
 

Chiral symmetry breaking and monopoles in gauge theories
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QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at
T < Tc creates electric confinement and flux tubes. The “magnetic scenario” of QCD proposes that
scattering on the noncondensed component of the monopole ensemble at T > Tc plays an important role in
explaining the properties of strongly coupled quark-gluon plasma (sQGP) near the deconfinement
temperature. In this paper, we study the phenomenon of chiral symmetry breaking and its relation to
magnetic monopoles. Specifically, we study the eigenvalue spectrum of the Dirac operator in the basis of
fermionic zero modes in an SU(2) monopole background. We find that as the temperature approaches the
deconfinement temperature Tc from above, the eigenvalue spectrum has a finite density at ω ¼ 0,
indicating the presence of a chiral condensate. In addition, we find the critical scaling of the eigenvalue gap
to be consistent with that of the correlation length in the 3d Ising model and the BEC transition of
monopoles on the lattice.
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I. INTRODUCTION

The possible existence of magnetic monopoles in
electrodynamics fascinated leading physicists in the
19th century. With the development of quantummechanics,
Dirac famously related the existence of monopoles with
electric charge quantization [1]. Monopoles in quantum
electrodynamics, however, were never found.
With the advent of non-Abelian gauge theories, classical

solitons with magnetic charge were found by ’t Hooft [2]
and Polyakov [3] in the Georgi-Glashow model. Such
monopoles play important role in all other theories with an
adjoint scalar field, notably in theories with extended
supersymmetry N ¼ 2; 4.
In theories without such scalars, e.g., pure gauge

theories, one can use the same ’t Hooft-Polyakov solution
with the zeroth component of the gauge field A0 acting as
the “Higgs”; this option leads to the semiclassical theory
of instanton-dyons. For a recent short review, see Ref. [4].
These objects, however, are pseudo-particles and not
particles, existing only in the Euclidean formulation of
the theory, which severely limits their phenomenological
applications. We will not discuss this issue further and
only remind the reader that, in the case of extended

supersymmetry, the partition functions in terms of monop-
oles and instanton-dyons were shown to be equal, related
by the so-called Poisson duality [5–7].
In spite of the monopole solution lacking in theories

without scalars, Nambu [8], ’t Hooft [9], and Mandelstam
[10] proposed the “dual superconductor” model of the
electric color confinement. In this model, the Bose-Einstein
condensation (BEC) of monopoles at T ≤ Tc expels
electric field from the vacuum into confining flux tubes.
In lattice studies of gauge theories, monopoles have

been identified via procedures including choosing specific
gauges, such as maximal Abelian gauge. Their locations
and paths were positively correlated with gauge-invariant
observables, such as the action and square of the magnetic
field [11]. The monopoles were found to create a magnetic
current around the electric flux tube, stabilizing them
[12,13]. In the Landau gauge, while monopole-type sin-
gularities themselves are not present, the physical proper-
ties that they source, e.g., the magnetic displacement
current, are still present and are gauge invariant [14].
Furthermore, their motion and correlations were shown
to be exactly as expected for a Coulomb plasma [15–17].
The deconfinement critical temperature Tc does coincide
accurately with that of monopole BEC transition
[16,18,19], and the BEC transition, along with the magnetic
charge, has been shown to be gauge independent [20–22].
The “magnetic scenario” of QCD [17,23,24] assumes

the presence of noncondensed monopoles in quark-gluon
plasma (QGP). Unlike quarks and gluons, which have
vanishing densities at T → Tc, the monopole density has a
peak near Tc and is dominant there. Monopole-gluon and
monopole-quark scattering were shown to play a significant
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role in kinetic properties of QGP, such as the shear viscosity
η [25] and the jet quenching parameter q̂ [26–28]. The
noncondensed monopoles should also lead to electric flux
tubes at T > Tc [24], which indeed were recently observed
on the lattice [29]. Thus, there is a growing amount of
phenomenological evidence suggesting magnetic monop-
oles do exist, not only as a confining condensate at T ≤ Tc,
but also as noncondensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-

deconfinement transition was recognized long ago, their
relation to another important nonperturbative aspect of
QCD-like theories, chiral symmetry breaking, has attracted
much less attention. It has been found on the lattice that, by
decomposing the gauge fields into Abelian-monopole,
Abelian-plain, and non-Abelian components, the removal
of the monopoles does indeed lead to removal of the quark
condensate [30,31].
In this paper, we address how chiral symmetry breaking

and the generation of the nonzero quark condensate at
T < Tc can be explained in terms of this monopole model.
The mechanism is based on the formation of bound states
between quarks and monopoles. Like in condensed matter
systems, in which “doping” of a material by atoms with an
extra state leads to new set of states and alters its
conductivity, the presence of monopoles radically affects
the Dirac eigenvalue spectrum.
One obvious difficulty of the problem is the fact that a

detailed understanding of the “lattice monopoles” is lack-
ing; they are treated as effective objects whose parameters
and behavior we can observe on the lattice and parametrize,
but their microscopic structure has yet to be understood.
In particular, the ’t Hooft-Polyakov monopole solution
includes a chiral-symmetry-breaking scalar field, while we
know that, in massless QCD-like theories, chiral symmetry
is locally unbroken. We assume that the zero modes in
question are chiral themselves, like they are in the instanton-
dyon theory, and that chiral symmetry breaking can only be
achieved by a spontaneous breaking of the symmetry.
The other difficulty of the problem is the important

distinction between fermionic zero modes of (i) monopoles
and (ii) instanton-dyons. The latter include the so called
L-type or twisted dyons, which possess 4-dimensional zero
modes for antisymmetric fermions. Therefore, their col-
lectivization naturally leads to chiral symmetry breaking,
studied recently in Ref. [32], in a natural mechanism
originally proposed for the instantons; for a review, see
Ref. [33]. As follows from Banks-Casher relation [34],
the quark condensate is proportional to density of Dirac
eigenstates at zero eigenvalue.
The monopoles also have fermionic zero modes [35],

which are 3-dimensional. They are, therefore, simply a
bound state of a fermion and a monopole. In theories with
extended supersymmetries, such objects do exist, fulfilling
an important general requirement that monopoles need to
come in particular supermultiplets, with fermionic spin 1=2

for N ¼ 2, or spins 1=2 and 1 for N ¼ 4. The antiperiodic
boundary conditions for fermions in Matsubara time
implies certain time dependence of the quark fields,
and (as we will discuss in detail below) the lowest
4-dimensional Dirac eigenvalues produced by quarks
bound to monopoles are the values λ ¼ �πT, not at zero.
This, however, is only true for a single monopole. In a

monopole ensemble with nonzero density, the monopole-
quark bound states are collectivized and Dirac eigenvalue
spectrum is modified. The question is whether this effect
can lead to a nonzero ρðλ ¼ 0Þ ∝ hq̄qi, and if so, whether it
happens at the temperature at which chiral symmetry
breaking is observed. As we will show below, we find
affirmative answers to both these questions. The phenom-
enological monopole model parameters are such that a
nonzero quark condensate is generated by monopoles
at T ≈ Tc.
As a final introductory comment, we note that our

approach is to take as inputs the empirical monopole
density nðTÞ and ensemble of paths from our previous
study. Using them, we calculate the corresponding Dirac
eigenvalue spectrum. The backreaction of the fermions
on monopole density and their motion is neglected. In this
respect, our calculation is ideological similar to quenched
lattice calculations, which also ignore quark backreaction
on the gauge fields.

II. FERMIONIC ZERO MODES
OF SU(2) MONOPOLES

In this section, we will overview the calculation of the
fermion-monopole zero modes in the Georgi-Glashow
model. First we will remind the reader of the result found
by Jackiw and Rebbi [35] for the fermionic zero modes, and
then go on to compute the matrix element between two
monopoles in the basis of zero modes.

A. Fermionic zero mode of a monopole

This section is introductory, summarizing known results
from Refs. [35,36] and presented for self-completeness of
the paper. The Lagrangian of the Georgi-Glashow model
(without fermions) is

L ¼ −
1

4
Fμν
a Faμν þ

1

2
ðDμϕÞaðDμϕÞa −

1

4
λðϕaϕa − v2Þ

ð1Þ

where

Fμν
a ¼ ∂μAν

a − ∂νAμ
a þ gϵabcA

μ
bA

ν
c;

and

ðDμϕÞa ¼ ∂μϕa þ gϵabcA
μ
bϕc:
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The fermionic part considered by Jackiw and Rebbi is

LF ¼ iψ̄nγ
μðDμψÞn −Ggψ̄nτ

a
nmψmϕa; ð2Þ

with G a constant, τa ¼ σa=2, and

ðDμψÞn ¼ ∂μψn − igτanmA
μ
aψm:

The ’t Hooft-Polyakov monopole solution has the form

A0
a ¼ 0; Ai

a ¼ ϵaijr̂j
AðrÞ
g

; ϕa ¼ r̂a
ϕðrÞ
g

: ð3Þ

With this ansatz, the equations of motion from the pure-
gauge Lagrangian are

0¼ 2

r2
d
dr

�
r2
dA
dr

�
−
2

r
dA
dr

þ 2

r2
d
dr

ðrAÞ

−
6

r2
A−

6g
r
A2 − 2g2A3 −ϕ

�
2g
r
þ 2g2A

�
;

0¼ 1

r2
d
dr

�
r2
dϕ
dr

�
−

2

r2
ϕ−

4g
r
Aϕ− 2g2A2ϕ− 2U0ðjϕj2Þϕ;

ð4Þ

and boundary conditions,

�
r2
dA
dr

þ 2rA

�����
r¼0

¼ 0;

�
r2
dϕ
dr

�����
r¼0

¼ 0: ð5Þ

This set of equations and boundary conditions, com-
bined with single-valuedness of the fields at the origin give

Að0Þ¼ϕð0Þ¼0; AðrÞjr→∞¼−
1

r
; ϕðrÞjr→∞¼v; ð6Þ

with v a constant.
The Dirac equation for the fermion field is written in the

form

�
− iα⃗ · ∂⃗δnm þ 1

2
AðrÞσanmðα⃗ × ⃗r̂Þa þ

GϕðrÞ
2

σanmr̂aβ

�
ψm

¼ Eψn; ð7Þ

where n;m ¼ 1; 2 are the isospin indices, σa are the Pauli
matrices, and

αi ¼
�

0 σi

σi 0

�
; β ¼ −i

�
0 1

−1 0

�
: ð8Þ

For clarity, in Appendix we will discuss their representation
of the Dirac matrices and the relation to fermion chirality.
In this representation of the Dirac matrices, the αi, β are

nondiagonal, and the only diagonal term is the energy. For a
zero mode E ¼ 0, the problem is “chiral,” in the sense that

the 4-spinor ψ splits into separate upper and lower
components,

ψ ¼
�
ψþ

ψ−

�
;

where ψ�
lm has four components, with l corresponding to

spin indices and m corresponding to isospin (The SU(2)
color is called isospin in the Georgi-Glashow model.)
These upper and lower components can be further written
as two scalar and vector fields,

ψ�
lm ¼ ðg�δlm þ g⃗� · σ⃗lnÞσ2nm:

Carrying out the partial wave analysis (see Appendix of
Ref. [35]) and finding the zero energy solution gives

g⃗�ðrÞ ¼ 0;

g−ðrÞ ¼ c− × exp

�Z
r

0

dr0
�
Aðr0Þ þ 1

2
Gϕðr0Þ

��
;

gþðrÞ ¼ cþ × exp
�Z

r

0

dr0
�
Aðr0Þ − 1

2
Gϕðr0Þ

��
;

The g− solution is unnormalizable, so it is set to zero
(c− ¼ 0). This gives the spinors

ψ−
lm ¼ 0;

ψþ
lm ¼ N exp

�Z
r

0

dr0
�
Aðr0Þ − 1

2
Gϕðr0Þ

��

× ðsþl s−m − s−l s
þ
mÞ; ð9Þ

where s� are the eigenvectors of σ3, and N is a
normalization.
The extension of the SU(2) ’t Hooft-Polyakov monopole

solution to SU(3)—with the same Georgi-Glashow-like
Lagrangian—is discussed by A. Sinha [37]. In QCD, the A0

field plays the role of the scalar (Higgs) field in the Georgi-
Glashow model. For the purposes of this work, and for
simplicity, we will study only the SU(2) case.

B. Quark hopping matrix

Recognizing fermionic binding to monopoles, we now
proceed to description of their dynamics in the presence of
ensembles of monopoles. The basis of the description is
assumed to be the set of zero modes described in the
previous section. The Dirac operator is written as a matrix
in this basis, so that i − j element is related to “hopping”
between them. Such an approach originated from the
“instanton liquid” model [33].
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The matrix elements of the “hopping matrix”

T ¼
�

0 iTij

iTji 0

�
ð10Þ

where the Tijs are defined as the matrix element,

Tij ≡ hij − i=Djji; ð11Þ

between the zero modes located on monopoles i and
antimonopoles j. In the SU(2) case we are considering,
this is equivalent to

Tij ¼hψ ijxihxj − i=Djyihyjψ ji ¼
Z

d3xψ†
knðx − xiÞð−i=DÞψ lmðx − xjÞ

¼
Z

d3xψ†
knðx − xiÞ

�
−iðα⃗ · ∂⃗ þ α⃗ · ∂⃗ − α⃗ · ∂⃗Þδnm þ 1

2
ðAðx − xiÞ þ Aðx − xjÞÞσanmðα⃗ × ⃗r̂Þa

þGðϕðx − xiÞ þ ϕðx − xjÞÞ
2

σanmr̂aβ

�
ψ lmðx − xjÞ

¼
Z X

m

d3xψ†
kmðx − xiÞ½−iα⃗ · ∂⃗�klψ lmðx − xjÞ ð12Þ

where ψs are zero modes with origin at xi;j, the locations of
the two monopoles, n, m are the isospin/color indices, and
we have used the fact that applying the Dirac operator to
these wave functions gives zero.
The operator between the wave functions is

iα⃗ · ∂⃗ ¼ i

0
BBB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCCA∂x þ i

0
BBB@

0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

1
CCCA∂y

þ i

0
BBB@

0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

1
CCCA∂z: ð13Þ

In the case where the original wave function only has an
upper component, the resulting vector after applying this
operator has only the lower component. Therefore, the
matrix elements of the “hopping matrix” Tij are zero unless
the fermionic zero modes have opposite chirality. So, a left-
handed fermion zero mode has nonzero overlap with a
right-handed zero mode, and vice versa. To get the opposite
chirality, we need to change the sign of the couplings. In the
case of an SU(2) antimonopole, only the lower spinor
survives, with the same wave function (the spin of the
fermion flips). We will call these zero modes ξ.
This allows us to split the previous equation into two

equations,

Tij ¼
Z

d3xξ†ðx − xiÞ½−iσ⃗ · ∂⃗�ψðx − xjÞ;

Tji ¼
Z

d3xψ†ðx − xiÞ½−iσ⃗ · ∂⃗�ξðx − xjÞ; ð14Þ

where we use the appropriate one depending on whether
iðjÞ is a location of a monopole(antimonopole).
For the matrix element between a right-handed monop-

ole zero mode and a left-handed antimonopole zero mode,

Tij ¼
Z

d3x⃗
X
m

ξ†kmðx⃗ − x⃗iÞ½−iσ⃗ · ∂⃗�klψ lmðx⃗ − x⃗jÞ;

where m is the traced-over isospin/color index, and k, l are
the spin indices (which are all convoluted). The operator is,

½−iσ⃗ · ∂⃗� ¼
� −i∂z −i∂x − ∂y

−i∂x þ ∂y i∂z

�
: ð15Þ

For simplicity, we will treat each isospin/color case
separately, so the only indices left are spin indices. We
will denote the spatial-only part of the wave function
(without spinors) with tildes.
(a) m ¼ 1:

We will write ξk1 as ξ̃ak and ψ l1 as ψ̃al. The wave
function has spinors

ai ≡ sþi s
−
1 − s−i s

þ
1 ¼

�
0

−1

�
;

a†i ≡ sþ1 s
−
i − s−1 s

þ
i ¼ ð 1 0 Þ;

and so

ξ̃a†k½−iσ⃗ · ∂⃗�klalψ̃ ¼ ξ̃ði∂x þ ∂yÞψ̃ : ð16Þ
(b) m ¼ 2:

The wave function has spinors

bi ≡ sþi s
−
2 − s−i s

þ
2 ¼

�
1

0

�
;

b†i ≡ sþ2 s
−
i − s−2 s

þ
i ¼ ð 0 −1 Þ;
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and so

ξ̃bk½−iσ⃗ · ∂⃗�klblψ̃ ¼ ξ̃ði∂x − ∂yÞψ̃ : ð17Þ

Combining the two cases,

X
m

ξ†km½−iσ⃗ · ∂⃗�klψ lm ¼ 2iξ̃∂xψ̃ ; ð18Þ

which then yields that,

Tij ¼ 2i
Z

d3x⃗ ξ̃ðx⃗ − x⃗iÞ∂xψ̃ðx⃗ − x⃗jÞ: ð19Þ

For the matrix element between a left-handed antimonopole
zero mode and a right-handed monopole zero mode, we
get, similarly,

Tji ¼ 2i
Z

d3x⃗ ψ̃ðx⃗ − x⃗iÞ∂xξ̃ðx⃗ − x⃗jÞ:

The full solutions to the equations of motion for AðrÞ and
ϕðrÞ are well behaved at the origin, so we must use those in
lieu of only considering asymptotics. The only analytic
solution to the equations of motion is in the case where
λ ¼ 0; this solution is known as the Bogomolnyi-Prasad-
Sommerfeld (BPS) monopole [38,39]. In this case,

HðζÞ ¼ ζ cothðζÞ − 1; KðζÞ ¼ ζ

sinhðζÞ ; ð20Þ

where ζ ¼ gvr. In terms of these functions, our gauge fields
are,

A0
a¼0; Ai

a¼ ϵaij
rj
gr2

ð1−KðζÞÞ; ϕa¼
ra
gr2

HðζÞ: ð21Þ

This leads to the identification with our earlier notation,

AðrÞ ¼ 1 − KðgvrÞ
r

; ϕðrÞ ¼ HðgvrÞ
r

: ð22Þ

For the monopole zero mode we get that, up to
normalization,

ψ̃ ¼ 1

2
ðgvrÞG2þ1 coth

�
gvr
2

�
sinh−

G
2ðgvrÞ: ð23Þ

Then,

∂xψ̃ ¼−
�

x
4r2

�
ðgvrÞG2þ1coth

�
1

2
gvr

�
sinh−

G
2
−1ðgvrÞ

×ð−ðGþ2ÞsinhðgvrÞþgGvrcoshðgvrÞþ2gvrÞ;
ð24Þ

and similarly for the antimonopole zero mode wave
function. Putting these solutions into the hopping matrix
element equation for monopole-to-antimonopole, we get

Tijðr0Þ¼2i
Z

d3x⃗ ξ̃ðjr−r0jÞ∂xψ̃ðrÞ

¼2iN2

Z
d3x⃗

�
−

x
8r2

�
ðgvÞGþ2r

Gþ2
2 jr−r0jGþ2

2

×coth

�
1

2
gvr

�
sinh−

G
2
−1ðgvrÞ

×coth

�
1

2
gvjr−r0j

�
sinh−

G
2ðgvjr−r0jÞ

×ð−ðGþ2ÞsinhðgvrÞþgGvrcoshðgvrÞþ2gvrÞ:
ð25Þ

The combination gvr is dimensionless, as is x=r, so the
integrand has dimension [energy] (1=r). The parameter v,
in the BPS limit, is determined by the mass of the
monopole, and g is taken to be the same as in the strong
coupling constant.
As an instructive exercise, taking G, g, v ¼ 1, we can

evaluate this integral. The result is seen in Fig. 1. The first
thing to note is that the result of integral is symmetric
around the x-axis, and therefore only dependent on the
combination ðy20 þ z20Þ. So, for example, taking r0 ¼
ðx0; 2; 3Þ yields the same result as r0 ¼ ðx0;

ffiffiffiffiffi
13

p
; 0Þ,

r0 ¼ ðx0; 3; 2Þ, etc. In addition, the function is odd under
reflection from x → −x. Therefore, we can evaluate the
integral with z0 ¼ 0, y0 ≥ 0, and x0 ≥ 0, without loss of
generality.

III. DIRAC EIGENVALUES FOR
MONOPOLE-ANTIMONOPOLE ENSEMBLES

A. The monopole ensembles

We will use the monopole configurations studied in
our previous path-integral simulation of monopole

FIG. 1. Evaluation of ℑðTijðr0ÞÞ for r0 in the xy plane for
G ¼ g ¼ v ¼ 1.
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Bose-Einstein condensation [19], and observe the effects of
density and temperature on the eigenvalue spectrum of the
Dirac operator for BPS monopoles. The configurations
considered in Ref. [19] consisted of 8, 16, and 32
monopoles and anti-monopoles (Coulomb-interacting
quantum particles with positive and negative charge) in
a box with periodic boundary conditions. The particles are
represented as paths in imaginary time, and Monte Carlo
simulations are run to find the configurations with smallest
Euclidean action. See Ref. [40] for a review of the path-
integral Monte Carlo method for studying many-body
quantum systems. These configurations were simulated
for a range of temperatures, and critical temperature for
Bose-Einstein condensation, Tc, was obtained from study-
ing both the permutation cycles of paths [18] and the finite-
size scaling of the superfluid fraction of the systems [41].
The configurations of monopoles and anti-monopoles
considered for this current study are a sampling of the
path configurations generated in Ref. [19] for systems of 32
quantum Coulomb particles.
To constrain the values of g and v, we can use the mass of

the monopole. In the BPS limit, the mass is given by

M ¼ 4πv
g

: ð26Þ

The mass of the monopole was studied in Ref. [18]
through lattice simulations of SU(2) pure-gauge theory,
which shows a mass of around 2Tc at T ¼ Tc, and then
rapidly grows as temperature increases. The density of
monopoles in SU(2) gauge theories was studied in
Ref. [15], and was parametrized by

ρ

T3
c

�
T
Tc

�
¼ 0.557ðT=TcÞ3

logð2.69ðT=TcÞÞ2
: ð27Þ

B. The quantization procedure

Wewill evaluate the evolution matrixU, defined as time-
ordered integral of the hopping matrix in the previous
section over the Matsubara periodic time τ ∈ ½0; β�. This
matrix will then be diagonalized to find the eigenvalues
for the fermion states. Because each eigenstate is still
fermionic, each is required to fulfill the fermionic boundary
conditions, namely that the state must return to minus itself
after one rotation around the Matsubara circle. This defines
quantization of the Dirac eigenvalues by,

λi þ ωi;n ¼
�
nþ 1

2

�
2π

β
; ð28Þ

where λis are the eigenvalues of the hopping matrix T.
For monopoles that move in Euclidean time, we must

integrate over the Matsubara circle to find the fermion
frequencies,

U ¼
I
β
dτeiHτ ¼ −1: ð29Þ

This can be approximated by

−1 ≈ eiHmΔτ…eiH2ΔτeiH1Δτ

≈ ð1þ iHmΔτ −…Þ…ð1þ iH1Δτ −…Þ

for m time slices. We diagonalize the resulting matrix on
the right-hand side and solve to find the quantity λþ ω.

C. Dirac eigenvalue spectra and chiral
symmetry breaking

For simplicity, we will work in units of Tc (i.e., Tc ¼ 1)
when doing this calculation (for mass and temperature, for
example), and units of length will be defined by the density
of monopoles r ∼ ρ−1=3 in units of 1=Tc.
Before we begin, to estimate what the effects of temper-

ature will be on our results, we can evaluate the integral in
Eq. (25) with different values of the parameters, corre-
sponding to the range of temperatures we will simulate.
We will take G ¼ g ¼ ffiffiffiffiffiffiffiffiffiffi

4π=3
p

—as would be the case in
QCD—and v from the monopole mass, taken from
Ref. [18]. The former assumption comes from the idea
that the Higgs field and the three gauge fields in the Georgi-
Glashow model correspond to the Aμ in QCD, which all
have the same value for the coupling, and nominally taking
αs ¼ g2=ð4πÞ ¼ 1=3. In the BPS limit, the mass of the
monopole is related to the coupling by M ¼ 4πv=g.
The results for T=Tc ¼ 1; 1.05; 1.1, and 1.2 are seen in

Fig. 2(a), (b), (c), and (d), respectively. Compared to the
g ¼ G ¼ v ¼ 1 case, the range of the zero-mode hopping is
significantly smaller—∼10 units of length in x0 to a peak
for the former case and 2.5 for T ¼ Tc—and decreases
rapidly with temperature. In addition, the peaks of the
function reduce in magnitude and very quickly become
much sharper as temperature is increased. Therefore, the
contribution to the Tij matrix at temperatures above Tc will
only come from “local” hopping (i.e., only when there is a
monopole-antimonopole molecular bound state), while
at Tc, the ensemble contributes and there can be a chain
of hopping. We note that taking G ¼ g ¼ ffiffiffiffiffiffiffiffiffiffi

2π=3
p

or G ¼
g ¼ ffiffiffiffiffiffi

2π
p

(and the corresponding masses of the monopoles)
does not change this behavior, and therefore does not
change the results of the study.
To make this explicit, we construct the hopping matrix,

as described above, for SU(2) monopole configurations at
T=Tc ¼ 1; 1.05; 1.1; 1.2 and 1.5, and calculate the eigen-
value spectra of the Dirac operator at each of those
temperatures. For each of the temperatures, we take 400
path configurations of 32 time slices, each with 32 particles
in a box with periodic boundary conditions—the box is
repeated to the extent necessary to study the whole range
of x0, y0, z0. At each time slice, the hopping matrix is
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calculated; the matrices are then path-exponentiated to get
the hopping matrix for the ensemble configuration.
The spectral density of eigenvalues is given by

ρðλÞ ¼ 1

V

X
i

δðλ − λiÞ: ð30Þ

The eigenvalues of the configurations—before imposing
the fermion boundary conditions—are seen in Fig. 3. We
can then compute the eigenvalues of the Dirac operator
with

ωi;n ¼
�
nþ 1

2

�
2π

β
− λi: ð31Þ

Considering only the n ¼ �1 case, so that ωi ¼ �πT − λi,
we get the distributions shown in Fig. 4(a), (b), (c), and (d)
for T=Tc ¼ 1; 1.05; 1.1, and 1.2, respectively. We note that
this procedure was also repeated for systems of 16, 20, and
24 particles, and yielded the same results as those above.
The Banks-Casher relation [34] makes the connection

between the density of eigenvalues at ω ¼ 0 and the
magnitude of the chiral condensate. In studying the
monopole contribution to the chiral condensate, it is
important to note that we can only approach the critical

temperature Tc from above, as we do not have any lattice
data on monopole density, mass, or correlations below Tc.
As a result, we will primarily focus on the gap in eigenvalue
spectrum around ω ¼ 0 as a proxy for the chiral transition.
The first, and most important, thing to notice is that when

T ¼ Tc, the eigenvalue distribution has a finite density at

FIG. 3. Eigenvalue distribution for T=Tc ¼ 1 (red), 1.1 (blue),
and 1.2 (green). Note the logarithmic scale.

(a) (b)

(c) (d)

FIG. 2. Evaluation of ℑðTijðr0ÞÞ for r0 in the xy plane for different temperatures.
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ω ¼ 0 [see Fig. 4(a)], which indicates the nonzero value
of the chiral condensate; there is no gap in the spectrum
present at T ¼ Tc. (A small dip seen around zero is a
consequence of finite size of the system, well known and
studied on the lattice and in topological models. It should
be essentially ignored in extrapolation to zero.)
Furthermore, one can see the onset of nonzero density at

zero eigenvalue by looking at the smallest eigenvalue in
each configuration. Figure 5 shows the mean smallest
eigenvalue as a function of temperature. We fit the data
with the function

hωmini ¼ AðT − TcÞν; ð32Þ

where h…i indicates an average over configurations. The
fit parameters were found to be A ¼ 6.29 and ν ¼ :60. We
note that this exponent ν is compatible with the critical
exponent found from the diverging correlation length at the
deconfinement temperature, which for the 3d Ising model
is ν ≈ :63, and is also consistent with the monopole BEC

(a) (b)

(c) (d)

FIG. 4. Distributions of Dirac eigenvalues for T=Tc ¼ (a) 1, (b) 1.05, (c) 1.1, and (d) 1.2, respectively.

FIG. 5. Minimum Dirac eigenvalue as a function of temper-
ature. The black dots are values from our simulations, the blue
line is the fit AðT − TcÞν, and the red dashed line is πT.
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transition found in Ref. [18]. For different values of G, g,
the scaling exponent stays approximately the same
(ν ≈ 0.58 to 0.61). Previous studies have shown that the
deconfining phase transition of the Georgi-Glashow model
falls in the Ising universality class [42,43]; our result is
another confirmation of this property of the model.

IV. SUMMARY

In qualitative terms, the mechanism of chiral symmetry
breaking based on monopoles is as follows. A single
monopole (or anti-monopole) generates additional quark
and antiquark bound states. At high temperatures, the
monopoles have large mass and the probability of hopping
is therefore low. The 4d Dirac operator eigenvalues are well
localized near the fermionic Matsubara frequencies
2πTðnþ 1=2Þ. Using the condensed matter analogy, one
may say that a matter is an insulator.
However, as T decreases toward Tc, the amplitudes of

quark “hopping” from one monopole to an antimonopole
(and vice versa) grow. Eventually, at some critical density,
quarks become “collectivized” and are able to travel very
far from their original locations. The physics of the
mechanism is similar to insulator-metal transition in con-
densed matter under pressure.
Technically, the central point is the distinction bet-

ween the evolution operator and quantization of the
fermionic states on one hand, and the Dirac operator and
its eigenvalues.
Quantitatively, we found that not only the mechanism

works in principle, but that a noticeable quark condensate
does appear at T ≈ Tc, practically simultaneously with the
deconfinement phase transition, seen by the BEC of
monopoles. This observation is consistent with what has
been observed in quenched lattice calculations.
Finally, let us comment on the dependence of chiral

symmetry breaking on the fermion periodicity phase. We
have not studied it in this work, but note that for periodic
quarks, the Matsubara frequencies shift to bosonic set
2πTn, including n ¼ 0. Therefore the monopoles would
produce a nonzero quark condensate at any density. This
comment implies that the chiral transition is in general
some function of the periodicity phase, and its coincidence
with deconfinement only happens for the antiperiodic
quarks we studied.
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APPENDIX: GAMMA MATRICES AND
CHIRALITY OF THE MONOPOLE ZERO MODES

The representation of the Dirac matrices used by Jackiw
and Rebbi and mentioned in the text correspond to the
definition

γ4 ¼ β; γ4γ⃗ ¼ −iα⃗; ðA1Þ

with the representation of the gamma matrices

γ4 ¼−i
�

0 1

−1 0

�
; γi ¼

�−σi 0

0 σi

�
; γ5 ¼ i

�
0 1

1 0

�
:

ðA2Þ

Note that this form is different both from the standard
Dirac representation

γ0 ¼
�
1 0

0 −1

�
; γi ¼

�
0 σi

−σi 0

�
; γ5 ¼

�
0 1

1 0

�
;

ðA3Þ

and the Weyl one, in which

γ0 ¼
�
0 1

1 0

�
; γi ¼

�
0 σi

−σi 0

�
; γ5 ¼

�−1 0

0 1

�
:

ðA4Þ

Standard definition of fermion chirality (left and right
polarizations) is related to projectors ð1� γ5Þ=2, and so
only the last Weyl representation, in which γ5 is diagonal,
is really chiral. The zero modes of pure gauge solitons,
such as instantons and instanton-dyons, are chiral in this
standard sense.
The 2-component zero modes found by Jackiw and

Rebbi are often called “chiral” in literature, but they are not
chiral in the standard sense, as seen already from the fact
that in their representation γ5 is not diagonal. Furthermore,
as seen directly from the Lagrangian of the Georgi-
Glashow model, fermions interact with a scalar field,
and this vertex mixes the left and right polarizations,
explicitly breaking chiral symmetry.
In pure gauge theory with massless fermions (which we

discuss), the SUðNfÞ chiral symmetry is exact. So, when
the lattice monopoles—whatever their microscopic struc-
ture may be—have fermionic bound states, those should
belong to the representation of the standard chiral sym-
metry, rather than the one with the quotation marks. So,
while we use the ’t Hooft-Polyakov monopole and its
Jackiw-Rebbi zero modes as an example, we do not expect
it correctly reproduce their chiral properties. We assume
that the zero modes of monopoles in gauge theories without
scalars (such as QCD) are truly chiral in the usual sense.
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