.69
B0 e e -0.251 01 -0.27-518 -0.47 -0.51

The magnetic moments yy at leading order (LO), next-
to-leading order (NLO), and next-to-next-to-leading order
(NNLO) can be parametrized as follows:

1 1
LO: A—+B—,
mq mQ

NLO: ¢4
A
1 1\ m
NNLO: (D——i—E—) X -, (79)
mgy mo Ay
where the coefficients A, ..., E are order-one dimensionless
constants. A, ~ 1 GeV denotes the chiral breaking scale.

For the D*~ and B*® mesons, the internal light pseudo-
scalar lines in the O(p®) loop diagrams [Figs. 5(a)
and 5(b)] can only be the charged pions. But for
the O(p*) wave function renormalization diagrams
[Figs. 5(1)-5(0)], K and # would contribute to the loops.
Since mg/m,~3.5 and m,/m, ~ 4.0, the O(p*) contribu-
tion would be enhanced to the same magnitude as the O(p?)
correction from the SU(3) violation effect. Let us take the
D*~ meson as an example. In the strict heavy quark limit, the
contributions of Figs. 5(a) and 5(b) are equal. However, for
the charmed mesons, the mass splitting A > m,. Hence, the
amplitudes of Figs. 5(a) and 5(b) are of similar size but with
opposite signs, which makes the contributions of these two
diagrams for D*~ largely cancel with each other. This effect
does not contribute to the transition magnetic moments,
because there is only a single one-loop diagram with A = 0
at O( p3) level [see Fig. 2(a)]. Moreover, the influence of the
mass splitting on the magnetic properties of the B* meson is
not obvious due to A < m, in the bottom sector.

The magnetic moments for the D* and B* mesons
calculated in different cases are shown in Table XI, where
the errors also stem from /zge)e i.e., O(p*) Lagrangians and
quark models. The magnetic moments of the vector Qu,
Qd, and Qs states given by the bag model [20,22] and the
Nambu—Jona-Lasinio model [33] are compatible with our
predictions.

VI. SUMMARY

For the ground vector Qg states, heavy quark spin
symmetry implies that the mass splitting between the spin
triplets V and the spin singlets P is very small, of the same
order as the pion mass m,. Thus, the decay modes of V are
largely restricted. For the ground-state charmed vector
mesons, the dominant decay channels are V — Pz and
V — Py. For the bg states, the only dominant decay modes
are V — Py.

In this work, we calculate the decay rates of V — Py for
the charmed and bottom vector mesons. Our result for
D*~ — D7y is in accordance with the experimental meas-
urement. We also investigate the convergence of the chiral
expansion of the transition magnetic moments in the SU(2)
and SU(3) cases with the mass splitting both kept and
unkept. The results indicate that the convergence in the
SU(2) case is very good, and it is likewise reasonable for
SU(3). The effect of the mass splitting for the charmed
mesons is more significant than that for the bottom mesons.
The radiative decay widths of the D* and B* mesons from
other theoretical models and lattice QCD simulations
also are consistent with ours. As a byproduct, the full
widths of D** and D}~ are estimated to be 77.77357 keV
and 0.62J_r8:g‘8 keV, respectively.

In this work, we also calculate the magnetic moments of
the D* and B* mesons. Our results agree with the
predictions of the bag model [20,22] and the NJL model
[33]. The magnetic moments of heavy vector mesons are
good platforms to probe their inner structures. For example,
the magnetic moment of D* should be zero if we use the
classical formula g = ;%S (where e, m, and S denote the
charge, mass, and spin, respectively). The large anomalous
magnetic moment of D*0 clearly demonstrates that it is not
a point particle.

In summary, we have systematically studied the radiative
transitions and magnetic moments of charmed and bottom
vector mesons with yPT up to O(p*). Our numerical results
are presented up to this order with different scenarios. The
LECs @, a and b in the O(p?) Lagrangians are estimated with
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the quark model and the resonance saturation model,
respectively. We notice that the one-loop chiral correction
plays a very important role in mediating the (transition)
magnetic moments. Our result indicates that the quark
model prediction is not enough to describe the magnetic
properties of the charmed and bottom vector mesons.
The quark dynamics of the light degree of freedom that is
related with the spontaneous breaking of chiral symmetry is
non-negligible.

The present investigations of the radiative decays of D*
and B* shall be helpful for future measurements at facilities
such as Belle I and LHCb. Furthermore, the analytical
expressions derived in yPT shall be helpful for the chiral
extrapolations of lattice QCD simulations on the electro-
magnetic transitions and magnetic moments of heavy
vector mesons.
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APPENDIX A: SOME SUPPLEMENTAL
MATERIALS FOR THE B* MESONS

The transition form factors from Figs. 1(a) and 1(b) for
the B* mesons read

ey o _

TABLE XII. The flavor-dependent coefficients CE;) (x=a,...

/(a) 8

Hyo_p, =3 (3a—a), (A3)
WALy = = (e~ )30+ 30+ 4d). (%)
My = —% (m% —m2)(3d +3d—2d),  (A5)
) gy, == (k= m2)(~61+ 3+ 4d).  (AG)

The magnetic moments from Figs. 4(a) and 4(b) for the
B* mesons read

pld) = Se(=2a+3a). (A7)

u) = e(@ + 3a), (A8)

uith =~ e(a+3a). (A9)

ul) = ?e(m%( —m2)(=3d +3d+4d),  (Al0)
ul) *ge(m%—m,z,)(—3c~l+3c_i—2d), (Al1)
Hih = %66(”@ —m2)(6d +3d +4d). (Al2)

The flavor-dependent coefficients C[(ﬁx) in Eqgs. (40)—(47)
and Egs. (68)—(76) for the B* mesons are listed in
Tables XII and XIII and Tables XIV and XV, respectively.

,d) in Egs. (40)—(43) for the B* mesons.

Decay modes cw i) ey el cw clo c¥ ¢l cl

B*" — Bty 2 2 —4 —4 4 4 —-12a -%(a+a) -5(3a—2a)
B*0 — B -2 0 4 0 —4 0 —4(3a—a) -2(3a+a) -3(3a+a)
B:% — B 0 -2 0 4 0 —4 0 -3 (6a—a) -%(Ba+a)

TABLE XIII. The flavor-dependent coefficients CE/,X> (x=e,...

,j) in Egs. (44)—(47) for the B* mesons.

Decay modes ¢l Cgf) C,(,e) e C(If) C,Sh)

B*t —» Bty —6a -3(3a-a) -3(3a+2a) 3a+2a (3a + 2a) s(3a +2a)
B* — BYy —2(3a +a) -%(3a-a) —-2(3a-a) 3a-a 2(3a-a) §(3a—a
B:® > B 0 —3(6a+ a) -3(Ba-a) 0 $(3a-a) 4(3a-a)
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TABLE XIV. The flavor-dependent coefficients C((;) (x =a,c,d,e) in Egs. (68)—(72) for the B* mesons.

States c cl cv clo cy ¢l cw cl cl)
B** -1 -1 2 2 -2 -2 —3a —-2(a-a) -3 (3a+2a)
B0 i 0 -2 0 2 0 (3a+a) -2(3a-a) -35(3a—a)
B0 0 1 0 -2 0 2 0 —2(6a+ a) -3(Ba—a)
TABLE XV. The flavor-dependent coefficients Cfff) (x = g,1+ m) in Egs. (74)—(76) for the B* mesons.

States ¢y ¢y ¢y e ey e
Bt -3a -%(3a+a) -1(3a-2a) 1(2a-3a) 1(2a -3a) L (2a - 3a)
B*0 —(Ba—a) -%(3a+a) —-5(3a+a) —3(Ba+a) -1(3a+a) -5 (Ba+a)
B0 0 —2%(6a - a) -3(3a+a) 0 -2(3a+a) 5(Ba+a)

APPENDIX B: LOOP INTEGRALS

Here, we show the detailed forms of the 7 functions
used in the text. One can find the complete forms in
Ref. [58].

dP1p+=b 1
j =Js Bl
’/ 2m)P 1 —m? + ie To(m). (B1)
) dD l /14—D i l/}
l/ 27)? (v-l+w+ie)(l> —m? + i)
= [ T8, + g7 Tl (m. w), (B2)
, / dPi=p 1y
i
(27)P (v-l+w+ie)[v- 1+ &+ ie](> — m* + ie)
= (vl T3 + g7 Thl(m. @.6), (B3)
, / arpi-p 4
i
(27)P (P —m? +ie)[(l + q)* — m* + ie]
=[q"d"T%, + 9P Th)(m. q). (B4)
, / aripi-p 10
: 27)P (v-l+w+ie)(P=m?+ie)|[(l+q)* —m® +ie]

= [gaﬁjgl + qaqﬂjgz + ”avﬁj; + (qvv)j§4](m,w,q),

(BS)

where gvv = ¢*v” + ¢Pv*. The J functions defined above
can be calculated with the dimensional regularization in D
dimensions. In the following, we write out the expressions
of the used J functions:

2 m2

1622 2

J§(m) =2m (B6)

2 1 [0 A
‘2‘2(m,a)):2w< 2 -5 >L+162 Aln/{Qdy
1 -
_A3/2’
+24JZ'

1 [7a m.w
jgz(m,w,é):{ﬁ-a(;[ 5( )

“ox gZ(m’x”x—m)( or 6)

- J5,(m,8)] if w#6
ifo=6
(B8)

2
Thima) = (w2 =)L+ s

A
o / Blnosdx.  (BY)

1 1 0 A
jgl(m,a),q):%oL —I—@/ dx/_m (1—|—1n/1—2>dy

! (B10)

A‘/Qd
*6n *

where A =y> + A, A=m? —0® —ie; A = x(x—1)g* +
m?—ie; A=3y"4+A, A=x(x-1)¢*+m’—(w-

xqo)* — ie.
L is defined as

1 1 1

B CET R RG]

(B11)

where y is the Euler-Mascheroni constant 0.5772157. We
adopt the modified minimal subtraction (MS) scheme to
renormalize the loop integrals, which is equivalent to
making use of the following relation:
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) 1 (00
X}, = fim (X La_LX) e le(aDaLX)’
(B12)

where {X}, represents the finite part of X.

APPENDIX C: ESTIMATING THE LIGHT
QUARK MASS WITH THE VECTOR MESON
DOMINANCE MODEL

In general, the transition form factor of V — Py at the
leading order can be parameterized as follows:

1
! — .
ﬂQq—QQA

-Q (C1)

1
qu’

Qo

where QQ and Qq denote the charge matrices of Q and ¢,
respectively. Ap and A, are the mass parameters that can be
understood as the masses of the constituent quarks in the
quark model. Heavy quark symmetry guarantees Ay ~ mg
(see the discussions in Ref. [51]). However, the photon
coupling to the light quark part of the electromagnetic
current is not fixed by the heavy quark symmetry; thus, the
A, is not a “well defined” constant—its value is largely
model dependent to some extent. Here, we adopt the vector
meson dominance (VMD) model [3,16] to estimate the
value of A,.

In the VMD model, the light quark part of the electro-
magnetic current (P|J5|V) can be expressed as follows by
inserting the light vector resonance V:

<Pa(P')|J;f(f12)|Va(P7€v)>
_ 8}”
_ ieaz <O|QuyﬂQa <2q’ V)> <

2
Vi q-—my

(C2)

Po(PWV(q.€})[Va(p.ev)),

g’ <m,

(a) (b)

FIG. 6. A diagrammatic presentation of the vector meson
dominance model. The thick wiggly line in diagram (a) denotes
the light vector meson p or ¢, while the solid square denotes the
coupling vertex of the photon and light vector meson. Other
notations are the same as those in Fig. 2.

where the (P,V|V,) vertex is given in Eq. (54). [A
diagrammatic presentation of Eq. (C2) is shown in
Fig. 6.] The matrix element (07,7,4.,|V(q.€})) can be
calculated by assuming the SU(3) symmetry with

(0147,4q41V(q. €)) = fre Tr(VT?),

where f, and &), denote the decay constant and polariza-
tion vector of the light vector meson, respectively.
(T)}n = SaiSum»> and a = 1, 2, 3 for u, d, s, respectively.
The f, can be determined by the electromagnetic decay
V—ete . f,=0.17 GeV? for the p meson, and fo=
0.25 GeV? for the ¢ meson [16].

Following the same procedure in obtaining Eq. (53), one
can get

(C3)

A7 =2V2g,2 f"

mv

(C4)

where the values of g, and A are the same as those in
Eq. (58). One can obtain A, by considering the SU(3)-
breaking effect in Eq. (C4), eventually:

A, = 0596 GeV. (C5)

These values are very close to the m,,, m,, and m, given
in Eq. (59).

A, = Ay = 0.366 GeV,
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