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We have explored how the electrical (σel) and thermal (κ) conductivities in a thermal QCD medium get
affected in weak-momentum anisotropies arising either due to a strong magnetic field or due to asymptotic
expansion in a particular direction. This study, in turn, facilitates to understand the longevity of strong
magnetic field through σel, Lorenz number in Wiedemann-Franz law, and the validity of local equilibrium
by the Knudsen number through κ. We calculate the conductivities by solving the relativistic Boltzmann
transport equation in relaxation-time approximation, where the interactions are incorporated through the
distribution function within the quasiparticle approach at finite T and strong B. However, we also compare
with the noninteracting scenario, which gives unusually large values, thus validating the quasiparticle
description. We have found that both σel and κ get enhanced in a magnetic field-driven anisotropy, but σel
monotonically decreases with the temperature, opposite to the faster increase in the expansion-driven
anisotropy. Whereas κ increases very slowly with the temperature, contrary to its rapid increase in the
expansion-driven anisotropy. Therefore, the conductivities may distinguish the origin of anisotropies. The
above findings are broadly attributed to three factors: the stretching and squeezing of the distribution
function due to the momentum anisotropies generated by the strong magnetic field and asymptotic
expansion, respectively, the dispersion relation and the resulting phase-space factor, the relaxation-time in
the absence and presence of strong magnetic field. Thus, σel extracts the time-dependence of initially
produced strong magnetic field, which expectedly decays slower than in vacuum but the expansion-driven
anisotropy makes the decay faster. The variation in κ transpires that the Knudsen number (Ω) decreases
with the temperature, but the expansion-driven anisotropy reduces its magnitude, and the strong magnetic
field-driven anisotropy raises its value but to less than one, thus the system can still be in local equilibrium
in a range of temperature and magnetic field. Finally, the ratio, κ=σel in Wiedemann-Franz law in magnetic
field-driven anisotropy increases linearly with temperature but its magnitude is smaller than in expansion-
driven anisotropic medium. Thus, the slope, i.e., the Lorenz number can make the distinction between the
anisotropies of different origins.
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I. INTRODUCTION

Relativistic heavy ion experiments at RHIC and LHC
energies create a new state of strongly interacting medium,
known as quark gluon plasma (QGP), and are continuing to
successfully collect the evidences in the form of dilepton
and photon spectra [1–3], anomalous quarkonium suppres-
sion [4–6], elliptic flow [7,8], jet quenching [9–11] etc., for
the existence of QGP. The above mentioned predictions
were made for the simplest possible phenomenological

setting, i.e., fully central collisions, where the baryon
number density is negligible and it is expected that due
to the symmetric configuration of the collision, no strong
magnetic fields are produced. But only a small portion of
heavy ion collisions are truly head-on, most collisions
indeed occur with a finite impact parameter or centrality. As
a result, the two highly charged ions impacting with a
small offset may produce extremely large magnetic fields
reaching between m2

π (≃1018 Gauss) at RHIC to 15 m2
π at

LHC [12].
However, the naive (classical) estimates for the lifetime

of these strong magnetic fields show that they only exist for
a small fraction of the lifetime of QGP [13]. However,
the charge transport properties of QGP may signifi-
cantly extend their lifetime, thus the study of the transport
coefficients, mainly, the electrical conductivity (σel)
becomes essential. Here our motivations are twofold, which
complement each other: first, we wish to revisit σel in an
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isotropic hot QCDmedium to check how long the magnetic
field produced in relativistic heavy ion collision stays
appreciably large, i.e., some sort of time-dependence of
nascent magnetic field. However, the issue about the
longevity of the magnetic field is not yet settled. So
keeping the uncertainties about the exact nature of mag-
netic field in mind, if the external magnetic field still
remains large, the transport properties of the medium can
be significantly affected by the strong magnetic field. Our
second motivation is to quantify the effect on electrical and
thermal (κ) conductivities. Since σel is responsible for the
production of electric current due to the Lenz’s law, its
value becomes vital for the strength of chiral magnetic
effect [14]. Moreover, the electric field in mass asymmetric
collisions has overall a preferred direction, which will
eventually generate a charge asymmetric flow and the
strength of the flow is given by σel [15]. Furthermore, σel is
used as a vital input for many phenomenological applica-
tions in RHIC, LHC etc., such as the emission rate of soft
photons [16]. The effects of magnetic fields on σel for quark
matter have been investigated previously in different
models, such as quenched SU(2) lattice gauge theory
[17], the dilute instanton-liquid model [18], the nonlinear
electromagnetic currents [19,20], axial Hall current [21],
real-time formalism using the diagrammatic method [22],
effective fugacity approach [23] etc.
In ultrarelativistic heavy ion collisions, it is observed that

the suppression of charged particle production gets reduced
while going from central to noncentral Pbþ Pb collisions
[24,25], where strong magnetic field exists too. Therefore,
such strong magnetic field might significantly affect the
production of particles especially the quarks which are
produced within short timescale less than ∼1 fm and can
alter their dynamics too. A comprehensive study on how
the particle production gets influenced by an external
strong magnetic field is nicely depicted in Refs. [26–28].
The motion of quark in strong magnetic field becomes
effectively one dimensional, which in turn enhances the
quark-antiquark attraction and makes it favorable for pair
production and the quark pairs get polarized along the
direction of magnetic field [29]. As a result, one might
expect that the magnetic field might affect the anisotropic
flow of the particles.
As we know already that the external magnetic field

modifies the dispersion relation of a charged particle
(ωi;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
L þ 2njqiBj þm2

i

p
) quantum mechanically,

where the motion along the longitudinal direction (pL)
(with respect to the magnetic field direction) remains
the same as for a free particle and only the motion along
the transverse direction (pT) gets quantized in terms of the
Landau levels (n). In strong magnetic field (SMF) limit
(eB ≫ T2 as well as eB ≫ m2

i ), only the lowest Landau
level (LLL) will be occupied, i.e., pT ≈ 0, and the particle
can only move along the direction of the magnetic field,
resulting an anisotropy in the momentum space, i.e.,

pL ≫ pT . Thus, the anisotropic parameter, ξ ( hp
2
Ti

2hp2
Li
− 1)

comes out to be negative and for a weak-anisotropy
(ξ < 1), the distribution function may be approximated
by stretching the isotropic one along a certain direction
(say, the direction of magnetic field). Thus, to know the
effects of strong magnetic field on conductivities in kinetic
theory approach, an introduction of anisotropy is automati-
cally needed.
Much earlier than the former one, it was envisaged that

the relativistic heavy ion collisions at the initial stage may
induce a momentum anisotropy in the local rest frame of
fireball, due to the asymptotic free expansion of the fireball
in the beam direction compared to its transverse direction
[30,31]. Unlike the previous one, here, pT is greater than
pL; hence, the anisotropy parameter becomes positive.
Therefore, for a weak-anisotropy (ξ < 1), the distribution
of partons can be approximated by squeezing the isotropic
one along a certain direction and its effects on many
phenomenological and theoretical observations have
already been made. For example, the leading-order dilepton
and photon yields get enhanced due to the anisotropic
component [32–35]. Recently, one of us had observed the
effect of this kind of anisotropy on the properties of heavy
quarkonium bound states [36] and the electrical conduc-
tivity [37], where the heavy quarkonia are found to
dissociate earlier than its counterpart in isotropic one
and the electrical conductivity decreases with the increase
of anisotropy. Later its relation with the shear viscosity was
explored in [38]. Besides the abovementioned anisotropies,
the event-by-event fluctuations of heavy ion collisions also
produce the anisotropy, which plays a crucial role in
understanding new phenomena such as the elliptic flow,
the triangular flow [39,40] etc. In fact, the anisotropy
generated by the event-by-event fluctuations also transpires
to the final anisotropic flow angles.
Now we move on to the thermal conductivity (κ), which

is related to the efficiency of the heat flow or the energy
dissipation in a thermal QCD medium. Our intention is
to comment on the range of temperature and possibly,
magnetic field, in which the assumption of local equilib-
rium in hydrodynamics can be validated in terms of
Knudsen number (Ω). The Knudsen number is the ratio
of the mean free path (λ) to the characteristic length of the
system, where λ in turn is related to κ (λ ¼ 3κ=ðvCVÞ).
Similar to the electrical conductivity, we also wish to
explore the effect of strong magnetic field on the thermal
conductivity by calculating it in the presence of weak-
momentum anisotropy caused by the strong magnetic
field. A natural question arises about whether we can
distinguish the anisotropies through the transport coeffi-
cients. Knowing that, we can improve the knowledge on the
transport properties of the medium. This query might be
worthy of investigation.
The electronic contributions of the thermal and electrical

conductivities are not completely independent, rather their
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ratio is equal to the product of Lorenz number (L) and
temperature, widely known asWiedemann-Franz law. In fact,
the ratio, κ=σel has approximately the same value for different
metals at the same temperature. But, it diverges in quasi-
one-dimensional metallic phase with decreasing temperature
[41], reaching a value much larger than that found in
conventional metals nearer to the insulator-metal transition
[42], thermally populated electron-hole plasma in graphene
[43] etc. Recently, the temperature dependence of the Lorenz
number was calculated for the two-flavor quark matter
in Nambu-Jona-Lasinio (NJL) model [44] and for the
strongly interacting QGPmedium [45]. In the metallic phase,
the electronic contribution to thermal conductivity is much
smaller than what would be expected from the Wiedemann-
Franz law, which can be explained in terms of independent
propagation of charges and heat in a strongly correlated
system. However, in this work we intend to observe how the
ratio gets affected due to the presence of an ambient strong
magnetic field, which in turn generates the anisotropy.
In this work, we have evaluated both the conductivities

in kinetic theory approach, where the relativistic Boltzmann
transport equation (RBTE) is employed and is solved in the
relaxation-time approximation (RTA), where, as such, there
is no scope to incorporate the interaction among the
partons.1 We circumvent the problem by incorporating
the interactions among partons through their dispersion
relations, known as quasiparticle model (QPM), in their
distribution functions. The quasiparticle masses are con-
veniently obtained from their respective self-energies,
which, in turn, depend on the temperature and the magnetic
field. Thus, the presence of magnetic field affects both
electrical and thermal conductivities. However, as a base
line, we also compute the conductivities with the current
quark masses (noninteracting), which give unusually large
values, thus motivating us to use the quasiparticle model.
In brief, we have observed that the electrical and thermal

conductivities of the hot QCD medium get enhanced in the
presence of strong magnetic field-driven anisotropy, com-
pared to the counterparts in the expansion-driven aniso-
tropic medium. We have also noticed that the unusually
large values of conductivities in the noninteracting scenario
have been circumvented in the quasiparticle model. As a
corollary, the ratio, κ=σel in a strong magnetic field shows
linear enhancement with the temperature, whose magnitude
and slope are larger than in isotropic medium but smaller
than in expansion-driven anisotropic medium, thus describ-
ing different Lorenz numbers (κ=ðσelTÞ). We have also
observed that the presence of strong magnetic field
makes the Knudsen number larger (but remains less than
one) than its value in the (an)isotropic medium. Therefore,
the transport coefficients and their ratio might help to

distinguish the origin of aforesaid anisotropies in a thermal
medium produced at the initial stage of ultrarelativistic
heavy ion collision. However, in our present attempt, we
are not exploring the anisotropy produced due to the event-
by-event fluctuations.
The present work is organized as follows. In Sec. II, we

have first revisited the electrical conductivity for an
isotropic thermal medium and then proceeded for the
anisotropic thermal mediums due to expansion-induced
and strong magnetic field-induced anisotropies with the
current quark masses. Similarly, in Sec. III we have done
the same for the thermal conductivity. The Wiedemann-
Franz law and the Knudsen number are revisited in Sec. IV
in light of the observations made in Secs. II and III.
In Sec. V, we have introduced the quasiparticle mass in the
presence of both temperature and strong magnetic field and
recomputed the results on electrical and thermal conduc-
tivities, which in turn redefined the Wiedemann-Franz law
and the Knudsen number. Finally, we have concluded our
results and future outlook in Sec. VI.

II. ELECTRICAL CONDUCTIVITY

Transport coefficients such as electrical conductivity and
thermal conductivity of a hot QCD system can be deter-
mined using different models and approaches namely
relativistic Boltzmann transport equation [38,46–48], the
Chapman-Enskog approximation [45,49], the correlator
technique using Green-Kubo formula [18,50,51], and the
lattice simulation [52–54]. However, we will employ the
relativistic Boltzmann transport equation with the relaxa-
tion-time approximation to calculate the electrical conduc-
tivity for both isotropic and anisotropic hot QCD mediums
in Secs. II A and II B, respectively.

A. Electrical conductivity for
an isotropic thermal medium

When an isotropic and hot medium of quarks, anti-
quarks, and gluons in thermal equilibrium is disturbed
infinitesimally by an electric field, an electric current Jμ is
induced, and is given by

Jμ ¼
X
i

qigi

Z
d3p

ð2πÞ3ωi
pμ½δfqi ðx; pÞ þ δfq̄i ðx; pÞ�; ð1Þ

where the summation is over three flavors (u, d, and s)
and qi, gi, and δf

q
i (δf

q̄
i ) are the electric charge, degeneracy

factor, and infinitesimal change in the distribution function
for the quark (antiquark) of ith flavor, respectively.
In our calculations, we will be using δfqi ¼ δfq̄i ¼ δfi,
for zero chemical potential. According to Ohm’s law,
the longitudinal component of the spatial part of four-
current is directly proportional to the external electric field
and the proportionality factor is known as the electrical
conductivity,

1If one can solve RBT equation with the collisional integral
(C½f�), one can then incorporate the interactions through the
matrix element.
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J ¼ σelE: ð2Þ

The infinitesimal change in quark distribution function is
defined as δfi ¼ fi − fisoi , where fisoi is the equilibrium
distribution function in the isotropic medium for ith flavor,

fisoi ¼ 1

eβωi þ 1
; ð3Þ

with ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
. It is possible to obtain δfi from the

relativistic Boltzmann transport equation (RBTE) [55],

pμ ∂fiðx; pÞ
∂xμ þ qiFρσpσ

∂fiðx; pÞ
∂pρ ¼ C½fiðx; pÞ�; ð4Þ

where Fρσ denotes the electromagnetic field strength tensor
and the collision term, C½fiðx; pÞ� in the relaxation-time
approximation is given by

C½fiðx; pÞ� ≃ −
pνuν

τi
δfiðx; pÞ; ð5Þ

where uν is the four-velocity of fluid in the local rest frame
and the relaxation-time (τi) for ith flavor in a thermal
medium is given [56] by

τi ¼
1

5.1Tα2s log ð1=αsÞ½1þ 0.12ð2Ni þ 1Þ� : ð6Þ

To see the response of electric field, we use only ρ ¼ i
and σ ¼ 0 and vice versa, components of the electromag-
netic field strength tensor, i.e., Fi0 ¼ E and F0i ¼ −E in
our calculation, thus the RBTE (4) takes the following
form:

qiE · p
∂fisoi
∂p0

þ qip0E ·
∂fisoi
∂p ¼ −

p0

τi
δfi: ð7Þ

Hence, the infinitesimal disturbance is obtained as

δfi ¼ 2qiτiβ
E · p
ωi

fisoi ð1 − fisoi Þ: ð8Þ

Now substituting the value of δfi in Eq. (1), we obtain the
electrical conductivity for an isotropic thermal medium,

σisoel ¼ 2β

3π2
X
i

giq2i

Z
dp

p4

ω2
i
τifisoi ð1 − fisoi Þ; ð9Þ

which can now be used to show how the magnetic field
varies with time in the isotropic thermal conducting
medium. According to electrodynamics, the magnetic field

created in vacuum due to the spatial variation of the electric
field rapidly changes over time. However, for a medium
with substantial value of electrical conductivity, the
momentary magnetic field would induce an electric current
which ultimately would help to enhance the lifetime of the
strong magnetic field.

B. Electrical conductivity for an
anisotropic thermal medium

Here we will mainly discuss two types of momentum
anisotropies, which may arise in the very early stages of
ultrarelativistic heavy ion collisions. The first one is due to
the preferential flow in the longitudinal direction compared
to the transverse direction, and the second one is due to the
creation of a strong magnetic field. We will first revisit the
former one.

1. Expansion-induced anisotropy

At early times, the QGP created in the heavy ion
collisions experiences larger longitudinal expansion than
the radial expansion and this develops a local momentum
anisotropy. For the weak-momentum anisotropy (ξ < 1) in
a particular direction (say n), the distribution function can
be approximated from the isotropic one [57] as

fanisoex;i ðp;TÞ ¼
1

eβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þξðp·nÞ2þm2

i

p
þ 1

; ð10Þ

which can be expanded in Taylor series, and up to OðξÞ it
takes the following form:

fanisoex;i ¼ fisoi −
ξβðp · nÞ2

2ωi
fisoi ð1 − fisoi Þ: ð11Þ

The anisotropic parameter (ξ) is generically defined in
terms of the transverse and longitudinal components of
momentum as

ξ ¼ hp2
Ti

2hp2
Li

− 1; ð12Þ

where pL ¼ p · n, pT ¼ p − n · ðp · nÞ, p≡ ðp sin θ cosϕ;
p sin θ sinϕ; p cos θÞ, n ¼ ðsin α; 0; cos αÞ, α is the
angle between z-axis and direction of anisotropy,
ðp·nÞ2¼p2cðα;θ;ϕÞ¼p2ðsin2αsin2θcos2ϕþcos2αcos2θþ
sinð2αÞsinθcosθcosϕÞ. For pT ≫ pL, ξ takes positive
value, which explains the removal of particles with a large
momentum component along the n direction due to
the faster longitudinal expansion than the transverse
expansion [30].
Now we are going to observe how the weak-momentum

anisotropy affects the electrical conductivity of the thermal
medium. Thus, after solving the RBTE (4) for the aniso-
tropic distribution function, we get δfi as
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δfi ¼
2τiβqiE · p

ωi

�
fisoi ð1 − fisoi Þ þ ξcðα; θ;ϕÞ

2

×

�
−
βp2

ωi
fisoi ð1 − fisoi Þ þ 2βp2

ωi
fisoi

2ð1 − fisoi Þ

−
p2

ω2
i
fisoi ð1 − fisoi Þ þ fisoi ð1 − fisoi Þ

��
; ð13Þ

which is then substituted in Eq. (1) to yield the expression
of electrical conductivity for an expansion-driven aniso-
tropic medium,

σanisoel;ex ¼ 2β

3π2
X
i

giq2i

Z
dp

p4

ω2
i
τifisoi ð1 − fisoi Þ

−
ξβ2

9π2
X
i

giq2i

Z
dp

p6

ω3
i
τifisoi ð1 − fisoi Þ

þ 2ξβ2

9π2
X
i

giq2i

Z
dp

p6

ω3
i
τifisoi

2ð1 − fisoi Þ

−
ξβ

9π2
X
i

giq2i

Z
dp

p6

ω4
i
τifisoi ð1 − fisoi Þ

þ ξβ

9π2
X
i

giq2i

Z
dp

p4

ω2
i
τifisoi ð1 − fisoi Þ; ð14Þ

where the first term in right-hand side is the electrical
conductivity for an isotropic medium. So in terms of σisoel ,
σanisoel;ex is written as

σanisoel;ex ¼ σisoel − ξ

�
β2

9π2
X
i

giq2i

Z
dp

p6

ω3
i
τifisoi ð1 − fisoi Þ

×

�
1 − 2fisoi þ 1

βωi

�
−

β

9π2
X
i

giq2i

×
Z

dp
p4

ω2
i
τifisoi ð1 − fisoi Þ

�
: ð15Þ

2. Lifespan of magnetic field

Earlier, people had thought that the magnetic field
generated in the heavy ion collision decays instantly.
However, in the presence of transport coefficient such as
electrical conductivity, the lifetime of magnetic field may
be elongated. To reaffirm this, we are going to see the
variation of magnetic field using the value of electrical
conductivity that we have calculated above for both
isotropic and anisotropic mediums.
Thus, for a charged particle moving in x-direction, a

magnetic field will be produced in the perpendicular
direction of the particle trajectory, say z-direction.
According to the Maxwell’s equations, the magnetic field
created along z-direction is expressed, as a function of time
and electrical conductivity [58] for an isotropic medium as

eBiso
medium ¼ e2bσisoel

8πðt − xÞ2 e
−
b2σiso

el
4ðt−xÞ ẑ: ð16Þ

However, for an anisotropic medium, the expression for eB
is not available, so we assumed the same expression by
replacing σisoel → σanisoel;ex , at least, for weak-anisotropy,

eBaniso
medium ¼ e2bσanisoel;ex

8πðt − xÞ2 e
−
b2σaniso

el;ex
4ðt−xÞ ẑ: ð17Þ

For the sake of comparison, the magnetic field produced in
vacuum [58] is given by

eBvacuum ¼ e2bγ

4πfb2 þ γ2ðt − xÞ2g3=2 ẑ; ð18Þ

where b and γ denote the impact parameter and the Lorentz
factor of heavy ion collision, respectively. In Eqs. (16) and
(17), the electrical conductivity is taken as a function of
time through the cooling law, T3 ∝ t−1, where the initial
time and the temperature are set at 0.2 fm and 390 MeV,
respectively. From Figs. 1 and 2, which are plotted at x ¼ 0
for the center of mass energies 200 GeV and 2.76 TeV,
respectively, we see that the magnetic field in the isotropic
conducting medium decays very slowly as compared to the
vacuum. At initial time, the fluctuation of magnetic field in
a thermal medium is quite high; however, after certain time,
it gradually stabilizes.
However, for a conducting medium in the presence of

weak-momentum anisotropy (ξ ¼ 0.6), we have observed
(from Fig. 3) that the lifetime of existence of a nearly stable
magnetic field in the anisotropic thermal medium is slightly
less than in the isotropic thermal medium, whereas at initial
time, this difference in the variations of magnetic field in
two mediums is less illustrious.
As we can see from Figs 1–3, the decay of magnetic field

with time is very slow in conducting medium and it nearly
remains strong. So, it is plausible to explore the effect of
strong magnetic field through an anisotropy, created by it.

3. Strong magnetic field-induced anisotropy

In the presence of a magnetic field, the quark momentum
p gets decomposed into the transverse and longitudinal
components with respect to the direction of magnetic field
(say, 3-direction), hence the dispersion relation for the
quark of ith flavor is modified quantum mechanically into

ωi;nðpLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
L þm2

i þ 2njqiBj
q

; ð19Þ

where n ¼ 0; 1; 2; � � � are the quantum numbers to specify
the Landau levels. But in the SMF limit (eB ≫ T2), the
quarks are rarely excited thermally to the higher Landau
levels due to very high energy gap (∼Oð ffiffiffiffiffiffi

eB
p Þ, hence pT

becomes much smaller than pL which results in a
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momentum anisotropy. Thus, unlike the earlier one due to
the asymptotic expansion, the anisotropic parameter, ξ
becomes negative.
Like the earlier case, for weak-anisotropy, the distribu-

tion function for quarks can be approximated from the
isotropic one, except that here lower momentum particles
are effectively removed from the distribution due to the
negative value of ξ,

fanisoB;i ðp0;TÞ ¼ 1

eβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02þξðp0·nÞ2þm2

i

p
þ 1

: ð20Þ

Denoting the momentum vector in strong magnetic field
limit (pT ¼ 0) by p0 ¼ ð0; 0; p3Þ and assuming the direc-
tion of anisotropy along the direction of magnetic field, the
above distribution function, for very small ξ, can be
expanded as
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FIG. 2. Comparison between the variations of magnetic field with time in an isotropic thermal conducting medium and in a vacuum for
two values of the impact parameter (a) b ¼ 4 fm and (b) b ¼ 7 fm, with the Lorentz factor γ ¼ 1380 for Pbþ Pb collision at LHC
energy

ffiffiffi
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p ¼ 2.76 TeV and Z ¼ 82 (lead nucleus).
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FIG. 1. Comparison between the variations of magnetic field with time in an isotropic thermal conducting medium and in a vacuum for
two values of the impact parameter (a) b ¼ 4 fm and (b) b ¼ 7 fm, with the Lorentz factor γ ¼ 100 for Auþ Au collision at RHIC
energy

ffiffiffi
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p ¼ 200 GeV and Z ¼ 79 (gold nucleus).
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fanisoB;i ¼ fξ¼0
i −

ξβp2
3

2ωi
fξ¼0
i ð1 − fξ¼0

i Þ; ð21Þ

where ξ-independent part of the quark distribution function
in the presence of strong magnetic field is given by

fξ¼0
i ¼ 1

eβωi þ 1
; ð22Þ

where ωi will be given from the dispersion relation (19) in
SMF limit (n ¼ 0) after identifying pL with p3, i.e.,
ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

i

p
.

In the SMF limit, the quark momentum is assumed to be
purely longitudinal [59–61]. Therefore, when the thermal
medium is disturbed infinitesimally by an electric field, an
electromagnetic current is induced in the longitudinal
direction (3-direction) as

J3 ¼
X
i

qigi

Z
d3p

ð2πÞ3ωi
p3½δfqi ðx̃; p̃Þ þ δfq̄i ðx̃; p̃Þ�; ð23Þ

unlike J in the absence of magnetic field. In Eq. (23), we
have used new notations relevant to the calculations in SMF
limit as x̃ ¼ ðx0; 0; 0; x3Þ and p̃ ¼ ðp0; 0; 0; p3Þ. In this
case, the electrical conductivity can be obtained from the
third component of current in Ohm’s law,

J3 ¼ σelE3: ð24Þ

Due to dimensional reduction in the presence of a strong
magnetic field, the density of states in two spatial directions
perpendicular to the direction of magnetic field can be

written in terms of jqiBj and as a result, the (integration)
phase factor gets modified [62,63] as

Z
d3p
ð2πÞ3 →

jqiBj
2π

Z
dp3

2π
: ð25Þ

The infinitesimal perturbation due to the action of
external magnetic field is obtained from the relativistic
Boltzmann transport equation in RTA, in conjunction with
the strong magnetic field limit,

p0
∂fi
∂x0 þp3

∂fi
∂x3 þ qiF03p3

∂fi
∂p0

þ qiF30p0

∂fi
∂p3

¼ −
p0

τBi
δfi;

ð26Þ

where τBi denotes the relaxation-time for quark in the
presence of strong magnetic field. In the LLL approxima-
tion, the momentum-dependent relaxation-time is calcu-
lated [64] as

τBi ¼ ωiðeβωi − 1Þ
αsC2m2

i ðeβωi þ 1Þ
�
1

��Z
dp0

3

1

ω0
iðeβω0

i þ 1Þ

��
;

ð27Þ

where C2 is the Casimir factor and the primed notations are
used for antiquark. Now solving the RBTE (26) for the
anisotropic distribution function, we obtain δfi as

δfi ¼
2τBi βqiE3p3

ωi

�
fξ¼0
i ð1 − fξ¼0

i Þ

þ ξ

2

�
−
βp2

3

ωi
fξ¼0
i ð1 − fξ¼0

i Þ þ 2βp2
3

ωi
fξ¼0
i

2ð1 − fξ¼0
i Þ

−
p2
3

ω2
i
fξ¼0
i ð1 − fξ¼0

i Þ þ fξ¼0
i ð1 − fξ¼0

i Þ
��

: ð28Þ

After substituting δfi in Eq. (23), we get the electrical
conductivity in the presence of a strong magnetic field-
driven anisotropy,

σanisoel;B ¼ β

π2
X
i

giq2i jqiBj
Z

dp3

p2
3

ω2
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ

−
ξβ2

2π2
X
i

giq2i jqiBj
Z

dp3

p4
3

ω3
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ

×

�
1 − 2fξ¼0

i þ 1

βωi

�
þ ξβ

2π2
X
i

giq2i jqiBj

×
Z

dp3

p2
3

ω2
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ; ð29Þ

which can further be decomposed into

1.2 2.4 3.6 4.8 6 7.2 8.4
t in fm

0.0001

0.001

0.01

0.1
Z

eB
 in

 f
m

-2
σ

el
 [ξ = 0]

σ
el

 [ξ = 0.6]

γ = 100, b = 7 fm

FIG. 3. Comparison between the variations of magnetic
field with time in isotropic and anisotropic thermal conducting
mediums for impact parameter b ¼ 7 fm, Lorentz factor γ ¼ 100,
and Z ¼ 79 (gold nucleus).
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σanisoel;B ¼ σξ¼0
el þ σξ≠0el

¼ σξ¼0
el − ξ

�
β2

2π2
X
i

giq2i jqiBj
Z

dp3

p4
3

ω3
i
τBi f

ξ¼0
i

× ð1 − fξ¼0
i Þ

�
1 − 2fξ¼0

i þ 1

βωi

�

−
β

2π2
X
i

giq2i jqiBj
Z

dp3

p2
3

ω2
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
�
:

ð30Þ

Before analyzing the results on the electrical conduc-
tivity in the presence of anisotropies arising either due to
the expansion or due to the strong magnetic field, we wish
to understand first how the distribution function in an
isotropic medium gets affected in the presence of anisot-
ropies, because, in kinetic theory approach, the conductiv-
ities are mainly affected by the distribution function
embodying the effects of anisotropy, the phase-space factor,
and the relaxation-time. Therefore, we must under-
stand how the ratios, fexaniso=fiso, fBaniso=fiso depend on
the temperature at low and high momenta or vice versa,
which are numerically plotted in Figs. 4 and 5, respectively.
The observations in the above figures can be readily
understood by an order of estimate for the ratios for
weak-momentum anisotropy (ξ < 1) for nearly massless
u quark: fexaniso=fiso ∼ e−c

p
T , fBaniso=fiso ∼ eþc0pT , in both low

and high momentum limits, with the constant, c < c0 < 1.
The crucial negative and positive signs in exponentials arise
due to the positive and negative anisotropic parameters in

expansion-driven and magnetic field-driven cases, respe-
ctively.
Let us start with the variation of fexaniso=fiso with T in low

momentum regime [Fig. 4(a)]. As T increases, p=T
decreases, resulting an increase in fexaniso=fiso due to the
lesser Boltzmann damping and an obvious decrease in
fBaniso=fiso. The slower and relative faster variations are due
to the smaller value of c with respect to c0. For higher
momentum, the variations [in Fig. 4(b)] as well as the
magnitudes of the ratios are more pronounced. The
variations of the ratios with momentum at a fixed temper-
ature [in Figs. 5(a) and 5(b)] are much easier to understand
because the variable (p) in the exponential is proportional
to p=T; hence, the variations become just opposite to the
variation with temperature in Fig. 4.
Before proceeding to discuss the results, it is to be

mentioned that we cannot take arbitrarily large value of
temperature due to the constraint of SMF limit (eB ≫ T2).
For example, while computing the electrical conductivity as a
function of temperature in a magnetic field-driven anisotropy
with a strongmagnetic field,eB ¼ 15m2

π (m2
π ∼ 0.02 GeV2),

the temperature can be increased fromTc up to 0.4GeV. If the
magnetic field becomes even stronger, the temperature can go
higher within the SMF limit.
The above observations on the distribution functions

facilitate to understand the results on the electrical con-
ductivity for a thermal QCD medium with three flavors
(u, d, and s) with their current masses in Fig. 6. For the
isotropic medium (denoted by solid line), σel increases with
the temperature, whereas due to the insertion of weak-
momentum anisotropy (labeled as dotted line), σel gets
slightly decreased because the ratio fexaniso=fiso is always

0.16 0.2 0.24 0.28 0.32 0.36 0.4

T in GeV

0.999

1
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1.002

1.003
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f
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/f
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f
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/f
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QCD with current quark masses, p=0.003 GeV

0.16 0.2 0.24 0.28 0.32 0.36 0.4
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0.1

1
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100
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o/f
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f
ex
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f
B
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/f
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QCD with current quark masses, p=1 GeV

(a) (b)

FIG. 4. Variation of the ratio faniso=fiso with temperature in the presence of momentum anisotropies both due to asymptotic expansion
and strong magnetic field (15 m2

π) at (a) low momentum and (b) high momentum, where the current quark mass has been used.
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less than one for the entire range of temperature [as in
Fig. 4(a)]. On the other hand, the relative magnitude of σel
in magnetic field-driven anisotropic medium (labeled as
dashed-dotted line) becomes very large due to relatively
large ratio, fBaniso=fiso. However, σel increases with T, albeit
the ratio, fBaniso=fiso decreases with temperature (as in
Fig. 4). The decrease in fBaniso=fiso at high temperature
becomes much slower and approaches towards unity, but

the phase-space factor (∼jqiBj) and the relaxation-time in
SMF limit together compensate the minimal decrease in
fBaniso and give an overall increasing trend in σel in the
presence of strong magnetic field. The large value of σel in
the strong magnetic field regime arises due to the large
relaxation-time (τB), because it is inversely proportional to
the square of the mass, where the current quark mass is very
small. Recently, similar results have been found in [22],
where σel is calculated in the diagrammatic method in the
strong magnetic field regime and its large value is due to the
smaller value of the current quark masses. This motivates
us to recalculate the electrical conductivity with the
quasiparticle masses in Sec. VA.

III. THERMAL CONDUCTIVITY

This section is devoted to the determination of the
thermal conductivity of a hot QCD medium using the
relativistic Boltzmann transport equation. In nonrelativistic
case, the heat equation is obtained by the validity of the first
and second laws of thermodynamics, where the flow of heat
is proportional to the temperature gradient and the pro-
portionality factor is called the thermal conductivity. The
heat does not flow directly, but it diffuses, depending on the
internal structure of the medium it travels through.
Similarly, for a relativistic QCD system, the behavior of
heat flow depends on the features of the medium. Thermal
conductivity of a particular medium helps to describe the
heat flow in that medium, and it may leave significant
effects on the hydrodynamic evolution of the systems with
nonzero baryon chemical potential. To see how the heat
flow gets affected, we have calculated thermal conductivity

0 0.2 0.4 0.6 0.8 1
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0.1
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o/f
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QCD with current quark masses, T=0.16 GeV
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o

f
ex
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(a) (b)

FIG. 5. Variation of the ratio faniso=fiso with momentum in the presence of momentum anisotropies both due to asymptotic expansion
and strong magnetic field (15 m2

π) at (a) low temperature and (b) high temperature, where the current quark mass has been used.

0.16 0.2 0.24 0.28 0.32 0.36 0.4
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FIG. 6. Variation of electrical conductivity with temperature in
the presence of momentum anisotropies both due to asymptotic
expansion and strong magnetic field (15 m2

π), where the current
quark masses have been used.
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for both isotropic and anisotropic hot QCD mediums in
Secs. III A and III B, respectively.

A. Thermal conductivity for an isotropic
thermal medium

Heat flow four-vector is defined as the difference
between the energy diffusion and the enthalpy diffusion,

Qμ ¼ ΔμαTαβuβ − hΔμαNα; ð31Þ

where Δμα ¼ gμα − uμuα is the projection operator, h is the
enthalpy per particle which in terms of energy density,
pressure and particle number density is represented as
h ¼ ðεþ PÞ=n, Tαβ denotes the energy-momentum tensor,
and Nα is the particle flow four-vector. Nα and Tαβ are also
known as the first and second moments of the distribution
function, respectively, with the following expressions:

Nα ¼
X
i

2gi

Z
d3p

ð2πÞ3ωi
pαfiðx; pÞ; ð32Þ

Tαβ ¼
X
i

2gi

Z
d3p

ð2πÞ3ωi
pαpβfiðx; pÞ: ð33Þ

It is also possible to obtain the particle number density from
Eq. (32), the energy density and the pressure from Eq. (33)
as n ¼ Nαuα, ε ¼ uαTαβuβ, and P ¼ −ΔαβTαβ=3, respec-
tively. From Eqs. (31)–(33), one can find that in the rest
frame of the heat bath or fluid, heat flow four-vector is
orthogonal to the fluid four-velocity, i.e. ,

Qμuμ ¼ 0: ð34Þ

Thus, in the rest frame of the fluid, the heat flow is purely
spatial and this component of heat flow due to the action of
external disturbances can be written in terms of the non-
equilibrium part of the distribution function as

Q ¼
X
i

2gi

Z
d3p
ð2πÞ3

p
ωi

ðωi − hiÞδfiðx; pÞ: ð35Þ

In order to define the thermal conductivity for a system,
the number of particles in that system must be conserved
and therefore it requires the associated chemical potential to
be nonzero. In the beginning of the Universe and also
in the initial stages of the heavy ion collisions, the value
of chemical potential (μ) is small but nonzero. In the

Navier-Stokes equation, the heat flow is related to the
thermal potential (U ¼ μ=T) [65] as

Qμ ¼ −κ
nT2

εþ P
∇μU

¼ κ

�
∇μT −

T
εþ P

∇μP

�
; ð36Þ

where the coefficient κ is known as the thermal conduc-
tivity and ∇μ ¼ ∂μ − uμuν∂ν is the four-gradient, which, in
the rest frame of the heat bath, i.e., in the local rest frame, is
replaced by ∂j (or ∂=∂xj). Thus, in the local rest frame, the
spatial component of the heat flow is written as

Q ¼ −κ
�∂T
∂x −

T
nh

∂P
∂x

�
: ð37Þ

The thermal conductivity (κ) can be determined by com-
paring Eqs. (35) and (37), so we need to first find δfi. In the
local rest frame, the flow velocity and temperature depend
on the spatial and temporal coordinates, so the distribution
function can be expanded in terms of the gradients of flow
velocity and temperature. Thus, the relativistic Boltzmann
transport equation (4) takes the following form:

pμ∂μT
∂fi
∂T þpμ∂μðpνuνÞ

∂fi
∂p0

þqi

�
F0jpj

∂fi
∂p0

þFj0p0

∂fi
∂pj

�

¼−
pνuν
τi

δfi; ð38Þ

where fi ¼ fisoi þ δfi and p0 ¼ ωi − μi, which, for very
small value of μi, can be approximated as p0 ≈ ωi. After
dropping out the infinitesimal correction to the local
equilibrium distribution function (δfi) from the left-hand
side of Eq. (38) and then using the following partial
derivatives:

∂fisoi
∂T ¼ p0

T2
fisoi ð1 − fisoi Þ; ð39Þ

∂fisoi
∂p0

¼ −
1

T
fisoi ð1 − fisoi Þ; ð40Þ

∂fisoi
∂pj ¼ −

pj

Tp0

fisoi ð1 − fisoi Þ; ð41Þ

we solve Eq. (38) to get the infinitesimal disturbance

δfi¼−
τifisoi ð1−fisoi Þ

p0

�
p0

T2
fp0∂0Tþpj∂jTg−

1

T
fp0∂0p0þpj∂jp0g−

1

T
fp0pν∂0uνþpjpν∂juνg−

2qi
T

E ·p

�

¼−
τifisoi ð1−fisoi Þ

T

�
p0

T
∂0Tþ

1

T
pj∂jTþT∂0

�
μ

T

	
þ T
p0

pj∂j

�
μ

T

	
−pν∂0uν−

pjpν

p0

∂juν−
2qi
p0

E ·p

�
: ð42Þ
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Substituting ∂jðμTÞ ¼ − h
T2 ð∂jT − T

nh ∂jPÞ and using ∂0uν ¼ ∇νP=ðnhÞ from the energy-momentum conservation, we get
the final expression for δfi as

δfi ¼ −
τifisoi ð1 − fisoi Þ

T

�
p0

T
∂0T þ

�
p0 − h
p0

	
pj

T

�
∂jT −

T
nh

∂jP

	
þ T∂0

�
μ

T

	
−
pjpν

p0

∂juν −
2qi
p0

E · p

�
: ð43Þ

After substituting the δfi expression in Eq. (35) and then
comparing it with Eq. (37), we get the thermal conductivity
for the isotropic medium

κiso ¼ β2

3π2
X
i

gi

Z
dp

p4

ω2
i
ðωi − hiÞ2τifisoi ð1 − fisoi Þ: ð44Þ

B. Thermal conductivity for an anisotropic
thermal medium

In this subsection, we will first observe the effects due to
the weak-momentum anisotropy on the thermal conduc-
tivity of hot QCD medium caused by the initial asymptotic
expansion and then by the strong magnetic field as well.

1. Expansion-induced anisotropy

Using the Taylor series expansion of the anisotropic
distribution function (fanisoex;i ) up to the first order in ξ, the
following partial derivatives have been calculated as:

∂fanisoex;i

∂T ¼ p0fisoi ð1 − fisoi Þ
T2

−
ξðp · nÞ2fisoi ð1 − fisoi Þ

2T2p0

×

�
p0

T
− 1 −

2p0fisoi
T

�
; ð45Þ

∂fanisoex;i

∂p0
¼ −

fisoi ð1 − fisoi Þ
T

þ ξðp · nÞ2fisoi ð1 − fisoi Þ
2Tp2

0

×

�
p0

T
þ 1 −

2p0fisoi
T

�
; ð46Þ

∂fanisoex;i

∂pj ¼ −
pjfisoi ð1 − fisoi Þ

Tp0

−
ξpjcðα; θ;ϕÞfisoi ð1 − fisoi Þ

2Tp0

×

�
2 −

p2

p2
0

−
p2

Tp0

þ 2p2fisoi
Tp0

�
; ð47Þ

which are then substituted in Eq. (38) to obtain δfi,

δfi ¼ −
τifisoi ð1 − fisoi Þ

T

�
1 −

ξðp · nÞ2
2p0T

þ ξðp · nÞ2fisoi
p0T

��
p0

T
∂0T þ

�
p0 − hi
p0

	
pj

T

�
∂jT −

T
nhi

∂jP

	

þ T∂0

�
μ

T

	
−
pjpν

p0

∂juν

�
−
τifisoi ð1 − fisoi Þ

T
ξðp · nÞ2
2p2

0

�
p0

T
∂0T þ

�
p0 þ hi

p0

	
pj

T

�
∂jT −

T
nhi

∂jP

	
− T∂0

�
μ

T

	

þ 2pj

nhi
∂jPþ pjpν

p0

∂juν

�
þ 2qiτi

p0T
E · pfisoi ð1 − fisoi Þ

�
1þ ξðp · nÞ2

2p2
0

�
p2
0

p2
− 1 −

p0

T
þ 2p0fisoi

T

��
: ð48Þ

Now substituting the value of δfi in Eq. (35), we find the thermal conductivity for an expansion-driven anisotropic thermal
QCD medium,

κanisoex ¼ β2

3π2
X
i

gi

Z
dp

p4

ω2
i
ðωi − hiÞ2τifisoi ð1 − fisoi Þ þ ξβ2

18π2
X
i

gi

Z
dp

p6

ω4
i
ðω2

i − h2i Þτifisoi ð1 − fisoi Þ

−
ξβ3

18π2
X
i

gi

Z
dp

p6

ω3
i
ðωi − hiÞ2τifisoi ð1 − 2fisoi Þð1 − fisoi Þ; ð49Þ

where the first expression in right-hand side is the thermal conductivity for the isotropic thermal QCD medium. Thus, one
can write κanisoex in terms of κiso as

κanisoex ¼ κiso þ ξ

�
β2

18π2
X
i

gi

Z
dp

p6

ω4
i
ðω2

i − h2i Þτifisoi ð1 − fisoi Þ

−
β3

18π2
X
i

gi

Z
dp

p6

ω3
i
ðωi − hiÞ2τifisoi ð1 − 2fisoi Þð1 − fisoi Þ

�
: ð50Þ
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We are now going to see how the thermal conductivity of
the hot QCD medium gets modified due to the anisotropy
developed by the strong magnetic field.

2. Strong magnetic field-induced anisotropy

The strong magnetic field restricts the dynamics of
quarks to one spatial dimension, i.e., along the direction
of magnetic field. So in the SMF limit, the spatial
component of heat flow gets modified into

Q3 ¼
X
i

gijqiBj
2π2

Z
dp3

p3

ωi
ðωi − hBi Þδfiðx̃; p̃Þ: ð51Þ

Similarly, Eq. (37) takes the following form:

Q3 ¼ −κ
�∂T
∂x3 −

T
nhB

∂P
∂x3

�

¼ κ

�
∂3T −

T
nhB

∂3P

�
; ð52Þ

where hB ¼ ðεþ PÞ=n represents the enthalpy per particle
in a strong magnetic field. For the charged particles in the

SMF limit, the particle number density (n) is obtained from
the following particle flow four-vector:

Nμ ¼
X
i

gijqiBj
2π2

Z
dp3

p̃μ

ωi
fiðx̃; p̃Þ: ð53Þ

The energy density (ε) and the pressure (P) are obtained
from the following energy-momentum tensor:

Tμν ¼
X
i

gijqiBj
2π2

Z
dp3

p̃μp̃ν

ωi
fiðx̃; p̃Þ: ð54Þ

Now in terms of the gradients of flow velocity and
temperature, the RBTE (26) in the presence of a strong
magnetic field can be written as

p̃μ ∂T
∂x̃μ

∂fi
∂T þ p̃μ ∂ðp̃νuνÞ

∂x̃μ
∂fi
∂p0

þ qi

�
F03p3

∂fi
∂p0

þ F30p0

∂fi
∂p3

�
¼ −

p̃νuν
τBi

δfi; ð55Þ

where the variables p̃μ ¼ ðp0; 0; 0; p3Þ and x̃μ ¼ ðx0;
0; 0; x3Þ are suited to the strong magnetic field calculation.
Using the following partial derivatives:

∂fanisoB;i

∂T ¼ p0f
ξ¼0
i ð1 − fξ¼0

i Þ
T2

−
ξp2

3f
ξ¼0
i ð1 − fξ¼0

i Þ
2T2p0

�
p0

T
− 1 −

2p0f
ξ¼0
i

T

�
; ð56Þ

∂fanisoB;i

∂p0
¼ −

fξ¼0
i ð1 − fξ¼0

i Þ
T

þ ξp2
3f

ξ¼0
i ð1 − fξ¼0

i Þ
2Tp2

0

�
p0

T
þ 1 −

2p0f
ξ¼0
i

T

�
; ð57Þ

∂fanisoB;i

∂p3
¼ −

p3fξ¼0
i ð1 − fξ¼0

i Þ
Tp0

−
ξp3fξ¼0

i ð1 − fξ¼0
i Þ

2Tp0

ð58Þ

×

�
2 −

p2
3

p2
0

−
p2
3

Tp0

þ 2p2
3f

ξ¼0
i

Tp0

�
; ð59Þ

we obtain δfi from Eq. (55),

δfi ¼ −
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
T

�
1 −

ξp2
3

2p0T
þ ξp2

3f
ξ¼0
i

p0T

��
p0

T
∂0T þ

�
p0 − hBi

p0

	
p3

T

�
∂3T −

T
nhBi

∂3P

	
þ T∂0

�
μ

T

	
−
p3p̃ν

p0

∂3uν

�

−
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
T

ξp2
3

2p2
0

�
p0

T
∂0T þ

�
p0 þ hBi

p0

	
p3

T

�
∂3T −

T
nhBi

∂3P

	
− T∂0

�
μ

T

	
þ 2p3

nhBi
∂3Pþ p3p̃ν

p0

∂3uν

�

þ 2qiτBi
p0T

E3p3f
ξ¼0
i ð1 − fξ¼0

i Þ
�
1þ ξp2

3

2p2
0

�
p2
0

p2
3

− 1 −
p0

T
þ 2p0f

ξ¼0
i

T

��
: ð60Þ

After substituting δfi in Eq. (51), the thermal conductivity in a strong magnetic field-driven anisotropic medium is
obtained,
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κanisoB ¼ β2

2π2
X
i

gijqiBj
Z

dp3

p2
3

ω2
i
ðωi − hBi Þ2τBi fξ¼0

i ð1 − fξ¼0
i Þ

þ ξβ2

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω4
i
ðω2

i − hBi
2ÞτBi fξ¼0

i ð1 − fξ¼0
i Þ

−
ξβ3

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω3
i
ðωi − hBi Þ2τBi fξ¼0

i ð1 − 2fξ¼0
i Þð1 − fξ¼0

i Þ: ð61Þ

Thus, κanisoB can be rewritten in terms of ξ-independent and ξ-dependent parts as

κanisoB ¼ κξ¼0 þ κξ≠0

¼ κξ¼0 þ ξ

�
β2

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω4
i
ðω2

i − hBi
2ÞτBi fξ¼0

i ð1 − fξ¼0
i Þ

−
β3

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω3
i
ðωi − hBi Þ2τBi fξ¼0

i ð1 − 2fξ¼0
i Þð1 − fξ¼0

i Þ
�
: ð62Þ

Figure 7 depicts how the thermal conductivity varies
with temperature for the isotropic medium and for the
anisotropic mediums due to expansion-driven anisotropy
and strong magnetic field-driven anisotropy. We have
observed that κ for the isotropic medium increases with
the temperature. Similar increasing behavior of κ is also
noticed for the expansion-driven anisotropic medium;
however, its magnitude becomes smaller. If the origin of
anisotropy is strong magnetic field, then the magnitude of κ
becomes unusually large. The above observations on the
thermal conductivity could also be attributed to the

behaviors of respective distribution functions, the phase-
space factor, and the relaxation- time, where the last two
factors are severely affected by the strong magnetic field
only. This again necessitates the incorporation of the
interactions among quarks through the quasiparticle model.

IV. APPLICATIONS

This section is devoted to study how the above behaviors
observed in the electrical and thermal conductivities will
help to understand some specific properties of the medium.
In Sec. IVA, we will observe how the interplay between the
conductivities through the Wiedemann-Franz law gets
modified in a thermal QCD medium in the presence of
anisotropies arising due to different causes. In Sec. IV B,
we will calculate the Knudsen number to have a say
whether the thermal QCD medium is still in local equi-
librium even in the presence of different anisotropies
discussed hereinabove.

A. Wiedemann-Franz law

According to the Wiedemann-Franz law, the ratio of
charged particle contribution of the thermal conductivity to
the electrical conductivity is proportional to the temperature

κ

σel
¼ LT; ð63Þ

where the proportionality factor L is called the Lorenz
number. This law is perfectly satisfied by the matter
which are good thermal and electrical conductors, such
as metals. However, for different cases, the deviation of the
Wiedemann-Franz law has been observed, such as for the
thermally populated electron-hole plasma in graphene,
describing the signature of a Dirac fluid [43], for the
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FIG. 7. Variation of thermal conductivity with temperature in
the presence of momentum anisotropies both due to asymptotic
expansion and strong magnetic field (15 m2

π), where the current
quark masses have been used.
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two-flavor quark matter in the NJL model [44], and for the
strongly interacting QGP medium [45]. In this work, we
intend to see how the Lorenz number for the thermal QCD
matter varies by observing the ratio (κ=σel) as a function of
temperature in the presence of expansion-driven and strong
magnetic field-driven anisotropies in Fig. 8.
In the isotropic medium, the ratio is found to increase

linearly with temperature. When the isotropic medium is
subjected to an expansion-driven anisotropy, κ=σel shows
almost the same increasing behavior with temperature like
in isotropic case, but its magnitude and slope (i.e., the
Lorenz number) get enhanced. If the origin of anisotropy is
strong magnetic field, then both the magnitude and the
slope become smaller than the former descriptions. Thus, in
two different types of anisotropies we have observed nearly
opposite behavior of κ=σel, which can also be understood
from the opposite behavior in electrical and thermal
conductivities for the two aforesaid anisotropic mediums.
This observation thus implies different Lorenz numbers
(κ=ðσelTÞ) at the same temperature, depending on the
anisotropies.

B. Knudsen number

The Knudsen number (Ω) is required to be small for
small deviation from equilibrium in the hydrodynamic
regime, which is defined as

Ω ¼ λ

L
; ð64Þ

where λ denotes the mean free path and L is the character-
istic length scale of the system. One can calculate the mean
free path by using the thermal conductivity (κ) of the
medium

λ ¼ 3κ

vCV
; ð65Þ

where v is the relative speed and CV is the specific heat.
Therefore, the Knudsen number can be recast in terms of
the thermal conductivity as

Ω ¼ 3κ

LvCV
: ð66Þ

In the calculation we have taken v ≃ 1, L ¼ 3 fm, and CV
is evaluated from the energy-momentum tensor,
i.e., CV ¼ ∂ðuμTμνuνÞ=∂T.
In an isotropic medium, the Knudsen number decreases

with the increase of temperature, which explains that the
mean free path becomes much smaller than the character-
istic length scale of the system. As a result, the medium
approaches equilibrium faster. When the medium exhibits a
weak-momentum anisotropy due to the asymptotic expan-
sion initially, the Knudsen number does not deviate con-
siderably from its value in the isotropic medium (seen in
Fig. 9). However, if the origin of anisotropy is the strong
magnetic field (eB ¼ 15 m2

π), a significant deviation from
the isotropic one can be seen, where the Knudsen number
has a larger magnitude (denoted as dashed-dotted line in
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FIG. 8. Variation of the ratio of thermal conductivity to
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π), where the current quark masses
have been used.
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Fig. 9), which defies physical interpretation and urges us to
use the quasiparticle model (seen in Fig. 15).

V. QUASIPARTICLE DESCRIPTION
OF HOT QCD MATTER

Till now, we, in fact, have not incorporated any inter-
actions among quarks and gluons in a thermal QCD
medium either in the presence or absence of strong
magnetic field. As a matter of fact, the magnitude and
the variation of the electrical conductivity, thermal con-
ductivity, and Knudsen number become unrealistic. Hence,
we must resort to the quasiparticle description of particles,
known as QPM, where different flavors acquire the
medium generated masses, in addition to their current
masses. The thermal mass is generated due to the inter-
action of quark with other particles of the medium, thus the
quasiparticle model properly describes the collective prop-
erties of the medium. Earlier, this model was explained in
different approaches such as the Nambu-Jona-Lasinio and
PNJL-based quasiparticle models [66–68], quasiparticle
model based on Gribov-Zwanziger quantization [69,70]
etc. However, for our calculation, the effective mass
(squared) of ith flavor in a pure thermal medium is taken
from [71],

m2
i ¼ m2

i0 þ
ffiffiffi
2

p
mi0miT þm2

iT ; ð67Þ

where mi0 and miT are the current quark mass and the
thermally generated mass of ith flavor, respectively. The
thermal mass is calculated in one loop in Refs. [72,73] as

m2
iT ¼ g02T2

6
; ð68Þ

where g0 is the running coupling that runs with the
temperature of the medium. However, for a thermal
medium in the presence of a strong magnetic field, the
effective mass in thermal medium in Eq. (67) can be
generalized into

m2
i ¼ m2

i0 þ
ffiffiffi
2

p
mi0miT;B þm2

iT;B: ð69Þ

Like the evaluation ofmiT ,miT;B could be similarly derived
from the self-consistent Schwinger-Dyson equation by the
quark self-energy for a thermal QCD medium in a strong
magnetic field, which needs to be evaluated now.
As we know that the quark self-energy is given by

ΣðpÞ ¼ −
4

3
g2i

Z
d4k
ð2πÞ4 ½γμSðkÞγ

μDðp − kÞ�; ð70Þ

where 4=3 is the Casimir factor and g is the running
coupling that runs mainly with the magnetic field [74,75]
because the magnetic field is the largest energy scale for
quarks in the strong magnetic field regime. The quark

propagator, SðKÞ in vacuum is modified in the presence of
magnetic field and is given [76,77] by the Schwinger
proper-time method in the momentum space

SðkÞ ¼ ie−
k2⊥
jqiBj

ðγ0k0 − γ3kz þmiÞ
k2k −m2

i
ð1 − γ0γ3γ5Þ; ð71Þ

where the four-vectors are defined below with the metric
tensors: gμν⊥ ¼diagð0;−1;−1;0Þ and gμνk ¼diagð1;0;0;−1Þ,

k⊥μ ≡ ð0; kx; ky; 0Þ; kkμ ≡ ðk0; 0; 0; kzÞ:

The gluon propagator in vacuum retains the same form
even in the presence of magnetic field, i.e.,

Dμνðp − kÞ ¼ igμν

ðp − kÞ2 : ð72Þ

Next we obtain the form of quark and gluon propagators
at finite temperature in the imaginary-time formalism and
subsequently replace the energy integral (

R dp0

2π ) by sums
over Matsubara frequencies, to get the form of self-
energy (70) at finite temperature. However, in a strong
magnetic field along z-direction, the transverse component
of the momentum becomes vanishingly small (k⊥ ≈ 0), so
the exponential factor in Eq. (71) becomes unity and the
integration over the transverse component of the momen-
tum becomes jqiBj. Therefore, the self-energy (70) at finite
temperature in the SMF limit gets simplified into

ΣðpkÞ ¼
2g2

3π2
jqiBjT

X
n

Z
dkz

×
½ð1þ γ0γ3γ5Þðγ0k0 − γ3kzÞ − 2mi�

½k20 − ω2
k�½ðp0 − k0Þ2 − ω2

pk�

¼ 2g2jqiBj
3π2

Z
dkz½ðγ0 þ γ3γ5ÞL1

− ðγ3 þ γ0γ5ÞkzL2�; ð73Þ

where ω2
k ¼ k2z þm2

i , ω
2
pk ¼ ðpz − kzÞ2 and L1 and L2 are

the two frequency sums, which are given by

L1 ¼ T
X
n

k0
1

½k20 − ω2
k�

1

½ðp0 − k0Þ2 − ω2
pk�

; ð74Þ

L2 ¼ T
X
n

1

½k20 − ω2
k�

1

½ðp0 − k0Þ2 − ω2
pk�

: ð75Þ

After calculating the above frequency sums [16,78], the
self-energy (73) can be simplified further into
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ΣðpkÞ ¼
g2jqiBj
3π2

Z
dkz
ωk

�
1

eβωk − 1
þ 1

eβωk þ 1

�

×

�
γ0p0 þ γ3pz

p2
k

þ γ0γ5pz þ γ3γ5p0

p2
k

�
; ð76Þ

which yields the following form, after the integration
over kz:

ΣðpkÞ ¼
g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�

×

�
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

�
: ð77Þ

Let us explore the covariant structure of the quark self-
energy at finite temperature in an additional presence of
magnetic field, which can in general be written [79,80] as

ΣðpkÞ ¼ Aγμuμ þ Bγμbμ þ Cγ5γμuμ þDγ5γμbμ; ð78Þ

where A, B, C, and D are the form factors, and uμ (1,0,0,0)
and bμ (0,0,0,-1) specify the preferred directions of the heat
bath and the magnetic field, respectively. These vectors are
responsible for breaking the Lorentz and rotational sym-
metries, respectively. We have obtained the form factors in
LLL approximation as

A ¼ 1

4
Tr½Σγμuμ� ¼

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
p0

p2
k
; ð79Þ

B ¼ −
1

4
Tr½Σγμbμ� ¼

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
pz

p2
k
; ð80Þ

C ¼ 1

4
Tr½γ5Σγμuμ� ¼ −

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
pz

p2
k
; ð81Þ

D ¼ −
1

4
Tr½γ5Σγμbμ� ¼ −

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
p0

p2
k
; ð82Þ

which indicates that C ¼ −B and D ¼ −A.
The quark self-energy (78) can also be written in terms of

the right-handed (PR ¼ ð1þ γ5Þ=2) and left-handed
(PL ¼ ð1 − γ5Þ=2) chiral projection operators

ΣðpkÞ ¼ PR½ðAþ CÞγμuμ þ ðBþDÞγμbμ�PL

þ PL½ðA − CÞγμuμ þ ðB −DÞγμbμ�PR; ð83Þ

which becomes simplified as

ΣðpkÞ ¼ PR½ðA − BÞγμuμ þ ðB − AÞγμbμ�PL

þ PL½ðAþ BÞγμuμ þ ðBþ AÞγμbμ�PR; ð84Þ

after the substitutions C ¼ −B and D ¼ −A.
Therefore, the effective quark propagator is obtained

from the self-consistent Schwinger-Dyson equation in the
presence of a strong magnetic field

S−1ðpkÞ ¼ γμpkμ − ΣðpkÞ; ð85Þ

which in turn takes the following form in terms of
projection operators:

S−1ðpkÞ ¼ PRγ
μXμPL þ PLγ

μYμPR; ð86Þ

where

γμXμ ¼ γμpkμ − ðA − BÞγμuμ − ðB − AÞγμbμ; ð87Þ

γμYμ ¼ γμpkμ − ðAþ BÞγμuμ − ðBþ AÞγμbμ: ð88Þ

Now the effective propagator is written as

SðpkÞ ¼
1

2

�
PR

γμYμ

Y2=2
PL þ PL

γμXμ

X2=2
PR

�
; ð89Þ

where

X2

2
¼ X2

1 ¼
1

2
½p0 − ðA − BÞ�2 − 1

2
½pz þ ðB − AÞ�2; ð90Þ

Y2

2
¼ Y2

1 ¼
1

2
½p0 − ðAþ BÞ�2 − 1

2
½pz þ ðBþ AÞ�2: ð91Þ

Thus, the thermal mass (squared) at finite temperature
and strong magnetic field is finally obtained by taking the
p0 ¼ 0, pz → 0 limit of either X2

1 or Y2
1 (because both of

them are equal),

m2
iT;B ¼ X2

1jp0¼0;pz→0 ¼ Y2
1jp0¼0;pz→0

¼ g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
; ð92Þ

which depends on both temperature and magnetic field.
In the quasiparticle description of particles, the dis-

tribution functions now contain the effective masses of
the particles. Therefore, the distribution functions in the
isotropic medium as well as in the expansion-driven
anisotropic medium use the T-dependent effective mass
(67), whereas the distribution function in the strong
magnetic field-driven anisotropic medium uses the
T- and B-dependent effective mass (69). So, from
Figs. 10 and 11, we noticed that the behaviors of ratios
(fexaniso=fiso and fBaniso=fiso) get flipped in comparison to
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their respective behavior in ideal case (as in Figs. 4 and
5). As the transport coefficients such as the electrical
conductivity and the thermal conductivity are expressed
in terms of the distribution function at finite temperature
and/or magnetic field, so the knowledge about the
behavior of distribution function in the QPM description
is useful in understanding the transport properties of the
hot QCD medium.

In the following subsections, we are going to discuss the
results on the electrical conductivity, thermal conductivity,
and their applications using the quasiparticle model with
three flavors (u, d, and s).

A. Electrical conductivity

With the quasiparticle description as input, we have now
recomputed the electrical conductivity by substituting the
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been used.

0 0.2 0.4 0.6 0.8 1

Momentum in GeV

0.0001

0.001

0.01

0.1

1

f an
is

o/f
is

o

f
ex

aniso
/f

iso

f
B

aniso
/f

iso

Quasiparticle model, T=0.16 GeV

0 0.2 0.4 0.6 0.8 1

Momentum in GeV

0.01

0.1

1

f an
is

o/f
is

o

f
ex

aniso
/f

iso

f
B

aniso
/f

iso

Quasiparticle model, T=0.4 GeV

(a) (b)

FIG. 11. Variation of the ratio faniso=fiso with momentum in the presence of momentum anisotropies both due to asymptotic expansion
and strong magnetic field (15 m2

π) at (a) low temperature and (b) high temperature, where the effective quark mass has been used.

REVISIT TO ELECTRICAL AND THERMAL CONDUCTIVITIES … PHYS. REV. D 100, 016009 (2019)

016009-17



temperature-dependent effective mass (67) into its expres-
sions for the isotropic (9) and expansion-driven anisotropic
(15) mediums, and the temperature and magnetic field-
dependent effective mass (69) into its expression for the
magnetic field-driven anisotropic medium (30). We have
replotted σel as a function of temperature in Fig. 12 and found
that there is an overall decrease in σel. Interestingly, for a
magnetic field-driven weak-momentum anisotropy (denoted
by dashed-dotted line), the magnitude of σel now becomes
smaller, which is at par with its counterparts in isotropic and
expansion-driven anisotropic mediums. However, σel for the
magnetic field-driven anisotropic medium, now decreases
with the temperature, which is opposite to its variation in the
expansion-driven anisotropy. The above differences in the
σel’s can be understood qualitatively from the distributions
seen in Figs. 10 and 11, the relaxation time in the absence and
presence ofmagnetic field, and the phase-space factor (which
gets affected by the strong magnetic field only). We are now
convinced that the quasiparticle description of particles
tames the unusually large value of σel in the strong magnetic
field.

B. Thermal conductivity

We have also calculated the thermal conductivity with
the quasiparticle description by substituting the temper-
ature-dependent effective mass (67) into its expressions for
the isotropic (44) and expansion-driven anisotropic (50)
mediums, and the temperature and magnetic field-depen-
dent effective mass (69) into its expression for the magnetic
field-driven anisotropic medium (62). Figure 13 plots the

variation of κ with temperature for the isotropic medium,
expansion- and strong magnetic field-driven anisotropic
mediums with the quasiparticle description. The effects of
quasiparticle description on the thermal conductivity can
again be understood through the distribution functions with
quasiparticle masses in Figs. 10 and 11, and the relaxation
time in the absence and presence of magnetic field. For the
isotropic as well as expansion-driven anisotropic mediums,
κ is found to increase with temperature as in ideal case. The
only noticeable finding is that, although the magnitude of κ
for the strong magnetic field-driven anisotropic medium is
still larger than in isotropic medium but it has now become
smaller and comparable with the value in isotropic medium
at higher temperature within the SMF limit (eB ≫ T2).

C. Wiedemann-Franz law

Wiedemann-Franz law makes us understand the relation
between the charge transport and the heat transport in a
system. Here we have revisited the law in quasiparticle
description of particles, unlike the ideal description of
particles earlier in previous Sec. IVA. In Fig. 14, we found
that the ratio, κ=σel in magnetic field-driven anisotropy
increases linearly with the temperature, with a magnitude
larger than that in isotropic medium and smaller than that in
expansion-driven anisotropic medium. So, it can be used to
distinguish the anisotropies of different origins. Thus, the
Lorenz number, defined as the slope of the ratio (κ=σel)
versus T graph, is smaller in the strong magnetic field-
driven anisotropic medium as compared to its value in the
expansion-driven anisotropic medium.
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D. Knudsen number

We have seen earlier that for a strong magnetic field-
driven anisotropic medium, the Knudsen number (Ω) in the
ideal case (seen in Fig. 9) was very large. As a result, the

thermal medium in the presence of strong magnetic field
deviates much away from its equilibriumwhich is, however,
not desirable. This is exactly circumvented here in the
quasiparticle description in Fig. 15, where we have found
thatΩ has now been decreased drastically in the presence of
strong magnetic field at par with the estimates for B ¼ 0
cases. However, there is an overall decrease of Knudsen
number for all cases. Thus, in the quasiparticle description,
the probability of finding the system to be in local equilib-
rium is higher, due to the smaller value of Knudsen number.

VI. CONCLUSIONS AND FUTURE OUTLOOK

In this work, we have studied the effect of strong
magnetic field-driven anisotropy on the transport coeffi-
cients such as electrical conductivity and thermal conduc-
tivity of the hot QCD matter and compared them with their
behavior in the expansion-driven anisotropy. In order to
find these conductivities, we have solved the relativistic
Boltzmann transport equation in relaxation-time approxi-
mation, where the interactions are incorporated through the
distribution function within the quasiparticle approach at
finite temperature and strong magnetic field. We have also
compared the conductivities with their corresponding
values in the ideal scenario.
First we have revisited the formulation of electrical and

thermal conductivities for the isotropic thermal medium
and then calculated these for the expansion-induced aniso-
tropic thermal medium. Using the value of electrical
conductivity we have then observed the variation of
magnetic field with time and this explains that the lifetime
of the strong magnetic field becomes larger for an electri-
cally conducting medium as compared to the vacuum;
hence, the strong magnetic field is expected to affect the
charge transport and the heat transport in the QCD medium
and this motivated us to derive the aforesaid conductivities
for a thermal medium in the presence of a strong magnetic
field-induced anisotropy. We have observed that both the
electrical and thermal conductivities have larger values in
the presence of strong magnetic field-driven anisotropy as
compared to their respective values in the isotropic
medium; however, if the anisotropy is induced due to
asymptotic expansion, then the values of the conductivities
are seen to get lowered than their values in the isotropic
medium. So, in the two different types of anisotropic
mediums, we noticed nearly opposite behavior of con-
ductivities. The noticeably large values of conductivities in
a strong magnetic field in case of ideal description are
avoided using the quasiparticle description. Next, we have
studied the Wiedemann-Franz law to see the relative
behavior of electrical conductivity and thermal conduc-
tivity, where their ratio (κ=σel) is found to increase linearly
with temperature, but with a magnitude larger than in
isotropic medium and smaller than in expansion-driven
anisotropic medium, thus it can be used as a promising tool
to probe the anisotropies of different sources. Then, we
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FIG. 14. Variation of the ratio of thermal conductivity to
electrical conductivity with temperature in the presence of
momentum anisotropies both due to asymptotic expansion and
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π), where the effective quark masses
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have calculated the Knudsen number to observe whether
the system is still in equilibrium in the presence of weak-
momentum anisotropy which may be caused by either
sources. We have found that, in the quasiparticle descrip-
tion, the Knudsen number becomes less than one, thus the
medium may remain in local equilibrium even in the
presence of weak-momentum anisotropy.
In summary, the anisotropy affects the electrical and

thermal conductivities, which in turn affect the Lorenz
number, Knudsen number significantly. Thus, it becomes
imperative to suggest on the possible signatures of the
abovementioned observations in heavy ion phenomenology
as our future plan. Chiral magnetic effect could be one such
observable effect, because this effect is associated with
the generation of current along the direction of magnetic
field, which in turn depends on the magnitude of the
electrical conductivity [14]. On the other hand, the thermal

conductivity could be used as a handle to decipher the
assumption of local equilibrium in terms of mean free path
via the inclusive production of dilepton and photon. It has
been observed previously that the dilepton and photon
yields get enhanced in the presence of weak-momentum
anisotropy due to initial asymptotic expansion [32,33].
Therefore, a similar study on the dilepton and photon
productions due to the magnetic field-driven anisotropy
needs to be done and the comparison with the former
anisotropy could be an indicator of the findings in thermal
conductivity.
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