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In the Abelian-Higgs model, or the Ginzburg-Landau model of superconductivity, the existence of an
infrared stable charged fixed point ensures that there is a parameter range where the superconducting phase
transition is second order, as opposed to fluctuation-induced first order as one would infer from the
Coleman-Weinberg mechanism. We study the charged and neutral fixed points of a two-field generalization
of the Abelian-Higgs model, where two N-component fields are coupled to two gauge fields and to each
other, using the functional renormalization group. Focusing mostly on three dimensions, in the neutral case,
this is a model for two-component Bose-Einstein condensation, and we confirm the fixed-point structure
established in earlier works using different methods. The charged model is a dual theory of two-
dimensional dislocation-mediated quantum melting. We find the existence of three charged fixed points for
all N > 2, while there are additional fixed points for N ¼ 2.
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I. INTRODUCTION

The study of the nature of the superconducting phase
transition has an interesting history. As physicists became
aware of renormalization and universality, they found that
the behavior of the critical point related to the second-order
phase transition of a neutral superfluid was significantly
changed compared to a simple mean-field approximation,
culminating in the sharp predictions of what is now called
the Wilson-Fisher fixed point ofOðNÞmodels. Conversely,
while charged superconductors not only have a dynamical
order parameter field but also are coupled to dynamical
gauge fields, real-world superconductors follow the pre-
dictions from mean-field theory remarkably well. It was
realized by Ginzburg that the temperature range where
fluctuations are relevant is actually very narrow. Meanwhile
it was established that the dynamical gauge field may
preclude a second-order phase transition entirely, instead
leading to a fluctuation-induced first-order transition

(via the Coleman-Weinberg mechanism). This is now
textbook material; see, for instance, Ref. [1].
Later Kleinert put forward, on the basis of a superfluid-

superconductor duality mapping, that the nature of the
phase transition depends on the ratio κ ¼ λL=ξ, where λL is
the London penetration depth and ξ is the coherence length
[2]. In terms of the renormalization group parameters,
κ2 ∝ λ=e2, where λ is the order parameter self-coupling and
e is the electric charge [see Eq. (35)]. There is a critical
value κc ≈ 0.8=

ffiffiffi
2

p
that separates between superconductors

with either first-order (low κ) or second-order (high κ)
phase transitions. Note that this almost coincides with the
distinction between type-I and type-II superconductors at
κ ¼ 1=

ffiffiffi
2

p
referring to their properties under an applied

magnetic field. In renormalization group terms, the second-
order phase transition takes place at an infrared stable
charged fixed point where e2� ≠ 0.
While numerical calculations verified this state of affairs,

renormalization group (RG) derivations based on the ϵ
expansion or the 1=N expansion could confirm the exist-
ence of the charged fixed point only at very high N [1].
However, a field-theoretical RG calculation directly in
d ¼ 3 [3] and functional renormalization group (FRG)
calculations [4] could reproduce the flow diagram down to
N ¼ 2, although these works had their own limitations.
Most recently, in Refs. [5,6] it was shown that the FRG can
fully reproduce the flow diagram depicted in Fig. 1 for
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all N. There are four fixed points in total. The two neutral
fixed points at e2� ¼ 0 correspond to the usual Gaussian and
Wilson-Fisher fixed points of the neutral OðNÞ model.
They are unstable against any finite value of the charge.
There are two charged fixed points, at the same value of the
charge e2� > 0. There is an infrared stable fixed point at
higher λ which corresponds to the second-order super-
conducting phase transition. The fixed point at lower λ is
tricritical and separates between regions where the phase
transition is first and second order. This shows that, in
models that contain dynamical gauge fields, the existence
of charged fixed points indicates the possibility of having
second-order phase transitions instead of fluctuation-
induced first-order ones.
Here we study the fixed point structure of a generaliza-

tion of the Abelian-Higgs model (or Ginzburg-Landau
model) to two N-component fields which are each coupled
to a dynamical Uð1Þ-gauge field and to each other. The
motivation for undertaking this work is threefold. First, it is
interesting to expand the method of Refs. [5,6] to other
models in the search for yet undiscovered charged fixed
points.
Second, since the early days, there has been interest in

the critical properties of the (uncharged) OðN1Þ ⊗ OðN2Þ
and OðN1Þ ⊕ OðN2Þ models, mainly due to the presence
of multicritical points, where more than one coupling
constant is turned to a critical value and more than two
phases coexist (like the tricritical point in Fig. 1). Early
work focused on multicriticality in anisotropic antiferro-
magnets [7]. This has found a recent application for N1 ¼
N2 ≡ N ¼ 2 in describing two-component Bose-Einstein
condensates (BECs) [8,9]. Here two order parameters are
coupled to each other. When condensation takes place, if
the coupling is weak, both components condense at the

same time as if they were not coupled at all; this is called
the miscible phase. Conversely, if repulsive coupling is
strong, only one field condenses; this is called the immis-
cible phase. In renormalization group terms, in the first case
the system flows to a decoupled fixed point where the
coupling vanishes, while in the second case it flows to a
finite positive value of the coupling. Here we wish to
reproduce the results of the neutral model in a simpler way,
and we study how the fixed point structure is modified
when coupled to dynamical gauge fields.
Third, the charged Oð2Þ ⊕ Oð2Þ model is a toy model

to study the solid-to-hexatic melting quantum phase tran-
sition in two spatial dimensions, using the standard d-
dimensional quantum-to-(dþ 1)-dimensional classical
mapping. Using a generalization of Abelian-Higgs or
vortex-boson duality, the two phonons of a d ¼ 2 solid
are mapped to two free and massless vector gauge fields,
which mediate interactions between dislocation topological
defects [10,11]. In a quantum version of Kosterlitz-
Thouless-Halperin-Nelson-Young dislocation-mediated
melting, the dislocations can Bose condense to restore
translational symmetry. Just like the two-component Bose-
Einstein condensates, we have situations where disloca-
tions restore symmetry in only one or in both directions—
corresponding to the immiscible and miscible phases.
These phases then have the symmetry of smectic and
hexatic liquid crystals, respectively. Recent experiments
have shown evidence of a possible quantum hexatic liquid
crystal phase in helium monolayers on a graphite substrate
[12]. It is our ultimate goal to extract critical exponents
related to the quantum critical point of this solid-to-hexatic
phase transition, such that experiments can confirm
whether the quantum hexatic phase exists. Therefore, we
need to understand how the critical behavior is affected by
the addition of gauge fields (representing the long-range
interaction between bosons—the dislocations). As a first
step, we here investigate a simplified model, which differs
from the full theory of Ref. [11] in two respects: First,
longitudinal and transverse phonons have different dynam-
ics, but here we look at two identical gauge fields only.
Second, dislocation dynamics obeys the so-called glide
constraint, which effectively decouples the longitudinal
phonon from the dislocation condensation. We leave these
two complications for future consideration. In light of this
motivation, our main interest is in N ¼ 2 and d ¼ 3,
although we study other cases as well.
We use an implementation of the FRG, building upon the

method developed in Refs. [5,6]. What distinguishes the
FRG from the ordinary perturbative Wilsonian renormal-
ization group is that not only are the couplings flowing
under change of the momentum scale k, but so is the
effective action itself, and furthermore, one is also free to
choose between regularization schemes. The advantage of
the FRG compared to the field-theoretical renormalization
group is that results can be extracted for all dimensions

FIG. 1. Schematic flow diagram of the one-field Abelian-Higgs
model in d ¼ 3. Next to the usual Gaussian (G) and Wilson-
Fisher (WF) neutral fixed points, there are two charged fixed
points: one infrared stable (C) and the other tricritical (tri), which
separates between regions at high κ2 ¼ λ=e2 with a second-order
phase transition, and at low κ2 with a first-order phase transition.
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2 < d < 4. While we provide some explanation of our
method in Sec. II, we refer to the reviews in Refs. [13,14]
for details about the FRG in general, and to Refs. [5,6] for
details of the present method including a consistent gauge-
fixing scheme. One modification that we implement is that
we include a correction from terms of one order higher in
the fields, based on Ref. [15]. This is explained in Sec. II.
Now we discuss the relation to other works. Neutral

OðN1Þ ⊕ OðN2Þmodels have been studied since the 1970s
[7]. A large body of work including Refs. [20–24] using
various RG schemes (ϵ expansion, 1=N expansion, min-
imal subtraction, field-theoretical RG) has established the
existence of six fixed points near d ¼ 4, which reduce to
four if N1 ¼ N2 and furthermore if the coupling constants
of the two fields are identical. In d ¼ 3 there are four fixed
points that explain the physics of two-component Bose-
Einstein condensates [8,9]. Some early work using the FRG
was carried out in Refs. [25,26]. The work closest to our
method is that of Refs. [16,27], also using the FRG. We
confirm these earlier results for the neutral OðNÞ ⊕ OðNÞ
models.
We are aware of only a little work on coupling two scalar

fields to gauge fields. Reference [17] studies a two-field
model coupled to a single gauge field in the large-N limit.
A self-dual model of Josephson junction arrays was
studied, also in the large-N limit, in Refs. [18,19], where
two fields were coupled to two gauge fields, but these
gauge fields were also coupled to each other through a
mutual Chern-Simons term. This should reduce to the
model studied here when this mutual Chern-Simons cou-
pling vanishes. These works seem to find charged fixed
points at larger values of N. Here we establish the existence
of charge fixed points down to the lowest N. Recently,
Refs. [28,29] studied charged and neutral fixed points of
two-field theories in the 1=N and ϵ expansions, in the
context of boson-fermion dualities.
In order to facilitate the comparison to results obtained

by other authors, we will use the following notation. For the
scalar fields, N denotes the number of real components,
whileM denotes the number of complex components, such
that the correspondence is M ¼ 2N. We always work in
d-dimensional Euclidean space, which describes either a

finite-temperature d-dimensional system with a thermal
phase transition or a Wick rotation of a (d − 1)-dimensional
zero-temperature quantum system with a quantum phase
transition. The correspondence of our notation to that of
other works is detailed in Table I.
The outline of this paper is as follows. In order to

understand the procedure that we are using for the two-field
model, in Sec. II we, in part, apply the method of Ref. [15]
to the neutral OðNÞ model, and we show how this gives
corrections to the flow equations for the self-coupling. This
also establishes our implementation of the FRG. In Sec. III
we treat the neutral two-field model using this technique
and discuss the fixed-point structure that arises. In Sec. IV
we finally extend the Abelian-Higgs model of Refs. [5,6] to
two scalar fields coupled to two gauge fields, and we
discuss the fixed-point structure compared both to the
single-field charged model (Abelian-Higgs) and to the
neutral two-field model. We discuss the relevance of these
results as well as an outlook to future work in Sec. V.

II. CORRECTIONS TO THE OðNÞ MODEL

The archetype for studying phase transitions is the OðNÞ
model of an N-component real field ϕa with mass m2 and
self-coupling λ. Early works established the existence of a
nontrivial fixed point at finite λ, now called the Wilson-
Fisher fixed point. One of the advantages of the FRG is that
this result can be reproduced very quickly [13,14].
Furthermore, Papenbrock and Wetterich showed how a
two-loop result can be reproduced [15]. Here we implement
a simplified version of this method, moreover, using a
Litim-type regulator [30] that was not available at the time,
which we shall derive here in some detail as a warm-up for
the calculations to follow.
The first part of the method of Ref. [15] is to include a

term of sixth order in ϕa:

S¼
Z

ddx

�
1

2
ð∇ϕaÞ2þ

m2

2
ϕ2
aþ

λ

4!
ðϕ2

aÞ2þ
u
48

ðϕ2
aÞ3

�
: ð1Þ

It is of course known that the coupling u is irrelevant and
that this term is usually neglected. However, the flow of λ

TABLE I. Correspondences of coupling constants in this work [see Eq. (46) for the most general form] to those of
related works.

This work m2 λ u g w e

Ref. [15], Eq. (3.5) κ λ u3
Ref. [8], Eq. (3) r 12g u
Ref. [9], Eq. (16) r 1

2
v 1

8
u

Ref. [16], Eq. (1) rϕ ¼ rχ uϕ ¼ uχ 1
12
uϕχ

Ref. [17], Eq. (1) r01 ¼ r02 2u01 ¼ 2u02 1
6
u03 e01 ¼ e02

Ref. [18], Eq. (1) r1 ¼ r2 2u ¼ 2v 1
6
w ea ¼ eb

Ref. [19], Eq. (1) r1 ¼ r2 6
N λ1 ¼ 6

N λ2
4
N2 g1 ¼ 4

N2 g2
1
2N λ3

6
N2 g3 ¼ 6

N2 g4 1
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will now contain a contribution proportional to u, and by
solving the flow equation of the (irrelevant) coupling u, we
can substitute this solution into the flow equation for λ to
obtain a higher-order correction. Reference [15] further-
more implements a sophisticated scheme for handling wave
function renormalization, but for our purposes that is not
needed, and we do without this refinement.
The basis of the functional or exact renormalization

group (the FRG) is the Wetterich equation in momentum
space [31]

∂kΓk ¼
1

2
Tr

Z
ddpddq

∂kRkð−q;−pÞ
ðΓð2Þ

k þ RkÞabðp; qÞ
: ð2Þ

Here Γk½ϕ� is the regulated effective action where k is the
momentum scale, the fluctuations below which are
suppressed. We have limk→0Γk ¼ Γ, the effective action.
This is done by adding a term

R
ϕaðRkÞabϕb to the

action, where Rk is called the regulator and crudely
speaking acts as a scale-dependent mass term that prevents
the occurrence of any infrared divergence. Furthermore,

ðΓð2Þ
k Þab ¼ δ2Γk=δϕaδϕb is the second-derivative matrix, or

the propagator for the flow of the effective action itself. The
matrix trace Tr is over the ab indices. For more details on
the FRG, see the reviews in Refs. [13,14].
For our case, Eq. (1), the scale-dependent effective action

in the local potential approximation [14] is

Γk ¼
Z

ddx

�
ϕa

2
ð−∇2 þm2

kÞϕa þ
λk
4!
ðϕ2

aÞ2 þ
uk
48

ðϕ2
aÞ3

�
;

ð3Þ

where the effective potential is expanded up to sixth order
in the fields. The reason for this approximation is that in
principle we are looking for fixed-point solutions in d ¼ 3,
and we wish to keep relevant and marginal interactions
only. More sophisticated truncations take into account the
anomalous dimension of the field and include the full field
dependence of the wave function renormalization factors
[32]. This method hints at the existence of an irrelevant
eigenvalue of small magnitude that can lead to a change in
scaling. As a first approximation, however, here we neglect
all scale dependence of the wave function renormalizations
and leave exploration of the effects of the anomalous
dimensions for further studies.
The flows of the now scale-dependent couplings are

obtained by explicitly calculating the left- and the right-
hand side of Eq. (2) and comparing the coefficients of each
power of the fields. This process can typically be eased by
going to momentum space and by evaluating with respect
to constant background fields, that is, by setting all fields to
a uniform, constant value after having derived the matrix

ðΓð2Þ
k Þab. For our case, due to the OðNÞ symmetry of

Eq. (3), we are at liberty to set the constant field to have

only the first component nonzero: ϕaðxÞ ¼ ϕ0a ¼ δa1ϕ0.
Throughout this paper the 0 label indicates a constant field.
We then obtain the matrix elements

Γð2Þ
k;abðp; qÞ ¼

�
ðq2 þm2

kÞδab þ
1

3!
λkϕ0

2ð2δa;1δb;1 þ δabÞ

þ 1

8
ukϕ0

4ð4δa;1δb;1 þ δabÞ
�
δðpþ qÞ: ð4Þ

We add the regulator devised by Litim [30], which is
different from the regulator used in Ref. [15]:

Rk;abðp; qÞ ¼ Rk;abðqÞδdðpþ qÞð2πÞd; ð5Þ

Rk;abðqÞ ¼ RkðqÞδab ¼ ðk2 − q2ÞΘðk2 − q2Þδab: ð6Þ

Here ΘðxÞ is the Heaviside step function. With this
regulator the Wetterich equation becomes

∂kΓk ¼
1

2
Tr

Z
ddqðΓð2Þ

k þRkÞ−1abðq;−qÞ2kΘðk2−q2Þ: ð7Þ

In our case the matrix is diagonal. Here and below, the
equation is evaluated for constant field configurations; in

this case the terms ðΓð2Þ
k þ RkÞ−1ab contain a trivial delta

function δð0Þ which corresponds just to the spacetime
volume and is canceled against a similar term on the left-
hand side. The integration over q can be easily evaluated.
Comparing terms on the left- and right-hand sides gives the
flow equations

k∂km2
k ¼ −

Ωd

d
kdþ2

λkðN þ 2Þ
3ðk2 þm2

kÞ2
; ð8Þ

k∂kλk¼
Ωd

d
kdþ2

2λ2kðNþ8Þ−9ukðk2þm2
kÞðNþ4Þ

3ðk2þm2
kÞ3

; ð9Þ

k∂kuk¼−
Ωd

d
kdþ2

2λkðλ2kðNþ26Þ−9ukðk2þm2
kÞðNþ14ÞÞ

3ðk2þm2
kÞ4

:

ð10Þ

Here Ωd ¼
R
dΩd=ð2πÞd ¼ 2=½ð4πÞd=2Γðd=2Þ� is the inte-

gral over the solid angle of a d-dimensional hypersphere.
Note that N comes in only from summing over N − 1
identical contributions a ¼ b > 1 of Eq. (4).
We are interested in the flows of dimensionless cou-

plings. We therefore introduce m̄2
k ¼ k−2m2

k, λ̄k ¼ kd−4λk,
ūk ¼ k2d−6uk. This leads to the final form of the flow
equations:
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k∂km̄2
k ¼ −2m̄2

k −
Ωd

d
λ̄kðN þ 2Þ
3ð1þ m̄2

kÞ2
; ð11Þ

k∂kλ̄k ¼ ðd − 4Þλ̄k
þ Ωd

d
2λ̄2kðN þ 8Þ − 9ūkð1þ m̄2

kÞðN þ 4Þ
3ð1þ m̄2

kÞ3
; ð12Þ

k∂kūk ¼ ð2d − 6Þūk
−
Ωd

d
2λ̄ðλ̄2ðN þ 26Þ − 9ūkð1þ m̄2

kÞðN þ 14ÞÞ
3ð1þ m̄2

kÞ4
:

ð13Þ

The fixed points of this model are the points where these
flows vanish simultaneously. As we mentioned above, the
next-order correction is obtained by solving the equation
for ū in terms of m̄2

k and λ̄k, and substituting it into the flow
equation for λ̄k:

ū� ¼
λ̄3kΩdðN þ 26Þ

9ð1þ m̄2
kÞððd − 3Þdð1þ m̄2

kÞ3 þ λ̄kΩdð14þ NÞÞ :

ð14Þ

Equation (11) is independent of ūk and, equating it to
zero, can be solved for m̄2

k as a function of λ̄k. For general
α’s the solution to

−x −
α

ð1þ xÞ2 ¼ 0 ð15Þ

is

x ¼ −
4

3
sin2

�
1

3
sin−1

1

2

ffiffiffiffiffiffiffiffi
27α

p �
: ð16Þ

In our case α ¼ Ωd
6d ðN þ 2Þλ̄k, and we find that

m̄2� ¼ −
4

3
sin2

0
B@1

3
sin−1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωd
d ðN þ 2Þλ̄k

q
2

ffiffiffi
2

p

1
CA: ð17Þ

Now we substitute the values of m̄2� and ū� into the flow
equation for λ̄k. This gives the next-order correction to the
flow of λ̄k, which is, up to third order in λ̄k,

k∂kλ̄k ¼ ðd − 4Þλ̄k þ
Ωd

d
λ̄2k

2ðN þ 8Þ
3

þΩ2
d

d2
λ̄3k

4ðN2 þ 15N þ 38Þ − dðN þ 2ÞðN þ 8Þ
3ðd − 3Þ

þOðλ̄4kÞ: ð18Þ

In d ¼ 4 we find

k∂kλ̄k ¼ λ̄2k
ðN þ 8Þ

48
− λ̄3k

ð5N þ 22Þ
756π2

þOðλ̄4kÞ: ð19Þ

This agrees with Eq. (4.9) in Ref. [15], up to geometrical
factors which come from using a different regulator.
There is a factor of d − 3 in the denominator for the term

∼λ̄3k in Eq. (18). This would indicate that the result is invalid
for d ¼ 3. This is, however, an artifact of the expansion. We
can evaluate the flow equation for ūk in d ¼ 3 directly to
find

ū�ðd ¼ 3Þ ¼ λ̄2k
N þ 26

9ðN þ 14Þð1þ m̄2
kÞ
: ð20Þ

This gives the beta function for λ̄k:

k∂kλ̄k ¼ −λ̄k þ
Ω3

9
λ̄2k

N2 þ 14N þ 120

ðN þ 14Þð1þ m̄2
kÞ3

: ð21Þ

Solving these equations in 2 < d < 4, we find the usual
fixed points: the trivial, Gaussian fixed point at m̄2� ¼ λ̄� ¼
0 and the nontrivial Wilson-Fisher fixed point with m̄2� < 0

and λ̄� > 0. For instance, for N ¼ 2 and d ¼ 3 we find that

m̄2
�;WF ¼ −0.166; λ̄�;WF ¼

0.551
Ω3

: ð22Þ

This concludes our treatment of the simple OðNÞ model.

III. NEUTRAL TWO-FIELD MODEL

We now turn our first main interest: the neutral two-field
model without coupling to gauge fields. This model is a
special case of the OðN1Þ ⊕ OðN2Þ models. The most
general action involving an N1-component field ϕa and an
N2-component field χa with density-density coupling reads

S ¼
Z

ddx

�
1

2
ð∇ϕaÞ2 þ

1

2
m2

ϕϕ
2
a þ

1

4!
λϕðϕ2

aÞ2 þ
1

2
ð∇χaÞ2

þ 1

2
m2

χχ
2
a þ

1

4!
λχðχ2aÞ2 þ gϕ2

aχ
2
b

�
: ð23Þ

This is just two copies of the OðNÞ model, with the added
interspecies coupling proportional to g. For g ¼ 12λ this
model has a larger symmetry group OðN1 þ N2Þ.
It is not difficult to derive the flow equations in this most

general case. Solving them, however, is complicated. Since
our main interest motivated in the Introduction lies in two
two-component fields, we shall immediately specialize to
the case where N1 ¼ N2 ¼ N, and, furthermore, to the
symmetric model where m2

ϕ ¼ m2
χ ≡m2 and λϕ ¼ λχ ≡ λ.

In the case in which λϕ ≠ λχ , it is known that this model has
six fixed points near d ¼ 4 [7,23]; by equating λϕ ¼ λχ , this
number reduces to four, as we shall verify in this section.
In d ¼ 3 we reproduce the four fixed points found in
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Refs. [8,9]. For FRG treatment of the more general model,
see Ref. [16].
It is straightforward to obtain the fixed points of the

simultaneous flow of m2, λ, and g of this symmetric
OðNÞ ⊕ OðNÞ model in the FRG. However, we find that
the fixed-point structure does not survive for N ¼ 2, which
is our main case of interest, or for N ¼ 4. In N ¼ 2 and
N ¼ 4 there are only two, instead of three, nontrivial fixed
points. This might be related to the fact that, in the one-loop
ϵ-expansion, two fixed points merge for N ¼ 2 [1]. This is
the reason that we use the method outlined in Sec. II; the
improved flow equations for λ and g will lead to the correct
structure of fixed points all the way down to N ¼ 2.

A. Flow equations

We are, therefore, considering the effective action with
sixth-order terms:

Γk ¼
Z

ddx

�
−
1

2
∇2ðϕ2

aþχ2aÞþ
1

2
m2

kðϕ2
aþχ2aÞ

þ 1

4!
λkððϕ2

aÞ2þðχ2aÞ2Þþgkϕ2
aχ

2
b

þ 1

48
ukððϕ2

aÞ3þðχ2aÞ3Þ

þ 1

24
wkððϕ2

aÞ2χ2bþϕ2
aðχ2bÞ2Þ

�
: ð24Þ

Again, we have chosen the case which is symmetric
between exchange of ϕa and χa.

We now proceed as in Sec. II. The Wetterich equation,
Eq. (2), is evaluated in a constant background where
ϕaðxÞ ¼ ϕ0a ¼ δa1ϕ0 and χaðxÞ ¼ χ0a ¼ δa1χ0. Using
the regulator, Eq. (5), the matrix contribution on the
right-hand side of the Wetterich equation is of the form

ðΓð2Þ
k þ RkÞð−q; qÞ ¼ δð0Þðk2I2N þM2Þ; ð25Þ

where I is the identity matrix andM2 is the “mass matrix,"
given explicitly in Appendix A 1, with eigenvalues M2

ðiÞ.
These are independent of q, and the integral over q can be
performed trivially:

k∂kΓk ¼
k
2

Z
ddq2kΘðk2 − q2Þ

X
i

1

k2 þM2
ðiÞ

¼ Ωdkdþ2

d

X
i

1

k2 þM2
ðiÞ
: ð26Þ

We can now carry out the sum on the right-hand side and
perform a series expansion in the fields. Comparing
term by term with the left-hand side of Eq. (2) leads to
the flows of the couplings. We are interested in the flow of
dimensionless parameters, so we rescale m̄2

k ¼ k−2m2
k,

λ̄k ¼ kd−4λk, ḡk ¼ kd−4gk, ūk ¼ k2d−6uk, w̄k ¼ k2d−6wk.
The flow equations of the couplings are

k∂km̄2
k ¼ −2m̄2

k −
Ωd

d
ðN þ 2Þλ̄k þ 12ḡkN

3ð1þ m̄2
kÞ2

; ð27Þ

k∂kλ̄k ¼ ðd − 4Þλ̄k þ
Ωd

d
2ðN þ 8Þλ̄2k þ 288Nḡ2k − ð1þ m̄2

kÞð9ðN þ 4Þūk þ 6Nw̄kÞ
3ð1þ m̄2

kÞ3
; ð28Þ

k∂kḡk ¼ ðd − 4Þḡk þ
Ωd

d
96ḡ2k þ 4ðN þ 2Þλ̄kḡk − ð1þ m̄2

kÞðN þ 2Þw̄k

3ð1þ m̄2
kÞ3

; ð29Þ

k∂kūk ¼ ð2d − 6Þūk þ
Ωd

d
2

9ð1þ m̄2
kÞ4

½−ðN þ 26Þλ̄3k − 1728Nḡ3k þ ð1þ m̄2
kÞð9ðN þ 14Þλ̄kūk þ 72Nḡkw̄kÞ�; ð30Þ

k∂kw̄k ¼ ð2d − 6Þw̄k þ
Ωd

d
2

ð1þ m̄2
kÞ4

½−1152ḡ3k − 24ðN þ 14Þḡ2kλ̄k − 2ðN þ 8Þḡkλ̄2k
þ ð1þ m̄2

kÞððN þ 6Þλ̄kw̄k þ 6ðN þ 4Þḡkūk þ 8ðN þ 10Þḡkw̄kÞ�: ð31Þ

These reduce to the one-field flows, Eqs. (11)–(13),
when taking g ¼ w ¼ 0. There are a few things to note
immediately about these flow equations. First, the flow of
m̄2

k is not affected by the higher-order terms. Second, as
expected, the flows of λ̄k and ḡk are affected. As before, the

strategy is now to solve the equations for ūk and w̄k first,
and put those values in the flow equations for λ̄k and ḡk.
Third, we see that, just as d ¼ 4 is special for the flow of λ̄k
and ḡk because the first term on the right-hand side
disappears, d ¼ 3 is special for the flows of ūk and w̄k.
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Since d ¼ 3 is our main case of interest, and since it is
computationally simpler, we will present results in d ¼ 3
only. Some comments on other dimensions can be found at
the end of this section.

B. Fixed points

We now derive the fixed points of Eqs. (27)–(31) in
d ¼ 3. First, we solve the flow equation for m̄2

k. We use
Eq. (16) with α ¼ Ωd

6d ½ðN þ 2Þλ̄k þ 12Nḡk� to find

m̄2� ¼−
4

3
sin2

0
B@1

3
sin−1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωd
d ½ðNþ2Þλ̄kþ12Nḡk�

q
2

ffiffiffi
2

p

1
CA: ð32Þ

The first terms on the right-hand sides of Eqs. (30) and (31)
vanish in d ¼ 3. As a simplification, the denominators
ð1þm̄2

kÞ4, which must be assumed to be nonvanishing,
can be factored out. We find two independent equations,
with solutions

ū� ¼ −
13824ðḡ3kNðλ̄k − ðN þ 4ÞḡkÞ þ 144ḡ2kλ̄

2
kNðN þ 8Þ − λ̄3kðN þ 26ÞððN þ 6Þλ̄k þ 8ðN þ 10ÞḡkÞ

9ð1þ m̄2Þð48ḡ2kNðN þ 4Þ − 8ḡkλ̄kðN2 þ 24N þ 140Þ − λ̄2kðN2 þ 20N þ 84ÞÞ ; ð33Þ

w̄� ¼ −
4ḡkð864ḡ2kððN þ 14Þλ̄k − NðN þ 4ÞḡkÞ þ λ̄2kððN2 þ 18N þ 116Þλ̄k þ 18ðN þ 14Þ2ḡkÞÞ

3ð1þ m̄2Þð48ḡ2kNðN þ 4Þ − 8ḡkλ̄kðN2 þ 24N þ 140Þ − λ̄2kðN2 þ 20N þ 84ÞÞ : ð34Þ

We now substitute these solutions, m̄2�, ū�, w̄� as
functions of λ̄ and ḡ, into the flow equations for λ̄ and
ḡ, i.e., Eqs. (28) and (29). The expressions are too long to
write down explicitly. The flow equations k∂kλ̄k ¼ 0 and
k∂kḡk ¼ 0 are solved simultaneously; we do this numeri-
cally for certain values of N. We emphasize again that it is
necessary to include the higher-order corrections to the
flow equations to obtain all four fixed points in N ¼ 2
and N ¼ 4.
We find these fixed points for all N ≥ 2 in d ¼ 3. We

follow the nomenclature of Refs. [8,9]. Numerical values
for N ¼ 3 are given in Table II, and the flow diagram for
N ¼ 3 is pictured in Fig. 2. The trivial fixed point (“G” for
Gaussian) has λ̄� ¼ ḡ� ¼ 0 and is unstable. There is one
fixed point where λ̄� ¼ 12ḡ�, and this has therefore
enhanced the symmetry of Oð2NÞ; see Eq. (23). This fixed
point has one stable and one unstable direction and
separates between the two regions in parameter space
where either one or two fields condense. At the infrared
stable decoupled fixed point (DFP) the interspecies cou-
pling flows to zero, ḡ� ¼ 0, and the two fields behave as
independent OðNÞ fields with λ̄� at their WF fixed point;
see Eq. (22). Here two fields condense, and because of the
symmetry of the model, they do so in the same way. It

corresponds to the miscible phase in two-component BECs.
The asymmetric fixed point (AFP) is also infrared stable in
the λ̄k − ḡk space. It has a repulsive coupling ḡ� large
enough to prevent both fields from condensing at the same
time, and it corresponds to the immiscible phase in two-
component BECs. Note than when the denominator in
Eqs. (33) and (34) vanishes, the third-order couplings u�,
w� change sign. This indicates that the approximation we
are using is no longer valid. The fixed points that we find
below are well within the region of validity, as indicated
in Fig. 2.
We note that, for N ¼ 2, we numerically find another

fixed point, very close to the DFP, with g slightly negative.
At present we cannot determine whether this is an artifact of
the approximation. We leave this for future investigation.

FIG. 2. Fixed points of the neutral two-field model, Eq. (23), in
d ¼ 3 for N ¼ 3. Values of the fixed points (in units of
Ω3 ¼ 1=2π2) correspond to those in Table II. The dashed purple
line indicates where the denominator of u� and w� in Eqs. (33)
and (34) vanishes, signaling that the approximation is no longer
valid in the region left of this line.

TABLE II. Fixed points of the neutral two-field model,
Eq. (23), in d ¼ 3 for N ¼ 3.

λ̄�Ω3 ḡ�Ω3

G 0 0
DFP 0.46 0
Oð2NÞ 0.32 0.026
AFP 0.10 0.056
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The FRG derivation is valid for all 2 < d < 4, even
though it is numerically more difficult if d ≠ 3. We have
looked at the evolution of the fixed-point structure as d is
increased from d ¼ 3 to d ¼ 3.99. The decoupled and
Oð2NÞ fixed points are robust and exist in this entire range.
However, the asymmetric fixed point moves to the region
where λ̄� < 0 around d ¼ 3.6 for N ¼ 3, and it must be
rejected since negative self-coupling leads to an instability.
At around d ¼ 3.8 the DFP splits into two, and we get an
additional fixed point with λ̄� > 0 and ḡ� > 0. It is known
that in the symmetric two-field model the ϵ-expansion also
leads to such a fixed point, called the biconical fixed point
[7], and that it is distinct from the AFP [9]. This is
consistent with our findings.

IV. CHARGED TWO-FIELD MODEL

Now we will turn to the charged model including the
coupling to the gauge fields. Compared to the neutral case,
the FRG treatment is severely complicated by the presence
of a gauge freedom. Introducing a momentum scale k
typically violates gauge invariance, so the gauge must be
fixed very carefully to assure that the final results are
consistent [5,6]. We shall first review the method developed
in Refs. [5,6] for the one-field model before tackling the
two-field model. In this section we will use M ¼ N=2 for
the number of complex components.

A. One-field Abelian-Higgs model

We shortly review the one-field Abelian-Higgs model
and outline how the results are affected by adding a sixth-
order potential term as in Sec. II.
Consider an M-component complex field Φa ¼

ðσa þ iπaÞ=
ffiffiffi
2

p
, where σa and πa are real fields, minimally

coupled to a dynamicalUð1Þ vector-gauge field Ai with the
action

SAH ¼
Z

ddx

�
1

2
ð∂iAj − ∂jAiÞ2 þ jð∂i þ ieAiÞΦaj2

þm2jΦaj2 þ
λ

6
ðjΦaj2Þ2

�
: ð35Þ

Here e is the (electric) charge, denoting the strength of the
coupling between the gauge field and the scalar field. At
M ¼ 1 this is equivalent to the Ginzburg-Landau model of
superconductivity.
Now we discuss the method used in Refs. [5,6]. First of

all, the action, Eq. (35), has a gauge freedom that must be
taken care of. This is done by adding a gauge-fixing term,

Lgf ¼
1

2ξ
ð∂iAi þ ξeσ̃aπaÞ2: ð36Þ

Here σ̃a is a freely chosen nondynamical dummy field
degree of freedom, and 0 ≤ ξ < ∞ is the gauge-fixing
parameter. This corresponds to a Rξ-gauge-fixing function
G ¼ 1ffiffi

ξ
p ð∂iAi þ ξeσ̃aπaÞ, and it can be implemented by

introducing a by pair of Grassmann-valued ghost fields
c�; c via

Lghost ¼ c�ð−∂2 þ ξe2σ̃aσaÞc: ð37Þ
Second, now it is necessary to include wave function

renormalization factors and charge rescaling as follows:

Φa →
ffiffiffiffiffi
Zk

p
Φa; Ai →

ffiffiffiffiffiffiffiffi
ZA;k

p
Ai; e→

Ze;kffiffiffiffiffiffiffiffi
ZA;k

p
Zk

e: ð38Þ

We assume that the Ward identity is not violated, so
Ze;k ¼ Zk, which also implies that the rescaling of the
charge is consistent with gauge invariance of the covariant
derivative. The full effective action in the local potential
approximation reads

Γk ¼
Z

ddx

�
1

2
ZA;kAið−∂2δij þ ∂i∂jð1 − ξ−1ÞÞAj þ

1

2
Zkσa

�
−∂2 þm2

k þ
1

12
Zkλkσ

2
b þ e2AiAi

�
σa

þ 1

2
Zkπa

�
−∂2 þm2

k þ
1

12
Zkλkπ

2
b þ e2AiAi

�
πa þ

1

12
Z2
kλkσ

2
aπ

2
b þ ξk

Zk

ZA;k
e2πaσ̃aσ̃bπb

þ −Zkeð∂iAiÞðσa − σ̃aÞπa − 2ZkeAiπa∂iσa þ c�
�
−∂2 þ ξe2

Zk

ZA
σ̃aσa

�
c
�
: ð39Þ

Note that we allow the gauge fixing parameter to flow,
ξ ¼ ξk.
As it turns out, terms with finite mass m2

k lead to
ambiguities in calculating the flow of ZA;k. For that
reason, it is going to be assumed that m2

k flows to zero
at the fixed points as k → 0, and all expressions will be
evaluated at m2

k ¼ 0 [5,6]. Similarly, the flow equation
generates a mass term for the gauge field m2

A;k, which

breaks gauge invariance, but this term identically flows to
zero as k → 0 once it is properly adjusted at the UV scale,
and it can therefore be safely set to zero through all
calculations.
As before, we will evaluate the left- and right-hand sides

of the Wetterich equation, Eq. (2), to determine flow
equations. We will use the following terms on the left-
hand side:
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∂kðZ2
kλkÞðσ2aÞ2; ð∂kZkÞσað−∂2Þσa;

ð∂kZA;kÞAið−∂2δij þ ∂i∂jð1 − ξ−1k ÞÞAj: ð40Þ

Therefore, in evaluating the flow for Zkλ
2
k, we can assume a

background where all fields are vanishing except for a
constant σa ¼ σa0. For the flow of Zk itself, owing to the
gauge fixing and the choice σ̃a ¼ σa0, we can also treat
∂iσa as a constant vector field, while all other fields vanish.
Using this flow equation, we can determine the flow of the
coupling constant using

∂kλk ¼
1

Z2
k

ð∂kðZ2
kλkÞ − λk2Zkð∂kZkÞÞ: ð41Þ

The flow of ZA;k is evaluated in a background where only
Ai is nonvanishing. The flow of the charge follows from
that of ZA;k via the definition e2k ¼ e2=ZA;k.
For evaluating the right-hand side of the Wetterich

equation, Eq. (2), we need to choose the regulator matrix.
This is done as follows: First, the propagator matrix Γð2Þ

k is

calculated and diagonalized. Then, to each eigenvalue γðiÞk
thus obtained, a regulator RðiÞ

k ðqÞ ¼ ZðiÞ
k RkðqÞ, where

RkðqÞ given in Eq. (5), is added. The factor ZðiÞ
k depends

on the prefactor of the q2 term that is obtained in each γðiÞk .
By neglecting the anomalous dimensions (which produce
only higher-order terms), the right-hand side is then of the
form

rhs ¼ 1

2

X
i

Z
ddq

2kZðiÞ
k

γðiÞk þ RðiÞ
k ðqÞ

Θðk2 − q2Þ: ð42Þ

This is then evaluated explicitly, expanded in a series in the
fields, and compared with the left-hand side.
We refer the reader to Ref. [6] for further details of the

derivation and state only some of the results. The flow of
the charge is independent of the other coupling constants;
the dimensionless charge ē2k ¼ kd−4e2k has two fixed points,
one at ē2k ¼ 0 and the other at

ē2� ¼
dðdþ 2Þð4 − dÞ

8MΩd
: ð43Þ

Even though at the level of the effective action, Eq. (39), we
are free to choose any value of the gauge-fixing parameter

ξk, it turns out that, in the present FRG scheme, there is
only one choice consistent with the flow equation:

ξk ¼
2

4 − d
: ð44Þ

The flow of Zk depends only on the charge e2k:

k∂kZk ¼
8

d − 2

Ωd

d
kd−4ðd − 1þ ξkÞe2kZk: ð45Þ

With all of this, it is found that the fixed points are those in
Fig. 1 for all M.
We now wish to comment on introducing the term

u
6
ðΦaΦaÞ3 into the ansatz of Γk, as we did in Sec. II.

We follow the procedure exactly as before: we use the term
∂kðZ3

kukÞðσ2aÞ3 to determine the flow of uk, which is then
solved in its fixed point, and the solution for uk is
substituted back into the flow of λk. For the neutral fixed
points, this gives the same structure as before, but note that,
since we are working with m2

k ¼ 0, results differ quanti-
tatively. It is important to mention, however, that, in the
charged case, the introduction of uk makes the tricritical
fixed point disappear. The reason is that when substituting
the fixed point expression for uk into the flow of λk, a new
fixed point for λk may arise. If the charge is zero, then this is
identical to the trivial fixed point, but for e2k ≠ 0, all roots
for λk are different. At e2k ¼ e2�, two of them become
complex, leaving the superconducting fixed point C as the
only real solution (see Fig. 1). As pointed out already, the
introduction of uk is necessary for reproducing the fixed-
point structure of the two-field model, and therefore we do
not wish to discard it. The disappearance of the tricritical
fixed point could be related to the fact that, for small λk, the
fixed-point value for uk gets close to zero, leading to a
singularity in the coupled flow equations of λk and gk. It
would be interesting to see effects of even higher order
contributions, but we leave that for further studies.

B. Two-field effective action

We now turn to the two-field model coupled to two
gauge fields. We are considering two complex-valued
M-component fields Φf

a and two vector gauge fields Af
i ,

labeled by three indices: i ¼ 1;…; d as the spacetime
index, a ¼ 1;…;M as the vector index, and f ¼ 1; 2 as
the flavor index.

The total action is

S ¼
Z

ddx

�X
f¼1;2

�
1

2
Af
i ð−∂2δij þ ∂i∂jð1 − ξ−1ÞÞAf

j þ ðDf
iΦ

f
aÞ†Df

iΦ
f
a þm2Φf†

a Φf
a þ λ

6
ðΦf†

a Φf
aÞ2 þ u

6
ðΦf†

a Φf
aÞ3

�

þ 4gðΦ1†
a Φ1

aÞðΦ2†
b Φ2

bÞ þ
w
3
ððΦ1†

a Φ1
aÞ2ðΦ2†

b Φ2
bÞ þ ðΦ1†

a Φ1
aÞðΦ2†

b Φ2
bÞ2Þ

�
: ð46Þ

CHARGED AND NEUTRAL FIXED POINTS IN THE OðNÞ ⊕ OðNÞ … PHYS. REV. D 100, 016005 (2019)

016005-9



Here Df
iΦ

f
a ¼ ð∂i þ iefAf

i ÞΦf
a, and we assumed the

symmetric situation where m1 ¼ m2 ¼ m, λ1 ¼ λ2 ¼ λ,
e1 ¼ e2 ¼ e, and also M complex components for both
fields. This model is essentially two copies of the
M-component Abelian-Higgs model which are coupled
only through the terms in the last line.
To avoid confusion, we will sometimes forgo the flavor

indices and write instead the two fields with separate
symbols—namely,

Φ1
a ¼

1ffiffiffi
2

p ðσ1a þ iπ1aÞ≡ 1ffiffiffi
2

p ðσa þ iπaÞ; ð47Þ

Φ2
a ¼

1ffiffiffi
2

p ðσ2a þ iπ2aÞ≡ 1ffiffiffi
2

p ðςa þ iϖaÞ: ð48Þ

With these definitions, the coupling constantsm2, λ, g, u, w
are the same as for the uncharged model of Eq. (23) in
terms of the real fields ϕ ¼ ðσ; πÞ, χ ¼ ðς;ϖÞ.
This model is invariant under two separate Uð1Þ-gauge

transformations. We choose Rξ gauge fixes for both fields
by adding two pairs of ghost fields, cf�, cf, f ¼ 1; 2,
with each pair governed by a Lagrangian [Eq. (37)].
Similarly, we carry out the rescalings [Eq. (38)] for both
sets of fields.
In total we find the two-field generalization of the

effective action, Eq. (39), without the higher-order terms:

Γk ¼
X
f¼1;2

Γf
k þ

Z
ddxZ2

kgðσ2a þ π2aÞðς2b þϖ2
bÞ: ð49Þ

Here Γf
k are given by Eq. (39) for the respective fields. To

correctly reproduce the fixed-point structure for the neutral
case for low values of M, as we have seen in the previous
section, it is necessary to take into account the terms of
sixth order in the fields in Eq. (46).

C. Flow equations

We will determine the flow of the couplings at hand of
the following terms in the left-hand side of the Wetterich
equation, Eq. (2):

∂kðZ2
kλkÞðσ2aÞ2; ∂kðZ3

kukÞðσ2aÞ3; ð∂kZkÞσað−∂2Þσa;
ð∂kZA;kÞAið−∂2δij þ ∂i∂jÞAj;

∂kðZ2
kgkÞσ2aς2b;

1

24
∂kðZ3

kwkÞσ2aς4b: ð50Þ

The addition of the third-order terms to Eq. (49) will lead to
new terms in the elements of the propagator matrix. Here
we list the ones that affect the flow of the couplings, and we
have already set πa0 ¼ ϖa0 ¼ 0:

Γð2Þ;3rd
σaσb ¼ 2Z2

kgδabς
2
c þ

1

8
Z3
kukσ

2
cðδabσ2d þ 4σaσbÞ þ

1

12
Z3
kwkς

2
cðδabð2σ2d þ ς2dÞ þ 4σaσbÞ; ð51Þ

Γð2Þ;3rd
πaπb ¼ 2Z2

kgδabς
2
c þ

1

8
Z3
kukδabðσ2cÞ2 þ

1

12
Z3
kwkς

2
cðδabð2σ2d þ ς2dÞÞ; ð52Þ

Γð2Þ;3rd
ςaςb ¼ 2Z2

kgδabσ
2
c þ

1

8
Z3
kukðδabðς2cÞ2 þ 4ςaςbς

2
cÞ þ

1

12
Z3
kwkσ

2
cðδabð2ς2d þ σ2dÞ þ 4ςaςbÞ; ð53Þ

Γð2Þ;3rd
ϖaϖb ¼ 2Z2

kgδabσ
2
c þ

1

8
Z3
kukδabðς2cÞ2 þ

1

12
Z3
kwkσ

2
cðδabð2ς2d þ σ2dÞÞ: ð54Þ

We can see that all terms involve at least one factor of σa or ςa. Therefore, the flows of Zk and ZA;k are unaffected. This
immediately implies that the flow of the charge is unaffected as well, and the fixed points of the charge are given by those of
the one-field model [Eq. (43)].
We can now diagonalize the propagator matrix. The full expressions for the eigenvalues γðiÞ are given in Appendix A 2.

The right-hand side of the Wetterich equation is given by Eq. (42), where the regulators RðiÞ
k ðqÞ ¼ ZðiÞ

k RkðqÞ are chosen
as before. Substituting the flow for Zk into Eq. (45), we find the flows of the couplings using the analogues of Eq. (41).
They are
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k∂kλ̄k ¼ ðd − 4Þλ̄k þ
Ωd

3d

�
2ð2M þ 8Þλ̄2k −

48d
d − 2

ē2kλ̄k þ 72ðd − 1Þē4k þ 288ð2MÞḡ2k − 9ð2M þ 4Þūk − 6ð2MÞw̄k

�
; ð55Þ

k∂kḡk ¼ ðd − 4Þḡk þ
Ωd

3d

�
96ḡ2k þ 4ḡkλ̄kð2þ 2MÞ − 48d

d − 2
ḡkē2k − w̄kð2þ 2MÞ

�
; ð56Þ

k∂kūk ¼ ð2d − 6Þūk þ
2Ωd

9d

�
−ð2M þ 26Þλ̄3k − 1728ð2MÞḡ3k − 18ξkē2kλ̄

2
k − 108ξ2kē

4
kλk − 216ðd − 1Þē6k

þ 9ð2M þ 14Þλ̄kūk þ 72ð2MÞḡkw̄k −
108d
d − 2

ē2kūk

�
; ð57Þ

k∂kw̄k ¼ ð2d − 6Þw̄k þ
2Ωd

d

�
−1152ḡ3k − 24ḡ2kðð2M þ 14Þλ̄k þ 6ξkē2kÞ − 2ḡkðð2M þ 8Þλ̄2k þ 12ξkē2kλ̄k þ 36ξ2kē

4
kÞ

þ 6ð2M þ 4Þḡkūk þ w̄k

�
ð2M þ 6Þλ̄k −

12d
d − 2

ē2k þ 8ð2M þ 10Þḡk
��

: ð58Þ

Here we have already used ξk ¼ 2=ð4 − dÞ from Eq. (44)
in some substitutions for notional brevity. It can be seen
that these reduce both to the neutral two-field model when
setting ēk ¼ 0 and M ¼ N=2 and to the one-field Abelian-
Higgs model when setting ḡk ¼ w̄k ¼ 0.

D. Fixed points

We wish to find the fixed points of these flow equations.
Since the flow of the charge is unaffected, it has two fixed
points, one neutral at ē2k ¼ 0, and one charged given by
Eq. (43). We proceed as in Sec. III: first we evaluate
k∂kūk ¼ 0 and k∂kw̄k ¼ 0, and we substitute the solutions
ū� and w̄� into the flow equations for λ̄k and ḡk. The
expressions are too long to write down explicitly.
We here give some results for d ¼ 3, which is computa-

tionally easier because the first terms on the right-hand
sides of Eqs. (57) and (58) drop out. For M > 1 the
structure found in Sec. III is reproduced for both the neutral
and the charged fixed points. That is, we find three
nontrivial fixed points both at ē2k ¼ 0 and, more impor-
tantly, at ē2k ¼ ē2� ¼ 5

2MΩ3
, which are charged versions of the

AFP,Oð2NÞ FP, and DFP. We therefore denote them by cA,
cS, and cD. The neutral fixed points correspond of course
to those already found in the neutral model, which assures
us that our approximation of setting m̄2

k ¼ 0 leads only to a
small shift of the positions of the fixed points in λ̄k − ḡk
space, leaving the overall structure intact. As for the
charged fixed points, the unstable one is no longer at the
symmetric point λ̄�=ḡ� ¼ 12 because of the finite charge,
but at a slightly lower ratio. The flow diagram in the
parameter space of fλ̄k; ḡk; ē2kg is sketched in Fig. 3. Just as
we saw for the one-field Abelian-Higgs model in Sec. IVA,
there is no second nontrivial fixed point at ḡk ¼ 0, which
would correspond to the tricritical point in Fig. 1. As

explained before, the flow equations we obtain become
singular near λ̄k ¼ ḡk ¼ 0, which could be the reason for
this absence. We view this as a point that can be improved
upon in future work, whereas we focus here on the infrared
stable charged fixed points.
For M ¼ 1 we find additional structure emerging in the

flow diagram of the charged fixed points. This is sketched
in Fig. 4. The charged decoupled fixed point cD at ḡ� ¼ 0

becomes unstable toward two new fixed points that arise at
positive and negative ḡ�, respectively. We denote them by
cDþ and cD−. Contrary to the neutral and M > 1 charged

FIG. 3. Sketch of the flow diagram of the charged two-field
model [Eq. (46)] for M > 1 (N > 2) in d ¼ 3, in the space of the
relevant couplings λ̄k, ḡk, and ē2k. At ē

2 ¼ 0 we retrieve the four
fixed points of the neutral two-field model. There are three
charged fixed points, cA, cS, and cD, which match the nontrivial
neutral fixed points. All neutral fixed points are unstable against a
finite charge.
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cases, the two new fixed points are well separated from the
other ones and are clearly genuine zeros of the flow
equations that we have obtained.

V. CONCLUSIONS

We have studied the fixed points of two-scalar
models with and without coupling to gauge fields. Using
a minimal extension of the simplest two-field model by
including the flow of the third-order coupling constants, we
have been able to confirm the results of earlier works, that
there are four fixed points in d ¼ 3 (see Fig. 2) for all
N ≥ 2. It may be interesting to study in more detail the fate
of these fixed points as the dimension is varied, as has been
done in Ref. [27] for 2 < d ≤ 3. We have confirmed the
statement in Ref. [9] that the asymmetric fixed point is not
connected to the biconical fixed point that is found
near d ¼ 4.
The main result of this work is that the three nontrivial

fixed points of the neutral model have three siblings
at finite charge; see Fig 3. This indicates that even
when coupling to gauge fields, second-order phase
transitions exist both to the phase where one field
condenses (the infrared stable fixed point at positive ḡ�)
and to the phase where both fields condense (the infrared
stable fixed point at ḡ� ¼ 0). Analogous to the Abelian-
Higgs models, these phase transitions take place in that part
of parameter space where charge is small compared to the
scalar field couplings (“large κ”). While we cannot confirm
this explicitly because our flow equations become singular
at small couplings, presumably in this region of the
parameter space the phase transitions become first order.
Interestingly, at exactlyM ¼ 1 (N ¼ 2) we find the appear-
ance of two more charged fixed points, both of them being
infrared stable; see Fig. 4.

While in our model the two scalar fields are coupled to
two separate gauge fields, the results would be the same as
when one gauge field was coupled to both scalar fields,
with the same coupling constant e. The reason is that the
flow of the charge does not depend on the coupling
between the two scalar fields. In this light our results
can be directly compared to, for instance, Ref. [17].
There are some obvious extensions to carry out from

here. It should not be complicated to generalize these
results to less symmetric cases whereN1 ≠ N2 and λϕ ≠ λχ .
It is to be expected that charged fixed points persist.
Moreover, it is interesting to find out what happens to
the two additional neutral fixed points that exist in these
nonsymmetric cases when coupling to dynamical gauge
fields.
As for the dislocation-mediated quantum melting, the

existence of the charged fixed points confirms that the
second-order quantum phase transition from solid to
hexatic phase may exist (this would be the charged fixed
point at ḡ� ¼ 0). At present, however, it is not entirely clear
whether the presumed quantum phase transition would
correspond to the charged or the neutral fixed point. It is
known that the duality mapping employed in Refs. [10,11]
is valid only in the strongly correlated or strong type-II
regime, which corresponds to a very low value of the
charge e. For the superconducting phase transition, the
duality indicates that the transition is in the Wilson-Fisher
universality class, i.e., the neutral fixed point. There have
been extensive discussions of the phase transition using
dual methods [33–36], and we cannot discern whether this
has been fully resolved. We do find, however, just as for the
single-field Abelian-Higgs model, that the flow is unstable
against any finite charge. In any case it is interesting to
study the charged fixed points in more detail, in particular
by extracting critical exponents.
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APPENDIX: ADDITIONAL CALCULATIONS

Here we collect some equations used in intermediate
steps of several calculations.

FIG. 4. Sketch of the flow diagram of the charged two-field
model [Eq. (46)] for M ¼ 1 (N ¼ 2) in d ¼ 3, at ē2� ¼ 5

2Ω3
. The

decoupled fixed point cD at ḡ� ¼ 0 becomes unstable toward two
new infrared stable fixed points, cDþ and cD−.
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1. Neutral two-field model

The full mass matrix M2 in Eq. (25) is given by

M2 ¼

0
BBBBBBBBBBBBBBBBBBBBB@

M2
L;ϕ M2

ϕχ 0 � � � 0

M2
ϕχ M2

L;χ 0

0 0 M2
T;ϕ 0 0

0 . .
.

0 ..
.

0 0 M2
T;ϕ

..

.
M2

T;χ 0 0

0 . .
.

0

0 � � � 0 0 M2
T;χ

1
CCCCCCCCCCCCCCCCCCCCCA

: ðA1Þ

Here we have defined

M2
L;ϕ ¼ m2

ϕ;k þ
1

2
λϕ;kϕ

2
0 þ 2gkχ20 þ

5

8
ukϕ4

0 þ
1

2
wkϕ

2
0χ

2
0 þ

1

12
wkχ

4
0; ðA2Þ

M2
T;ϕ ¼ m2

ϕ;k þ
1

6
λϕ;kϕ

2
0 þ 2gkχ20 þ

1

8
ukϕ4

0 þ
1

6
wkϕ

2
0χ

2
0 þ

1

12
wkχ

4
0; ðA3Þ

M2
L;χ ¼ m2

χ;k þ
1

2
λχ;kϕ

2
0 þ 2gkϕ2

0 þ
5

8
ukχ40 þ

1

2
wkϕ

2
0χ

2
0 þ

1

12
wkϕ

4
0; ðA4Þ

M2
T;χ ¼ m2

χ;k þ
1

6
λχ;kϕ

2
0 þ 2gkϕ2

0 þ
1

8
ukχ40 þ

1

6
wkϕ

2
0χ

2
0 þ

1

12
wkϕ

4
0; ðA5Þ

M2
ϕχ ¼ 4gkϕ0χ0 þ

1

3
wkϕ

3
0χ0 þ

1

3
wkϕ0χ

3
0: ðA6Þ

2. Charged two-field model

Here we give the eigenvalues γðiÞk of the total propagator matrix including third-order contributions with constant fields
σ ¼ σ0 ≠ 0 and ς ¼ ς0 ≠ 0, while the other fields vanish (of Sec. IV C). The only nondiagonal contribution is from the
σ1 − ς1 sector (the gauge field sectors can be diagonalized as in the one-field Abelian-Higgs model). This can be
diagonalized to

γσ1ς1k� ¼ Zkðq2 þm2
kÞ þ Z2

k

�
gþ 1

4
λ

�
ðσ̄2 þ ς̄2Þ þ 1

48
Z3
kð15ukðσ̄4 þ ς̄4Þ þ 2wkðσ̄4 þ 12σ̄2ς̄2 þ ς̄4ÞÞ

� Z2
k

��
1

4
λ − g

�
2

ðσ̄4 þ ς̄4Þ − 2

��
1

4
λ

�
2

− 2
1

4
λg − 7g2

�
σ̄2ς̄2

−
1

24
Zkðσ̄2 þ ς̄2Þ

�
15uk

�
σ̄2 − ς̄2

�
2
�
g −

1

4
λ

�
þ 2wk

�
1

4
λkðσ̄2 − ς̄2Þ2 − gðσ̄4 þ 30σ̄2ς̄2 þ ς̄4Þ

��

þ 1

2304
Z2
kðσ̄2 þ ς̄2Þ2ð225u2kðσ̄2 − ς̄2Þ2 − 60ukwkðσ̄2 − ς̄2Þ2 þ 4w2

kðσ̄4 þ 62σ̄2ς̄2 þ ς̄4ÞÞ
�
1=2

: ðA7Þ
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The other eigenvalues are

γA
1ð1Þ

k ¼ ZA;k

ξk
q2 þ Zke2σ02;

γA
1ð2Þ

k ¼ ZA;kq2 þ Zke2σ02 ðmultiplicity∶ d − 1Þ;

γA
2ð1Þ

k ¼ ZA;k

ξk
q2 þ Zke2ς02;

γA
2ð2Þ

k ¼ ZA;kq2 þ Zke2ς02 ðmultiplicity∶ d − 1Þ;

γσak ¼ Zk

�
q2 þm2 þ 1

6
Zkλσ0

2 þ 2Zkgς02 þ
1

8
Z2
kukσ0

4 þ 1

12
Z2
kwkς0

2ð2σ02 þ ς0
2Þ
�

ðmultiplicity∶ M − 1Þ;

γςak ¼ Zk

�
q2 þm2 þ 1

6
Zkλς0

2 þ 2Zkgσ02 þ
1

8
Z2
kukς0

4 þ 1

12
Z2
kwkσ0

2ð2ς02 þ σ0
2Þ
�

ðmultiplicity∶ M − 1Þ;

γπ1k ¼ Zk

�
q2 þm2 þ 1

6
Zkλσ0

2 þ Zk

ZA
ξe2σ02 þ 2Zkgς02 þ

1

8
Z2
kukσ0

4 þ 1

12
Z2
kwkς0

2ð2σ02 þ ς0
2Þ
�
;

γπak ¼ Zk

�
q2 þm2 þ 1

6
Zkλσ0

2 þ 2Zkgς02 þ
1

8
Z2
kukσ0

4 þ 1

12
Z2
kwkς0

2ð2σ02 þ ς0
2Þ
�

ðmultiplicity∶ M − 1Þ;

γϖ1

k ¼ Zk

�
q2 þm2 þ 1

6
Zkλς0

2 þ Zk

ZA
ξe2ς02 þ 2Zkgσ02 þ

1

8
Z2
kukς0

4 þ 1

12
Z2
kwkσ0

2ð2ς02 þ σ0
2Þ
�
;

γϖa
k ¼ Zk

�
q2 þm2 þ 1

6
Zkλς0

2 þ 2Zkgσ02 þ
1

8
Z2
kukς0

4 þ 1

12
Z2
kwkσ0

2ð2ς02 þ σ0
2Þ
�

ðmultiplicity∶ M − 1Þ;

γc
1�c1
k ¼ q2 þ ξe

Zk

ZA;k
σ0

2 ðmultiplicity∶ 2Þ;

γc
2�c2
k ¼ q2 þ ξe

Zk

ZA;k
ς0

2 ðmultiplicity∶ 2Þ: ðA8Þ

[1] I. Herbut, A Modern Approach to Critical Phenomena
(Cambridge University Press, Cambridge, England,
2007), https://dx.doi.org/10.1017/CBO9780511755521.

[2] H. Kleinert, Limitations to the Coleman-Weinberg mecha-
nism of spontaneous mass generation, Phys. Lett. 128B, 69
(1983).

[3] I. F. Herbut and Z. Tesanovic, Critical Fluctuations in
Superconductors and the Magnetic Field Penetration Depth,
Phys. Rev. Lett. 76, 4588 (1996).

[4] B. Bergerhoff, F. Freire, D. F. Litim, S. Lola, and C.
Wetterich, Phase diagram of superconductors from non-
perturbative flow equations, Phys. Rev. B 53, 5734 (1996).

[5] G. Fejos and T. Hatsuda, Fixed point structure of the
Abelian Higgs model, Phys. Rev. D 93, 121701(R)
(2016).

[6] G. Fejos and T. Hatsuda, Renormalization group flows of
the N-component Abelian Higgs model, Phys. Rev. D 96,
056018 (2017).

[7] J. M. Kosterlitz, D. R. Nelson, and M. E. Fisher, Bicritical
and tetracritical points in anisotropic antiferromagnetic
systems, Phys. Rev. B 13, 412 (1976).

[8] G. Ceccarelli, J. Nespolo, A. Pelissetto, and E. Vicari, Bose-
Einstein condensation and critical behavior of two-
component bosonic gases, Phys. Rev. A 92, 043613 (2015).

[9] G. Ceccarelli, J. Nespolo, A. Pelissetto, and E. Vicari, Phase
diagram and multicritical behaviors of mixtures of three-
dimensional bosonic gases, Phys. Rev. A 93, 033647 (2016).

[10] J. Zaanen, Z. Nussinov, and S. Mukhin, Duality in 2þ 1D
quantum elasticity: Superconductivity and quantum nematic
order, Ann. Phys. (Amsterdam) 310, 181 (2004).

[11] A. Beekman, J. Nissinen, K. Wu, K. Liu, R.-J. Slager, Z.
Nussinov, V. Cvetkovic, and J. Zaanen, Dual gauge field
theory of quantum liquid crystals in two dimensions, Phys.
Rep. 683, 1 (2017).

[12] S. Nakamura, K. Matsui, T. Matsui, and H. Fukuyama,
Possible quantum liquid crystal phases of helium mono-
layers, Phys. Rev. B 94, 180501(R) (2016).

[13] J. Berges, N. Tetradis, and C. Wetterich, Non-perturbative
renormalization flow in quantum field theory and statistical
physics, Phys. Rep. 363, 223 (2002).

[14] P. Kopietz, L. Bartosch, and F. Schütz, Introduction to
the Functional Renormalization Group, Lecture Notes in

ARON J. BEEKMAN and GERGELY FEJŐS PHYS. REV. D 100, 016005 (2019)

016005-14

https://dx.doi.org/10.1017/CBO9780511755521
https://dx.doi.org/10.1017/CBO9780511755521
https://dx.doi.org/10.1017/CBO9780511755521
https://dx.doi.org/10.1017/CBO9780511755521
https://doi.org/10.1016/0370-2693(83)90075-8
https://doi.org/10.1016/0370-2693(83)90075-8
https://doi.org/10.1103/PhysRevLett.76.4588
https://doi.org/10.1103/PhysRevB.53.5734
https://doi.org/10.1103/PhysRevD.93.121701
https://doi.org/10.1103/PhysRevD.93.121701
https://doi.org/10.1103/PhysRevD.96.056018
https://doi.org/10.1103/PhysRevD.96.056018
https://doi.org/10.1103/PhysRevB.13.412
https://doi.org/10.1103/PhysRevA.92.043613
https://doi.org/10.1103/PhysRevA.93.033647
https://doi.org/10.1016/j.aop.2003.10.003
https://doi.org/10.1016/j.physrep.2017.03.004
https://doi.org/10.1016/j.physrep.2017.03.004
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1016/S0370-1573(01)00098-9


Physics Vol. 798 (Springer, New York, 2010), https://dx.doi
.org/10.1007/978-3-642-05094-7.

[15] T. Papenbrock and C. Wetterich, Two-loop results from
improved one loop computations, Z. Phys. C 65, 519
(1995).

[16] A. Eichhorn, D. Mesterházy, and M.M. Scherer, Multi-
critical behavior in models with two competing order
parameters, Phys. Rev. E 88, 042141 (2013).

[17] L. Abreu, C. de Calan, and A. Malbouisson, Multicritical
behavior of the two-field Ginzburg-Landau model coupled
to a gauge field, Physica (Amsterdam) 387A, 817 (2008).

[18] S. Sakhi, Quantum critical properties in the topological
Ginzburg-Landau theory of self-dual Josephson junction
arrays, Physica (Amsterdam) 392A, 6255 (2013).

[19] S. Sakhi, Tricritical behavior in the Chern-Simons-
Ginzburg-Landau theory of self-dual Josephson junction
arrays, Phys. Rev. D 97, 096015 (2018).

[20] A. Pelissetto and E. Vicari, Critical phenomena and re-
normalization-group theory, Phys. Rep. 368, 549 (2002).

[21] A. Pelissetto and E. Vicari, Interacting N-vector order
parameters with OðNÞ symmetry, Condens. Matter Phys.
8, 87 (2005).

[22] Y. M. Pismak, A. Weber, and F. J. Wegner, Critical behavior
of a generalOðnÞ-symmetric model of two n-vector fields in
D ¼ 4 − 2ϵ, J. Phys. A 42, 095003 (2009).

[23] P. Calabrese, A. Pelissetto, and E. Vicari, Multicritical
phenomena in Oðn1Þ ⊕ Oðn2Þ-symmetric theories, Phys.
Rev. B 67, 054505 (2003).

[24] P. Calabrese, P. Parruccini, A. Pelissetto, and E. Vicari,
Critical behavior of Oð2Þ ⊗ OðNÞ symmetric models, Phys.
Rev. B 70, 174439 (2004).

[25] S. Bornholdt, N. Tetradis, and C. Wetterich, Coleman-
Weinberg phase transition in two-scalar models, Phys. Lett.
B 348, 89 (1995).

[26] S. Bornholdt, N. Tetradis, and C. Wetterich, High temper-
ature phase transition in two-scalar theories, Phys. Rev. D
53, 4552 (1996).

[27] J. Borchardt and A. Eichhorn, Universal behavior of
coupled order parameters below three dimensions, Phys.
Rev. E 94, 042105 (2016).

[28] S. Benvenuti and H. Khachatryan, QED’s in 2þ 1
dimensions: Complex fixed points and dualities, arXiv:
1812.01544.

[29] S. Benvenuti and H. Khachatryan, Easy-plane QED3’s in the
large Nf limit, arXiv:1902.05767.

[30] D. F. Litim, Optimisation of the exact renormalisation
group, Phys. Lett. B 486, 92 (2000).

[31] C. Wetterich, Exact evolution equation for the effective
potential, Phys. Lett. B 301, 90 (1993).

[32] L. Bartosch, Corrections to scaling in the critical theory of
deconfined criticality, Phys. Rev. B 88, 195140 (2013).

[33] M. Kiometzis, H. Kleinert, and A. M. J. Schakel, Dual
description of the superconducting phase transition,
Fortschr. Phys. 43, 697 (1995).

[34] J. Hove, S. Mo, and A. Sudbø, Hausdorff Dimension of
Critical Fluctuations in Abelian Gauge Theories, Phys. Rev.
Lett. 85, 2368 (2000).

[35] K. Kajantie, M. Laine, T. Neuhaus, A. Rajantie, and K.
Rummukainen, Duality and scaling in 3-dimensional scalar
electrodynamics, Nucl. Phys. B699, 632 (2004).

[36] A. Nahum and J. T. Chalker, Universal statistics of vortex
lines, Phys. Rev. E 85, 031141 (2012).

CHARGED AND NEUTRAL FIXED POINTS IN THE OðNÞ ⊕ OðNÞ … PHYS. REV. D 100, 016005 (2019)

016005-15

https://dx.doi.org/10.1007/978-3-642-05094-7
https://dx.doi.org/10.1007/978-3-642-05094-7
https://dx.doi.org/10.1007/978-3-642-05094-7
https://dx.doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1007/BF01556140
https://doi.org/10.1007/BF01556140
https://doi.org/10.1103/PhysRevE.88.042141
https://doi.org/10.1016/j.physa.2007.09.033
https://doi.org/10.1016/j.physa.2013.08.009
https://doi.org/10.1103/PhysRevD.97.096015
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.5488/CMP.8.1.87
https://doi.org/10.5488/CMP.8.1.87
https://doi.org/10.1088/1751-8113/42/9/095003
https://doi.org/10.1103/PhysRevB.67.054505
https://doi.org/10.1103/PhysRevB.67.054505
https://doi.org/10.1103/PhysRevB.70.174439
https://doi.org/10.1103/PhysRevB.70.174439
https://doi.org/10.1016/0370-2693(95)00045-M
https://doi.org/10.1016/0370-2693(95)00045-M
https://doi.org/10.1103/PhysRevD.53.4552
https://doi.org/10.1103/PhysRevD.53.4552
https://doi.org/10.1103/PhysRevE.94.042105
https://doi.org/10.1103/PhysRevE.94.042105
http://arXiv.org/abs/1812.01544
http://arXiv.org/abs/1812.01544
http://arXiv.org/abs/1902.05767
https://doi.org/10.1016/S0370-2693(00)00748-6
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1103/PhysRevB.88.195140
https://doi.org/10.1002/prop.2190430803
https://doi.org/10.1103/PhysRevLett.85.2368
https://doi.org/10.1103/PhysRevLett.85.2368
https://doi.org/10.1016/j.nuclphysb.2004.08.018
https://doi.org/10.1103/PhysRevE.85.031141

