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We investigate the Fourier coefficients bkðTÞ of the net baryon number density in strongly interacting
matter at nonzero temperature and density. The asymptotic behavior of the coefficients at large k is
determined by the singularities of the partition function in the complex chemical potential plane. Within a
QCD-like effective chiral model, we show that the chiral and deconfinement properties at nonzero baryon
chemical potential are reflected in characteristic k- and T-dependencies of the Fourier coefficients. We also
discuss the influence of the Roberge-Weiss transition on these coefficients. Our results indicate that the
Fourier expansion approach can provide interesting insights into the criticality of QCD matter.
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I. INTRODUCTION

Exploring the phase diagram of quantum chromody-
namics (QCD) at finite temperature and chemical potentials
is a challenging problem in experimental and theoretical
studies. The Beam Energy Scan (BES) at the Relativistic
Heavy Ion Collider (RHIC) [1] has been dedicated to the
search for the conjectured QCD critical point (CP) and the
onset of deconfinement through the systematic studies of
various observables such as the fluctuations of conserved
charges. In particular, those of the net-proton number have
been shown to exhibit a nonmonotonic behavior with
collision energies which may potentially be attributed to
critical chiral dynamics [2–9].
Fluctuation observables can also be computed in lattice

QCD (LQCD) [10–12] and in effective chiral models
[5,9,13–15]. Thus, by identifying fluctuation patterns,
associated with chiral critical behavior, in experimental
data, one may be able to identify the QCD phase boundary
and the location of the CP, if it exists [2,5,9,16,17].
While LQCD provides first principle insights into the

thermodynamics of QCD at finite temperature T and at
vanishing and moderate values of the baryon chemical
potential μB < 3T, the well-known sign problem still
inhibits systematic calculations at larger baryon densities.

Several strategies to overcome this problem are being
pursued [18,19].
In particular, LQCD calculations at imaginary baryon

chemical potential offer a possibility to circumvent the sign
problem at real μB. On the one hand, these calculations,
which do not suffer from the sign problem, can, in
principle, be analytically continued to the real axis
[20–22]. On the other, a Fourier expansion in imaginary
μB can be applied to the partition function in order to study
the properties, in particular the phase structure, of QCD at
finite baryon density in the canonical ensemble [23–26].
Moreover, the canonical partition function can be used to
obtain the probability distribution function PðNÞ of the net
baryon numberN, which in turn yields the cumulants of the
net baryon number fluctuations [27–33]. As noted in
Ref. [31], knowledge of the probability for large-amplitude
fluctuations, i.e., fluctuations with large N, is required for a
correct identification of the critical properties associated
with the chiral phase transition.
Furthermore, a novel strategy for locating the confine-

ment-deconfinement transition by exploring the complex
phase of the Polyakov loop at imaginary chemical potential
has been proposed in [34,35]. Thus, by studying QCD at
imaginary chemical potential, one can gain insight into the
critical properties of QCD related to deconfinement, chiral
symmetry restoration and the Roberge-Weiss transition.
In this paper we explore the Fourier decomposition of the

(dimensionless) net baryon number density

χB1 ðT; μ̂BÞ≡ nBðT; μ̂BÞ
T3

¼ ∂ðp=T4Þ
∂μ̂B ; ð1Þ
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where p ¼ pðT; μ̂BÞ is the pressure, μ̂B ¼ μB=T is the
reduced baryon chemical potential and T the temperature.
The analytic continuation of χB1 to imaginary baryon
chemical potential is an odd, periodic function of
θB ¼ Imμ̂B, and can thus be expanded in a Fourier sine
series:

Im½χB1 ðT; iθBÞ� ¼
X∞
k¼1

bkðTÞ sinðkθBÞ: ð2Þ

The aim of our study is to identify the influence of chiral
symmetry restoration and deconfinement on the Fourier
coefficients bkðTÞ. We examine the effects of criticality by
making use of QCD-like chiral effective models. In
particular, we discuss the effect of singularities in the
complex chemical potential plane associated with first- and
second-order phase transitions, crossover transitions and
the contribution of the so-called thermal singularities.
Model-independent results will be reported in a separate
publication [36].
To be specific, we employ the two-flavor Polyakov-

quark-meson (PQM) model, which emulates the character-
istic properties of QCD both at real [37] and imaginary [38]
baryon chemical potentials. At nonzero T and θq ¼ θB=Nc,
the resulting thermodynamic potential exhibits chiral sym-
metry restoration and statistical confinement, as well as the
Roberge-Weiss symmetry [39], which implies a periodicity
of 2π=Nc in θq.
We show that the k- and T-dependencies of the Fourier

coefficients bkðTÞ exhibit characteristic features, reflecting
the chiral and Roberge-Weiss transitions at imaginary
baryon chemical potential.
The results are discussed in light of the Fourier expan-

sion coefficients that were recently obtained in LQCD
simulations at imaginary chemical potential for a wide
range of temperatures around and above the chiral and
deconfinement transitions [40]. Furthermore, we examine
the recently proposed cluster expansion model [41] for
Fourier coefficients and discuss its predictive power and
analytic properties in the context of chiral criticality.
The paper is organized as follows: In the next section, we

analyze phenomenological models for the Fourier coeffi-
cients and their applicability to the description of criticality
and interpretation of recent LQCD results. The properties
of the Fourier expansion coefficients in a QCD-like
effective chiral model are examined in Sec. III. Finally,
Sec. IV is devoted to a summary and conclusions.

II. MODELING THE FOURIER COEFFICIENTS
AND LATTICE QCD

A. Models for Fourier coefficients

A model for the Fourier coefficients of the net baryon
density, the cluster expansion model (CEM), was recently
proposed in Ref. [41]. Based on the popular hadron-
resonance gas equation of state with excluded-volume

corrections, the authors suggested a simple prescription
for computing the higher-order Fourier coefficients of the
net baryon density bkðTÞ in Eq. (2) in terms of the first two,
b1ðTÞ and b2ðTÞ,

bCEMk ðTÞ ¼
�

bSB1
b1ðTÞ

�
k−2�b2ðTÞ

bSB2

�
k−1

bSBk ; ð3Þ

where

bSBk ¼ ð−1Þk−1 12þ 16ðπkÞ2
27kðπkÞ2 ð4Þ

are the Fourier coefficients of the density of a noninteracting
gas of massless quarks with Nc ¼ 3 colors and Nf ¼ 3

flavors. The coefficients (3) are constructed such that they
all approach the corresponding Stefan-Boltzmann (SB)
values (4), when b1ðTÞ and b2ðTÞ approach bSB1 and bSB2 ,
respectively.
The first four Fourier coefficients, b1ðTÞ − b4ðTÞ, have

been obtained in LQCD calculations [40]. It was shown in
Ref. [41] that Eq. (3), using the lattice results as input for
b1ðTÞ and b2ðTÞ, provides a description of b3ðTÞ and b4ðTÞ
consistent with LQCD. Furthermore, the model predictions
for the temperature dependence of the sixth-order baryon
number susceptibility are qualitatively consistent with
LQCD findings.
Thus, the CEM describes the basic features of the

available lattice results on baryon number fluctuations.
Nevertheless, one may ask whether the critical behavior of
QCD associated with the restoration of chiral symmetry,
which is reflected in the asymptotic behavior of the Fourier
coefficients, can be captured by the model. More generally,
it is of interest to assess to which extent the modeling of
Fourier coefficients is unique, when only the first two
coefficients are provided as input.
In order to illustrate these issues, we introduce an

alternative model, which we dub the “rational fraction
model” (RFM). The functional form of the RFM Fourier
coefficients,1

bRFMk ðTÞ ¼ cðTÞ
1þ

ffiffiffiffiffi
k2

p
=k0ðTÞ

bSBk ; ð5Þ

with

k0ðTÞ ¼
�
b1ðTÞbSB2
b2ðTÞbSB1

− 1

�−1
− 1; ð6Þ

1Note that the prefactor in (5) is an even function of k and thus
preserves the symmetry of the sine Fourier coefficients (4), i.e.,
bRFM−k ¼ −bRFMk .
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cðTÞ ¼ b1ðTÞ
bSB1

�
1þ 1

k0ðTÞ
�
; ð7Þ

was chosen so that the asymptotics is a power law and the SB
limit as well as the lattice results on Fourier coefficients are
reproduced. By contrast, the CEM Fourier coefficients (3)
fall off exponentially for k → ∞. In the left panel of Fig. 1,
we show the temperature dependence of the CEM and RFM
Fourier coefficients b1…b4. The overall agreement with the
LQCD results [40] is of similar quality for the two models.
The asymptotic behavior of the Fourier coefficients in

the CEM and RFM is illustrated in the right panel of Fig. 1.
As discussed below, the change from exponential to power-
law asymptotics of the Fourier coefficients is a conse-
quence of a different analytical structure of the density in
the complex chemical potential plane and is also reflected
in modifications of higher cumulants of the net baryon
number. This example illustrates the fact that the asymp-
totic form of a Fourier series and consequently the analytic
structure of the function are not fixed by the first few
Fourier coefficients.
For real values of the baryon chemical potential, the net

baryon number density (1) is given by

χB1 ðT; μ̂BÞ ¼
X∞
k¼1

bkðTÞ sinhðkμ̂BÞ; ð8Þ

where μ̂B ¼ μB=T and bkðTÞ are the Fourier coefficients of
the density at imaginary chemical potential (2),

bkðTÞ ¼
2

π

Z
π

0

dθB½ImχB1 ðT; iθBÞ� sinðkθBÞ: ð9Þ

Higher-order fluctuations of the net baryon number are
obtained by taking derivatives of Eq. (8),

χBn ¼
X∞
k¼1

bk
∂n−1

∂μ̂n−1B
sinhðkμ̂BÞ: ð10Þ

In Fig. 2 we show Im½χB1 ðT; iθBÞ�, obtained with Eq. (2)
using the Fourier coefficients (3) and (5) at several temper-
atures. Since the first four coefficients coincide in CEM and
RFM, the difference between the two models for the baryon
number density at imaginary chemical potential is relatively
small and discernible only at θB ≃ π. There, by construc-
tion, both functions drop rapidly to zero and the conver-
gence of the Fourier sum is slow.
Differences between the higher-order Fourier coeffi-

cients imply very different predictions for the baryon
number susceptibilities χBn , in particular at large n.
In Fig. 3 we show the fourth- and tenth-order cumulants

normalized by χB2 in CEM and RFM. Each point represents
the result of a model calculation, where the Fourier
coefficients were obtained using Eqs. (3)–(7), respectively,
while b1ðTÞ and b2ðTÞ are given by LQCD data. The lines
in Fig. 3 are obtained by interpolating the LQCD values for
b1ðTÞ and b2ðTÞ as functions of temperature in the range
T ∈ ½165 MeV; 220 MeV�. We thus obtain the following
fit to the LQCD data:
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FIG. 1. Left: Temperature dependence of the Fourier coefficients in the cluster expansion model (CEM) [41] and the rational function
model (RFM), defined in Eq. (5), compared to LQCD data [40]. Right: The Fourier expansion coefficients obtained in these models
at T ¼ 230 MeV.
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FIG. 2. The imaginary part of the baryon density at imaginary
baryon chemical potential for various temperatures obtained in
the rational function model (RFM) and cluster expansion model
(CEM).
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logðb1Þ ¼ −41.5þ 83.1x − 56.8x2 þ 13.1x3;

logð−b2Þ ¼ −135.4þ 280.2x − 196.4x2 þ 46.1x3; ð11Þ

with x ¼ T=155 MeV.
As shown in the left panel of Fig. 3, the two models yield

similar behavior for the temperature dependence of the
χB4 =χ

B
2 ratio. However, higher-order cumulants are very

different in these models due to the contribution of higher-
order Fourier coefficients. This is illustrated in the right
panel of Fig. 3 where we show that the temperature
dependence of the χB10=χ

B
2 ratio in CEM and RFM differs

essentially in the crossover region. This clearly demon-
strates that the characteristic features of higher-order
fluctuations, which are sensitive to criticality, are not
uniquely determined by requiring that the first four
Fourier coefficients be reproduced. Thus, in contrast to
Ref. [41], we find that models of this type are in general not
suited for exploring chiral criticality.
In fact, in the following we show that for the phenom-

enological CEM the Fourier series in Eq. (2) can be
resummed and expressed by the polylogarithm functions
which have well-defined analytic structure, excluding
explicitly any information on criticality expected in
QCD. This is also the case for the RFM.

B. Analytic properties and criticality

Given the Fourier coefficients of the net baryon density,
one can compute susceptibilities and consequently obtain
information on the location of singularities in the complex
μB plane, e.g., by computing the radius of convergence of
the Taylor expansion of the pressure. In order to assess
whether the CEM exhibits any singularities that could
provide insight into the critical behavior of QCD, we
examine the analytical properties of the model. Of par-
ticular interest in this context are the questions concerning
the location of singularities associated with the QCD chiral
transition.

We first consider the Fourier expansion of the density in
the CEM in the Stefan-Boltzmann (SB) limit. In this case,
the baryon density is computed using the Fourier coef-
ficients (4) in (8),

χB;SB1 ¼
X∞
k¼1

bSBk sinh ðkμ̂BÞ

¼ 2

27π2
X
s¼�1

s

�
3
X∞
k¼1

ð−e−sμ̂BÞk
k3

þ 4π2
X∞
k¼1

ð−e−sμ̂BÞk
k

�

¼ 2

27π2
X
s¼�1

s½3Li3ð−e−sμ̂BÞ − 4π2 log ð1þ e−sμ̂BÞ�;

ð12Þ

where LinðzÞ denotes the polylogarithm of order n
defined by

LinðzÞ ¼
X∞
k¼1

zk

kn
: ð13Þ

We note that Eq. (12) is valid also for complex values of the
chemical potential. Moreover, for jImμ̂Bj < π, Eq. (12)
reduces to

χB;SB1 ¼ μ̂B
3
þ μ̂3B
27π2

; ð14Þ

while for jImμ̂Bj > π, the function is consistent with the
periodicity in the imaginary μ̂B direction, which is imple-
mented in the model.
Now, the density of an ideal gas of massless quarks and

antiquarks is given by the well-known expression

χB;IG1 ¼ 2NcNf

3

Z
d3p̂
ð2πÞ3

�
1

1þ ep̂−μ̂B=3
−

1

1þ ep̂þμ̂B=3

�

¼ 2NcNf

3π2
ðLi3ð−e−μ̂B=3Þ − Li3ð−eμ̂B=3ÞÞ; ð15Þ
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FIG. 3. Baryon number cumulant ratios obtained in the cluster expansion model [41] and the rational function model of Eq. (5). The
points are computed directly using the LQCD data points [40] for b1 and b2 and the two models for the higher-order Fourier coefficients.
The solid curves were obtained by fitting b1 and b2 to the LQCD data, as described in the text.
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where p̂ ¼ p=T. For jImμ̂Bj < 3π, Eq. (15) reduces to the
polynomial form (14). Consequently, χB;SB1 and χB;IG1

coincide within a band in the complex μ̂B plane defined
by jImμ̂Bj < π (as well as in bands obtained by shifting
Imμ̂B by multiples of 6π).
Outside these bands, the two densities differ, due to the

different periodicities: χB;SB1 is invariant under translations
of the baryon chemical potential by multiples of 2πiT, i.e.,
μ̂B → μ̂B þ 2πiN, while χB;IG1 is invariant under shifts by
multiples of 6πiT, i.e., μ̂B → μ̂B þ 6πiN, where N is an
arbitrary integer. The periodicity of χB;SB1 is a consequence
of the Roberge-Weiss symmetry [39], which implies that
only states with an integer net baryon number contribute to
the partition function. Likewise, the 6πi periodicity of χB;IG1

is a consequence of the states with fractional baryon
number accessible in a gas of noninteracting quarks.
Closely related to the periodicity of χB;SB1 and χB;IG1 is the

location of singularities in the complex μ̂B plane. Both LinðzÞ
and logð1 − zÞ have branch points at z ¼ 1. Hence, the
singularities of χB;SB1 closest to μ̂B ¼ 0 are located on the
imaginary axis, at μ̂B ¼ �iπ. On the other hand, the closest
singularities of the ideal quark gas, χB;IG1 , are found at
μ̂B ¼ �3iπ.We note that the latter is generated by the pole of
the Fermi-Dirac function at p̂ ¼ 0. For nonzero quark mass
m, these thermal branch points are shifted away from the
imaginary axis to μ̂B ¼ �m̂� 3iπ, where m̂ ¼ m=T.
Thus, the singularity structure of the net baryon density

is, in the Stefan-Boltzmann limit, completely determined
by the analytic properties of the polylogarithm. In the
following, we show that this is the case also for the CEM.
We first note that the Fourier coefficients of the baryon

density in Eq. (3) can be expressed in the following form:

bCEMk ðTÞ ¼ cλkbSBk ð16Þ
where

cðTÞ ¼
�
b1ðTÞ
bSB1

�
2 bSB2
b2ðTÞ

; ð17Þ

λðTÞ ¼ bSB1
b1ðTÞ

b2ðTÞ
bSB2

: ð18Þ

Also in this case, a closed-form expression for the density
can be obtained by resumming the Fourier series,

χB;CEM1 ¼c
X∞
k¼1

λkbCEMk sinhðkμ̂BÞ

¼ 2c
27π2

X
s¼�1

s

�X∞
k¼1

3ð−λe−sμ̂BÞk
k3

þ4π2
X∞
k¼1

ð−λe−sμ̂BÞk
k

�

¼ 2c
27π2

X
s¼�1

s½3Li3ð−λe−sμ̂BÞ−4π2 logð1þλe−sμ̂BÞ�:

ð19Þ

Now, just as in the Stefan-Boltzmann limit [Eq. (12)], the
singularity structure of χB;CEM1 can be readily deduced using
the analytic properties of the polylogarithms. The two
expressions differ only in the prefactor cðTÞ and the
fugacity parameter λðTÞ. The latter, being less than unity,
shifts the location of the branch cuts away from
the imaginary μ̂B axis, into the complex μ̂B plane. Thus,
the singularities nearest to μ̂B ¼ 0 are located at
μ̂B ¼ � log λ� iπ. This closely resembles the effect of a
nonzero quark mass on the thermal branch points.
The radius of convergence of a Taylor expansion about

μB ¼ 0 is given by the distance to the closest singularity,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog λðTÞÞ2 þ π2

q
: ð20Þ

In Fig. 4 we show RðTÞ computed using the Fourier
coefficients obtained in LQCD as input. The results
obtained with Eqs. (20) and (18) for each lattice point
coincide with those obtained in Ref. [41] by summing the
Fourier series numerically and using the Mercer-Roberts
estimator [42] of the radius of convergence. It is thus clear
that the CEM does not contain information on singularities
in the chemical potential plane with jImμ̂j < π. In other
words, the CEM exhibits only the singularities of Eq. (19),
which are associated with the periodicity in the imaginary
part of the baryon chemical potential.
Similarly, the Fourier series of the RFM can be also

resummed and expressed by the polylogarithm functions.
Consequently, neither CEM nor RFM can provide any
insight into the location of the chiral transition or the
existence of the QCD critical point. However, phenom-
enological models like CEM can be used as a useful
parametrization of noncritical quantities in QCD.
As we discuss in the following section, criticality is

reflected in characteristic properties of high-order Fourier
coefficients, which are not reproduced by the CEM or RFM.

log 2 2

Vovchenko et al.
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FIG. 4. The radius of convergence computed numerically in
Ref. [41] and the distance of the nearest singularity of the
polylogarithm to the origin (20). The solid curve was obtained
using the fitted values (11) for b1 and b2, as explained in the text.
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III. FOURIER COEFFICIENTS
IN A QCD-LIKE EFFECTIVE MODEL

In the previous section, we have demonstrated that the
Fourier coefficients bk cannot be fixed uniquely by knowl-
edge of the first few. In this section we explicitly examine
the effects of critical behavior on the Fourier coefficients
within a QCD-like chiral effective model. For this purpose
we employ the two-flavor Polyakov-loop quark-meson
model [5,37], which captures characteristics of QCD at
imaginary baryon chemical potential [38].

A. Criticality in the PQM model

In the PQM model, the thermodynamic potential at
nonvanishing temperature T and imaginary quark chemical
potential θq ¼ Imμq=T exhibits the Roberge-Weiss perio-
dicity [39], a residual of the ZðNcÞ symmetry, which is an
exact symmetry of QCD in the limit of infinitely heavy
quarks. The Polyakov–Nambu–Jona-Lasinio model [43,44]
is expected to yield compatible results, since the phase
structures, including the Roberge-Weiss transition, are very
similar in the two models [45,46].
In the following we adopt the mean-field approximation,

including renormalized quark vacuum fluctuations [47].
The thermodynamic potential per unit volume Ω in the
PQM model is obtained by extremizing the functional

Ωðσ;Φ;Φ�Þ ¼ UðΦ;Φ�Þ þUðσÞ þΩqq̄ðσ;Φ;Φ�Þ ð21Þ

with respect to the thermal expectation values of the
Polyakov loop Φ, its conjugate Φ�, and the sigma field
σ. Here UðΦ;Φ�Þ andUðσÞ are the Polyakov loop potential
and the purely mesonic potential for the Oð4Þ multiplet
ðσ; π⃗Þ, while Ωqq̄ denotes the quark contribution to the
thermodynamic potential. We employ the polynomial form
for U [44],

UðΦ;Φ�Þ
T4

¼ −
u2ðTÞ
2

Φ�Φ −
u3
6
ðΦ3 þΦ�3Þ þ u4

4
ðΦ�ΦÞ2;

ð22Þ

with

u2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð23Þ

The parameters in the potential are adjusted so as to
reproduce the equation of state of the pure gluonic
matter with u3¼ 0.75, u4¼ 7.5, a0 ¼ 6.75, a1¼−1.95,
a2¼ 2.625, a3 ¼ −7.44, and T0 ¼ 270 MeV. The mesonic
potential is given by

UðσÞ ¼ λ

4
ðσ2 − v2Þ2 − hσ ð24Þ

where the pion field is suppressed, since we do not consider
pion condensation. The explicit chiral symmetry breaking
parameter equals h ¼ fπm2

π.
The quark contribution consists of a vacuum fluctuation

part and a purely thermal part,

Ωqq̄ðσ;Φ;Φ�Þ ¼ −
NcNf

8π2
m4

q ln

�
mq

M

�

− 2NfT
Z

d3p
ð2πÞ3 lnðg

þÞ þ lnðg−Þ; ð25Þ

where M is an arbitrary renormalization scale,

gþðσ;Φ;Φ�; T; μqÞ ¼ 1þ 3Φe−ðEq−μqÞ=T

þ 3Φ�e−2ðEq−μqÞ=T þ e−3ðEq−μqÞ=T

ð26Þ

and

g−ðσ;Φ;Φ�; T; μqÞ ¼ gþðσ;Φ�;Φ; T;−μqÞ: ð27Þ

Here the quark mass and energy are given by mq ¼ gσ and

Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, respectively.

The Polyakov loop variables Φ and Φ� take real values
for real μq, such that one can pick L ¼ jΦj and L̄ ¼ jΦ�j as
the two independent variables. On the other hand, for
imaginary values of the chemical potential they are com-
plex conjugates of each other. Thus, the two independent
variables are conveniently chosen as the modulus L and the
phase ϕ, Φ ¼ Leiϕ and Φ� ¼ Le−iϕ. The expectation
values are then determined by the stationarity condition

∂Ω
∂σ ¼ ∂Ω

∂L ¼ ∂Ω
∂ϕ ¼ 0; ð28Þ

and all thermodynamic quantities can be obtained from the
thermodynamic potential ΩðT; μqÞ.
With Nc ¼ 3 and Nf ¼ 2, the vacuum parameters

are fixed to be fπ ¼ 93 MeV, mphys
π ¼ 138 MeV, and

mσ ¼ 600 MeV, while the Yukawa coupling is set
to g ¼ 3.35.
In general, the pseudocritical temperature of a crossover

transition is not uniquely determined. By maximizing the
chiral ðχσÞ and Polyakov loop ðχLÞ susceptibilities, we find,
at μq ¼ 0, the crossover temperatures 231 and 213 MeV for
the chiral and deconfinement transitions, respectively. An
alternative determination, obtained by maximizing the
temperature derivatives of the order parameters, dσ=dT
and dL=dT, yields 226 and 223 MeV respectively. In the
chiral limit the two procedures yield a unique chiral critical
temperature.
In the following, we control the strength of the explicit

symmetry breaking by varying the pion mass in vacuum

ALMÁSI, FRIMAN, MORITA, LO, and REDLICH PHYS. REV. D 100, 016016 (2019)

016016-6



from mπ ¼ 0 (chiral limit) to mπ ¼ 10mphys
π , in order to

assess the effect of criticality on the Fourier coefficients.
Thereby, we keep the same vacuum values for fπ andmσ by
readjusting the parameters in Uσ. The resulting chiral order
parameter at μB ¼ 0 is shown in Fig. 5. The chiral critical
temperature in the chiral limit is found to be 228.256 MeV.
For a finite, but small, pion mass ð0.1mphys

π Þ the pseudoc-
ritical temperatures obtained using χσ and dσ=dT are 229
and 227 MeV, respectively. Hereafter, for simplicity, we
denote by Tpc the pseudocritical temperature correspond-
ing to a maximum of χσ . However, in the heavy pion
mass case, the chiral pseudocritical temperature2 Tpc ¼
228 MeV is determined by the maximum of dσ=dT.
The behavior of order parameters and the phase structure

in the chiral effective models have been investigated in
Refs. [38,46,48]. For the present study we summarize a few
relevant features. In Fig. 6, we show contour maps for the
temperature derivative of the chiral order parameter
dðσ=fπÞ=dT in the plane of imaginary chemical potential
vs temperature in the chiral limit and for two nonzero
values of the pion mass.
In the left panel of Fig. 6, one can unambiguously

identify the chiral critical line in the chiral limit, which
extends to higher temperature at large θB, and merges with
the Roberge-Weiss transition line at θB ¼ π at the critical
temperature TcðθB ¼ πÞ ¼ 311 MeV. This first-order tran-
sition line extends from T ¼ ∞ down to the so-called
Roberge-Weiss end point, which exhibits a second-order
phase transition at ðT ¼ TRW; θB ¼ πÞ. We find TRW ¼
308.1 MeV ¼ 1.35Tc which is slightly below TcðθB ¼ πÞ.
At T > TRW, the thermodynamic quantities resemble
qualitatively those of a Stefan-Boltzmann gas.

In the case of a nonvanishing pion mass (the middle and
the right panel in Fig. 6), the rapid change of the order
parameter found for a small pion mass is smoothed, such
that the region around the maximum indicates the location
of the crossover transition. Moreover, we find that the
curvature of the pseudocritical line is reduced at small θB as
the pion mass is increased.
In LQCD calculations, it is found that the nature of the

Roberge-Weiss end point depends on the quark mass
[49,50]. Thus, for small quark masses it is a triple point
(the junction of three first-order phase transitions), while at
intermediate values of the quark mass, it is a Zð2Þ critical
point. Finally, for large quark masses, the RW end point is
again a triple point. In the model considered here, the RW
end point is located at TRW ¼ 311 MeV ≃ 1.35Tpc and
327 MeV ≃ 1.43Tpc for the physical and heavy values of
the pion mass, respectively, and is second order in both
cases.3

Given the phase structure in the plane of imaginary
chemical potential vs temperature, shown in Fig. 6, one
expects that the Fourier coefficients bk at intermediate
temperatures, Tpc ≤ T ≤ TRW, reflect the existence of the
transition line.

B. The Fourier coefficients in the chiral limit

In order to identify the influence of criticality on the
Fourier coefficients, we first consider the PQM model
formulated in the chiral limit. The expansion coefficients bk
are computed by Fourier transforming the density as a
function of the imaginary chemical potential, as in Eq. (9).
The numerical procedure applied to compute bk was tested
on the Stefan-Boltzmann gas, and the results are found to
be accurate for Fourier coefficients bk on the order of
∼10−9 or larger. We note that the applicability of the
procedure is limited by the magnitude of the coefficients
rather than their order k.
In Fig. 7 we show the normalized baryon density ImχB1 in

the PQM model calculated in the chiral limit at imaginary
chemical potential and at several temperatures near Tc. The
solid lines represent the density obtained directly from the
PQM thermodynamic potential by differentiating with
respect to the chemical potential, χB1 ¼ ∂ðp=T4Þ=∂μ̂B. Also
shown are the densities reconstructed from the Fourier
coefficients obtained in the PQM model using Eq. (2).
Finally, we also show the reconstructed densities obtained
by using the CEM ansatz (3) applied to the PQM model.
At T ¼ Tc, the densities coincide, as is expected from

the smooth behavior of the density. However, at T=Tc ¼
1.2 (blue solid curve), the chiral phase boundary, shown in
Fig. 7, appears as a kink at θB=π ≃ 0.88. While the kink is
reproduced by the density reconstructed from the Fourier

σ
π

π

FIG. 5. The chiral order parameter in the PQM model for
several values of the pion mass. The temperature is normalized by
the (pseudo)critical temperature TpcðmπÞ, for each value of the
pion mass. In the chiral limit, Tpcðmπ ¼ 0Þ≡ Tc.

2In this particular case, χσ yields an unusually small transition
temperature owing to the sigma-meson mass being much lighter
than that of the pion.

3See also Ref. [46], where different forms of the Polyakov loop
potential UðΦ;Φ�Þ were explored.
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coefficients, the CEM ansatz yields a smooth, analytic
function. This is expected, since the CEM Fourier coef-
ficients do not capture the power-law behavior of the
higher-order coefficients, which is needed to reproduce
the singularity.
At T=Tc ¼ 1.4, the density does not vanish at θB ¼ π.

This, together with the fact that the density is an odd
function of θB that exhibits the Roberge-Weiss periodicity,
implies that it must be discontinuous at this point. The
discontinuity is a manifestation of the first-order Roberge-
Weiss transition [39].
Since sinðkθBÞ vanishes at θB ¼ π for any integer k, the

density reconstructed from a finite number of terms in the
Fourier series (2) must also vanish at θB ¼ π. We note that
the density reconstructed from the CEM coefficients shows
a stronger deviation near θB ¼ π. Moreover, even the
closed form expression (19) for the resummed CEM

Fourier series does not reproduce the discontinuity in the
density for λ < 1, i.e., T < ∞. Thus, we expect significant
differences between high-order bk and bCEMk at temper-
atures beyond TRW. In the following, we explore the
structure of the Fourier coefficients bk in more detail.
At temperatures significantly below Tc, the PQM model

exhibits statistical confinement. Consequently there is an
oscillatory dependence of the thermodynamic potential on
the imaginary baryon chemical potential, with ΔΩðT; θÞ ∼
cosð3θqÞ ¼ cos θB [46], as in the hadron resonance gas.
Therefore the density is, to a good approximation, that of a
classical Boltzmann gas, ImχB1 ∼ sin θB, with small correc-
tions from quantum statistics and interactions. This, in turn,
implies that the higher-order Fourier coefficients are
strongly suppressed, as in the CEM. Our results confirm
this expectation up to T=Tc ≤ 0.9 for Fourier coefficients
of order k < 9. Owing to the numerical limitations men-
tioned above, coefficients of higher order, i.e., k≳ 10,
cannot be computed reliably in this temperature range,
within the present scheme.
Given the results on the signature of the Roberge-Weiss

transition in the Fourier series, one may expect that the
chiral critical line at real values of the baryon chemical
potential [51–53] could also contribute significantly to the
high-order Fourier coefficients. However, contributions to
the Fourier coefficients from singularities located at real μB
are exponentially suppressed [36], i.e., Δbk ∼ e−kjReμ̂Bj.
This leads to an exponential suppression also of the
contribution from the thermal branch points discussed in
Sec. II B for nonzero fermion masses, with Δbk ∼ e−km.
From general scaling considerations one finds that at

T ¼ Tc and at large k, mean-field criticality leads to an
asymptotic dependence of bk ∼ 1=k4 [36]. However, since
in this case the integration contour, except for the point
θB ¼ 0, lies in the chirally broken phase, a major con-
tribution to the Fourier coefficients is due to massive
fermion degrees of freedom. Consequently, the initial

FIG. 7. The imaginary part of the baryon density at imaginary
chemical potential in the chiral limit. Solid lines are obtained by
differentiating the pressure with respect to μ̂B. The dashed lines
represent the density reconstructed from the Fourier series and the
dashed-dotted lines denote the density reconstructed from the
Fourier coefficients obtained using the CEM ansatz.

FIG. 6. Contour maps for dðσ=fπÞ=dT in the T − θB plane. The left, middle and right panels correspond to the vanishing, physical and
heavy pion mass cases, respectively.
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k-dependence of the Fourier coefficients is exponential,
while the contribution of the critical point θB is fairly small,
implying that the power law is visible only at very large k.
Figure 8 shows bk around T ¼ Tc ¼ 228.256 MeV.

Here we have multiplied bk by k4 in order to highlight
the large k behavior of the Fourier coefficients. One
observes a rapid suppression of bk with increasing order
below and at Tc, in line with a substantial contribution of
massive degrees of freedom to the baryon density. Thus, at
temperatures T ≤ Tc, the density is saturated by the first
few Fourier coefficients. Consequently, the CEM ansatz is
able to reproduce the baryon density at T ¼ Tc, as shown in
Fig. 7, although the model does not yield the correct
asymptotic behavior of the Fourier coefficients. Moreover,
owing to the dominant contribution of massive degrees of
freedom, it is extremely difficult, if not impossible, to
reliably extract the asymptotic 1=k4 behavior of the
coefficients in numerical calculations.
At a temperature slightly above Tc, we find that bk

exhibits oscillations, with a 1=k2 dependence superim-
posed, as shown in the inset in Fig. 8 for T ¼ 229 MeV.
This characteristic dependence on k is expected at temper-
atures between the critical temperature at μB ¼ 0, Tc, and
the Roberge-Weiss temperature TRW. In this temperature
range, the critical point is located on the imaginary μ axis
(see Fig. 10). It follows that the Fourier coefficients take the
asymptotic form A sinðkθcÞ=k2 [36], where θc ¼ Imμc=T is
the critical value of the baryon chemical potential. Indeed,
a fit of the oscillatory dependence on k shown in Fig. 8
yields θc ¼ 0.421, in perfect agreement with the location of
the critical point at T ¼ 229 MeV.
The expectation that the oscillation frequency depends

on the location of the singularity is confirmed by the
behavior of bk at higher temperatures. In Fig. 9 we show the
Fourier coefficients at T=Tc ¼ 1.1, 1.2, and 1.3. Here we

have multiplied bk by ð−1Þk−1. The additional phase
changes the frequency of the oscillation from θc to π − θc
and thus yields oscillations that are more easily discernible.
This is because it is difficult to identify a frequency
larger than π=2 on the discrete k grid. The lines show fits
with the functional form A sin½kðπ − θcÞ�. Also shown in
Fig. 9 are fits where a contribution of the regular part of
the baryon density, outside the critical region, is included:
CK2ðakÞ=kþ A sin½kðπ − θcÞ�. Here K2ðxÞ denotes the
modified Bessel function of the second kind. The values
obtained for θc ¼ 2.15, 2.77, and 3.063 are in agreement
with the location of the chiral critical point for the
corresponding temperature. For instance, θc ¼ 2.77 at
T=Tc ¼ 1.2 yields θc=π ¼ 0.88, which is the position of
the kink in the density in Fig. 7.
The increase of θc with temperature is a consequence of

the shape of the phase boundary (see Fig. 6), which shifts to

b

FIG. 8. Fourier coefficients k4bk in the chiral limit at temper-
atures near Tc. The inset shows k2bk at a temperature slightly
above Tc, T ¼ 229 MeV. The solid line represents a fit with
A sinðkθcÞ, as discussed in the text.

T/Tc=1.1, Chiral Limit

T/Tc=1.2, Chiral Limit

T/Tc=1.3, Chiral Limit

0.069sin[k(π-2.15)]

0.11sin[(π-2.77)k]

0.25sin[(π-3.063)k]
b

k-
1

b
k-

1
b

k-
1

FIG. 9. Fourier coefficients of the PQM model in the chiral
limit at T=Tc ¼ 1.1 (top), 1.2 (middle), and 1.3 (bottom). The
solid lines show a fit with A sin½ðπ − θcÞk�.
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larger values of θ with increasing temperature. We con-
clude that the high-order Fourier coefficients carry infor-
mation on the chiral phase transition at imaginary values of
the baryon chemical potential.

C. Fourier coefficients at nonzero pion masses

For nonzero pion masses, the chiral symmetry is explic-
itly broken, implying that the chiral transition is of the
crossover type and that the analytic properties of the baryon
density in the complex chemical potential plane are
modified. Specifically, there is a shift of the chiral critical
point from the real or imaginary axis into the complex
chemical potential plane [52,53], as illustrated in Fig. 10.
Owing to the real part of the chemical potential at the
singularity, the high-order Fourier coefficients exhibit
exponential damping in addition to the power-law scaling
and oscillatory behavior found in the chiral limit for
temperatures above Tpc [36].
The resulting Fourier coefficients for temperatures near

the crossover temperature Tpc are shown in Fig. 11. The
upper panel shows the results for a small pion mass,
mπ ¼ 0.1mphys

π . At T ¼ Tpc, we find an oscillatory behav-
ior of k4bk, accompanied with a slow damping of the
amplitude. A comparison with temperatures slightly above
and below Tpc shows that the oscillation frequency
increases with temperature, while the damping of the
amplitude is reduced with temperature. This observation
is in qualitative agreement with the temperature depend-
ence of the location of the singularity in the complex
chemical potential plane, shown schematically in Fig. 10.
We note that, given the limited range in k available

(k≲ 50), one cannot distinguish between a fit with a
function proportional to e−ak=k2 with large a from one
proportional to e−ak=k4 and small a. Nevertheless, these
results clearly demonstrate the sensitivity of the Fourier
coefficients to small changes in temperature and pion mass
and thus to chiral criticality.
In the lower panel of Fig. 11, we show the Fourier

coefficients for a somewhat heavier pion mass, equal to
0.5mphys

π . Here the temperature dependence of the oscil-
lation frequency is reduced. This is expected, since the
relevant energy scale, the pion mass, is now large compared
to the few MeV change in the temperature. Nevertheless,
the qualitative behavior of the oscillations as a function of
temperature is still consistent with the expected motion of
the singularity in the complex chemical potential plane.
Thus, the frequency increases and the damping of the
amplitude weakens with increasing temperature.
Unlike the critical temperature in the chiral limit, the

pseudocritical temperature Tpc is not clearly distinguished
by a sudden change in the properties of the Fourier
components bk. This is a rather natural consequence of
the shift of the singularity into the complex chemical
potential plane, indicated in Fig. 10. As the temperature

is increased and passes Tpc, the motion of the singularity in
the complex plane leads to a slow increase of the oscillation
frequency and a smooth reduction of the exponential
damping of the amplitude.

FIG. 10. Schematic view of the singularities in the complex
chemical potential plane (first quadrant only). The arrows
indicate the direction each singularity moves when the temper-
ature is increased.

Light mπ, T=228MeV, ×5

Tpc(χσ)=229MeV

229MeV
230MeV, ×0.2

230MeV
231MeV

mπ/2, T=229MeV

Tpc(χσ)=230MeV

FIG. 11. The Fourier coefficients k4bk at mπ ¼ 0.1mphysical
π

(upper panel) and at 0.5mphys
π (lower panel) for temperatures near

Tpc. In the lower panel, the results at T ¼ 228 and 229 MeV have
been multiplied by the factors 5 and 0.2, respectively.
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As in Fig. 9, we show in Fig. 12 the Fourier coefficients
multiplied by the factor ð−1Þk−1k2 at T=Tpc ¼ 1.1, 1.2, and
1.3. In order to fit the large k dependence of the coefficients
bk, we introduce an exponential damping factor of the form

e−ak, as well as a regular part. The temperature dependence
of the oscillation frequency and the damping factor is again
consistent with the expectations deduced from Fig. 10.
A comparison of the results for small pion masses with

those obtained in the chiral limit shows that the higher-
order Fourier coefficients are exponentially damped by the
explicit breaking of chiral symmetry. Therefore, it is a
quantitative question whether chiral criticality can be
identified in the Fourier coefficients also for larger pion
masses. In order to address this issue, we present the
Fourier coefficients obtained in the PQM model for the
physical and for a heavy pion mass in Fig. 13.
As illustrated in Fig. 5, in the mean-field approximation

the PQM model exhibits a rather rapid chiral crossover
transition for a pion mass equal to the physical one, while
LQCD yields a smoother transition at the physical point
[54,55]. Therefore, a mean-field calculation with a larger
pion mass, somewhere between the physical and the heavy
pion mass employed here, may be more relevant for a
comparison with lattice results.
In the left panel of Fig. 13 we show k4bk for physical

(squares) and heavy (circles) pion masses at T ¼ Tpc. For a
physical pion mass, the behavior is qualitatively similar to
that shown in the lower panel of Fig. 11.
We note that the sign structure of the Fourier coefficients

differs from the alternating signs of the LQCD results (see
Fig. 1 and Ref. [40]). As indicated above, the oscillation
frequency depends on the location of the contributing
singularities in the complex chemical potential plane, in
particular on their imaginary parts, as well as on the strength
of the individual contributions. Thus, the sign structure of the
Fourier components is determined by an interplay between
the chiral singularity and, e.g., the thermal branch point.
Consequently, the staggered sign structure seen in the LQCD
results at T ¼ Tpc may be due to noncritical physics, not
captured by the PQM model.
The oscillations lead to deviations from a pure expo-

nential damping of the magnitude of the Fourier coeffi-
cients, as shown in the inset of the left panel of Fig. 13,
while for the heavy pion mass, the oscillations are almost
completely washed out by the strong damping.
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FIG. 12. Same as Fig. 9, but for the light pion mass.

FIG. 13. The Fourier coefficients bk for physical and heavy pion masses in the PQMmodel. From left to right, the results are shown for
T=Tpc ¼ 1.0, 1.1, and 1.2, respectively. The insets show the magnitude of jbkj on a logarithmic scale.
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In the middle and center panels of Fig. 13 we show
ð−1Þk−1k2bk at T=Tpc ¼ 1.1 and 1.2. The additional phase
factor compared to the left panel removes the dominant
oscillation to a large extent and hence yields clearer plots.
At 1.1Tpc, almost all points are at positive values, with a
few exceptions for the physical pion mass. Moreover, at
1.2Tpc the sign changes are completely removed by the
phase factor. This implies that the staggered sign structure
of the LQCD results on the first four Fourier coefficients
[40] is reproduced at temperatures somewhat above the
pseudocritical temperature Tpc.
As shown in the insets in the middle and right panels, we

indeed find an exponential damping of the magnitude of bk
for the heavy pion mass for k larger than 3 or 4. At
T ¼ 1.2Tpc, a small amplitude, low-frequency residual
oscillation, left after removing the dominant one with
the phase factor ð−1Þk−1, would be difficult to recognize,
owing to the fast exponential damping. Nevertheless, the
shoulder around k ∼ 10–20 for the physical pion mass (see
inset) may be the signature of such an oscillation.
From the above discussion, it is clear that the location of

the singularity associated with the chiral transition in the
complex chemical potential plane is reflected in character-
istic k-dependencies of the Fourier coefficients bk.
However, the presence of other singularities, which inter-
fere with the chiral one, and the exponential damping of the
Fourier coefficients for physical pion masses make the
analysis less clear cut.

D. The effect of the Roberge-Weiss
transition on the Fourier coefficients

Irrespective of the value of the pion mass, the Roberge-
Weiss transition appears at T ≥ TRW. It is a first-order
transition, which ends at T ¼ TRW. Assuming that the RW
end point is a second-order critical point, one finds that the
leading contribution to the high-order Fourier coefficients
at T ¼ TRW is of the form bk ∼ ð−1Þk−1k−ð1þ1=δÞ [36],
where δ is the critical exponent associated with the external
field strength in the Zð2Þ universality class. In Fig. 14 we
show the Fourier coefficients at T ¼ TRW for the physical
value of the pion mass. We find that the coefficients bk
indeed follow a power-law decay with the exponent 4=3,
consistent with δ ¼ 3 in the mean-field approximation. In
order to illustrate the sensitivity, we also display bk at T
slightly below and slightly above TRW. The inset shows that
the deviation from the k−4=3 behavior at the slightly
different temperatures is substantial for k > 10. We also
note that, in the chiral limit, we find a deviation from the
k−4=3 scaling. We attribute this to the contribution from the
chiral phase boundary, which is located close to the RW
end point.
At temperatures above TRW, the density is discontinuous

at θB ¼ π, implying that the Fourier coefficients take the
asymptotic form [36] bk ∼ ð−1Þk−1=k. This is confirmed by

Fig. 15, where we plot jkbkj for T=Tpc ¼ 1.5. The
asymptotic value of kbk is given by ð2=πÞImχB1 ðT; iπÞ
and thus directly connected with the discontinuity in the
density at the Roberge-Weiss transition [36].
For comparison we also show the Fourier coefficients

obtained using the CEM scheme in Fig. 15. Clearly, the
CEM ansatz does not reproduce the asymptotic behavior of
the coefficients related with the RW transition, as antici-
pated in the discussion of Fig. 7, in Sec. III B. Thus, the
CEM ansatz cannot account for the Roberge-Weiss tran-
sition, irrespective of the value of the pion mass.
Although these results are obtained in a particular model,

the qualitative features are of more general validity, since
they are directly linked to the Roberge-Weiss transition.

E. Temperature dependence of low-order coefficients

A crossover or a true phase transition may also be
signaled by the temperature dependence of the Fourier

FIG. 14. Fourier coefficients near T ¼ TRW for the physical pion
mass. In the inset the coefficients multiplied by k4=3 are shown.

FIG. 15. The Fourier coefficients jbkj for a temperature above
TRW calculated in the PQM model and in CEM. The dashed-
dotted horizontal lines indicate the expected asymptotic value,
which is determined by the discontinuity in the density.
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coefficients. In Fig. 16 we show the bk, up to k ¼ 5, as
functions of temperature for physical and heavy pion
masses. For comparison we also show the coefficients
obtained using the CEM ansatz.
For the physical pion mass, the chiral crossover tran-

sition is reflected already in the lowest-order coefficients
through the oscillations of bk for temperatures near Tpc, as
shown in the upper right panel. On the other hand, for a
heavy pion mass this oscillatory behavior is suppressed,
owing to the stronger smoothening. The coefficients
obtained using the CEM ansatz do not exhibit any
oscillatory behavior and show substantial deviations from
the PQM results with increasing temperature.
These results indicate that already at order k ≥ 2, the

Fourier expansion coefficients may exhibit a nontrivial
temperature dependence in the crossover region. We note
that the Fourier coefficients obtained in LQCD do not seem
to oscillate as functions of temperature [40]. However, as
discussed in Sec. III C, the interplay between critical and
noncritical physics, and consequently the sign structure of
the Fourier coefficients, depends on the location and
relative strength of the singularities, which may be different
in the model and in QCD. Consequently, we expect that
oscillations of the Fourier coefficients in the crossover
region will appear also in LQCD calculations, when the
location of the chiral singularity approaches the origin of

the complex μ-plane, i.e., for pion masses smaller than the
physical value (cf. Fig. 10).

F. Reconstructing susceptibilities from bk
The characteristic behavior of the Fourier coefficients bk

is reflected also in the baryon number fluctuations. Using
Eq. (10), the cumulants at μB ¼ 0 can be obtained by using
the sum

χB2n ¼
Xkmax

k¼1

k2n−1bk: ð29Þ

Formally the sum should be extended to infinite order but,
provided bk decreases sufficiently fast with k, the series
converges and the summation may be truncated at some
moderate value kmax.
We find that for n ≤ 8 the baryon number cumulants χB2n

computed using Eq. (29) reproduce those obtained directly
by taking derivatives of the pressure χBn ¼ ∂nðp=T4Þ=∂μ̂nB
for temperatures up to T=Tpc ≤ 1.1–1.3. For higher tem-
peratures it is numerically difficult to obtain reliable results
for the coefficients bk at sufficiently high order to reach
agreement. We note that there is an intrinsic problem in
calculating higher-order cumulants using the Fourier
expansion at temperatures above TRW, owing to the slow

FIG. 16. The Fourier coefficients bk in the PQMmodel as functions of temperature. Solid lines show the PQMmodel results, while the
dashed lines are constructed using the CEM ansatz. The upper and lower figures show the physical and heavy pion mass cases,
respectively. In order to improve readability, each bk is multiplied with a factor 5k−1.
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decrease of the bk with k, which is related to the
discontinuity in density at the RW transition.
We first compare the cumulant ratios obtained using the

CEM scheme to those computed directly from derivatives
of the pressure. In the CEM scheme the summation in
Eq. (29) converges, due to the exponential damping of
higher-order terms.
Figure 17 displays the χB4 =χ

B
2 , χB6 =χ

B
2 , and χB8 =χ

B
2

cumulant ratios. As expected from the comparison of
Fourier coefficients, these cumulant ratios are rather well
reproduced in the CEM scheme for a heavy pion mass,
where criticality is strongly suppressed. However, for a
physical value of the pion mass, the CEM scheme does not
reproduce the χB6 =χ

B
2 and χB8 =χ

B
2 cumulant ratios,4 which are

sensitive probes of the chiral crossover transition [15].
Although the CEM scheme roughly reproduces the sign
structure of the cumulant ratios, it clearly fails to capture
the location of sign changes and the magnitude of the
fluctuations.

The reason for these differences between the cumulants
of the PQM model and those obtained in the CEM scheme
can be traced back to the asymptotic behavior of the Fourier
coefficients. In Fig. 18 we show the higher-order cumulants
computed at T ¼ Tpc. Since each derivative with respect to
the chemical potential brings one power of k in Eq. (29), the
higher-order cumulants are more sensitive to the higher-
order coefficients.5

In Fig. 18 we show the χBn for n ¼ 4; 6 and 8 as functions
of the upper limit of the summation kmax in Eq. (29). For a
very heavy pion mass, there is almost no difference
between χBn computed using the Fourier coefficients of
the PQMmodel and those obtained using the CEM scheme.
This is due to the rapid decrease of the higher-order
coefficients bk: substantial differences between the CEM
and the true Fourier coefficients appear only at large k.
Since these are small, they do not contribute significantly to
the cumulants, as indicated, e.g., by the rapid convergence
of χB8 , shown in Fig. 18.
There are, however, large differences between cumulants

of the PQM model and those of the CEM scheme for a
physical pion mass. This is due to the higher-order
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FIG. 17. The ratio of the fourth- (left), sixth- (middle) and eighth-order (right) baryon number cumulants to the second-order one,
calculated in the PQM model and using the CEM ansatz for different pion masses.
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4Note that strictly speaking a mean-field calculation does not
yield the correct critical behavior, which leads to divergences in
χB6 and χB8 in the chiral limit. However, with a small explicit
symmetry breaking term, the mean-field approximation yields
baryon number cumulants that are in qualitative agreement with
the expected behavior.

5We note that for cumulants, where the highest power of k in
the corresponding Fourier coefficient, bkk2n−1, is a non-negative
integer, the Fourier series diverges due to δ-functions or deriv-
atives thereof at the integration boundaries, θB ¼ �π.
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coefficients, which in this case contribute substantially to
the χBn . While the CEM cumulants converge rapidly with k,
the convergence of the PQM model results is much slower.
In the latter, the asymptotic values of χB6 and χB8 are, at
T ¼ Tpc, reached for kmax ¼ 10 and 15, respectively.
The partial sums for the sixth- and eighth-order cumu-

lants shown in Fig. 18 clearly demonstrate that, for a
physical mπ, the negative values of these cumulants at
T ≃ Tpc are by and large due to the large negative values of
b3 and b4 (see the left panel of Fig. 13). With increasing
temperature, the frequency of the oscillation increases,
leading to the staggered sign structure and strong cancel-
lations in the sum of Fourier coefficients in Eq. (29).
Consequently, at temperatures above Tpc, the cumulants χB6
and χB8 rapidly approach zero, as seen in Fig. 17.

IV. CONCLUDING REMARKS

We have discussed the behavior of the Fourier coeffi-
cients of the net baryon density and their relation to the
singularities in the complex chemical potential plane.
We found that the presence of singularities is reflected in

the asymptotic behavior of the Fourier coefficients. This
implies, e.g., that the existence or nonexistence of a phase
transition cannot be settled by examining only a few low-
order terms in the Fourier series. This was illustrated by
considering the cluster expansion model [41]. There, the
authors have introduced the phenomenological prescription
for computing the higher-order Fourier coefficients bn of the
net baryon density in terms of the first two coefficients,
adopted from lattice QCD calculations. Furthermore we
have also introduced the model (FRM) for bn with b1 and b2
taken as input parameters from LQCD. In both models, it
was demonstrated that knowledge of the first four bn’s is not
sufficient to draw any conclusion on criticality. Moreover,
considering the analytic structure of CEM we have shown
explicitly that the Fourier series of this model can be
resummed and expressed by the polylogarithm functions
which havewell-defined analytic structure. In contrast to the
expectation in Ref. [41], this excludes explicitly in CEMany
information on the QCD phase transition.
In order to explore the influence of singularities asso-

ciated with the chiral phase transition on the Fourier
coefficients, we employed the PQM model as a low-energy
effective approximation to QCD.
We then showed that the large-order behavior of the

Fourier coefficients exhibits characteristic oscillations and

exponential damping, due to the imaginary and real parts of
the chiral singularity, respectively. Consequently, in the
chiral limit, the Fourier coefficients at temperatures T ≤ Tc
show only an exponential decay, while at T > Tc they
exhibit a power-law decay superimposed on oscillations,
whose frequency reflects the imaginary baryon chemical
potential at the location of the critical point. As the pion
mass is increased, the critical behavior is weakened because
the singularity is removed from the imaginary axis and thus
gains a larger real part, resulting in a stronger damping of
the Fourier coefficients. Moreover, we have shown that
both the Roberge-Weiss transition and the corresponding
end point give rise to characteristic power-law decays of the
Fourier coefficients.
Based on the characteristics of the Fourier coefficients,

we discussed the implications for the higher-order net
baryon number cumulants. We pointed out that the sig-
nature of the chiral crossover transition in the net baryon
number cumulants [15], the sign change around Tpc, is
related to the oscillatory behavior of Fourier coefficients
induced by the chiral branch-point singularity in the
complex chemical potential plane.
Our results indicate that the Fourier coefficients provide

valuable information on the QCD phase transitions. Thus,
lattice QCD calculations of these coefficients will improve
our understanding of the phase structure of QCD. General
results on the effect of critical singularities on the Fourier
coefficients of the net baryon number are reported in
Ref. [36].
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