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We consider the construction of operator bases for massless, relativistic quantum field theories, and show
this is equivalent to obtaining the harmonic modes of a physical manifold (the kinematic Grassmannian),
upon which observables have support. This enables us to recast the approach of effective field theory (EFT)
through the lens of harmonic analysis. We explicitly construct harmonics corresponding to low mass
dimension EFT operators.
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I. INTRODUCTION

The approach of effective field theory (EFT) is to
consider all possible contributions to a given physical
observable. Particle scatterings and decays only have
support on a physical manifold where momentum con-
servation and on-shell conditions are satisfied. These
constraints manifest as what are termed equations of
motion (EOM) and integration by parts (IBP) relations
between operators in the EFT, and have been the subject of
extensive study spanning the past few decades [1–8].
In a series of papers [6–8], it was shown that these

constraints are ultimately a consequence of the Poincaré
symmetry of spacetime; this insight enabled a systematic
enumeration of basis elements (i.e., operator counting) in
an EFT. In particular, by considering a larger spacetime
symmetry—that of the conformal group—it was shown the
operator basis naturally consists of conformal primary
operators, which could then be counted using Hilbert series
techniques.
In this paper, we put operator construction on the same

footing as operator enumeration, by detailing the system-
atic construction of the conformal primary operators that
provide a privileged choice of basis for the S-matrix of the
theory (for other approaches to operator basis construction,
see [5,6,8–12]). The presentation is designed to accompany
the paper [13], which considers more generally the entire
operator spectrum (not just Lorentz scalars), as is relevant

for more general correlation functions. This paper also
proceeds more heuristically than [13]—in particular, by
including a number of worked examples—and omits many
mathematical details. We have endeavored to provide
pointers to [13] in the relevant places. We would, however,
like to refer the interested reader to [13] for a reinforced
connection to ideas in conformal field theory (CFT), and
modern (Hamiltonian truncation) nonperturbative methods.
We consider four dimensional relativistic theories of

massless particles, and allow for all particle spins by
working with spinor helicity variables, which encode both
kinematic and helicity information. In thesevariables aUðNÞ
action on the phase space of N particles is revealed, which
generalizes theUð1ÞN ⊂ UðNÞ particle little group scalings.
This symmetry plays a crucial role, first via a duality with the
conformal group SUð2; 2Þ ≃ SOð4; 2Þ that in [13] we term
“conformal-helicity duality,” and second via its symmetry
breaking pattern which, in the case of EFTs, is down to
UðN − 2Þ ×Uð2Þ, identifying the physical manifold as the
Grassmann manifold G2ðCNÞ¼UðNÞ=ðUðN−2Þ×Uð2ÞÞ.
A new picture of EFT emerges—that of harmonic

analysis on the Grassmann manifold. There is a tight
analogy with the harmonic analysis of a sphere: functions
f ¼ fðx; y; zÞ, with coordinates subject to the constraint
x2 þ y2 þ z2 ¼ 1, can be expanded in terms of spherical
harmonics on the sphere,f ¼ P

l;mclmYlm. Aswewill see, in
the EFT case the (Lorentz scalar) N-particle Hilbert space
involving particles of any spin—subject to the constraints
p2
i ¼ 0 and

P
ip

μ
i ¼ Pμ—lives on the Grassmannmanifold;

it follows that the natural basis for the operators in the theory
are the harmonics of this manifold.
For the case of the sphere, harmonic polynomials in x, y

and z are annihilated by the Laplacian, ∇2; these form a
basis of spherical harmonics when restricted to the sphere.
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For the EFT case, we will construct harmonic polynomials
in spinor variables which are annihilated by a generalized
Laplacian operator, K, that turns out to be the special
conformal generator.
The paper has the following structure. In Sec. II we detail

the construction of the EFT harmonics, presenting the main
result from [13] and providing additional heuristic moti-
vation. In Sec. III we use this result to explicitly construct
low-lying harmonics thereby providing EFT bases at low
mass dimension. Section IV concludes.

II. CONSTRUCTING EFT HARMONICS

In this section, we proceed to construct the operator basis,
which follows from constructing operators which interpolate
asymptotic states in the Hilbert space of the theory via the
operator-state correspondence. Before detailing this con-
struction, we remind the reader of the role of these states in
the S-matrix, the calculation of which is the goal of EFT.
EFT quantifies all possible S-matrix elements between

an jini state in a multiparticle Fock space and the vacuum,

h0jSjini: ð1Þ
We consider massless asymptotic particle states1 labeled by
kinematic (three momenta), helicity, and possibly some
internal quantum numbers. Moreover, we consider multi-
particle states that are built from distinguishable particles,
deferring a discussion on exchange symmetry to Sec. IV.
We encode the kinematic information using spinor

helicity variables,

pμ
i ðσ̄ _aaÞμ ¼ λ̃ _ai λ

ia; λ̃ _ai ¼ �ðλiaÞ�; ð2Þ
with a; _a ¼ 1, 2 the usual Lorentz indices and i ¼ 1;…; N
a particle, or flavor, index [raised on λ and lowered on λ̃ to
anticipate the UðNÞ action], and the � is for positive/
negative energies. Then S-matrix elements take the form

h0jSjλ1;λ̃1;h1;…;λN;λ̃N;hNi¼fðfλi;λ̃igÞδð4Þ
�XN

i¼1

λ̃ _ai λ
ia

�
;

ð3Þ
where fðfλi; λ̃igÞ is a Lorentz scalar function of the spinor
variables. In Eq. (3) we labeled states in the Fock space
with spinors to encode the kinematic information, and with
helicities hi. In these variables, Lorentz invariant phase
space is written as

dΦN ¼
YN
i¼1

d4piδ
þðp2

i Þ ¼
YN
i¼1

d2λid2λ̃i
VolðUð1ÞÞ ; ð4Þ

where δþðp2
i Þ ¼ δðp2

i Þθðp0Þ and the volume of the little
group VolðUð1ÞÞ ¼ 2π.
A typical way to think of EFT is as a theory defined by a

Lagrangian containing a tower of operators; a trivial
application of Dyson’s formula shows that these interpolate
the asymptotic states and lead to contact interactions at
leading order in Dyson’s formula. Said another way, the
construction of an EFT basis, taking into account EOM and
IBP, follows from the standard introduction of local
operators as products of interpolating fields—see [8] for
a detailed discussion on this point. Note that in using
spinors, we automatically take into account the EOM (i.e.,
the momenta are on shell). The fields are required to
transform under Poincaré in the way dictated by the helicity
of the asymptotic state. For example, λa transforms in the
ðj1; j2Þ ¼ ð1

2
; 0Þ representation (rep) and interpolates a

negative helicity fermion ψL; λ̃ _aλ̃
_b transforms in the

(0,1) rep and interpolates a positive helicity massless
spin-1 state [the field-strength operator FR ¼ 1

2
ðF þ iF̃Þ

in spinor variables]; pairs of λ̃ _aλa imply a derivative acting
on the interpolating field in the operator. In other words,

F _a _b
R ¼

Z
d2λd2λ̃

VolðUð1ÞÞ ðλ̃
_aλ̃

_be
i
2
λa λ̃ _axa _aa† þ H:c:Þ; ð5Þ

etc. In this way, f transforms under the asymptotic particle
little groups with the correct helicity weight.
For the purpose of constructing a basis of operators for

the EFT, it is natural to consider the kinematic configura-
tion where all particles are incoming with positive energy,
carrying total (nonzero) momentum P [13]. This is because
operators in a free field theory can be identified with the
states in the Hilbert space of that theory via the state-
operator correspondence. States are formed by operators
acting on the vacuum—∶OðPÞ∶j0i, where OðPÞ is the
Fourier transform of OðxÞ and the operator is normal
ordered.2 In ∶OðPÞ∶j0i only the positive energy pieces
contribute [e.g., the creation operator part in Eq. (5)]; for
Lorentz scalar operators this results in a polynomial
fOðλ; λ̃Þ constrained to the Grassmann manifold, G2ðCNÞ
(or for operators with spin, to the Stiefel manifold [13]).
Note that the terms in ∶OðPÞ∶ involving annihilation
operators can always be unambiguously recovered from
the polynomial fO by appropriate continuation of spinors
from positive to negative energy.3

1Massive states can be described via two massless states [up to
an SUð2Þ little group redundancy], see e.g., [14]; we will leave
extensions in this direction to future work.

2The completeness of these states can be established for both
free and interacting conformal field theories [15].

3Said another way, operators OðxÞ in free theories are poly-
nomials in fields and their derivatives from which—upon plug-
ging in mode decompositions for the fields like in Eq. (5)—one
finds polynomials fOðλ; λ̃Þ. We are only stating the unsurprising
fact that this map is invertible; given fOðλ; λ̃Þ, one can unam-
biguously construct the associated position space polynomial in
fields and their derivatives.
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To make the above explicit, we proceed to analyze the
geometry. We first write the spinors as

�
λ11 λ21 � � � λN1

λ12 λ22 � � � λN2

�
¼

�
u

v

�
: ð6Þ

In this way one sees that the vectors u and v define a
2-plane; under Lorentz transformations u and v rotate
within the plane so that, modulo these transformations,
Lorentz invariant phase space is described as the set of
2-planes that intersect the origin in CN , which defines
G2ðCNÞ. A more general manifold is obtained if one does
not mod out by Lorentz rotations [13]—this case is most
easily analyzed by considering the breaking of the UðNÞ
symmetry (under which u and v transform as fundamen-
tals) down to UðN − 2Þ from the constraint that the spinors
carry net momentum P,

P _aa ¼
� juj2 u† · v

v† · u jvj2
�
: ð7Þ

The manifold that the coset UðNÞ=UðN − 2Þ defines is
known as the Stiefel manifold.
Working in the center of mass frame, P _aa ¼Mdiagð1;1Þ,

and using theUðNÞ action, under which Eq. (7) is invariant,
to set

�
u

v

�
¼

ffiffiffiffiffi
M

p �
1 0 0 � � � 0

0 1 0 � � � 0

�
: ð8Þ

The remainingUðN − 2Þ freedom is manifest in this frame,
acting on theN − 2 columns of zeros in the above equation.
Let us now consider the Uð2Þ ≃ SUð2Þ × Uð1Þ that acts on
the first two columns of the matrix on the rhs. The diagonal
combination of this SUð2Þ together with the SUð2Þ ⊂
SLð2;CÞ enacting Lorentz rotations further preserves the
above matrix; therefore, for Lorentz invariant states, it can
be further factored out. The remaining Uð1Þ is an overall
phase ðu; vÞT → eiαðu; vÞT ; for cases when the state has
zero total helicity [see below, Eq. (14)], this too can be
factored out; the resulting geometry is identified with the
coset UðNÞ=ðUðN − 2Þ ×Uð2ÞÞ, which is the Grassmann
manifold.4

Returning to the analogy with the sphere where
the Laplacian ∇2 in essence forms an adjoint to jrj2, we
construct the adjoint operator to P _aa as

K _aa ¼ −
XN
i¼1

∂
∂λ̃ _ai

∂
∂λia ; ð9Þ

which is the generator of special conformal transformations
in spinor variables. The harmonic modes of the Grassmann
manifold are those annihilated by K; they are thus
identified with primary conformal operators, and we there-
fore turn to constructing such harmonic polynomials.

A. Harmonics from Young diagrams

Let us build basis polynomials out of n λs and ñ λ̃s, at
fixed N ≥ 2. Because the polynomials are Lorentz scalars,
n and ñ must be even, with the spinors contracted as

½j1j2�…½jñ−1jñ�hi1i2i…hin−1ini; ð10Þ

where we use bracket notation hiji ¼ λiaλja, ½ij� ¼ λ̃i _aλ̃
_a
j ,

and where the indices i1…in; j1…jñ are (unspecified as
yet) particle indices.
We consider raised particle number indices on λ as UðNÞ

indices, such that λia transforms under SLð2;CÞ × UðNÞ as
spinor × fundamental. Similarly, λ̃ _ai transforms as (the
complex conjugate representation) spinor × antifundamen-
tal. That is, the indices i1 to in in Eq. (10) can be interpreted
as (raised) UðNÞ indices, and the indices j1 to jñ can be
interpreted as (lowered) conjugate UðNÞ indices. The latter
can be raised using the epsilon tensor,

½j1j2�ϵj1j2k1…kN−2…½jñ−1jñ�ϵjñ−1jñl1…lN−2hi1i2i…hin−1ini;
ð11Þ

with summation over all j indices.
The key result of [13] is that the basis polynomials

furnish a particular representation of UðNÞ, labeled by
eigenvalues n and ñ. Equivalently one can label by mass
dimension Δ, and helicity h,5

Δ ¼ 1

2
ðnþ ñÞ þ N; ð12Þ

h ¼ 1

2
ðn − ñÞ: ð13Þ

Finite dimensional representations of UðNÞ are in one-
to-one correspondence with Young diagrams—see e.g.,
[16]. That is, the Young diagrams encode the symmetriza-
tion pattern to be applied to the indices in Eq. (11), to form
a UðNÞ irreducible representation. The particular Young
diagram that renders Eq. (11) a harmonic mode of the

4For the case of nonzero total helicity, states transform
under this phase, and the resulting Grassmann manifold is
SUðNÞ=SðUðN − 2Þ × Uð2ÞÞ. This total helicity is interesting
in that it is the diagonal Uð1Þ in the UðNÞ ≃ SUðNÞ × Uð1Þ and
could equally have been associated to the conformal group
Uð2; 2Þ ≃ SUð2; 2Þ × Uð1Þ [13]. While there remain physical
ramifications to fully understand in these points, we nevertheless
stress that the algebraic construction of operators elucidated in
this work is blind to these nuanced details.

5To provide a translation to the notation used in [13], here
n ¼ l1 þ l2 and ñ ¼ l̃1 þ l̃2 in the Lorentz scalar case where
l1 ¼ l2 and l̃1 ¼ l̃2. We note that more general non-Lorentz-
scalar operators are further labeled by spin eigenvalues, j1 and j2.
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Grassmannian is given in Fig. 1. The indices k1…kN−2 in
Eq. (11) are associated with the first column which is
shaded blue (to indicate it corresponds to λ̃ indices raised
with an epsilon tensor); the indices l1…lN−2 in Eq. (11) are
associated with the rightmost blue column; the indices i1, i2
with the leftmost unshaded column; and, the indices in−1; in
with the final column:

A basis for the UðNÞ rep is supplied by semistandard
Young tableaux, as discussed in the next subsection. For
now, we want to reflect upon why it is that this represen-
tation is primary.
To begin to understand this result, let us start by

considering holomorphic operators—that is, functions
consisting purely of λs. These are obviously primary
(annihilated by K). We consider basis functions that are
polynomials in a fixed number n of λs. These λ carry two
indices, λia. A simple but important observation is that if a
symmetrization pattern is applied to one index, the other
index automatically inherits this pattern. For example,

λiaλjb þ ði ↔ jÞ ¼ λiaλjb þ λjaλib; ð14Þ

is a symmetrization in particle indices i and j, but the
resulting expression is also symmetric in a and b. Similarly,

λiaλjb − ði ↔ jÞ ¼ λiaλjb − λjaλib; ð15Þ

antisymmetrizes in i and j; the antisymmetry is inherited by
a and b as well. This works for general symmetrization

patterns that are encoded by the Young diagrams. So, when
a polynomial in n λs is organized into a singlet represen-
tation of SLð2;CÞ—corresponding to a Young diagram
with n=2 boxes in the first row and n=2 boxes in the second
row—the UðNÞ indices inherit the exact same symmetri-
zation pattern,

ð16Þ
Note that this implies thatUðNÞ representations correspond-
ing to Young diagrams with more than two rows—i.e., that
are antisymmetrized on more than two indices—can never
be constructed, e.g., λiaλjbλkc þ ðanti-sym in i; j; kÞ ¼ 0,
for all a, b, c.
The above considerations apply to antiholomorphic basis

functions in ñ λ̃s: again, theUðNÞ representation is dictated
by the symmetrization pattern on the Lorentz indices such
that the functions are Lorentz scalars,

ð17Þ

where we used a barred Young diagram to denote the
conjugate UðNÞ representation; in the last equality we
redrew this as the ϵ tensor conjugated diagram.
Now we turn to the nonholomorphic case, concerning n

λs and ñ λ̃s. Such operators only appear for N ≥ 4, which
reflects the familiar fact that Mandelstam invariants are
trivial for N ≤ 3 [13]. The λs and λ̃s separately have their
SLð2;CÞ indices symmetrized into the Lorentz scalar
patterns as in the holomorphic and antiholomorphic cases
above; again the UðNÞ indices and conjugate UðNÞ indices
will inherit the same pattern. What is different this time, is
that now the resulting UðNÞ representation is reducible,

FIG. 1. Young diagram for the harmonic modes of the Grass-
mannian.
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ð18Þ

ð19Þ

In the last equality, the UðNÞ tensor decomposition is
indicated, displaying only the leading term; this term
coincides with the Young diagram in Fig. 1 and renders
the polynomial harmonic, which we prove at the end of this
section. This term is leading in the sense that it is the only
UðNÞ representation in the decomposition that does not
contain an overall factor of momentum, P, and thus the
only primary operator/ harmonic mode in the decomposi-
tion. We now turn to proving this.
The familiar diagrammatic “box placing” rules for

carrying out tensor decompositions with Young diagrams
(Littlewood-Richardson rules, again, see e.g., [16]) can be
applied to the product in Eq. (18). The leading term
appearing in Eq. (19) is in fact the simplest representation
obtained using these rules—no white boxes have been
shifted around, and the Young tableaux have been simply
stuck together.
What of the other “…” terms in Eq. (19)? The box

placing rules specify that we end up with a Young diagram
that has either one or two white boxes at the bottom of a
blue box column of length N − 2. For the case of one white
box under a column of N − 2 blue boxes, we can factor a
term in the resulting diagram that has the form

½j1j2�ϵj1j2k1::kN−2hi1j þ ðanti-sym in k1;…; kN−2; i1Þ:

By the antisymmetry, the indices k1;…; kN−2; i1 must be
distinct choices of 1…N (otherwise the antisymmetrization
sets this factor to zero); without loss of generality, we
consider the choice 1;…; N − 1. Each cyclicly related set
of terms in the above anti-sym is proportional (by a sign) to

XN−1

k¼1

½Nk�hkj ¼ ½NjP − ½NN�hNj ¼ ½NjP; ð20Þ

using P ¼ P
N
k¼1 jk�hkj and ½NN� ¼ 0. Equation (20), as

promised, contains a factor of total momentum, P, and thus
the operator is a descendant.
For the case of two white boxes under a column of N − 2

blue boxes, one proceeds similarly: first, we factor a term

½j1j2�ϵj1j2k1::kN−2hi1jhi2j þ ðanti-sym in k1;…; kN−2; i1; i2Þ:

(The spinors hi1j and hi2j could be contracted, hi1i2i; the
below arguments are valid in this case too.) The indices
k1;…; kN−2; i1; i2 are antisymmetrized permutations of the
set 1…N. Evidently, for any fixed value of i2, one can
factor out P as per Eq. (20); in fact, one can easily show that
in summing over the other values of i2, a factor of P2 can be
pulled out overall.
This shows that the additional UðNÞ representations are

descendants, because they have the overall factor of P. We
will return to a proof that the leading Young diagram
Eq. (19) is annihilated by K very shortly, showing that it is
primary, after the introduction of semistandard Young
tableaux.

B. States from semistandard Young tableaux

For a given Young diagram, one can construct the states
of the corresponding UðNÞ representation using semi-
standard Young tableau (SSYT), which we will see
provides the labeling of the little group scaling. We recall
that a SSYT is a filling of the boxes of a Young diagram

CONSTRUCTING EFFECTIVE FIELD THEORIES VIA … PHYS. REV. D 100, 016015 (2019)

016015-5



with the numbers 1 through N (repeated use of a number is
allowed) subject to the following rules:

(i) The numbers along the rows must weakly increase
(i.e., reading from left to right each subsequent number
must be greater than or equal to the previous one).

(ii) The numbers down the columns must strongly
increase (i.e., reading from top to bottom each

subsequent number must be greater than the pre-
vious one).

The number of valid SSYT is equal to the dimension of
the UðNÞ representation. For example, for the eight-
dimensional adjoint representation of Uð3Þ we find eight
SSYT fillings:

For a given SSYT of the Young diagram in Fig. 1, one
easily constructs the basis polynomial in λ and λ̃ using the
diagram symmetrization rules (sym on rows, anti-sym on
columns). It is then straightforward to read off the field
content by the little group scaling for each particle;
equivalently these are the eigenvalues of the Uð1ÞN ⊂
UðNÞ generators. Note that the little group scaling of pairs
of λi, λ̃i cancel; for each such pair one should count a
derivative to the field content of the harmonic/operator;
i.e., λiaλ̃i _a ¼ pi

a _a is the momentum of the ith particle
(a derivative acting on the field for the ith particle).
While each term in the polynomial must scale the same
way under the little group overall, the pairs of λi, λ̃i could
appear (and do appear) for different particle numbers i in
different terms.
We point out that the SSYT fillings will separately

construct harmonics for all possible spins of each external
state. For example, harmonics corresponding to each of the
operators FL1FL2ϕ3, FL1ϕ2FL3

, and ϕ1FL2FL3 will be
included separately. However, it is clear that these operators
are of exactly the same form and can be related to each
other with a simple particle index permutation. We empha-
size we are dealing with all-distinguishable particles, and
that such a permutation is between particle species; it is not
the (anti)symmetrization necessary when to describe indis-
tinguishable particles. We can define a set of reduced SSYT
which mods out such permutations between particle species
with a simple ordering rule:

order on SSYT filling∶ 1s ≥ 2s ≥ � � � ≥ Ns:

That this is true is proven in the Appendix.
As promised, we now return to the proof that all states of

the representation shown in Fig. 1 are annihilated by
K ¼ −

P ∂∂̃. Consider the highest weight state, corre-
sponding to the filling of all the boxes in the first row with
1s, all those in the second row with 2s, etc. Such a state is
trivially annihilated byK: it consists only of polynomials in
the four variables λ1, λ2, λ̃N−1 and λ̃N . The rest of the proof
follows by group theory: since K is a UðNÞ singlet, its
action commutes with the action of the UðNÞ raising and

lowering operators, and as such annihilates all the states in
the representation.
We conclude this section with a discussion on the

orthogonality of the harmonics constructed via the Young
tableaux of Fig. 1, under the phase space measure of
Eq. (4).6 First, operators at differentN are orthogonal due to
the Fock space structure of the Hilbert space. Given the
UðNÞ symmetry of phase space, it is also clear that
UðNÞ representations with different n; ñ are automatically
orthogonal. What of the states within each representation?
The integral over the little group for each individual particle
ensures that states with different eigenvalues of the torus
Uð1ÞN are automatically orthogonal as well. In general,
however, there exist degenerate subspaces where more than
one operator has equal little group eigenvalues (the SSYT
are permutations of each other). In such cases, state
orthogonality is not guaranteed; we postpone discussion
of this point (and details of normalization with respect to
the phase space volume) to a future detailed, systematic
study of the harmonics.

III. EFT SPECTRA AT LOW MASS DIMENSION

It is instructive to work through the construction of
harmonics/operators at low values of n and ñ, i.e., at low
mass dimension, Δ. In the following, we work through
examples that suffice to construct an EFT basis up to mass
dimension six.
The formalism above provides a recipe to perform the

construction:
(1) Write down the Young diagram corresponding to the

choice of n and ñ, as shown in Fig. 1.
(2) Write down all semistandard Young tableau (SSYT)

fillings to construct the UðNÞ states.7
The operators we construct are summarized in Tables I–III.

6For an explicit formulation of phase space in terms of
Grassmannian variables, see [17].

7Alternatively, any other method of constructing the states
could be used, e.g., start with the highest weight state and apply
lowering operators.
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We will highlight the special features of this conformal
basis as we come across them. Of particular importance is
the structure of the harmonics when annihilation by K is
nontrivial. Such a case happens when the corresponding
operator involves derivatives, which is also where IBP
relations come into play; these operators are necessarily
nonholomorphic. Another feature is the grouping of har-
monics/operators with differing field content as states of the
same UðNÞ representation.
Below we normalize the Young tableaux permutations

with a factor 1=k,

k ¼
Y

i∈rows

Y
j∈columns

pi!qj!; ð21Þ

where pi is the number of boxes in the ith row, and qj is the
number of boxes in the jth column of the tableaux.

A. Harmonics of type ðn; ñÞ= ð2; 0Þ, (0, 2)
We begin with harmonics for which ðn; ñÞ ¼ ð2; 0Þ,

(0,2). These are the simplest (nontrivial) harmonics, and

we consider them for all N ≥ 2. The relevant reduced
SSYT are displayed in Table I. They correspond to
operators of field content ϕN−2ψ2

L and ϕN−2ψ2
R, respec-

tively. We reemphasize that we consider distinguishable
particles at this point; the particle index is suppressed in
the Table, but we indicate it explicitly in the following
construction:

ϕ3…ϕNψL1ψL2∶

ð22Þ

ϕ1…ϕN−2ψRN−1ψRN∶

ð23aÞ

¼ ½N − 1N�; ð23bÞ

TABLE I. Reduced SSYT for Lorentz scalar operators of the
form ðn; ñÞ ¼ ð2; 0Þ; ð0; 2Þ for all N ≥ 3.

TABLE II. Reduced SSYT for Lorentz scalar operators with
N ¼ 3, for low values of n, ñ. ξ denotes a spin 3=2 field.
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where in eq. (23a) summation over j1 and j2 is implied.
Putting back in the flavor permutations, there are
NðN − 1Þ=2 SSYT obtained from each of the reduced
ones in Eqs. (22) and (23b). Note that the operators are
conjugate to each other, i.e., L ↔ R in all fields, and are
thus related by switching λ ↔ λ̃, or hi ↔ ½�.

B. Low “frequency” harmonics for N = 3

Next, we fix the number of particles in the harmonic
to be N ¼ 3, and consider harmonics of low n and ñ. The
case N ¼ 3 is special, as the construction given in Fig. 1
does not produce a valid Young tableau when both n and ñ
are nonzero. This reflects the fact that all of the Lorentz
scalar harmonics/operators for N ¼ 3 are holomorphic (or
antiholomorphic). In Table II we consider the cases
ðn; ñÞ ¼ ð4; 0Þ; ð0; 4Þ; ð6; 0Þ; ð0; 6Þ, and show the reduced
SSYT. Note how harmonics with different field content are
grouped into the same UðNÞ representation; for example
the harmonics ϕF2

L and FLψ
2
L both appear as states in the

(4, 0) representation.

The left-handed holomorphic N ¼ 3 operators in Table II are constructed as follows:

ϕ3FL1FL2∶

ð24Þ

FL1ψL2ψL3∶

ð25Þ

ϕ3ξL1ξL2∶

ð26Þ

TABLE III. Reduced SSYT for Lorentz scalar operators with
N ¼ 4, for low values of n, ñ.
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ξL1FL2ψL3∶

ð27Þ

FL1FL2FL3∶

ð28Þ

In the above we made use of the formula λiaλja ¼ −λiaλja. The remaining right-handed holomorphic operators in Table II can
be obtained (up to flavor permutations) by exchanging λ → λ̃, i.e., hiji → ½ij�. However, we work out one case from the
tableaux explicitly, for illustrative purposes,

ψR1ψR2FR3∶

ð29Þ

where in the above summation over j1, j2, j3, j4 is implied.
This is indeed the conjugate of (a flavor permutation
of) Eq. (25).

C. Low “frequency” harmonics for N = 4

As a last class of examples, we consider harmonics
involving N ¼ 4 fields; reduced SSYT for ðn; ñÞ ¼
ð4; 0Þ; ð2; 2Þ; ð0; 4Þ are shown in Table III. There are two
new features evident in the Table that were not present for the
cases considered above. The first feature is that now non-
holomorphic harmonics appear (the middle column). We
will comment on the detailed form of these operators below.
The second feature is that there are distinct harmonics with
the same field content: two copies of the harmonic ψ4

L=ψ
4
R

appear in the ð4; 0Þ=ð0; 4Þ UðNÞ representation, and two
copies of ϕ4D2 appear in the (2,2) representation. These
operators are independent, so it is important that they are
both included; the rules for constructing the reduced SSYT
ensure this happens.
The left-handed holomorphic ones are constructed as

follows [the first two are identical to the operators in
Eqs. (24) and (25), respectively, differing only by the
addition of an extra ϕ field]:

ϕ3ϕ4FL1FL2∶

ð30Þ

ϕ4FL1ψL2ψL3∶

ð31Þ

ψL1ψL2ψL3ψL4∶

ð32Þ
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ψL1ψL2ψL3ψL4∶

ð33Þ

The right-handed holomorphic harmonics in Table III are obtained via conjugation of Eqs. (30)–(33), and so we do not
present their construction explicitly.
Turning finally to the nonholomorphic harmonics, we have

ψL1ψL2ψR3ψR4∶

ð34Þ

ϕ2ϕ3ψL1ψR4D∶

ð35Þ

ϕ1ϕ2ϕ3ϕ4D2∶

ð36Þ
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ϕ1ϕ2ϕ3ϕ4D2∶

ð37Þ

The last three of these have nontrivial annihilation by K.
For example, the harmonic in Eq. (35) with operator
content ϕ2ψLψRD,

XN
i¼1

∂
∂λ̃ _ai

∂
∂λia

�
1

2
ðh13i½34� − h12i½24�Þ

�

¼ 1

2
ðλ1aλ̃ _a4 − λ1aλ̃ _a4Þ ¼ 0: ð38Þ

Using momentum conservation, one could rewrite the
operator Eq. (35) as another equally valid operator basis
element, e.g., simply h13i½34� or h12i½24�, but it is only the
combination ∝ ðh13i½34� − h12i½24�Þ that is a conformal
primary and is annihilated by K as in Eq. (38); it is in this
sense that the harmonics form a privileged basis.

IV. DISCUSSION

The general construction above applies to the distin-
guishable particles case. To take into account exchange
symmetry one must (anti)symmetrize over the identical
(fermionic) bosonic fields in an operator. The particle index
can also be interpreted as a gauge or other symmetry index;
further bookkeeping is required here too. The kinematic
construction detailed here is a necessary first step (and the
above considerations can be easily applied by hand, if not
entirely systematically at present).
To the EFTer, the systematic nature of the construction is

clearly appealing. The automatic orthogonality of (the
majority of operators) at different N and with different
Uð1ÞN eigenvalue of basis elements also has utility:
converting from a UV Lagrangian/other EFT parametriza-
tion is then simple, via a projection

R
dΦNY�Lother. It will

be useful to further study orthogonality in the degenerate
eigenvalue case. It would also be interesting to explore how
this “mathematically singled out” basis fares in phenom-
enological applications.
There is deep structure in the operator basis which

should be explored further. One of the interesting features
is the mixing of different particle species within the same
harmonic (e.g., the columns in Table III)—does this imply
any relation between different phenomenological observ-
ables? We note that these harmonic blocks are the same
grouping as the classes in the nonrenormalization theorems
[18–20], and may shed further light on the structure of EFT
anomalous dimension matrices/amplitude noninterference

[21] results. Of further interest is whether the harmonic
picture presented here sheds further light or provides tools
for studying positivity-type constraints on Wilson coeffi-
cients [22–26]; it would also be interesting to understand
the connection between this natural basis and natural bases
for amplitudes, e.g., partial waves.
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APPENDIX: REDUCED TABLEAUX

When operators are related by simple index permutations
between particle species that do not change the form of the
operator, e.g., FL1FL2ϕ3, FL1ϕ2FL3

, and ϕ1FL2FL3, we
wish to define a rule so as to only consider one of them.
A canonical choice is to keep only operators in which the
fields are helicity ordered, such that those of lower helicity
are assigned lower particle indices. In the example above,
this would be the operator FL1FL2ϕ3. (Right-handed fields
have positive helicity, so if we replace all instances of
L → R in the above example, the canonical choice would
be ϕ1FR2FR3.)
More precisely, an operator is not of this canonical form

if the following is true: there exists a pair of fields in the
operator that has particle index i and j with i < j, but has
helicities satisfying hi > hj. After removing such opera-
tors, we call the remaining set reduced operators. We will
show that the SSYT corresponding to a reduced operator
satisfies

order on SSYT filling∶ 1s ≥ 2s ≥ � � � ≥ Ns: ðA1Þ

Before turning to the proof, note that if hi ¼ hj there is no
notion of a canonical order on i or j in defining a reduced
operator. That is, the set of reduced operators includes
operators related by nontrivial permutations of the indices
between fields of equal helicity. For illustration, we take two
examples from the text. First, consider the SSYT for N ¼ 3,
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ðA2Þ

The corresponding operator has a single field of helicity −1
and two fields of helicity− 1

2
, and it is of reduced form. There

are no nontrivial index permutations between the two
fermions. [The Young tableaux corresponding to this per-
mutation is not semistandard—it would be the filling (1,1),
(3,2).] However, there are index permutations between the
sets of fields to create the operators FL2ψL1ψL3 and
FL3ψL1ψL2, which correspond to SSYT fillings (1,2),
(2,3) and (1,2),(3,3). These two operators are not reduced,
and are discarded by the ordering rule above; indeed, the
SSYT fillings do not satisfy Eq. (A1).
For the second example consider the SSYTs for N ¼ 4,

ðA3Þ

both of which are operators with field content
ψL1ψL2ψL3ψL4 and are related by nontrivial particle index
permutations between particles of equal helicity. Both are
included in the reduced set of operators.8

We now turn to proving that the statement on SSYT in
Eq. (A1) follows for an operator that is of reduced form.
First, consider the holomorphic case. Here, each field of
helicity hi necessitates 2jhij copies of λi in the operator,
which in turn necessitates 2jhij copies of the box i
in the SSYT filling. Since for a reduced operator
jh1j ≥ jh2j ≥ � � � ≥ jhN j, and all helicities hi ≤ 0 in the
holomorphic case, the condition Eq. (A1) immediately
follows.
Next, consider the antiholomorphic case, where all the

helicities hi ≥ 0. A field of helicity hi necessitates 2hi
copies of λ̃i in the operator. Each Lorentz contracted pair of
λ̃i _aλ̃

_a
j necessitates a column in the SSYT of N − 2 blue

boxes filled with the numbers 1 to N, excluding i and j.
Since hN ≥ hN−1 ≥ � � � ≥ h1, the number N will be
excluded in the SSYT more (or equal) times than the
number N − 1, which in turn will be excluded more
(or equal) times than N − 2, etc., and again the condition
Eq. (A1) follows.
For the nonholomorphic case, first let us assume that no

derivatives are present in the operator. In this case, we split
the particles into negative helicity (to which we apply the
same reasoning in the holomorphic case) and into positive
helicity (to which we apply the nonholomorphic reason-
ing), and conclude again that the condition Eq. (A1) holds.
Finally we need to show that derivatives do not change

the counting. A derivative implies a pair λ̃iλi (no sum on i)
in the operator. It is useful to consider the λ̃i as contributing
N − 1 boxes to the SSYT filled with the numbers 1 to N,
excluding i; when it is contracted with a λ̃j, a box j is
further removed. The λi in the pair contributes a (white)
box i . Thus we see that the contribution of λ̃iλi to the SSYT
filling is to add a set ofN boxes that contains one copy each
of the numbers 1 to N. As such, it does not affect the
condition Eq. (A1).
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