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In the present paper, we investigate regularization of the one-loop quantum corrections with infinite
Kaluza-Klein (KK) states and evaluate Casimir vacuum energy from extra dimensions. The extradimen-
sional models always involve the infinite massless or massive Kaluza-Klein states, and therefore, the
regularization of the infinite KK corrections is highly problematic. In order to avoid the ambiguity, we
adopt the proper time integrals and the Riemann zeta function regularization in evaluating the summations
of infinite KK states. In the calculation, we utilize the KK regularization method with exchanging the
infinite summations and the infinite loop integrals. At the same time, we also evaluate the correction by the
dimensional regularization method without exchanging the summations and the loop integrals. Then, we
clearly show that the regularized Casimir corrections from the KK states have the form of ∝ 1=R2 for the
Higgs mass and ∝ 1=R4 for the cosmological constant, where R is the compactification radius. We also
evaluate the Casimir energy in supersymmetric extradimensional models. The contributions from bulk
fermions and bulk bosons are not offset because we choose supersymmetry breaking boundary conditions.
The nonzero supersymmetric Casimir corrections from extra dimensions undoubtedly contribute to the
Higgs mass and the cosmological constant. We conclude that the coefficients of such corrections are
enhanced compared to the case without bulk supersymmetry.
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I. INTRODUCTION

The extra dimension has been discussed for more than
80 years. Famously, Kaluza and Klein [1,2] introduced an
additional compactified dimension and suggested that our
spacetime needs to have more than four dimensions to unify
gravity and classical electrodynamics. Now, there have been
many extradimensional models and theories to consider
various problems of the particle physics. Especially, string
theory [3] is a strong candidate to promise quantum gravity
through seven additional spatial dimensions. In string
theory (or brane-world scenario) we assume that the
compactification scale of the extra dimensions is around
MPlanck ∼ 1019 GeV. Naively, experimental observations of
such extra dimensions are not realistic and we have no
choice to extract constraints indirectly.
However, the hierarchy or naturalness problem [4–7]

strongly circumscribes the possibility of the extradimensional

models. As the most troublesome issues, there have existed
the fine-tuning of theHiggs bosonmass and the cosmological
constant [8]. These dimensional parameters receive quantum
corrections of the ultraviolet (UV) cutoff scale ΛUV [9] and
they quadratically or quartically diverge.1 These divergences
should be regularized as the finite Casimir corrections
depending on the first excited Kaluza-Klein (KK) scale
1=R in the extradimensional models. The Higgs boson mass
or the cosmological constant in the extra dimensional models
is formally corrected from infinite KK states of bulk fields.
The Kaluza-Klein regularization assumes exchanging loop
integrals and summation of all the KK states, and then
regularizes infinite divergences with KK summation using
the zeta function formula. Adopting this method, we can
regularize the infinite KK corrections and clearly obtain finite
values that correspond to the Casimir energy from the extra
dimension. However, the validity of the method is still under
debate [13–23] and the cutoff sensitivity becomes more
unclear.
The main purpose of this paper is to evaluate quantum

radiative corrections for the Higgs mass with infinite KK
states and clarify the Casimir vacuum energy from extra
dimensions. In order to avoid the above ambiguity, in this
paper, we evaluate one-loop quantum corrections from the
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1Many new physics models have been considered [10–12]
until now but there are no obvious solutions.
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extra dimensions with the KK regularization or the dimen-
sional regularization. Then, we clearly show that the
regularized finite corrections correspond to the Casimir
energy from the extra dimensions. The regularized correc-
tions from the KK states have the form of ∝ 1=R2 for the
Higgs mass and ∝ 1=R4 for the cosmological constant
(where R is the compactification radius). The Casimir
corrections can be considered as the quantum effects of
compactified spaces, which is separated from the power-
law divergences derived from the momentum cutoff or the
pole for the dimensional regularization. Finally, we discuss
supersymmetric or nonsupersymmetric Casimir vacuum
energy from the extra dimensions.
The present paper is organized as follows. In Sec. II we

introduce the Casimir energy from quantum zero-point
energy with the Dirichlet boundary condition. We see that
divergences from d-dimensional momentum integrals and
infinite summations of discretized modes are regularized.
In Sec. III we discuss the regularization issues for the Higgs
mass and the cosmological constant in five-dimensional
(5D) models with two boundaries and evaluate the radiative
corrections from all the KK states of a bulk fermion. The
divergences from the summation of KK states are regu-
larized by the analytical continuation of the Riemann zeta
function. However, we clearly show that the finite con-
tributions correspond to the Casimir energy from extra
dimensions. In Sec. IV we consider the case with super-
symmetry (SUSY) and evaluate the Casimir quantum
correction for the Higgs mass and the cosmological
constant. We also discuss the Casimir corrections and
divergent parts in suspersymmetric extra dimension. We
comment on the difference of the treatment of divergent
parts in the KK regularization and the dimensional regu-
larization with SUSY. Finally, in Sec. V we draw the
conclusion of this paper.

II. CASIMIR ENERGY

In this section we introduce the Casimir energy, which is
formally defined as the quantum zero-point energy with the
boundary conditions. The QFT [24] is formally constructed
as an enormously large collection of the quantum harmonic
oscillators. Thus, the vacuum energy with various quantum
fields receives the divergent zero-point energy

Ezero ¼
�1

2

X
spin

X
k

ωk → ∞; ð1Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and m is the masses of the boson

and fermion fields. In principle, the divergent zero-point
quantum corrections can be renormalized by the bare
parameters and one fixes the finite physical parameters
so that they agree with the observations, although the fine-
tuning between the bare parameters and the quantum
corrections would still be serious. In this sense, the QFT

makes no prediction for the physical values of the vacuum
energy or cosmological constant [25] and there exists no
consensus about the reality of the zero-point energy in the
community of the particle physics.
However, the difference of the divergent zero-point

energy ΔEzero has already been recognized to provide
the observable effects. Famously, the Casimir effect [26]
can be described by the zero-point electromagnetic energy
between two parallel conducting plates and has been
experimentally detected [27]. The difference of the diver-
gent zero-point energy with the boundary conditions
becomes finite and physical Casimir energy [28], and
the phenomena have indeed provided an important hint
of this problem.
Now, let us consider a massless scalar field between two

parallel plates to impose the Dirichlet boundary condition,

ϕðz ¼ 0Þ ¼ ϕðz ¼ aÞ ¼ 0: ð2Þ

This boundary condition discretizes the modes k ¼ nπ=a
and the zero-point energy on the condition can be given by

Ezero ¼
1

2

X
k

ωk ¼
1

2

X∞
n¼0

Z
d2k
ð2πÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

�
nπ
a

�
2

s
; ð3Þ

which has some divergences.
Thus, let us adopt so-called zeta function regularization

method using the following mathematical formula,

Z
∞

0

dt
t
t−αe−zt ¼Γð−αÞzα;

Z
ddke−tk

2 ¼
�
π

t

�
d=2

; ð4Þ

where d is the complex dimension of the spacetime and the
left expression is called the proper time integral. Using
these formulas, we can get the following expression,

Ezero¼
1

2

X∞
n¼0

Z
ddk
ð2πÞd

Z
∞

0

dt
t ·Γð−1=2Þ t

−1=2e−tðk2þðnπ=aÞ2Þ

¼−
1

4
ffiffiffi
π

p 1

ð4πÞd=2
X∞
n¼0

Z
∞

0

dt
t
t−1=2−d=2e−tn

2π2=a2 : ð5Þ

Proceeding with the calculation we obtain

Ezero¼−
1

4
ffiffiffi
π

p 1

ð4πÞd=2
�
π

a

�
1þd

Γ
�
−
dþ1

2

�X∞
n¼0

ndþ1

¼−
1

4
ffiffiffi
π

p 1

ð4πÞd=2
�
π

a

�
1þd

Γ
�
−
dþ1

2

�
ζð−d−1Þ: ð6Þ

Now we take analytic continuation to remove the diver-
gences and get the Riemann zeta function,
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Γ
�
z
2

�
ζðzÞπ−z=2 ¼ Γ

�
1 − z
2

�
ζð1 − zÞπ−ð1−zÞ=2: ð7Þ

The quantum zero-point energy on the Dirichlet boundary
condition can be written as follows:

ECasimir ¼ lim
d→2

�
−

1

2dþ2πd=2þ1

1

adþ1
Γ
�
1þ d

2

�
ζð2þ dÞ

�

¼ −
π2

1440 · a3
; ð8Þ

where the zero-point divergences are removed by the
analytic continuation of the zeta function ζðzÞ. The finite
and negative contribution of the zero-point energy becomes
so-called Casimir energy and observable as the attractive
force between two parallel plates at small distances,

FCasimir ¼ −
∂ECasimir

∂a ¼ −
π2

480 · a4
; ð9Þ

where FCasimir is a famous Casimir force per unit area. In
the case of the electromagnetic fields between two parallel
conductive plates, the Casimir force can be given as
FCasimir ¼ −π2=ð240 · a4Þ [26] where we count the two
polarization states of the photon. The Casimir effect has
been confirmed in many experiments [29–31] and strongly
depends on the size, geometry, and topology of the given
boundaries. On the other hand, whether the observations of
the Casimir force prove the reality of the zero-point energy
or not has still been under debate [32] because the Casimir
force can alternatively be computed without invoking the
zero-point electromagnetic energy as the standard pertur-
bative methods of QED [32] like the Lamb shift and the van
der Waals interactions [33–35]. The question of whether
the zero-point energy exists or not is outside the scope of
the present paper. However, the Casimir energy from
geometrical conditions can be definitely defined and
discussed as regards the corrections to the physical param-
eters. From here let us consider Casimir energy from extra
dimensions and discuss its corrections for the Higgs mass
and the cosmological constant.

III. CASIMIR CORRECTIONS
FROM EXTRA DIMENSIONS

In this section, we discuss one-loop quantum corrections
for the Higgs mass and the cosmological constant from the
infinite KK states using the Kaluza-Klein regularization or
the dimensional regularization.

A. Casimir corrections for the Higgs mass
with Kaluza-Klein regularization

The KK regularization is one of the methods to
regularize the divergences from infinite KK states and
assumes the exchange between the loop integrals and the

summation, and regularizes divergences of all the KK states
using the zeta function formula.
Following the literature [13] let us discuss one-loop

corrections for the Higgs mass in 5D models where the
radius of the compactified space is R. The contributions
from bulk fermions to the Higgs mass are expressed as the
infinite summations of those of the nth KK states,

Y2
X∞
n¼−∞

Z
∞

0

d4p
ð2πÞ4

1

p2 þm2
n
; ð10Þ

where Y is the four-dimensional (4D) reduced Yukawa
coupling of each fermionic KK state and assumed to be
universal among different nth KK states. The nth KK mass
eigenvalue is expressed as mn and we assume that the nth
fermionic KK state has the KK mass eigenvalue mn ¼ n

R π.
Now, we utilize the following identities for the proper

time integrals in the Schwinger representation as in the
descriptions of [13],

Z
∞

0

dte−At ¼ 1

A
;

Z
d4pe−p

2t ¼ π2

t2
: ð11Þ

Then, Eq. (10) is rewritten as

Y2

16π2
X∞
n¼−∞

Z
∞

0

dt
t2
e−π

2tn2=R2

: ð12Þ

The above integrals have divergences at t ¼ 0. Now,
we adopt the cutoff regularization method in calculating
the loop integrals. We truncate t by 1=Λ2 at t ¼ 0.
Additionally, we truncate n by the cutoff KK number l
at n ¼ ∞ (by n ¼ −l at n ¼ −∞). Here, we define the
following integral Il;Λ,

Il;Λ ¼
Xl

n¼−l

Z
∞

1=Λ2

dt
t2
e−π

2tn2=R2

: ð13Þ

Since the summation and the integral are finite in the above
expression, we can exchange them safely,

Il;Λ ¼
Z

∞

1=Λ2

dt
Xl

n¼−l

1

t2
e−π

2tn2=R2

: ð14Þ

Next, we can take the limit of l → ∞ when l ≫ ΛR=π in
Eq. (14),

I∞;Λ ¼
Z

∞

1=Λ2

dt
X∞
n¼−∞

1

t2
e−π

2tn2=R2

: ð15Þ

Now, we use the Poisson resummation formula,
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X∞
n¼−∞

e−πn
2x ¼ 1ffiffiffi

x
p

X∞
w¼−∞

e−
πw2
x ; ð16Þ

where w is the winding number of the bulk spacetime.
Then, Eq. (15) becomes

I∞;Λ ¼ Iw¼∞;Λ ¼ Rffiffiffi
π

p
Z

∞

1=Λ2

dtt−
5
2

X∞
w¼−∞

e−
R2
t w

2

¼ Rffiffiffi
π

p
Z

∞

1=Λ2

dtt−
5
2

�
1þ 2

X∞
w¼1

e−
R2
t w

2

�
: ð17Þ

Similarly to the process from Eq. (12) to Eq. (14), we again
exchange the summation and the integral as

Iw¼∞;Λ¼
Rffiffiffi
π

p
�Z

∞

1=Λ2

dtt−
5
2þ2

X∞
w¼1

Z
∞

1=Λ2

dtt−
5
2e−

R2
t w

2

�
: ð18Þ

The first term in the above equation is

2R
3

ffiffiffi
π

p Λ3: ð19Þ

When we take the limit Λ → ∞, the first term diverges
obviously. At the same time, the second term in Eq. (18)
becomes

2Rffiffiffi
π

p
X∞
w¼1

Z
∞

0

dtt−
5
2e−

R2
t w

2 ¼ −
2Rffiffiffi
π

p ·
1

R3

X∞
w¼1

1

w3
·
Z

0

∞
dyy

1
2e−y

¼ 2ffiffiffi
π

p
R2

X∞
w¼1

1

w3
·
Z

∞

0

dyy
1
2e−y

¼ 2ffiffiffi
π

p
R2

ζð3ÞΓ
�
3

2

�
; ð20Þ

where we transformed as y ¼ R2w2=t. Eventually,

Y2

16π2
I∞;∞ ¼ ∞þ Y2

8π
5
2R2

ζð3ÞΓ
�
3

2

�

¼ ∞þ 0.007612114264598318Y2=R2: ð21Þ

The second finite contribution corresponds to the Casimir
energy for the one-loop corrections for the Higgs mass. At
the finite cutoff scale Λ, the contributions from bulk
fermions are expressed as

Y2

16π2
I∞;Λ ¼ Y2

24π
5
2

RΛ3 þ Y2

8π
5
2R2

X∞
w¼1

1

w3

Z
R2Λ2w2

0

dyy
1
2e−y:

ð22Þ

We can easily check that the second term is finite at every
R > 0 or Λ > 0.

B. Casimir corrections for the Higgs mass
with dimensional regularization

However, there remain still some doubtful points in the
method of the KK regularization [13–23]. The important
point is the validity of exchanging the loop integrals and the
KK summation because the infinite integrals and sums
cannot always be exchanged. For instance, in the discus-
sions of the literature [13], the regularized loop integralsRΛ dp by the cutoff regularization and the KK summation
Σ∞
n¼−∞ðor 0Þ truncated by the finite cutoff l of the KK level n

are exchanged. Next, the authors take the limit of Λ; l ¼ ∞
in the exchanged form of the corrections as follows:

X∞
n

Z
∞

0

dp →
Xl

n

Z
Λ

0

dp ¼
Z

Λ

0

dp
Xl

n

→
Z

∞

0

dp
X∞
n

;

ð23Þ
which seems to be correct. However, there is no proof
of the KK regularization that the regularized values before
exchanging and after exchanging are the same. Therefore,
we must carefully check and confirm the validity of the KK
regularization by calculating the KK corrections with
another regularization method.
In order to avoid the above ambiguity of the KK

regularization, we regularize the 4-momentum integrals
by the method of dimensional regularization before sum-
ming all the KK states, following the paper [36]. Now, we
define the proper time integral In as follows:

In ≡
Z

d4p
ð2πÞ4

1

p2 þm2
n

¼
Z

d4p
ð2πÞ4

1

Γð1Þ
Z

∞

0

dtt1−1e−ðp2þm2
nÞt

¼
Z

∞

0

dt
e−m

2
nt

ð4πtÞ4=2

∼ Γ
�
1 −

d
2

�
μ4−d

ð4πÞd=2 ðm
2
nÞ−ð1−d

2
Þðd ∼ 4Þ

∼ Γ
�
1 −

d
2

�
m2

n

ð4πÞd=2
�
m2

n

μ2

�d
2
−2
; ðd ∼ 4Þ; ð24Þ

where μ is the renormalization scale and d is the complex
dimension of the spacetime. We continue Eq. (24) ana-
lytically at d ¼ 4 and rewrite this expression with the
infinitesimal parameter ε ¼ d

2
− 2 as

In ¼ Γðε − 1Þ m2
n

ð4πÞεþ2

�
m2

n

μ2

�
ε

¼
�
−
1

ε
þ γ − 1þ ð� � �ÞεþOðε2Þ

��
mn

4π

�
2
�
4π

μ2

m2
n

�
ε

;

ð25Þ
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where γ ¼ 0.577… is the Euler’s constant. From

�
4π

μ2

m2
n

�
ε

∼ 1þ ε ln

�
4π

μ2

m2
n

�
þOðε2Þ; ð26Þ

In is rewritten as

In ¼
�
mn

4π

�
2
�
−
1

ε
− 1þ γ − ln

�
4π

μ2

m2
n

�

þ ðnegligible termsÞ
�
: ð27Þ

Therefore, If is given as follows:

If ¼ Y2
X∞
n¼−∞

In

¼ Y2
X∞
n¼−∞

�
mn

4π

�
2
�
−
1

ε
− 1þ γ þ ln

�
m2

n

4πμ2

��
: ð28Þ

Now, we adopt the Riemann zeta function regularization
to remove divergences of the quantum corrections,

X∞
n¼−∞

n2 ¼ 0þ 2
X∞
n¼1

n2;

¼ 2ζð−2Þ
¼ 0; ð29Þ

and

X∞
n¼−∞

n2 ln n2 ¼ 0þ 2
X∞
n¼1

n2 ln n2

¼ 4
X∞
n¼1

n2 ln n

¼ −4ζ0ð−2Þ; ð30Þ

where ζ0ðxÞ is the differential of the zeta function ζðxÞ.
Therefore, the KK summed finite correction in Eq. (28)

becomes

If Casimir ¼ −
Y2

4R2
ζ0ð−2Þ

¼ 0.007612114264598319
Y2

R2
; ð31Þ

which corresponds to the Casimir corrections for the Higgs
mass from the KK states of bulk fermions. The value of
Eq. (31) agrees highly accurately with the value of the KK
regularization (21). On the other hand, the pole term in the
expression of Eq. (28),

−
Y2

16π2R2

X∞
n¼−∞

n2 ·
1

ε
; ð32Þ

2 must be treated carefully. If the limit n → ∞ is faster than
the limit ε → 0, the term is exactly 0 by the relation of
Eq. (29). However, when the limit ε → 0 is faster than the
limit n → ∞, the term unavoidably diverges. In the latter
case, this pole term must be renormalized by the bare
parameter. Note that vanishing divergences in the above
regularization have no bearing on the naturalness problem
of the Higgs mass. Famously, the dimensional regulariza-
tion reduces quadratic divergences, but the fine-tuning
problem still exists and it is just appearance [9]. The
infinite KK states exacerbate the problem rather than four-
dimensional theory although the above regularization
procedure hides the cutoff sensitivity.

C. Casimir corrections for the cosmological
constant with Kaluza-Klein regularization

We consider the one-loop quantum corrections for the
cosmological constant in 5D models with bulk fermions
and discuss the Casimir energy from extra dimensions.
First, we evaluate with the Kaluza-Klein regularization.

The zero-point vacuum energy derived from all the KK
states of the bulk fermions is written as

ρzero ¼
1

2

X∞
n¼−∞

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

n

q
; ð33Þ

where mn ¼ π n
R is the mass eigenvalue of the nth level KK

state of the fermion. We use (4) again,

ρzero ¼ −
1

4
ffiffiffi
π

p 1

ð4πÞ3=2
X∞
n¼−∞

Z
∞

0

dtt−3e−
n2

R2
π2t: ð34Þ

Then, we permit the exchange of the infinite sum and the
divergent integral,

ρzero ¼ −
1

32π2

Z
∞

0

dtt−3
X∞
n¼−∞

e−
n2

R2
π2t: ð35Þ

We use the Poissson resummation formula,

2In Ref. [37], a different analysis is made by the dimensional
regularization. In this case, the UV divergences can be isolated
instead of a separate treatment of the KK sum and 4D momentum
integral. They can isolate divergences by exchanging sum and
integral in 5D dimensional regularization (see Appendix A of
[37]), and the divergences are canceled by higher dimensional
operators.
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ρzero ¼ −
1

32π2

Z
∞

0

dtt−3 ·
Rffiffiffiffiffi
πt

p
�
1þ 2

X∞
w¼1

e−
R2
t w

2

�

¼ −
R

32π5=2

Z
∞

0

dtt−7=2
�
1þ 2

X∞
w¼1

e−
R2
t w

2

�
: ð36Þ

Now, we truncate t by the finite cutoff t ¼ 1=Λ2 at t ¼ 0.

ρzero ¼−
R

32π5=2

�Z
∞

1=Λ2

dtt−7=2þ2
X∞
w¼1

Z
∞

1=Λ2

dtt−7=2e−
R2
t w

2

�

¼−
RΛ5

112π5=2
−

R

16π5=2

X∞
w¼1

Z
∞

1=Λ2

dtt−7=2e−
R2
t w

2

: ð37Þ

When we take the limit Λ → ∞,

ρzero ¼ −∞ −
1

16π5=2R4

X∞
w¼1

1

w5

Z
∞

0

dyy3=2e−y

¼ −∞ −
1

16π5=2R4
ζð5ÞΓ

�
5

2

�
: ð38Þ

The second finite term is the Casimir correction for the
vacuum energy and written as

∴ ρCasimir ¼ −0.0049248162891899275=R4: ð39Þ

D. Casimir corrections for the cosmological
constant with dimensional regularization

Second, we evaluate the one-loop quantum corrections
for the cosmological constant in 5D models with the
dimensional regularization.
Let us consider the case of the fourth dimension for

simplicity. Adopting the dimensional regularization, the
quantum corrections of the cosmological constant from the
zero-point energy are given by

ρzero ¼
Ezero

Volume
¼ 1

2

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

¼ m4

64π2

�
ln

�
m2

μ2

�
−
1

ε
− log 4π þ γ −

3

2

�
: ð40Þ

Then, we divide the bare cosmological constant vacuum
term ρΛ to be ρΛ ¼ ρΛðμÞ þ δρΛ, where ρΛ ¼ Λ=8πGN is
defined by the cosmological constant Λ and the Newton’s
constant GN . The counterterm δρΛ is written as

δρΛ ¼ m4

4ð4πÞ2
�
1

ε
þ log 4π − γ

�
; ð41Þ

where we adopt the MS scheme. Absorbing divergences
into the counterterm δρΛ, we obtain the following renor-
malized expression,

ρvacuum ¼ ρΛðμÞ þ δρΛ

þ m4

64π2

�
ln

�
m2

μ2

�
−
1

ε
− log 4π þ γ −

3

2

�

¼ ρΛðμÞ þ
m4

64π2

�
ln
m2

μ2
−
3

2

�
; ð42Þ

where the divergences of the zero-point vacuum energy are
definitely renormalized by the cosmological constant term.
In the standard model (SM) framework, the vacuum energy
density can be written as follows:

ρvacuum ¼ ρΛðμÞþρEWþρQCD

þ
X
i

nim4
i

64π2

�
ln
m4

i

μ2
−
3

2

�
þOðΛ4

UVÞþ �� � ; ð43Þ

where ρEW or ρQCD express the classical vacuum energies
of the electroweak or chiral symmetry breaking. ni and mi
are the number of degrees of freedom and the mass of
the SM particle i, respectively. However, the dark energy
[38–40] as the current physical value of the vacuum energy
is extremely small. The fine-tuning of the vacuum energy is
highly problematic and we have no satisfactory solutions to
derive such an extremely small scale.
Next, we evaluate the quantum corrections for the

cosmological constant in 5D models with bulk fermions.
The zero-point vacuum energy derived from all the KK
states of the bulk fermions is written as

ρzero ¼
1

2

X∞
n¼−∞

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

n

q
; ð44Þ

where mn ¼ π n
R is the mass eigenvalue of the nth level KK

state of the fermion. Then, we rewrite the renormalized
expression of Eq. (42) as

ρvacuum ¼ ρΛðμÞ þ
X∞
n¼−∞

mn
4

64π2

�
ln
mn

2

μ2
−
3

2

�

¼ ρΛðμÞ þ
X∞
n¼−∞

π2n4

64R4

�
ln n2 þ ln

�
π2

μ2R2

�
−
3

2

�
:

ð45Þ

The KK summed term can be evaluated by the Riemann
zeta function regularization,

X∞
n¼−∞

n4 ¼ 0þ 2
X∞
n¼1

1

n−4
¼ 2ζð−4Þ ¼ 0; ð46Þ

and
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X∞
n¼−∞

n4 ln n2 ¼ 0þ 2
X∞
n¼1

n4 ln n2

¼ 4
X∞
n¼1

1

n−4
ln n

¼ −4ζ0ð−4Þ; ð47Þ

where ζ0ðxÞ is the differential of the zeta function ζðxÞ
ðζ0ð−4Þ ¼ 0.00798381). Thus, the KK summed finite
contribution in Eq. (45) becomes

ρCasimir ¼
π2

64R4
· f−4ζ0ð−4Þg

¼ −0.004924816289189928=R2; ð48Þ

which corresponds to the physical Casimir correction from
the extra dimension. The result agrees very precisely (but
not completely equally) with the KK regularization on the
value of the correction (39).

IV. CASIMIR CORRECTIONS FROM
SUPERSYMMETRIC EXTRA DIMENSIONS

Famously, SUSY can in principle remove quadratic or
quartic divergences of the quantum radiative corrections.
However, our real world must break the SUSY and the
Higgs mass receives quadratic divergent corrections up to
the breaking scale. The zero-point energy completely
cancels out in the SUSY case due to its opposite signs
of the boson and fermion. However, supersymmetric
Casimir energy is still nonzero [37,41–43] because the
boundary conditions break the SUSY. As previously dis-
cussed in Sec. III, the quantum corrections from extra
dimensions correspond to the Casimir energy, and there-
fore, the SUSY cannot reduce the Casimir quantum
corrections from the infinite KK states of bulk fields.

A. Supersymmetric Casimir corrections for the
Higgs mass with Kaluza-Klein regularization

Next, we consider bulk supersymmetry and discuss
bosonic contributions additionally. The bosonic contribu-
tions are written as [13]

g2
Z

d4p
ð2πÞ4

1

p2 þm02
n
; ð49Þ

where g is the 4D reduced coupling of the bulk SUSY
multiplet and the Higgs boson, and it is assumed to be
universal among different KK bosonic and fermionic states.
The bosonic KK mass eigenvalues are expressed as m0

n.
Now, we impose the boundary conditions for the bosonic
KK modes to have the SUSY breaking KK mass eigen-
values m0

n ¼ π
R ðnþ 1

2
Þ. Similarly to Eq. (12),

g2
X∞
n¼−∞

Z
∞

0

dp4

ð2π4Þ
1

p2 þm02
n

¼ g2

16π2
X∞
n¼−∞

Z
∞

0

dt
t2
e−π

2tðnþ1
2
Þ2=R2

: ð50Þ

We define the following integral

Ibl;Λ ¼
Xl

n¼−l

Z
∞

1=Λ2

dt
t2
e−π

2tðnþ1
2
Þ2=R2

: ð51Þ

When we take the limit l → ∞,

Ib∞;Λ ¼
Z

∞

1=Λ2

dt
X∞
n¼−∞

1

t2
e−π

2tðnþ1
2
Þ2=R2

: ð52Þ

The Poisson resummation formula is rewritten as

X∞
n¼−∞

e−πðnþ1
2
Þ2x ¼ 1ffiffiffi

x
p

X∞
w¼−∞

eπiw−π
w2
x

¼ 1ffiffiffi
x

p
X∞
w¼−∞

ð−1Þwe−πw2x : ð53Þ

Then, Eq. (52) becomes

Ib∞;Λ ¼ Ibw¼∞;Λ

¼ Rffiffiffi
π

p
Z

∞

1=Λ2

dtt−
5
2

X∞
w¼−∞

ð−1Þwe−R2
t w

2

¼ Rffiffiffi
π

p
Z

∞

1=Λ2

dtt−
5
2

�
1þ 2

X∞
w¼1

ð−1Þwe−R2
t w

2

�
: ð54Þ

When we take the limit Λ → ∞ and the fermionic
contributions are written as

g2
X∞
n¼−∞

Z
∞

0

dp4

ð2πÞ4
1

p2 þ ðnR πÞ2
; ð55Þ

the finite Casimir correction parts in the contributions from
both fermionic and bosonic modes are summed up as

g2

16π2
·

2ffiffiffi
π

p
R2

X∞
w¼1

1 − ð−1Þw
w3

·
Z

∞

0

dyy
1
2e−y

¼ g2

8π
5
2R2

·
7

4
ζð3ÞΓ

�
3

2

�

¼ 0.013321199963047056g2=R2: ð56Þ

The power-law contributions (∝ RΛ3) are exactly offset by
the bulk supersymmetry, which is broken softly by the
boundary conditions. Because of the boundary conditions,
the Casimir energy appears and its coefficient is enhanced
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compared to the case with only fermionic modes. As later
discussed in Sec. IV, this fact that the Casimir energy is
enhanced with the SUSY is seen in the case of the
dimensional regularization.

B. Supersymmetric Casimir corrections for the
Higgs mass with the dimensional regularization

In this section, we evaluate one-loop corrections for the
Higgs mass from fermionic and bosonic KK modes in 5D
supersymmetric models and clearly discuss the supersym-
metric Casimir corrections from the extra dimensions. We
choose boundary conditions that bulk bosons have SUSY
breaking KK mass eigenvalues, and one-loop contributions
from all the KK states of the bulk boson are written as

g2
Z

d4p
ð2πÞ4

1

p2 þm02
n
; ð57Þ

where m0
n ¼ π

R ðnþ 1
2
Þ. This is calculated by substituting

nþ 1
2
for n in If. To do so, we must evaluate the following

quantities:

X∞
n¼−∞

�
nþ 1

2

�
2

&
X∞
n¼−∞

�
nþ 1

2

�
2

ln

�
nþ 1

2

�
2

: ð58Þ

The first quantity can be exprressed as 0 by Hurvitz zeta
function ζð−2; 1

2
Þ ¼ 0. The second quantity is

X−1
n¼−∞

�
nþ 1

2

�
2

ln

�
nþ 1

2

�
2

þ
X∞
n¼0

�
nþ 1

2

�
2

ln

�
nþ 1

2

�
2

:

ð59Þ

The first term in this expression is

X∞
n¼1

�
n −

1

2

�
2

ln

�
n −

1

2

�
2

¼ 1

4
ln
1

4
þ 9

4
ln
9

4
þ � � � : ð60Þ

This is equal to the second term that is 2ζ0ð−2; 1
2
Þ (the

differential of Hurvitz zeta function). Therefore, the second
quantity in Eq. (58) is 4ζ0ð−2; 1

2
Þ. So the KK summed finite

parts in the bosonic contributions are

IbjKK ¼ g2

ð4RÞ2 · 4ζ
0
�
−2;

1

2

�
¼ g2

4R2
ζ0
�
−2;

1

2

�
: ð61Þ

As we see, the finite Casimir correction parts derived from
the contributions of all the KK states are written as

If − Ib ¼ IfjKK − IbjKK
¼ −

g2

4R2

�
ζ0ð−2Þ − ζ0

�
−2;

1

2

��

¼ 0.013321199963047058g2=R2: ð62Þ

The result agrees highly accurately with the value of the
KK regularization (56).

C. Supersymmetric Casimir corrections
for the cosmological constant with the

Kaluza-Klein regularization

Similarly, the Casimir vacuum energy in 5D super-
symmetric models can be evaluated. First, we calculate
with the Kaluza-Klein regularization. We assume the KK
mass eigenvalues are the same as Sec. IVA. The Casimir
vacuum energy is evaluated as the difference of fermionic
and bosonic contributions,

ρCasimir ¼ −
1

16π5=2R4

X∞
w¼1

1 − ð−1Þw
w5

Z
∞

0

dyy3=2e−y

¼ −
1

16π5=2R4
·
31

16
ζð5ÞΓ

�
5

2

�

¼ −0.009541831560305483=R4: ð63Þ

We can see that the coefficient of the Casimir vacuum
energy is enhanced the same as is the case with the
Higgs mass.

D. Supersymmetric Casimir corrections
for the cosmological constant with the

dimensional regularization

Next, we evaluate the Casimir vacuum energy with
the dimensional regularization. Fermionic and bosonic
contributions are calculated by Eq. (45). The KK
summed corrections are regularized by the zeta function
regularization. Eventually, the Casimir vacuum energy is
evaluated as

ρCasimir ¼
π2

64R4
·

�
−4

�
ζ0ð−4Þ − ζ0

�
−4;

1

2

���

¼ −0.009541831560305485=R4: ð64Þ

The result agrees highly accurately with the value of the
KK regularization (63).
In both the case of the Higgs mass and the vacuum

energy, the infinite summations of the products ofm2
n orm4

n
and the poles 1=ε diverge when we regularize by the
method of the dimensional regularization if the limit ε → 0
is earlier than the limit of n → ∞ even with supersymmetry.
In the cutoff regularization, the corrections for the Casimir
vacuum energy with SUSY are written as
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ρzero¼
1

16R2

X∞
n¼−∞

�
n2−

�
nþ1

2

�
2
�
Λ2
UV

þ π2

64R4

X∞
n¼−∞

�
n4 ln

�
n2

Λ2
UV

�
−
�
nþ1

2

�
4

ln

�
nþ 1

2

ΛUV

�
2
�

þ���: ð65Þ

In this expression, the contributions of Λ4 do not appear
because SUSY is broken softly by the boundary conditions.

V. SUMMARY AND CONCLUSION

In the present paper, we have reinvestigated regulariza-
tion of the one-loop quantum corrections for the Higgs
mass and the cosmological constant in 5D spacetime with
infinite KK states and discussed the Casimir corrections
from extra dimensions. We evaluated the corrections by the
KK regularization and the dimensional regularization. We
found that the Casimir corrections of the KK regularization
and the dimensional regularization match with very high
accuracy, but are not completely the same values. These
subtle differences may be caused by whether the infinite
momentum integrals and the infinite KK summations are
exchanged or not.
We have also evaluated the Casimir corrections in super-

symmetric extradimensional models. The contributions

from bulk fermions and bulk bosons (components of bulk
SUSY multiplets) are not offset because the general boun-
dary conditions break SUSY. The supersymmetric Casimir
corrections from extra dimensions are still nonzero and
undoubtedly contribute to the Higgs mass and the cosmo-
logical constant.
We have also got the result that the coefficients of the

finite Casimir corrections are enhanced a little with bulk
supersymmetry (broken by boundary conditions) compared
to the case with only fermionic modes in the calculations of
both the Higgs boson and the vacuum energy. This fact is
seen when we calculate both with the KK regularization
and the dimensional regularization method.
Furthermore, we have also discussed the regularization

issues of the extra dimension. In the dimensional regulari-
zation, the infinite KK summations of the products of n2 or
n4 and poles 1=ε have divergences that must be renormal-
ized away by the counterterms unlike in the case of the
cutoff regularization where the power-law contributions of
cutoff Λ are offset exactly even with SUSY breaking
boundary conditions.
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