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We propose a novel design of a laboratory search for axions based on photon regeneration with
superconducting rf cavities. Our particular setup uses a toroid as a region of confined static magnetic field,
while production and detection cavities are positioned in regions of vanishing external field. This permits
cavity operation at quality factors of Q ∼ 1010–1012. The limitations due to fundamental issues such as
signal screening and backreaction are discussed, and the optimal sensitivity is calculated. This experimental
design can potentially probe axion-photon couplings beyond astrophysical limits, comparable and
complementary to next generation optical experiments.
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I. INTRODUCTION

Axions are well-motivated additions to the standard
model (SM). They provide an elegant solution to the strong
CP problem [1–4], are a natural dark matter candidate
[5–7], can relax naturalness problems [8,9], and appear
generically in theories of quantum gravity [10,11]. Purely
laboratory searches for axions are thus an important
experimental front. Given that axions can naturally be
very light and have suppressed interactions with the SM,
a promising approach is to search for the coherent inter-
action of a classical axion field with electromagnetic (EM)
fields [12].
Photon regeneration, or “light shining through walls”

(LSW), experiments make use of axion-photon oscillations
in a transverse magnetic field to convert photons into
axions that can traverse an optical barrier and then convert
back into detectable photons [13]. Small axion-photon
conversion probabilities are overcome by the use of
resonators to sustain large EM fields [14]. This is the basis
of experiments such as the Any Light Particle Search
(ALPS) [15–17], which employ optical cavities aligned
with dipole magnets over a long baseline. LSW can also be
done at radio frequencies (rf) [18–20], as in the CERN
Resonant Weakly Interacting sub-eV Particle Search
(CROWS) [21], by producing and detecting the axion
through excited modes in matched rf cavities subject
to an external magnetic field. While interesting, current

constraints from LSW experiments are less stringent than
those due to stellar cooling or searches for solar axions (see
[22] for a review).
We propose a novel design for an axion LSWexperiment

using high-Q superconducting rf (SRF) cavities, which can
in principle reach beyond these astrophysical bounds. SRF
cavities provide an opportunity for a significantly enhanced
axion search due to their extremely large quality factors;
however, they must be isolated from large magnetic fields
in order to avoid catastrophic SRF degradation. This
requires several qualitative modifications from previous
setups, most notably the use of a sequestered axion-photon
conversion region containing a confined static magnetic
field while production and detection cavities are positioned
in regions of vanishing static field. The focus of this paper
is to determine the fundamental factors that affect the
sensitivity of such an experimental design—a more detailed
consideration of experimental strategies is left to future
work. We calculate the optimal signal strength and irre-
ducible noise sources, and find the proposed setup capable
of probing axion-photon couplings beyond astrophysical
limits and with a reach comparable and complementary to
next generation optical experiments.

II. CONCEPTUAL OVERVIEW

LSW searches rely on the axion EM interaction, given by
the effective Lagrangian
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where a is the axion field of mass ma, F̃μν ¼ ϵμνρσFρσ , and
g is the axion-photon coupling. In the limit of classical
fields, an axion obeys the equation of motion
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ð□þm2
aÞa ¼ −gE⃗ · B⃗; ð2Þ

and modifies Maxwell’s equations:

∇⃗ · E⃗ ¼ −gB⃗ · ∇⃗a; ð3Þ

∇⃗ × B⃗ ¼ ∂E⃗
∂t − g

�
E⃗ × ∇⃗a − B⃗

∂a
∂t

�
: ð4Þ

Wewill generally consider any light, neutral pseudoscalar a
and treat fma; gg as independent parameters.
In an RF LSW experiment such as CROWS [21], a

production cavity sources axions through a nonvanishing
E⃗ · B⃗, where E⃗ is the electric field of an excited cavity mode
and B⃗ is an external, static magnetic field. These axions
propagate into a detection cavity where, again in the
presence of a static magnetic field, they excite an identical
frequency mode in the detection cavity. The signal power
that can be extracted is [18]

Psignal ¼ PinputQpcQdc

�
gB0

f

�
4

jGj2: ð5Þ

Here Qpc and Qdc are the loaded quality factors of
production and detection cavities, f ≈ GHz is the frequency
of the excited modes, Pinput is the driving rf power delivered
to the production cavity, and B0 is the static field penetrat-
ing both cavities. jGj is a form factor which depends on the
arrangement of the cavities, choice of modes, etc. This is
roughly constant for ma ≲ 2πf, and is exponentially sup-
pressed for larger masses.
The quality factors Q of both cavities are key factors in

determining the sensitivity of such an experiment. For
normal conducting cavities,Q∼105–106, however advances
in SRF technology have led to the development of super-
conducting cavities with Q ∼ 1010–1012 which have appli-
cation in particle accelerators [23]. It is worthwhile to
consider whether these can be leveraged in an axion LSW
search [24,25].1 A simple replacement of the rf cavities in the
above arrangement with SRF cavities does not work—an
external B0 greater than the critical field ∼0.2 T, at which
flux penetrates the cavity, would result in excessive dis-
sipation and degrade Q.
This problem is avoided by placing production and

detection SRF cavities in regions of vanishing static field
while confining a large, static magnetic field in a distinct
conversion region, depicted schematically in Fig. 1. The
basic elements of an SRF LSW experiment as follows:
(1) Axions are sourced in a production cavity free of any

external field.

(2) The axions then convert into photons in an isolated
region of static magnetic field.

(3) The resulting photons propagate out of the conver-
sion region—that is, the axion-induced fields must
not also be screened by the conductors which
confine the large static field.

(4) Any resulting rf signal is coupled to and amplified
by an SRF detection cavity.

We discuss a possible design that is able to realize all
these conditions, and in what follows we will use it to
determine the optimal sensitivity of an axion SRF search.
The four basic elements above are implemented as:
(1) A specific mode or set of modes in the production

cavity is driven such that E⃗ · B⃗ does not identically
vanish.

(2) A static B0 is generated and confined by DC current-
carrying superconducting wires wrapped to form a
toroidal enclosure.

(3) There is a gap in this enclosure, preventing the toroid
from acting as a shielding cavity for the axion-
induced fields. Our use of a gapped toroid is inspired
by its related use in experiments (ABRACADABRA
and DM Radio) searching for dark matter axi-
ons [27,28].

(4) The axion-induced fields are coupled to the detection
cavity inductively via an outside pickup loop. Here,
we must properly account for the backreaction of the
amplified signal onto the toroid. We emphasize that a
realistic implementation would require a more de-
tailed signal field read-out mechanism in order to
maintain a large effective Q on the detection side.

III. DETERMINING THE AXION SIGNAL

A. SRF axion source

The axion field produced by an SRF cavity is given by
(2), with the EM fields on the right-hand side being those of
the driven cavity modes. We focus on one frequency
component ω of this E⃗ · B⃗, which may arise from a
single cavity mode with frequency ω=2 or from two
distinct modes driven together whose frequency sum or
difference is ω:

FIG. 1. Basic elements of an axion LSW experiment using
SRF cavities and a conversion region of confined static magnetic
field, to be contrasted with an rf cavity experiment such as
CROWS [21].

1See [26] for a proposal to detect axions with SRF cavities that
is quite distinct from ours.
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aðx⃗; tÞ ¼ −geiωt
Z
pc
d3y⃗

eikajx⃗−y⃗j

4πjx⃗ − y⃗j ðE⃗ · B⃗Þω; ð6Þ

where ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

a

p
is the axion momentum and the

subscript ω on E⃗ · B⃗ indicates restriction to a single
frequency component. The integration y⃗ is taken over
the volume of the production cavity and x⃗ indicates any
point in space, e.g., within the conversion region. The
driven modes must be chosen such that ðE⃗ · B⃗Þω is not
vanishing. This is not an issue in principle, though care
must be taken in order to ensure the largest possible
magnitude of the axion source (see Appendix A).
An SRF production cavity is unable to support EM fields

greater than the critical field at which Q severely degrades
due to flux penetration. This sets a fundamental limit on the
strength of an SRF axion source which is independent of
the cavityQ, the input power, or choice of modes. The limit
depends only on the material properties of the chosen
superconductor. For a standard niobium SRF cavity [29],
the field limit is

ðE⃗ · B⃗Þsrf ≲ ð0.2 TÞ2: ð7Þ

By comparison, the axion source produced by a rf cavity in
a large static field (as in CROWS) is

ðE⃗ · B⃗Þrf ∼ ð0.1 TÞ2
�
Pinput

100W

�1
2

�
Qpc

105

�1
2

�
B0

5 T

�
: ð8Þ

Interestingly an SRF axion source may be similar in
magnitude to that of a conventional LSW setup. The
improved reach of our setup is primarily due to the increase
in Q on the detection side, and the decision to employ an
SRF or rf cavity for production would depend on more
detailed engineering considerations.

B. Gapped toroid conversion region

An axion interacts with the B⃗0 within our conversion
region and induces EM fields, described to leading order by
effective sources

ρeff ¼ −gB⃗0 · ∇⃗a; J⃗eff ¼ gB⃗0∂ta ð9Þ

For a toroidal magnet, the static field is of the form B⃗0 ∼
B0ðrÞϕ̂ within the volume of the toroid, and ideally
vanishes everywhere outside. This is the principle advan-
tage of using a toroid, as the SRF cavities can be located in
regions of nearly vanishing static field. However it is
essential that the toroid be gapped, for instance due to
spaces between wire turns. A gapped toroid of this sort acts
as a polarizer, confining the toroidal static field while
permitting the poloidal axion-induced field to propagate
outside and be detected, as shown in Fig. 2. Indeed, this

behavior is same reason that a gapped toroid is being
employed in [27,28].
We can understand this as follows: the axion effective

current J⃗eff follows the direction of the static toroidal field
B⃗0 and sources a poloidal field B⃗a. Both fields vanish in the
toroid thickness as Meissner screening currents are set up
on the internal surface. The static field requires poloidal
surface currents which are unaware of gaps in the toroid—
they do not encounter the gaps as they circulate. For this
reason, the static B-field is effectively contained within the
toroid. Any leakage is due to fringe effects, which are
suppressed by the small size of the gap and can be made
smaller than the critical SRF threshold. On the other hand,
the axion-induced field will drive toroidal currents which
are aware of the gaps. An internal toroidal current must
either collect charge on the edges of the gap or propagate
onto the external surface of the toroid, where it sources
detectable field. This field is unsuppressed by the gap size,
as long as the gap has a sufficiently small parasitic
capacitance (see Sec. III D).
We now make the approximation that all length scales in

the setup (cavity sizes, separations, dimensions of the
toroid, etc.) are comparable and of order ω−1. We addi-
tionally assume that the axion-induced poloidal field Ba is
able to escape the toroid without suppression, as though the
conducting toroid were not present. This is valid in the
quasistatic limit, as we motivate in Sec. III C. Combining
(6) and (9), we find the axion-induced field in the center of
the torus has a magnitude

Ba ¼
g2B2

pcB0

ω2
β

≈ 10−26 T

�
gGeV
10−11

�
2
�

Bpc

0.2 T

�
2
�
B0

5 T

��
β

0.05

�
; ð10Þ

where Bpc is the field amplitude in the production cavity
(note, we have simply taken Epc ∼ Bpc in the above

FIG. 2. Schematic of the gapped toroid as a polarizer, zoomed
on to the cross section of a gap. The static B⃗0 due to applied dc
current (blue) remains internal, while the axion-induced B⃗a (red)
causes Meissner screening currents (also red) to flow on internal
and external surfaces due to the gap. The external currents give
rise to detectable fields outside the toroid.
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estimate) andω ∼ 2π GHz. β is a dimensionless form factor
which is a function of the cavity modes, cavity and toroid
geometries, spatial variation in B⃗0, etc. The size of β is
estimated in Appendix A, and we find in principle that it
can be made Oð0.1Þ in the limit ma ≪ ω.

C. Screening beyond the quasistatic limit

The reasoning presented above for the propagation of
axion-induced fields outside the gapped toroid is essentially
valid for quasistatic frequencies, R≲ ω−1, where R is the
characteristic dimension of the toroid. In the low-frequency
limit, the axion-induced magnetic field scales as Ba ∝
ðRωÞ and so we would try make our toroid as large as
possible. However once R becomes larger than ω−1 the
axion-induced fields outside the toroid are suppressed (or
screened), and thus an optimal design would saturate the
quasistatic limit R ∼ ω−1. We discuss this in detail in
Appendix B; here we will briefly describe the physical
reasons for this result.
Beyond the quasistatic limit, the cross-capacitance of the

toroid becomes important: radiation across the center will
cause currents and charges on one side of the toroid to
affect those on the other side. Meissner currents flowing
along the surface of the toroid are no longer approximately
uniform; instead, there will be multiple sections of current
flowing in opposite directions, with alternating charge
buildups in between. The resulting Meissner currents
and charge distribution is spatially modulated and behaves
as a multipolar source. We thus expect the axion-induced
fields outside the toroid to drop-off parametrically as a
power-law Ba ∝ ðRωÞ−n, due to destructive interference
of out-of-phase source contributions. We show this
behavior and calculate n > 0 explicitly for a toy model
of a thin cylindrical conductor in the high-frequency limit
in Appendix B. Thus, we expect it is safe to saturate R ∼
ω−1 without concern that there will be a precipitous
(e.g., exponential) drop in the external fields for slightly
larger sizes or frequencies. Likewise, we may treat the

approximation of Oð1Þ field propagation as accurate even
at the boundary of the quasistatic limit.
Note that in our setup the internal toroid signal currents

will also have significant spatial modulation beyond the
quasistatic limit, but for a very different reason: the source
axion field (6) itself varies on length scales of orderω−1 due
to the propagator factor, independent of the choice of
modes. In any case, the multipolar screening described in
this section is more general and results from satisfying
boundary conditions on the superconducting toroid—this
would be present even if the axion field were spatially
uniform.

D. Pickup and equivalent transducer circuit

To compute the signal strength, it is useful to describe
this system with a model circuit, as in the left side of Fig. 3.
For concreteness we assume the axion-induced EM field is
coupled to the detection cavity via a pickup loop located in
the central hole of the toroid. An actual design would likely
require a more sophisticated read-out mechanism in order
to maintain a large effective Q, however this does not alter
the optimal signal power.
The model circuit is a straightforward rendering of the

signal current flowing on the toroid. This current flows
toroidally, distributed over the inner and outer surfaces of
the toroid, as discussed in Sec. III B. We focus on the loop
of signal current nearest to the pick-up loop, which flows
around the central hole, concentric to the pick-up. This
current path is represented in the model circuit by the red
arrows in Fig. 3, and it includes segments on both the inner
and outer toroid surface. The magnitude of toroid current is
determined by the Meissner boundary conditions. It thus
receives contributions from the magnetic fields produced
by both the axion effect current and any current in the pick-
up loop, the latter being a backreaction which sets the
maximal power that may be drawn from the pick-up loop.
The axion effective current in the volume of the toroid

is represented by Ia, and its coupling to the inner toroid
surface current by an effective mutual inductance Ma.

External toroid 
surface

Internal toroid 
surface

Pickup and 
detection cavity

Axion effective 
current

FIG. 3. (Left) Mapping of our experimental setup onto an effective circuit model. This is parametrized by an axion effective current
(Ia) running through the toroid volume, effective mutual inductance capturing the Meissner effect (Ma), toroid inductance (Lt), toroid
resistance (Rt), shunting capacitance (Ct), inductive coupling to an outside pickup loop (Lp) through a mutual coupling (M), and a
detection cavity (Zc). (Right) Approximate equivalent circuit, for the purposes of computing the maximum signal power. R ∝ Q is the
detection cavity shunt resistance and Zim contains all imaginary impedances.
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The self inductance of the toroid current path is Lt ∼ R,
with R the toroid radius. We chooseMa ∼ R, which ensures
that the current driven in the model circuit due to Ia agrees
with that required by the Meissner effect. The current
induced on the inner surface of the toroid can pass to the
outer surface, where it couples to a pickup loop of
inductance Lp through a mutual inductance M and then
feeds into a cavity of impedance Zc. Alternatively, the
current may jump across the gaps between wires and
remain on the inner surface: this is captured by the shunting
capacitance Ct. As we will show, ωLt ≪ ðωCtÞ−1, and so
current always prefers to circulate between the inner and
outer surfaces.
The resistances Rt account for the tiny but nonzero

surface losses on the toroid. It is valid to ignore Rt when
determining the magnitude of axion-induced fields through
(10). However, it is important not to ignore it entirely when
considering the amplification of signal fields by the SRF
cavity. The detection cavity will be rung up to contain a
large current, for which the pickup loop Lp will act as an
antenna and excite additional currents on the external
surface of the toroid, resulting in additional dissipation
viaRt. This backreaction current is again set by theMeissner
boundary conditions. This current may be spatially non-
trivial on toroid, but its relevance for the signal power and
noise are well reproduced through the mutual inductanceM
and letting Lt ∼ R in the circuit model of Fig. 3. This
correspondence can be confirmed with the following esti-
mate. A pick-up loop of radius r≲ R and current Ip will
source a field at the toroid surface of B ∼ Ipr2=R3 (here we
use the near-field expression for the magnetic field due to a
current loop, sinceR ∼ ω−1). Cancellation of thisB requires
a Meissner current OðIpr2=R2Þ. Since the mutual induct-
ance between the toroid and pick-up loop is of order
M ∼ r2=R, the required current is indeed OðIpM=LtÞ, as
is given by our circuit model.
We now estimate the relevant model circuit parameters.

The current source Ia represents the total axion effective
current threading the toroid and is of order JeffR2. More
precisely, it is the current that gives rise to the outside field
Ba (10):

Ia ∼ BaR ∼
g2B2

pcB0

ω3
β

≈ 10−13 nA

�
gGeV
10−11

�
2
�

Bpc

0.2 T

�
2
�
B0

5 T

��
β

0.05

�
; ð11Þ

again with ω ¼ 2πGHz and ma ≪ ω.
Strictly speaking, the two toroid inductances labeled Lt

may be different as they inductively couple to different
objects. They are both set by the toroid size, however, so for
simplicity we take them both to be

Lt ∼ R ≈ 125 nH

�
R

10 cm

�
: ð12Þ

If the toroid is composed of N turns of wire, then Ct is
given by

Ct ∼
1

N
2πR · d

g
ð13Þ

where d is the wire diameter and g ¼ 2πR=N − d is the
spacing between wires. For fixed wire diameter, Ct and the
fringe fields can be made small by taking a large N and
g ≈ d, which yields:

Ct ≈ 10−2 pF

�
d
mm

�
: ð14Þ

The use of superconducting wires allows Rt to be as
small as few nΩ (the minimum rf surface resistance of type
II superconductors [30]), or at worst as large as mΩ (the
nominal low-temperature resistance of quenched NbTi
wires [31]). We expect the resistance will be somewhat
larger than nΩ, as the wires operate in the vortex state and
harbor toroidal magnetic flux tubes. These tubes interact
with rf currents in the wires via the so-called Magnus force
[32], and their resulting motion is a significant source
of dissipation [33]. The precise value of Rt will depend on
the detailed geometry of the flux tubes and the surface
current. We provide a rough estimate of this resistance,
but stress that in what follows we consider the conse-
quences of any Rt within the above bounds. Since the
interaction of rf currents and flux tubes is of the “Lorentz”
form J⃗ × B⃗, the resistance should scale as sin θ, the angle
between the direction of flux tubes and that of the rf current.
In this system, the magnetic field inducing the flux tubes is
toroidal but the axion-induced current is poloidal, and so
ideally θ ¼ 0. However, the flux tubes will not be perfectly
toroidal: static fringe fields provide a deflection of order
θ ∼ Bf=B0. ABRACADABRA has measured the fringe
fields outside of their toroidal magnet to be 10−6 of the
primary field [34], which we adopt here. We assume that
the deflected component of flux tubes contribute a rf
resistance similar to that of trapped flux in SRF cavities,
which is on the order nΩ=mG [30]. Thus we estimate:

Rt ≈ 100 nΩ
�
B0

5 T

��
θ

10−6

�
: ð15Þ

Finally, we choose to model the cavity as a parallel RLC
circuit for concreteness, with capacitance C, inductance L,
resistance R, and thus an impedance:

Zc ¼
�
1

R
þ 1

iωL
þ iωC

�
−1
: ð16Þ
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This cavity has natural resonance frequency ω2
0 ¼ ðLCÞ−1

and quality factor Q ¼ R=ω0L ≫ 1. We take ω0 ∼ L−1∼
C−1 ∼ 2π GHz, as set by the physical cavity size. Note that
the effective shunt resistanceR of this cavity model is very
large, proportional to the inverse of the small resistivity of
the cavity walls.
All the circuit parameters have so far been estimated by

physical considerations, except the pickup loop inductance
Lp. This is a free parameter which we tune to optimize the
signal, within reasonable limitations as discussed in
Sec. III E. We assume the mutual inductance M can be
made close to optimal, M ≈

ffiffiffiffiffiffiffiffiffiffi
LpLt

p
. There is also some

freedom in choosing the frequency ω sourced by the
production cavity. Indeed, ω need not be exactly equal
the detection cavity’s natural frequency ω0, although we
require that both lie in the GHz range.

E. Optimal signal strength

The signal we are able to extract is given by the power
dissipated in the detection cavity. Here we compute the
maximum of this power, varying the pickup inductance and
driving frequency. We use our model circuit for this, and
employ the equivalent circuit shown on the right side of
Fig. 3. This circuit is constructed such that, to lowest order
in the small quantities Rt andCt, the power dissipated in the
resistor ðLt=LpÞR is the same as the power dissipated in
the cavity impedance Zc. Similarly, the power dissipated in
the resistor ðLtωÞ2=Rt is the same as the total power
dissipated in the toroid resistors.
This can be demonstrated by making a series of trans-

formations to subcircuits of the circuit on the left side of
Fig. 3, each of which preserves the input, output, and
dissipated power of the transformed subcircuit and results
in a purely parallel topology. First, the leftmost transformer
can be replaced by a rescaled current source IaMa=Lt and
inductor Lt. Recall that Ma ∼ Lt, so the rescaled current is
OðIaÞ. Next the elements between the transformers can be
rewritten to lowest order in Rt and Ct as a resistor
ðLtωÞ2=Rt and capacitor Ct. Finally, the rightmost trans-
former and cavity impedance can be replaced by an
inductor Lt and a rescaled cavity ðLt=LpÞZc. The imagi-
nary impedances are gathered into Zim, which to lowest
order in Rt and Ct is

Zim ∼
�

2

iωLt
þ iωCt þ

1

iω Lt
Lp
L
þ iω

Lp

Lt
C

�
−1
: ð17Þ

The system is on resonance when Z−1
im ¼ 0. To lowest

order in Ct, this occurs at the frequency

ωres ∼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

L
Lp

s
; ð18Þ

which we will choose to be our driving frequency ω. On
resonance, all current in the equivalent circuit passes
through the two resistors. The power dissipated in the
cavity resistor is maximized when these two resistors are
equal, which occurs at a pickup loop inductance of

L⋆ ∼ L
QRt

Ltω0

: ð19Þ

An inductance Lp that is significantly less than L results in
a resonance frequency that is far perturbed from the natural
one. In a realistic experimental implementation, care would
need to be taken to ensure that the loaded resonance
frequency was not too far perturbed from the detection
cavity’s natural frequency, lest the quality factor degrade.
As a heuristic implementation of this, we will demand that
ω ∼ ω0 and thus Lp ≳ L.
We will consider the optimal signal power in two

parameter regimes. First, suppose the cavity is of higher
quality than the toroid, R ¼ Qω0L ≫ 1=Rt. Impedance
matching requires Lp ¼ L⋆ ≫ L, happily yielding a res-
onance frequency very close to ω0. We then draw the
toroid-limited power

Pmax ∼
1

8
jIaj2

ðLtωÞ2
Rt

: ð20Þ

This is the maximal power that can be extracted from the
toroid as long as the driving frequency remains near ω0. It
thus depends only on the toroid properties and frequency,
and notably does not scale with Q.
In the second case, suppose that the toroid is of higher

quality than the cavity, R ¼ Qω0L ≪ 1=Rt. We would
hope to again match Lp to L⋆, however that would require
Lp ≪ L and we are thus prevented from impedance
matching. Insisting on Lp ≳ L, the optimal choice is
Lp ∼ L for which we draw the cavity-limited power

Pmax ∼
1

2
jIaj2QLtω0: ð21Þ

In general, the maximum signal power is the lesser of
(20) and (21), being limited by resistive losses in the toroid
or cavity, respectively:

Psignal ∼ jIaj2ðωLtÞMin

�
ωLt

Rt
; Q

�
: ð22Þ

The relevant toroid parameter to be compared with Q is

ωLt

Rt
∼ 1010

�
100 nΩ
Rt

�
: ð23Þ

Thus for Q≳ 1010 the toroid impedance may indeed be
non-negligible. The numerical similarity between Q and
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ωLt=Rt reflects the fact that both arise from the small
resistivity of superconductors to rf currents. This also
suggests that the experimental details which affect the
losses in these systems will be important in determining
which of the above regimes is realized.

IV. SENSITIVITY TO AXION-PHOTON COUPLING

A. Noise

The fundamental sources of noise in this system are
thermal and quantum fluctuations of current in the toroid
and detection cavity, as well as the intrinsic noise of the
device which reads the amplified signal from the cavity.
The thermal and quantum noise can be estimated from the
circuit on the right side of Fig. 3. The equivalent resistances
of both the cavity and toroid will source Johnson currents,
behaving as additional parallel current sources. With Lp
tuned as outlined in Sec. III E, the noise sourced by the
effective cavity resistance is always greater than or equal to
that sourced by the toroid resistance, so we take a noise
source IT :

hjIT j2i ∼ 4Tsys
1

R

Lp

Lt
dν: ð24Þ

The system temperature Tsys is the sum of the thermal
temperature T and the quantum noise temperature
TQM ∼ ω ≈ 50 mK. IT drives fluctuations of the physical
magnetic flux ΦT inside the detection cavity,

jΦT j ¼
R
ω0

ffiffiffiffiffiffi
Lt

Lp

s
jIT j ð25Þ

resulting in a noise spectrum of cavity flux,

S1=2Φ ∼
�
4Tsys

QL
ω0

�1
2

≈
Φ0ffiffiffiffiffiffi
Hz

p
�

Tsys

0.1 K

�1
2

�
Q
1010

�1
2 ð26Þ

where Φ0 is the fundamental magnetic flux quantum.
Consider coupling the small signal flux in the cavity to a

low-noise read-out device, such as a SQUIDmagnetometer.
The intrinsic flux noise in such devices is of order
10−6 Φ0=

ffiffiffiffiffiffi
Hz

p
[35], much smaller than the cavity fluctua-

tions (26). We thus take (26) as the dominant source
of noise.

B. Projected sensitivity

The noise power extracted from the cavity due to the
fluctuations (24) is

Pnoise ¼ R
Lt

Lp
hjIT j2i ∼ 4Tsysdν ð27Þ

and the signal-to-noise ratio (SNR) thus

SNR ∼
1

8
jIaj2ðωLtÞMin

�
ωLt

Rt
; Q

�
tint
Tsys

ð28Þ

where the relevant bandwidth dν is given by the inverse of
the total integration time tint.
One may be concerned that tuning Lp to as outlined in

Sec. III E to maximize the power draw is not truly optimal,
as the best measurement will result from maximizing the
SNR. The signal and noise powers extracted from the
detection cavity for a general Lp, derived from the circuit
on the right side of Fig. 3, are

Psignal ∼ jIaj2
ðLtωÞ2
Rt

�
L⋆
Lp

��
1þ L⋆

Lp

�
−2
; ð29Þ

Pnoise ∼ Tsysdν

�
1þ L⋆

Lp

�
−1
: ð30Þ

The SNR thus nominally increases with decreasing Lp,
although it saturates to the intrinsic SNR of the toroid at the
impedance matched Lp ¼ L⋆. The optimal choice of Lp is
thus either L⋆ or L, the same as that which draws the
maximal power (22).
Demanding SNR > 5, the estimated reach at low axion

masses ma ≪ ω is given by:

g > 2 × 10−11 GeV−1 ·

�
ω=2π
GHz

��
B0

5 T

�
−1
2

×

�
Bpc

0.2 T

�
−1
�

β

0.05

�
−1
2

�
Lt

125 nH

�
−1
2

×

�
Rt

100 nΩ

�1
4

�
tint
year

�
−1
4

�
Tsys

0.1 K

�1
4

: ð31Þ

This is independent of the detection cavity quality factor if
it is sufficiently large (Q ≥ 1010 for these parameters). The
full sensitivity is shown in Fig. 4 using:

ω

2π
¼ GHz; Bpc ¼ 0.2 T; B0 ¼ 5 T

Lt ¼ 125 nH; tint ¼ 1 year; Tsys ¼ 0.1 K;

and considering two cases of cavity and toroid losses:

ð1Þ Rt ¼ 100nΩ and Q ≥ 1010

ð2Þ Rt ¼ nΩ and Q ≥ 1012:

We have used a form factor of β ¼ 0.05, assumingma ≪ ω
(see Appendix A). The estimated sensitivity of our SRF

AXION PRODUCTION AND DETECTION WITH … PHYS. REV. D 100, 015036 (2019)

015036-7



axion design is capable of surpassing current astrophysical
limits, and is comparable to the expected reach of the next
generation optical experiment, ALPS II [17].

V. DISCUSSION

We have proposed a novel design for an LSW axion
search leveraging SRF cavity technology and employing a
region of isolated, static magnetic field. Our particular
realization uses a gapped toroid, similar to that of [27,28],
to contain a static field while allowing the propagation of
axion-induced signal fields. It would be interesting to
consider other possible geometries for the conversion
region, though the gapped toroid illustrates the necessary
features. Our focus in this work is understanding the
fundamental factors which set the sensitivity of such an
experiment, namely the possible screening of the signal
fields beyond the quasistatic limit and backreaction from
the non-negligible toroid impedance. We calculate the
optimal signal strength, and for reasonable toroid param-
eters and SRF quality factors we find a sensitivity to axion-
photon couplings in excess of astrophysical limits and
comparable to complementary optical experiments.
Notably, the optimal sensitivity is in fact independent of
both production and detection cavity Q factors in the limit
of large Q, and is instead determined by the properties of
the conversion region.
We conclude with a few comments on experimental

feasibility that have not yet been addressed. We have
modeled the coupling of the detection cavity and axion-
induced signal fields with an inductive pickup, yet a naive
implementation of such a coupling would likely compro-
mise the detection Q due to losses in the pickup wire. It is
critical to explore coupling mechanisms that will not
degrade Q, which is complicated by the fact that the toroid
operates on the extreme of the quasistatic regime and thus
requires microwave engineering. There are other sources of

noise not considered here which must be understood and
managed in a practical implementation, such as stray external
fields which require shielding and additional losses due to
non-superconducting support materials used in the system.
Finally, perhaps the biggest engineering challenge here is the
necessity of frequency-matching the two SRF cavities to
within 1=Q≲ 10−10. This demands a precise resonance
monitoring and feedback mechanism to counter frequency
drifts, and is a major hurdle for any photon regeneration
experiment utilizing high-Q cavities, such as [37].
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APPENDIX A: ESTIMATE OF THE
AXION-INDUCED FIELDS

In this section we estimate the magnitude of the axion-
induced fields, assuming a simple geometry for the
production cavity and toroidal conversion region. From
the expressions for the axion source field (6) and effective
current (9), the axion-induced magnetic field at a detection
point r⃗ is generally of the form:

B⃗aðr⃗Þ¼
iωg2

ð4πÞ2 e
iωt

Z
pc
d3y

Z
cr
d3x

×

�
λ⃗× B⃗0ðx⃗Þ

�
1

λ3
þ iω
λ2

�
e−iωλeikajx⃗−y⃗j

jx⃗− y⃗j ðE⃗ · B⃗Þω
�
:

ðA1Þ
Here the integration y⃗ is taken over the volume of the
production cavity, x⃗ is over the volume of the conversion
region, and λ⃗ ¼ ðr⃗ − x⃗Þ is the separation vector between
points in the toroid and a detection point r⃗. The time-
dependent Jeff has been evaluated at the retarded time
tr ¼ t − λ. (A1) also uses the approximation that the axion-
induced fields fully propagate outside of the toroid, as
expected for quasistatic frequencies. Ba lies in the poloidal
direction and has an amplitude:

ẑ · B⃗a ¼
g2B2

pcB0

ω2
βðr⃗Þ; ðA2Þ

where the dimensionless form factor β contains information
about the choice of cavity modes, etc.
First we specify the dimensions involved. Consider a

circular cylindrical cavity (“pill-box”) of radius a and
height h. The resonant frequencies are

FIG. 4. Projected sensitivity of proposed SRF LSW setup to
axion-photon couplings—see text for the choices of experimental
parameters. Also shown are existing solar axion (CAST) [36] and
stellar cooling bounds and, for comparison, the future projected
reach of the next generation optical experiment ALPS II [17].
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ωTM
npq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xnp
a

�
2

þ
�
qπ
h

�
2

s

ωTE
npq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x0np
a

�
2

þ
�
qπ
h

�
2

s
; ðA3Þ

for TMnpq and TEnpq modes respectively, where xnp and
x0np are the pth roots of the nth order Bessel function JnðxÞ
and its derivative J0nðxÞ [38]. Setting a ¼ h=2 ¼ 10 cm
ensures resonant frequencies of order ≈GHz for low-lying
modes, typical of SRF cavities.
Next consider a toroid of inner radius R and rectangular

cross section of height and width R. We take the cylindrical
cavity to be aligned axially with the toroid, with a minimal
separation distance of ðhþ RÞ=2. Though this should be
gapped toroid, we can approximate the static field con-
tained inside the toroidal volume as

B⃗0ðrÞ ¼ B0

�
R
r

�
ϕ̂; ðA4Þ

for r ∈ ½R; 2R� where r is the cylindrical radial distance
from the center. If we require the toroid size saturates the
quasistatic limit Rω ∼ 1, an economical choice for the
dimension is simply R ¼ a.
We now consider the axion source in this setup. The

source axion field is greatest when E⃗ · B⃗ is maximal and
coherent throughout the production cavity volume. Since
we have assumed a cylindrical cavity with no external field,
it is necessary to drive multiple modes to ensure a non-
vanishing ðE⃗ · B⃗Þω. The choice of these modes is not
obvious and requires care even in this simple setup.
To demonstrate an ill-advised choice consider

the TM010 and TM111 modes which results in ðE⃗·B⃗Þω∝
sinðπz=hÞsinðϕÞ. Note that the integral of ðE⃗ · B⃗Þω van-
ishes over z ∈ ½−h=2; h=2� of the production cavity. This
z-dependence is in fact a general feature of any cylindrical
cavity modes chosen, but it is not detrimental as we are
operating in the near-field regime. Rather, TM010 and
TM111 represents a poor choice of modes because of the
ϕ dependence—the sourced axion field will be purely
harmonic in the azimuthal angle, and thus would integrate
over the toroid to give a highly suppressed signal field near
the center. This cancellation is essentially a consequence of
the symmetry and alignment of the cylindrical setup and is
easily avoidable. One potential solution is to place the
production cavity in a position off the axial axis. Another is
to modify the toroid wiring so B⃗0 also varies with the
azimuthal angle while still being effectively confined. One
can also select cavity modes such that ðE⃗ · B⃗Þω is not purely
harmonic in ϕ: the lowest-lying combination of cylindrical
modes which yields this angular behavior is the TM111 and
TE111 modes.

In any case, we can estimate a reasonable upper limit to β
in (A2) by postulating a perfectly uniform E⃗ · B⃗ throughout
the production cavity volume. Taking this optimal axion
source, we numerically find that β is roughly constant for
points in the center of the toroid:

βoptimal ≈ 7 × 10−2; z ¼ 0 and r ≤ R: ðA5Þ

Here we have also taken the limit in which the mass is
negligible, ma ≪ ω. At masses ma ≳ ω, there is the usual
exponential drop-off from producing off-shell axions. If we
instead use a perhaps more realistic axion source by driving
the TM111 and TE111 combination, we numerically find that
βrealistic ≈ 4 × 10−4, again roughly constant near the center
of the toroid.
In summary, we expect the form factor β can in principle

be made Oð0.1Þ in any suitably engineered designs. As
discussed, it is important to determine a suitable geometry
and choice of modes to be driven in the SRF production
cavity, as a poor choice could lead to a significant
suppression of the signal fields.

APPENDIX B: A TOY MODEL FOR SCREENING

We ultimately rely on the quasistatic approximation in
assuming the axion-induced fields propagate Oð1Þ out of
the gapped toroid, similar to [28]. This limits the size of the
toroid to be less than or of order the inverse frequency of
the axion. However it is important to understand the degree
to which the fields outside the toroid are suppressed at
larger frequencies or larger toroid size. This is a compli-
cated boundary-value problem and a full study would
require a detailed numerical computation which is outside
the scope of this work. Wewill demonstrate here the power-
law nature of this suppression.
To gain some intuition, consider an electromagnetic field

of frequency ω impinging on a perfect conducting sheet. If
the conductor is infinitely large, then the incoming field is
reflected and vanishes on the far side of the conductor (i.e.,
metals are shiny). An analogous behavior holds for fields
sourced inside of a region bounded by a closed conducting
surface—the field is exactly screened outside (i.e., phones
do not work in elevators). The common feature is that the
conductors lack a boundary. We thus expect incident fields
to be suppressed, but not exactly screened, outside of a
large yet finite conductor with a definite boundary. This
will occur when the conductor size H is much larger than
the wavelength ω−1.
Now suppose the conductor is small relative to ω−1. This

is just the quasistatic limit, so we may asses the conductor’s
response by considering its response to a static field. In this
familiar situation, the field will induce charges and currents
on the surface of the conductor in order to screen the bulk.
It is clear that the boundaries play an important role in this
limit. For example, a conducting block in a static electric
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field will develop a screening charge density on the
boundary, which modifies the net external field but does
not result in a parametrically small external field. For
ωH ≪ 1 we therefore expect the field on the far side of the
conductor to only differ from the incident field by Oð1Þ
factors.
We study here a toy model of electromagnetic fields

incident on a finite cylindrical conductor. The parametric
effects of screening can be sensibly extracted in the high-
frequency limit, and we find the magnitude of external,
detected fields are only power-law suppressed compared to
the internal fields. The physical mechanism underlying this
suppression, as summarized in Sec. III C, is expected to
hold generically in varied geometries.
Consider a perfectly conducting cylinder of heightH and

radius R. More precisely, take this to be a tube of negligible
thickness separating an inner and outer cylindrical wall.
Suppose there is an EM field ðE⃗a; B⃗aÞ ¼ ðEaẑ; Baϕ̂Þ,
sourced by an infinite line of current Iaeiωtẑ “in the throat”
of the cylinder. This is labeled suggestively in analogy to
fields sourced by the axion interactionwith a static magnetic
field, although for simplicity we assume a spatially uniform
Ia. We specifically examine the limit of a thin cylinder and
take R ∼ ω−1 ≪ H, which is of course well beyond the
quasistatic approximation. Here the fields radiated by Ia are
cylindrical plane waves, with approximate magnitudes:

EaðrÞ ∼ BaðrÞ ∼ ωIaeiωt
�

1

ωr

�
1=2

; R≲ r≲H: ðB1Þ

These source fields will be compared to the detected fields
(E⃗det, B⃗det) at a point r ∼H outside the cylinder. This is
depicted in Fig. 5. From here on, we restrict our attention to
the behavior of fields in the region R≲ r≲H, extending
from the cylindrical surface to the detection point. We will
also ignore any contributions to the fields due to the source
wire Ia “sticking out” the ends, since this finite cylinder is
intended to resemble an “unwrapped” version of our gapped
toroid.
To determine the detected fields, the conductor response

is paramount. Boundary conditions dictate that the electric
and magnetic fields vanish in the thickness of the cylinder,
and the z-component of the electric field vanishes on the
surface. Importantly, for a finite cylinder the inner and outer
surfaces are connected, so that the current established on
the inner wall is communicated in some form to the outer
wall. This communication, and the detected fields that
result, can be estimated by approximately satisfying boun-
dary conditions as follows:
First, Ia drives a screening current Isc on the inner walls

in order to cancel the source fields. By continuity, there is
then necessarily a charge buildup �Qeiωt at the top and
bottom edges of the cylinder, respectively. We will not
attempt to explicitly satisfy boundary conditions near these
edges (which involves complicated fringe effects). Instead,

we will consider the effects of this charge on the rest
of the cylinder at locations far from the edges—that is,
H=2 − jzj ≫ R, where z ¼ 0 corresponds to the vertical
center of the cylinder. Here the oscillating rings of charge at
z ¼ �H=2 appear as points and produce an electric field on
the cylinder surface:

ẑ · E⃗QðR;zÞ∼Qeiωt
�
e−iωzþð1þ iωzþÞ

z2þ
þe−iωz−ð1þ iωz−Þ

z2−

�
;

ðB2Þ

where z� ¼ H=2� z. Up to a phase, this is approximately

ẑ · E⃗QðR; zÞ ∼
ωQeiωt

H=2 − jzj cosðωzÞ: ðB3Þ

To continue satisfying boundary conditions, this field must
now be canceled. Therefore, a “backreaction” current Ibr
must be set up on the cylinder walls, chosen to cancel E⃗Q.
Numerically, we find that a current of the form IbrðzÞ ∼
Ibr cosðωzÞ sources electric fields with the necessary
sinusoidal behavior:

ẑ · E⃗brðR; zÞ ∼
Ibreiωt

H=2 − jzj cosðωzÞ: ðB4Þ

We can ensure that this backreaction does not also violate
the previously satisfied boundary conditions by taking Ibr
to flow in the same direction on both inner and outer walls.
It is notable that near the center of the cylinder, (B4)
vanishes as the height increasesH → ∞. Such a scaling can
be understood by considering a cosðωzÞ current on the
surface of an infinitely tall cylinder. In that case, the
z-component of the electric field exactly vanishes as there
is a cancellation between the field sourced by the current
and the field sourced by stripes of charge which are present

FIG. 5. Screening of EM fields (E⃗a, B⃗a) sourced inside a finite
cylindrical wall. In the high-frequency limit, the conductor
response results in charge buildup Q on the edges and a
configuration of screening currents Isc, Ibr on the inner and
outer surfaces. These in turn determine the fields (E⃗det, B⃗det)
detected outside the cylinder.
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due to charge continuity. This cancellation is weaker near
the edges of a finite cylinder, leading to larger ẑ · E⃗br there.
The above charges/currents must be self-consistent. The

initial screening current Isc on the inner wall, charge
buildup Q on the edges, and back-reaction currents Ibr
on both walls here are related by charge continuity:

dQ
dt

¼ iωQ ∼ Isc − 2Ibr; ðB5Þ

where the factor of 2 accounts for the fact that Ibr flows in
the same direction on both walls. Since the cylinder is tall
and thin, we can invoke the infinite-cylinder solution to
approximately cancel the source fields, and thus we take
Isc ∼ Ia on the inner surface. Comparing (B3) and (B4), to
cancel the fields produced by the charge buildup requires
backreaction currents of order Ibr ∼ ωQ. These currents,
taken together, then approximately satisfy boundary con-
ditions everywhere away from the edges. Now further
demanding the constraint of continuity (B5), we find
the charge buildup should be Q ∼ Ia=ω, and therefore
the backreaction currents are of order Ibr ∼ Ia cosðωzÞ. The
z-component of the backreaction field is parametrically
smaller than the source field (B1) on the surface:

ẑ · E⃗brðR; zÞ
EaðR; zÞ

∼ ðωHÞ−1 ≪ 1: ðB6Þ

This is consistent with our use of the infinite-cylinder
solution for the inner screening current Isc ∼ Ia.
To summarize, we have found there are additional

currents Ibr ∼ Ia cosðωzÞ on the inner and outer cylinder
surfaces, arising from the need to satisfy boundary con-
ditions in the presence of charge build-up. These are
inevitably of the same order as the source current, but
with a crucial spatial modulation. Based on these currents,

we estimate the detected fields at a point r≲H (and near
z ∼ 0) outside the cylinder:

E⃗detðr; zÞ ∼ Ia cosðωzÞeiωt
�
1

r
r̂þ 1

H þ r
ẑ

�
;

B⃗detðr; zÞ ∼
Ia
r
cosðωzÞeiωtϕ̂: ðB7Þ

The fields radiated by the oscillating charges on the
cylinder edges are of this same magnitude.
The charge buildup and back-reaction currents thus

propagate fields outside the cylinder. Importantly, the
magnitudes of these fields (B7) fall off as r−1, faster than
the r−1=2 behavior of the source fields (B1) that would be
seen if the conductor were not present. Comparing these,
we see the magnitude of the external, detected field is
power-law suppressed:

Bdet=Ba ∼ ðωHÞ−1=2 ≪ 1: ðB8Þ

This is fundamentally because the fields radiated by a
modulated, multipolar current decay more rapidly than the
fields from a spatially uniform current.
Lastly, we briefly comment on the low-frequency behav-

ior of our toy model. The spatially modulated current
distribution we had found on the surface is a consequence
of modulated fields from non-negligible charge buildup—
this feature, however, is only present at sufficiently high
frequencies. In the opposite limit R;H ≪ ω−1, the analo-
gous secondary fields from charge buildup are uniform
across the cylinder surface and drive an unmodulated
current that results in equal and opposite currents flowing
on the inner and outer surfaces. This is the familiar
quasistatic result in which no screening occurs and a
uniform current loop is established, as in the operation
of a cryogenic current comparator [39].
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