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We analyze a minimal flavored gauge mediation model in which the electroweak Higgs and messenger
doublets are embedded in multiplets of a discrete non-Abelian symmetry. In this scenario, the minimal
Higgs-messenger sector that is consistent with the 125 GeV Higgs mass has two vectorlike pairs of
messenger fields. This scenario is obtained in a specific limit of the superpotential interactions of the Higgs-
messenger fields and the matter fields. Due to the structure of the messenger-matter Yukawa couplings in
this limit, sizable stop mixing and flavor diagonal soft supersymmetry breaking parameters are achieved.
In most of the parameter space, the masses of the colored superpartners are at most in the 5–6 TeV range.
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I. INTRODUCTION

The 2012 discovery of the 125 GeV Higgs particle [1,2]
and subsequent detailed measurements of its properties at
the Large Hadron Collider (LHC) has provided significant
limits on the allowed possibilities for extensions of the
Standard Model (SM). In the context of theories with softly
broken supersymmetry at the TeV scale (for reviews, see
e.g., [3,4]), the Higgs mass is known to be within the
theoretically allowed range for perturbative theories, but its
relatively high value either requires large radiative correc-
tions in the minimal supersymmetric standard model
(MSSM), or an enlarged Higgs sector to boost the tree-
level contributions. As such, it has long been known in the
MSSM that large stop mixing or very heavy stops are
needed (see e.g., [5]). This can place stringent constraints
on specific models of the soft supersymmetry breaking
terms and also has important implications for the potential
observability of superpartners at the LHC.
The model-building constraints imposed by the Higgs

measurements are particularly striking in the context of
gauge mediation. In its minimal implementation, gauge-
mediated supersymmetry breaking [6–9] predicts highly
suppressed scalar trilinear couplings (A terms) at the
messenger scale, leading to small stop mixing. As a result,
consistency with the Higgs data [10–12] generally requires

very heavy SUð3Þ-charged superpartner masses and/or
high values of the messenger scale. This conclusion can
be circumvented if the messenger fields can couple directly
to the MSSM fields, as explored in [8,9,13–30]. Of
particular interest are the “flavored gauge mediation”
models [14,21–33]), for which there is nontrivial mixing
of the SUð2Þ messenger doublets and the MSSM Higgs
fields. These models allow for the generation of one-loop A
terms at the messenger scale, alleviating the Higgs mass
problem of minimal gauge mediation in the MSSM.1

In building models of flavored gauge mediation, an
underlying Higgs-messenger symmetry is typically
employed to control the mixing of these fields. A logical
and now-standard choice is to use a Uð1Þ symmetry as the
Higgs-messenger symmetry, and many interesting exam-
ples of this type have been proposed in the literature (see
e.g., [30] for a recent analysis and set of LHC benchmark
points). In this case, the Uð1Þ charges are chosen judi-
ciously to control the couplings of the Higgs and messenger
fields so as to obtain nontrivial third generation A terms
and to avoid generating dangerous interactions between
the MSSM Higgs fields and the supersymmetry breaking
sector.
An alternative is to choose a discrete non-Abelian

symmetry as the Higgs-messenger symmetry, as proposed
in [22]. This idea was studied using the specific choice of
S3, the permutation group on three objects, for the case of
two families in [22], and extended to three families in [32].
In these analyses, it was shown that if the SM quarks
and leptons transform nontrivially with respect to the S3

symmetry (as required for at least a subset of the SMmatter
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1For an example of an approach that unites flavor and super-
symmetry breaking in the context of supergravity, see [34].
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particles), obtaining nontrivial SM Yukawa coupling
entries in the diagonal fermion mass basis led to vanishing
entries in the corresponding messenger Yukawa couplings,
as a direct consequence of the non-Abelian symmetry. As a
result, generating the needed large top quark Yukawa
couplings thus led to vanishing top quark messenger
Yukawa couplings, unless the relevant fields are all taken
to be S3 singlets. The phenomenological implications of
this correlation are that the resulting stop mixing is
generically very small, such that the superpartner masses
must be quite heavy to be consistent with the Higgs data.
In this work, we analyze a three-family flavored gauge

mediation model based on the S3 Higgs-messenger sym-
metry in which sizable third generation Yukawa couplings
to both the Higgs and the messengers can be simulta-
neously generated. We show that a fermion mass hierarchy
and flavor-diagonal messenger Yukawa coupling structure
can emerge in a specific limit of the renormalizable
superpotential interactions of these fields that can result
from additional symmetries placed on the system. The
resulting model of the soft supersymmetry breaking
parameters is a minimal scenario with two pairs of vector-
like messenger fields. As this yields larger stop mixing than
was possible in previously studied examples of this type
with renormalizable couplings of the MSSM fields and
the Higgs-messenger fields only [22,32], the superpartner
masses can be significantly lighter, with the heaviest
superpartners at or below 5–6 TeV.
The structure of the paper is as follows. In the next

section, we present a brief overview of the general model
framework as well as the detailed model inputs of this
specific scenario based on the choice of S3 as the Higgs-
messenger symmetry. We then present the resulting soft
supersymmetry parameters and carry out a numerical
analysis of the superpartner spectra. Finally, we summarize
and discuss prospects for future model-building directions
along these lines.

II. MODEL

In this section, we provide a self-contained review of the
model framework and present the details of the specific
scenario that is the focus of this paper.
As a prelude, we note several salient features of the

group theory of S3, as can be found in many references (see
e.g., [22]). The irreducible representations of S3 are the
singlet 1, a one-dimensional representation 10, and a
doublet, 2, with tensor products,

1 ⊗ 2 ¼ 2; 10 ⊗ 2 ¼ 2; 2 ⊗ 2 ¼ 1 ⊕ 10 ⊕ 2:

ð1Þ
As in [22] and [32], all fields will be taken to be either
singlet or doublet representations. We use the basis in
which the singlets obtained from the tensor products of two
or three doublets are

ð2 ⊗ 2Þ1 ¼
��

a1
a2

�
⊗

�
b1
b2

��
1

¼ a1b2 þ a2b1: ð2Þ

ð2 ⊗ 2 ⊗ 2Þ1 ¼
��

a1
a2

�
⊗

�
b1
b2

�
⊗

�
c1
c2

��
1

¼ a1b1c1 þ a2b2c2: ð3Þ
In this model framework, the minimal viable Higgs-

messenger sector consists of one S3 doublet H
ð2Þ
u;d and one

S3 singlet Hð1Þ
u;d for the up-type and down-type Higgs-

messenger fields. This is to stave off an otherwise severe
μ=Bμ problem (see [35–37] for a discussion of this issue
within gauge mediation models), as discussed shortly.

Taking Hu ¼ ðHð2Þ
u ;Hð1Þ

u Þ ¼ ðHu1;Hu2;Hu3Þ (and analo-
gously for u → d), we have

Hu ¼

0
B@

Hu1

Hu2

Hu3

1
CA ¼ Ru

0
B@

Hu

Mu1

Mu2

1
CA;

Hd ¼

0
B@

Hd1

Hd2

Hd3

1
CA ¼ Rd

0
B@

Hd

Md1

Md2

1
CA; ð4Þ

inwhich the electroweakHiggs fields are denoted as usual by
Hu;d, the SUð2Þ doublet messengers are Mui;di (i ¼ 1; 2),
and Ru=d are unitary matrices that result from the diagonal-
ization of the Higgs-messenger mass matrices (more on this
shortly). We also have SUð3Þ triplet messengers Tui;di

(i ¼ 1; 2) that are S3 singlets. The Tui;di and the messenger
doublets Mui;di together form two pairs of 5, 5̄ representa-
tions of SUð5Þ (i.e., the number of messenger pairsN5 ¼ 2).
The model also includes two supersymmetry breaking

fields: the S3 doublet XH and a S3 singlet chiral superfield
XT , where XH couples only to the Higgs-messenger
doublets and XT couples only to the triplet messengers.
We assume that XT couples only to the triplet messengers
and XH couples only to the messenger doublets or the
MSSM fields, as needed to avoid the possibility of rapid
proton decay (this requires additional symmetries, which is
not difficult to implement in a concrete scenario).2 This
field content and the relevant S3 charges are given in Table I.

TABLE I. The S3 charges for the extended Higgs-messenger
model described in this section.

Hð2Þ
u Hð1Þ

u Hð2Þ
d Hð1Þ

d Tui Tdi XH XT

S3 2 1 2 1 1 1 2 1

2We also note for that the different treatment of the doublet and
triplet sectors undoubtedly poses challenges for any serious
attempt to embed this scenario within grand unification; a
thorough treatment of this question is beyond the scope of the
present work.
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The superpotential couplings of XH to the Higgs-
messenger sector are given by

WH ¼ λXHH
ð2Þ
u Hð2Þ

d þ λ0XHH
ð1Þ
u Hð2Þ

d þ λ00XHH
ð2Þ
u Hð1Þ

d

þ κMHð2Þ
u Hð2Þ

d þ κ0MHð1Þ
u Hð1Þ

d : ð5Þ
Here we will assume all couplings are real and take λ0 ¼
λ00 ¼ λ for simplicity. The supersymmetry-breaking field
XH is then parametrized as follows:

hXHi ¼ M

�
sinϕ

cosϕ

�
þ θ2F

�
sin ξ

cos ξ

�
; ð6Þ

where ϕ and ξ characterize the vacuum expectation value
directions of the scalar and F components, respectively, and
we take F ≪ M2. After symmetry breaking, the effective
superpotential takes the following form:

WH ¼ MHT
u

0
B@

sinϕ κ cosϕ

κ cosϕ sinϕ

cosϕ sinϕ κ0

1
CAHd

þ θ2FHT
u

0
B@

sin ξ 0 cos ξ

0 cos ξ sin ξ

cos ξ sin ξ 0

1
CAHd

≡HT
uMHd þ θ2HT

uFHd: ð7Þ
As outlined in [22], we require ½M; F � ¼ 0, such thatM and
F are diagonalized by the same unitary transformation. It is
also necessary to have a hierarchy of eigenvalues for both
M and F , to distinguish the MSSM Higgs fields from the
messenger fields. Simultaneously incorporating both con-
straints is the underlying reason why we need to include the

S3 singlet Hð1Þ
u;d in the Higgs-messenger sector within this

framework, as these two conditions are incompatible if only

Hð2Þ
u;d is included.
As shown in [32] for the case of Eq. (7), upon imposing

½M; F � ¼ 0, which requires κ0 ¼ κ ¼ sinðϕ − ξÞ=ðcos ξ −
sin ξÞ (for ξ ≠ π=4), a viable solution with a distinct
hierarchy of eigenvalues for bothM and F can be obtained.
This distinct hierarchy is needed for the possibility of
separate fine-tunings of the μ and b ¼ Bμμ parameters;
otherwise the scenario suffers from a severe μ=Bμ problem.
The solution occurs for ξ → −π=4 and ϕ ≠ ξ, with a small
detuning between ϕ and ξ that controls the size of the μ
term. In this limit, the Ru;d are given to leading order by

Ru;d ¼

0
BBB@

1ffiffi
3

p ∓ 1
2

�
1þ 1ffiffi

3
p
�

1
2

�
1 − 1ffiffi

3
p
�

1ffiffi
3

p � 1
2

�
1 − 1ffiffi

3
p
�

− 1
2

�
1þ 1ffiffi

3
p
�

1ffiffi
3

p � 1ffiffi
3

p 1ffiffi
3

p

1
CCCA: ð8Þ

Note that the trimaximal column is associated with the light
eigenstate, which is precisely the state that corresponds to
the electroweak doublets Hu;d. More precisely, the eigen-
values corresponding to this light eigenstate are μ ≪ M for
the case ofM, and b ≪ F for the case of F . The heavy states
in this limit have equal masses Mmess, that are of order M.
The larger eigenvalues of F are F2;3 ∼ F (the detailed
relations can be found in [32]).
The next step is to consider the couplings of the Higgs-

messenger fields to the MSSM matter fields. Of the variety
of possibilities (see [32] for a classification), let us focus
here on renormalizable interactions of all three generations.
This results from the specific S3 charge assignments
summarized in Table II. The renormalizable superpotential
Yukawa couplings, for example in the up quark sector, are
given as follows:

WðuÞ ¼ yu½Q2ū2H
ð2Þ
u þ β1Q2ū2H

ð1Þ
u þ β2Q2ū1H

ð2Þ
u

þ β3Q1ū2H
ð2Þ
u þ β4Q1ū1H

ð1Þ
u �; ð9Þ

in which the βi are arbitrary coefficients in the absence of
further model structure, and the overall scaling yu is also
a free parameter. In the basis given by Q ¼ ðQ2; Q1ÞT and
ū ¼ ðū2; ū1ÞT , these couplings can be expressed in matrix
form as

WðuÞ ¼ yuQT

0
BB@

Hð2Þ
u1 β1H

ð1Þ
u β2H

ð2Þ
u2

β1H
ð1Þ
u Hð2Þ

u2 β2H
ð2Þ
u1

β3H
ð2Þ
u2 β3H

ð2Þ
u1 β4H

ð1Þ
u

1
CCAū: ð10Þ

Analogous coupling matrices would hold in the down
quark and charged lepton sectors, with the replacements
βi → βdi; βei.

3 Here we will focus on the up quark sector
only and later assume that the other charged fermions
follow similar patterns. [Let us also comment that Eq. (9)
and its generalizations to other charged SM fermions
correct a typo in the corresponding expressions for the

TABLE II. Charges for an S3 model of the Higgs-messenger fields and the MSSM matter fields. Here the SUð3Þ
triplet messengers and the associated XT field are not displayed for simplicity.

Hð2Þ
u Hð1Þ

u Hð2Þ
d Hð1Þ

d Q2 Q1 ū2 ū1 d̄2 d̄1 L2 L1 ē2 ē1 XH

S3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3We neglect issues of neutrino mass generation for simplicity.
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superpotential in [32], for which there was an incorrect
interchange of β1 and β2.]
From Eq. (10) and the definition of the Higgs-messenger

diagonalization matricesRu;d as given in Eqs. (4) and (8), it
is straightforward to see that the SM Yukawa matrix takes
the form,

Yu ¼
yuffiffiffi
3

p

0
B@

1 β1 β2

β1 1 β2

β3 β3 β4

1
CA; ð11Þ

while the messenger Yukawas are given by

Y 0
u1 ¼ yu

0
BBB@

− 1
2
− 1

2
ffiffi
3

p β1ffiffi
3

p β2
2
− β2

2
ffiffi
3

p

β1ffiffi
3

p 1
2
− 1

2
ffiffi
3

p − β2
2
− β2

2
ffiffi
3

p

β3
2
− β3

2
ffiffi
3

p − β3
2
− β3

2
ffiffi
3

p β4ffiffi
3

p

1
CCCA ð12Þ

Y 0
u2 ¼ yu

0
BBB@

1
2
− 1

2
ffiffi
3

p β1ffiffi
3

p − β2
2
− β2

2
ffiffi
3

p

β1ffiffi
3

p − 1
2
− 1

2
ffiffi
3

p β2
2
− β2

2
ffiffi
3

p

− β3
2
− β3

2
ffiffi
3

p β3
2
− β3

2
ffiffi
3

p β4ffiffi
3

p

1
CCCA: ð13Þ

There are a variety of ways in which a hierarchy of fermion
masses can be achieved. For example, in [32], the βi were
all taken to be equal and set to unity, which led to two
massless quark mass eigenvalues and one heavy (third
generation) state. Rather than classifying all possibilities,
here we consider a specific example in which the βi
parameters obey the following constraint:

β1 ¼ 1; β4 ¼ β2β3: ð14Þ
Diagonalizing Eq. (11) subject to the constraint of Eq. (14)
results in two massless eigenvalues, and one nonzero
eigenvalue,

yt ¼ yu
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ β22

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ β23

q �
=

ffiffiffi
3

p
: ð15Þ

Furthermore, as yu and β2;3 are all arbitrary parameters, we
will further consider the limit in which β2;3 are taken to be
very large, while yu is simultaneously taken to be very
small, such that yt as given above remains fixed. We see
from Eq. (11) that in this limit, we have

Yu ¼
ytffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ β22
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ β23
p

0
B@

1 1 β2

1 1 β2

β3 β3 β2β3

1
CA

⟶
βi≫1

Diagð0; 0; ytÞ: ð16Þ
Again imposing Eq. (14), it is easy to see from Eqs. (12)
and (13) that in the limit of large β2;3 and fixed yt, the
messenger Yukawa couplings Y 0

u1 and Y 0
u2 also reduce to

this form,

Y 0
u1⟶

βi≫1
Diagð0; 0; ytÞ; Y 0

u2⟶
βi≫1

Diagð0; 0; ytÞ: ð17Þ

The feature that the messenger Yukawas and the SM
Yukawas are flavor diagonal and have nonzero 33 entries
only in this limit is a consequence of the fact that the S3

singlet contributions have been taken to dominate over the
S3 doublet contributions. Indeed, an inspection of Eq. (9)
shows that in the regime in which Eq. (14) is satisfied, and
β2;3 → ∞ with yu → 0 such that yt is fixed, the only term

that remains is Q1ū1H
ð1Þ
u . This clearly requires an addi-

tional symmetry that allows for the β4 term to dominate
while maintaining consistency with Eq. (5) (this is an
additional model-building complication, but not an insur-
mountable one).4

To reiterate, we have seen that we can simultaneously
obtain sizable third generation SM and messenger Yukawa
couplings, and messenger Yukawa couplings that are flavor
diagonal in the limit that the S3 singlet terms dominate over
the interactions involving S3 doublets. Hence, to leading
order in this parameter regime, this case is equivalent to one
in which there are only third generation superpotential
Yukawa couplings at the renormalizable level, and all other
interactions result from higher-dimensional operators [32].
However, despite the equivalency of the two cases at
leading order, they can be very different at subleading
order. More precisely, the path to this limiting case is highly
dependent not only on the S3 charges of the SM fields, but
also the breaking of the additional symmetries that are
required to reach this parameter regime. For example, with
the S3 assignment in Table II and restricting to renorma-
lizable couplings, it is straightforward to see that depending
on how the massless eigenvalues are lifted by perturbing
about Eq. (14), the subleading contributions to the mes-
senger Yukawa interactions in this limit arise in either the
23 or 13 sectors. In contrast, if Eq. (14) is maintained, and
the first and second generations acquire masses through
nonrenormalizable operators, the structure of the sublead-
ing corrections to the messenger Yukawa couplings are
highly dependent on the model-building details. Both
situations have important implications not only for the
masses of the superpartners, but also for questions of flavor
violation, which is a critically important issue for flavored
gauge mediation models. A detailed discussion of these
possibilities and their phenomenological implications is the
subject of future work [38].

4For example, one possibility is to impose a Z7 symmetry,
with charges QQ2

¼ 1, Qū2 ¼ 1, QQ1
¼ 2, Qū1 ¼ 2, QHð1Þ

u
¼ 3,

QHð2Þ
u

¼ 3, QXH
¼ 1, and to introduce a flavon field ϕ which has

Qϕ ¼ 1. This suppresses the terms in the upper 2 × 2 block of Yu
such that they require two insertions of the flavon field, while the
other off diagonal terms are generated with one flavon insertion.
Please note, however, that the condition that β1 ¼ 1 requires
additional symmetries to avoid fine-tuning.
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With the simple forms of the SM Yukawa couplings and
the messenger Yukawa couplings, as given in Eqs. (16) and
(17), respectively (as well as their analogues in the down
quark and charged lepton sectors), the corrections to the soft
supersymmetry breaking terms due to the messenger inter-
actions are easily calculated by standard procedures. These
procedures have been given in previous literature (see e.g.,
[21,24,31]) and summarized for this set of scenarios in [32].
With the assumption that the doublet and triplet messen-

gers both result in the same quantity Λ ¼ F2;3=Mmess ∼
F=M, which we will always assume to be the case in this
paper, the leading order nonvanishing corrections to the soft
supersymmetry breaking parameters are given by

ðδm2
ũÞ33 ¼

Λ2y2t
ð4πÞ4

�
−
52

15
g21 − 12g22 −

64

3
g23 þ 8y2b þ 72y2t

�
;

ð18Þ

ðδm2
d̃
Þ
33

¼ Λ2y2b
ð4πÞ4

�
−
28

15
g21 − 12g22 −

64

3
g23 þ 72y2b

þ 8y2t þ 16y2τ

�
; ð19Þ

ðδm2
ẽÞ33 ¼

Λ2y2τ
ð4πÞ4

�
−
36

5
g21 − 12g22 þ 48y2b þ 40y2τ

�
; ð20Þ

ðδm2
Q̃
Þ
33

¼ 1

2
ðδm2

ũ;33 þ δm2
d̃;33

Þ; ð21Þ

ðδm2
L̃
Þ
33

¼ 1

2
δm2

ẽ;33; ð22Þ

δm2
H̃u

¼ −
Λ2

ð4πÞ4 ð18y
4
b þ 6y2by

2
t Þ;

δm2
H̃d

¼ −
Λ2

ð4πÞ4 ð18y
4
b þ 6y2by

2
t þ 12y4τÞ; ð23Þ

ðÃuÞ33 ¼ −
2ytΛ
ð4πÞ2 ðy

2
b þ 3y2t Þ≡ Ãt;

ðÃdÞ33 ¼ −
2ybΛ
ð4πÞ2 ðy

2
t þ 3y2bÞ;

ðÃeÞ33 ¼ −
6y3τΛ
ð4πÞ2 : ð24Þ

All nontrivial corrections in the squark and slepton sectors
thus involve only third generation fields.5

III. RESULTS

In this section, we present a detailed numerical explora-
tion of this scenario, as encoded by the soft supersymmetry
breaking terms of Eqs. (18)–(24). The model parameters
are Mmess, Λ, tan β, and the sign of μ [sgnðμÞ], where we
have followed standard procedures and replaced μ and b by
tan β, sgnðμÞ, and the Z boson mass. Here we will always
set sgnðμÞ ¼ 1. Note that in comparison to the case of
minimal gauge mediation and flavored gauge mediation
models based on Abelian symmetries, the number of
vectorlike messenger pairs in this scenario is always fixed
to be N5 ¼ 2, which is the smallest number that allows for
separate fine-tuning of the μ and b parameters. As a result,
the model studied here has one fewer discrete parameter
than these other scenarios. The renormalization group
equations are evaluated using SoftSUSY 4.1.4 [39].
In [32], a preliminary analysis of this scenario was

carried out in the context of taking the third generation
MSSM matter fields to be inert to the S3 symmetry, with
the primary goal of comparing this case to the case of
minimal (flavor-independent) gauge mediation for a fixed
value of tan β (of tan β ¼ 10). Our main purpose here is to
provide a systematic analysis of the superpartner mass
spectra, highlighting the dependence on tan β subject to the
Higgs mass constraint.
For concreteness, and to connect with the results of our

previous work, we begin with the example shown in the left
panel of Fig. 1, for which the messenger scale is Mmess ¼
1012 GeV and tan β ¼ 10; once these two parameters are
fixed, the value of Λ is thus set by the requirement that
mh ≃ 125 GeV. This example shows a characteristic pat-
tern also seen in the intermediate scale examples of [32], for
which the heavy Higgs particles are between 5–6 TeV, the
gluino is approximately 5 TeV, and the squarks fall into two
groupings, a lighter set that is close in mass to the gluino,
and a heavier set that is similar in mass to the heavy
charginos and neutralinos. The sleptons are close in mass to
the lightest chargino and the second-lightest neutralino,
which are nearly mass degenerate, and the next-to-lightest
superpartner (NLSP) is the lightest neutralino. The needed
values of μ and b=μ are in the 5–6 TeV range. With an
intermediate messenger scale, the gluino is lighter than the
masses of the sparticles controlled by μ. In the right panel of
Fig. 1, we show an example with Mmess ¼ 1016 GeV and
tan β ¼ 10. Due to increased renormalization group run-
ning effects, the μ and b=μ terms are lighter than in the
previous case, which leads to lighter masses for the heavy
Higgs states. The gluino is now heavier than the heavy
charginos and neutralinos, which have masses controlled
by μ. There are also larger stop mixing effects, with the
lighter stop mass just below 4 TeV, and a heavier gravitino
due to the high messenger scale.
For smaller values of the messenger scale, the spectra are

generally heavier for a fixed tan β, as the stop mixing is
smaller, requiring an increase in the value of Λ to obtain the

5Here we note that the Ã notation denotes the fact that the
trilinear scalar couplings in the Lagrangian are of the form
Aijkϕiϕjϕk, for scalar fields ϕi;j;k (these are not family indices,
but general field labels).

SIZABLE STOP MIXING IN FLAVORED GAUGE MEDIATION … PHYS. REV. D 100, 015039 (2019)

015039-5



same value of the light Higgs mass. This is seen in Fig. 2,
which shows points withMmess ¼ 106 GeV (left panel) and
Mmess ¼ 1010 GeV (right panel), both with tan β ¼ 10. We
note the lighter sleptons, lighter gluino mass, and greater
squark mass splitting for low messenger scales.
Let us now consider smaller values of tan β. In Fig. 3, we

show a low messenger scale example with Mmess ¼
106 GeV (left panel) and a high messenger scale example
with Mmess ¼ 1012 GeV (right panel), both now with
tan β ¼ 5. The sparticle masses are expected to be heavier
for smaller tan β, since the tree-level contribution to the
light Higgs mass has decreased, requiring even larger
radiative corrections to boost the light Higgs mass to its
experimentally measured value. As a result, the mass
spectra in these cases are highly split, and even the lighter
sparticles have masses at and above 2 TeV. For higher
values of the messenger scale, this splitting is amplified, as
a larger value of Λ is needed to compensate for smaller A
terms at low energies. These features are clearly exhibited
in Fig. 3, where we note that in each case, the heavy Higgs
bosons and many of the squark masses are in the 10 TeV
range, and thus out of the range shown in the figure.

We now consider the limit of large tan β, for which the
effects of the bottom and tau Yukawa couplings are more
significant than in the lower tan β regime. In Fig. 4, we
show spectra with Mmess ¼ 1012 GeV (left panel) and
Mmess ¼ 1016 GeV (right panel), both with tan β ¼ 40. In
comparison to the analogous tan β ¼ 10 cases as shown in
Fig. 1, the higher tan β spectra are compressed, with the
heaviest superpartner masses in the 5 TeV range. The two
cases again differ in their values of μ and b=μ, with the
high messenger scale example again displaying smaller
values for these quantities, such that the gluino is heavier
than the heavy charginos and neutralinos, and the heavy
Higgs particles are lighter than their counterparts in the
intermediate scale case. We also see a greater splitting of
the squark masses in the high messenger scale case. These
similarities continue in Fig. 5, which is the analogous set
of mass spectra to Fig. 2, with Mmess ¼ 106 GeV (left
panel) and Mmess ¼ 1010 GeV, but now with tan β ¼ 40.
As expected, the superpartner mass spectrum is again
compressed compared to lighter values of tan β, though
slightly less so than what occurs for higher messenger
scale values. For the low messenger scale example, there

FIG. 1. The mass spectrum for MMess ¼ 1 × 1012 GeV (left panel) and MMess ¼ 1 × 1016 GeV (right panel), both with tan β ¼ 10.
In each case, Λ is fixed by the Higgs mass constraint.

FIG. 2. The mass spectrum for MMess ¼ 1 × 106 GeV (left panel) and MMess ¼ 1 × 1010 GeV (right panel), both with tan β ¼ 10.
In each case, Λ is fixed by the Higgs mass constraint.

EVERETT, GARON, and ROCK PHYS. REV. D 100, 015039 (2019)

015039-6



is a relatively light gluino and light bottom squark, with
masses in the 3 TeV range. The NLSP remains the lightest
neutralino, though the lighter stau mass continues to
approach the NLSP mass as the messenger scale increases,

due to the larger value of the tau Yukawa coupling in the
large tan β regime.
These representative examples of the superpartner mass

spectra demonstrate that as tan β is varied, there is a range

FIG. 4. The mass spectrum forMMess ¼ 1 × 1012 GeV (left panel) andMMess ¼ 1 × 1016 GeV (right panel), both with tan β ¼ 40. In
each case, Λ is fixed by the Higgs mass constraint.

FIG. 5. The mass spectrum for MMess ¼ 1 × 106 GeV (left panel) and MMess ¼ 1 × 1010 GeV (right panel), both with tan β ¼ 40.
In each case, Λ is fixed by the Higgs mass constraint.

FIG. 3. The mass spectrum for MMess ¼ 1 × 106 GeV (left panel) and MMess ¼ 1 × 1012 GeV (right panel), both with tan β ¼ 5.
In each case, Λ is fixed by the Higgs mass constraint.
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of cases in the low tan β regime that have very heavy
sparticle masses, but otherwise we have a range of super-
partner masses that tend to be at most in the 5–6 TeV range.
This behavior in fact is quite robust. In Fig. 6, the range of
gluino masses in the logðMmessÞ − tan β plane is shown,
with the NLSP (lightest neutralino) mass given by the
dotted contours. There is a tiny sliver of parameter space,
corresponding to the lowest allowed values of tan β, for
which the gluino mass (and Λ) increases substantially, and
increases as the messenger scale increases. Otherwise, the
parameter regime is dominated by gluino masses within the
4–5 TeV range, as seen repeatedly in the example spectra
shown here.
It is also illuminating to explore the Higgs mass

prediction and its correlation with the gluino mass within

the parameter space of this model. In Fig. 7, we show the
log10ðΛÞ − tan β plane for two fixed values of the mes-
senger scale: Mmess ¼ 106 GeV (left panel) and Mmess ¼
1010 GeV (right panel). The Higgs mass contours are given
by solid lines, the gluino mass is labeled by color shading,
and the dotted contours represent the lightest neutralino
(NLSP) mass. Here we see the correlation in this model
between the needed values of the gluino mass and the Higgs
mass constraint, with gluino masses in the range of 4 TeVor
greater for the experimentally preferred range of the lightest
Higgs mass. The NLSP mass in the allowed parameter
region is correspondingly lighter for lower messenger scale
values than for higher values. The general features of the
Mmess ¼ 1010 GeV case persist for higher values of the
messenger scale (not displayed here for simplicity).
In Fig. 8, the Higgs and gluino mass predictions are

displayed in the log10Mmess − log10 Λ plane for tan β ¼ 5
(left panel) and tan β ¼ 20 (right panel). The contour
labeling is identical to Fig. 7, with the Higgs mass given
by solid contours, the NLSP mass by dotted contours, and
the gluino mass as color shading; note the different scale of
the color shading compared to the previous figure. Here we
see the differences in the gluino mass predictions between
the low tan β regime and the intermediate to high tan β
regimes, with significantly heavier gluino masses needed
for very low tan β, and the < 5 TeV range for intermediate
to high tan β. Note that as seen in Fig. 6, the crossover
between the low tan β range and this intermediate to high
tan β range occurs at quite modest values of tan β (∼10 and
above); hence, the results shown here for tan β ¼ 20 are
quite similar to those at higher values of tan β (hence these
higher values are not displayed separately). In addition, the
NLSP mass scales trivially with Λ, and thus as we have
seen, the preferred Higgs mass region is associated with
heavier neutralinos (and other superpartner masses) for
low tan β.

FIG. 6. The range of gluino masses in this scenario, as
displayed in the logMmess − tan β plane. The dotted contours
denote the lightest neutralino mass.

FIG. 7. The Higgs mass (solid contours) and gluino masses (color shading) in this scenario, as displayed in the log10 Λ − tan β plane
for Mmess ¼ 106 GeV (left panel) and Mmess ¼ 1010 GeV (right panel). The dotted contours show the lightest neutralino mass.
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It is illustrative to examine the stop mixing parameter
Xt ¼ Ãt − μ cot β. In Fig. 9, we plot jXt=mSj as a function
of the messenger scale and tan β, where the mass scale mS
is given by the geometric mean of the stop masses
(mS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2

p ). We see that we obtain sizable stop
mixing throughout the parameter space in this scenario,
with higher values in the case of high messenger scales, and
lower values for low messenger scales, consistent with the
mass spectra shown earlier.
We close this section by commenting that the super-

partner mass range in this scenario is generally heavier than
what is possible in flavored gauge mediation models based
on Uð1Þ symmetries. This can be seen for example for
some of the benchmark points of [30], for which all
superpartner masses can be at the 2 TeV range or less.

In such models, the Uð1Þ charges can be chosen such that
problematic couplings between the electroweak Higgs
fields and the supersymmetry breaking field can be for-
bidden, whereas for non-Abelian Higgs-messenger sym-
metries, these couplings cannot be avoided. Therefore, in
the non-Abelian case, we need to augment the field degrees
of freedom to ameliorate the effects of these couplings and
arrive at a phenomenologically acceptable model. As stated
previously, this is the reason why we have N5 ≥ 2 in the
non-Abelian case. For Abelian models, N5 is a parameter
that can be chosen, and thus one can obtain light spectra
with N5 ¼ 1.

IV. CONCLUSIONS

In this paper, we have explored a specific flavored gauge
mediation model of the MSSM soft supersymmetry break-
ing parameters that can result from postulating that the
electroweak Higgs fields and the SUð2Þ messenger dou-
blets are related by a discrete non-Abelian gauge symmetry.
This Higgs-messenger symmetry is taken to be S3, as first
studied in this context for two families in [22], and later
extended to three families in [32]. The model predicts two
pairs of messenger fields, which transform as 5, 5̄ repre-
sentations of SUð5Þ; as discussed in [32], this arises from
the need to have an enlarged Higgs-messenger field content
that includes S3 doublet and singlet representation to
mitigate an otherwise severe μ=Bμ problem. The extended
Higgs-messenger sector allows for a rich variety of
possible renormalizeble superpotential couplings of the
Higgs-messenger fields to the SM matter fields, depending
on the assumed S3 charges of the quark and lepton
superfields. In a specific limit in which these couplings
are dominated by the interactions among the S3 singlet
representations, the resulting SM and messenger Yukawas
both involve only third generation fields.

FIG. 8. The Higgs mass (solid contours) and gluino masses (color shading) in this scenario, as displayed in the log10 Λ − log10 Mmess
plane for tan β ¼ 5 (left panel) and tan β ¼ 20 (right panel). The dotted contours show the lightest neutralino mass.

FIG. 9. The values of jXt=mSj in this scenario, where Xt is the
stop mixing parameter, and mS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2

p , as displayed in the
logMmess − tan β plane.
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As a result, a minimal flavored gauge mediation model is
obtained in which the sfermion masses are flavor diagonal,
and there is sizable stop mixing due to the one-loop third
generation A terms that arise from the messenger-matter
interactions. The model has three continuous parameters:
the messenger scaleMmess, the scale Λ, which sets the scale
of the soft supersymmetry breaking terms (together with
loop factors), and tan β, and one discrete parameter (the
sign of the μ parameter), which yields a highly predictive
scenario. We showed in this paper that in much of the
parameter space, the superpartner masses are at most
5–6 TeV, with the gluino typically in the 4–5 TeV range.
The exceptions to this general pattern occur at small values
of tan β, for which the need for large radiative corrections to
bolster the light Higgs mass requires much heavier squark
masses. This highly predictive model of the MSSM soft
parameters is thus one to keep in mind as the LHC continues
to probe the paradigm of TeV-scale supersymmetry.
While the S3 singlet-dominated regime can arise trivially

by requiring that the MSSM matter fields are inert to the
Higgs-messenger symmetry, we have shown in this paper
that it can also result in a specific limit in the case that the
quark and lepton superfields have nontrivial S3 charges.
Hence, it is possible in this limit to sidestep the previously
established correlation between the SM and messenger
Yukawa couplings in this class of models [22,32], which had
disallowed sizable third generation couplings for both the
SM and messenger couplings, and consequently required
heavier superpartner masses to obtain the experimentally
determined value of the light Higgs mass.

It is important to note that in the intriguing case that the
quark and lepton superfields transform nontrivially with
respect to the Higgs-messenger symmetry, reaching this
limit requires additional symmetries that are also directly
connected to the origin of the SM fermion masses and
mixing parameters. Indeed, given that in the scenario
studied here, the first and second matter fermion gen-
erations are massless, extending this simple model to a
fully realistic theory requires a detailed examination of
subleading corrections as this limit is relaxed. These
corrections will yield flavor-changing interactions that
are a hallmark of this class of flavored gauge mediation
models. Though it is known that these effects can often be
more strongly suppressed in flavored gauge mediation
models than what naive estimates might suggest [29,30],
the question remains open as to whether a viable, fully
fledged three-family model can be constructed in which
the Higgs-messenger symmetry is also a nontrivial part of
the full family symmetry. Further explorations along these
lines are in progress [38].
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