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We address some theoretical issues of the quantum decoherence phenomenon within the neutrino
oscillation framework and carry out various tests the under DUNE simulated experimental environment.
On the theoretical side, we provide a general expression for an invariant decoherence matrix under
a quantum basis rotation. On the simulated experimental side, considering a rotation-invariant and
noninvariant decoherence matrix, we study the impact on the fitting of the standard oscillation parameters,
the sensitivity in the mass hierarchy, and the CP violation, combining the neutrino and antineutrino mode
and all available neutrino oscillation probabilities channels. Furthermore, a sensitivity for the decoherence
parameter of the order 10−24 GeV at 3σ is obtained for our best case. We also note that a degeneracy
between the decoherence parameter and the CP violation phase remains, even though our analysis includes
neutrino/antineutrino mode and all probabilities channels.
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I. INTRODUCTION

It is well established that neutrino oscillation is induced
by a nonzero neutrino mass [1–7]. However, the existence
of some, still unrevealed, subdominant mechanism is not
forbidden. In general, the typical trait of this subleading
effect is to the neutrino (oscillation) connection with
physics beyond the Standard Model. Within this category,
there are several theoretical hypotheses such as: neutrino
decay [8–33], nonstandard neutrino interactions [34–40],
Lorentz and CPT invariance violation [41–47], etc. There
is another beyond the Standard Model hypothesis which
contemplates an interacting environment due to some
effects produced either by strings and branes [48,49] or
quantum gravity [50]. The result of the interaction
between the neutrino system and the environment is the
introduction of decoherence/dissipative parameters into
the standard oscillation framework [51,52]. Although the
decoherence phenomenon applied to a neutrino system
has been largely studied in the literature [51–69], there is
still room for new contributions. This paper is motivated
for two interesting points raised in [67]: the first was the
discussion about the invariance of the decoherence matrix
when we rotate the neutrino Hamiltonian in matter from
the vacuum mass eigenstate basis (VMB) to the matter

mass eigenstates basis (MMB). The second was the
possibility of having a degeneracy in oscillation proba-
bilities between the decoherence parameter Γ and the CP
violation phase δ.
In this paper, we will present a detailed demonstration of

the behavior of the decoherence matrix under rotations and
obtain the general shape of a (rotation) invariant decoherence
matrix. Furthermore, we will probe the neutrino oscillation
probabilities for an invariant and noninvariant decoherence
matrix under simulated experimental conditions in the
context of DUNE, which will have unprecedented sensitivity
to the identification of the mass hierarchy and the measure-
ment of the CP phase δ [70]. Considering the two afore-
mentioned kinds of decoherence matrix, we will perform
various tests such as: the sensitivity to the decoherence
parameter and the effects of decoherence in the measurement
of oscillation parameters and in the sensitivity to the mass
hierarchy and δ. We include, of course, the study of the
degeneracy between Γ and δ, in agreement with our second
motivation point.

II. THEORETICAL CONSIDERATIONS

A. Density matrix formalism

The description of the neutrino system weakly interact-
ing with the environment using the open quantum system
approach is given by

dρ̂ðtÞ
dt

¼ −i½H; ρ̂ðtÞ� þD½ρ̂ðtÞ�; ð1Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 015035 (2019)

2470-0010=2019=100(1)=015035(11) 015035-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.015035&domain=pdf&date_stamp=2021-07-22
https://doi.org/10.1103/PhysRevD.100.015035
https://doi.org/10.1103/PhysRevD.100.015035
https://doi.org/10.1103/PhysRevD.100.015035
https://doi.org/10.1103/PhysRevD.100.015035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the well-known Lindblad master equation, where ρ̂ðtÞ is the
neutrino’s density matrix and H is the Hamiltonian of
the system. The term D, which is the one that encloses the
dissipative/decoherence effects, is written as

D½ρ̂ðtÞ� ¼ 1

2

X
j

ð½V̂j; ρ̂ðtÞV̂†
j � þ ½V̂jρ̂ðtÞ; V̂†

j �Þ; ð2Þ

where fV̂jg is a set of dissipative operators with j ¼
1; 2;…; 8 for three neutrino generations. The operators
fV̂jg, ρ̂, andH can be expanded in terms of the SUð3ÞGell-
Mann matrices and the identity matrix (although this last
component is not relevant). After several intermediate
manipulations, well explained in [67], we can arrive at
the solution of the Lindblad master equation for a constant
matter density,

ρ⃗ðtÞ ¼ eðMHþMDÞtρ⃗ð0Þ; ð3Þ

where ρ⃗ is an eight-dimensional column vector consisting
of the ρk, the components of the quoted expansion before,
the 8 × 8 matrices MH and MD, encode the Hamiltonian
and decoherence components of the same expansion,
respectively. The dissipative/decoherence matrix MD, that
contains all the decoherence parameters, has to be a
symmetric, positive-semidefinite matrix, and its entries
should satisfy a set of inequalities (see [71] for a full list).
Thus, we can get the oscillation probabilitiesPðνα→νβÞ≡

Pνανβ that can be obtained via inner products,

Pνανβ ¼
1

3
1þ 1

2
ρ⃗νβ · ρ⃗ναðtÞ; ð4Þ

where ρ⃗ναðtÞ is the time evolved state from an initial neutrino
flavor να and ρ⃗νβ is the final neutrino flavor νβ to be detected.
Considering that the neutrinos are ultrarelativistics, we have
t ¼ L, where L is the baseline.

B. Neutrino Hamiltonian, rotation, and CP phase

The neutrino Hamiltonian ĤVAC þ Â in the VMB for a
neutrino of energy Eν is given by

HVðδÞ ¼
1

2Eν

8>><
>>:

0
B@

0 0 0

0 Δm2
21 0

0 0 Δm2
31

1
CA

þU†

0
B@

ACC 0 0

0 0 0

0 0 0

1
CAU

9>>=
>>;
; ð5Þ

where ĤVAC ¼ Diagð0;Δm2
21=2Eν;Δm2

31=2EνÞ, Â ¼
U†DiagðACC=2Eν; 0; 0ÞU, with ACC ¼ 2E

ffiffiffi
2

p
GFne, where

GF, ne are the Fermi coupling constant and electron
number density, respectively. The matrix U is defined as

U ¼ U23U
†
δU13UδU12 ð6Þ

with Uδ ¼ Diagð1; 1; e−iδÞ. Considering that the matrix
U23U

†
δ commutes with DiagðACC; 0; 0Þ and the matrix Uδ

commutes with U12 and Diagð0;Δm2
21;Δm2

31Þ, separately,
the neutrino Hamiltonian can be rewritten as follows:

HVðδÞ ¼ U†
δHVð0ÞUδ; ð7Þ

where HVð0Þ is given by

HVð0Þ ¼
1

2Eν

8>>><
>>>:

0
B@

0 0 0

0 Δm2
21 0

0 0 Δm2
31

1
CA

þ U†
12U

†
13

0
B@

ACC 0 0

0 0 0

0 0 0

1
CAU13U12

9>>=
>>;
: ð8Þ

The Hamiltonian HV defined in the VMB can be related
with the Hamiltonian ĤM in the MMB (this is where the
Hamiltonian is diagonal) through

ĤMðδÞ ¼ U†
Tðδ;ϕ1;ϕ2ÞHVðδÞUTðδ;ϕ1;ϕ2Þ: ð9Þ

Using Eq. (7) and that HMðδÞ commutes with the unitary
phase operator U†

ϕðϕ1;ϕ2Þ ¼ Diagð1; e−iϕ1 ; e−iϕ2Þ being
ϕ1 and ϕ2 arbitrary phases, the latter equation can be
rewritten as follows:

HMðδÞ ¼ U†
ϕðϕ1;ϕ2ÞU†

Tðδ;ϕ1;ϕ2ÞU†
δHVð0Þ

×UδUTðδ;ϕ1;ϕ2ÞUϕðϕ1;ϕ2Þ: ð10Þ

Given that HMðδÞ is represented by a unitary trans-
formation of the operator HVð0Þ, the eigenvalues of the
former do not depend on δ or the phases ϕ1;ϕ2. We thus
write

HMðδÞ ¼ HMð0Þ ¼ U†
Tð0; 0; 0ÞHVð0ÞUTð0; 0; 0Þ: ð11Þ

Comparing Eqs. (10) and (11), we obtain

UTðδ;ϕ1;ϕ2Þ ¼ U†
δUTð0; 0; 0ÞU†

ϕðϕ1;ϕ2Þ: ð12Þ

This result implies that once we find a matrix UTð0; 0; 0Þ
that diagonalizes HVð0Þ, a general UTðδ;ϕ1;ϕ2Þ that
diagonalizes HVðδÞ can be constructed.
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C. Invariant matrices analysis

As mentioned in Ref. [67], the relationship between the
VMB and MMB decoherence matrices goes as follows:

MM
D ðδ;ϕ1;ϕ2Þ ¼ Pðδ;ϕ1;ϕ2ÞMV

DP
Tðδ;ϕ1;ϕ2Þ: ð13Þ

The matrix Pðδ;ϕ1;ϕ2Þ is defined as

Pðδ;ϕ1;ϕ2Þ ¼ Fðϕ1;ϕ2ÞP0RðδÞ; ð14Þ

where further details about P0 ¼ Pð0; 0; 0Þ, RðδÞ and
Fðϕ1;ϕ2Þ are given in the Appendix B. Although we
are emphasizing the dependence of MM

D on δ and the
arbitrary phases ϕ1 and ϕ2 in the Eq. (13), it is important to
notice that this matrix, in general, may also depend on the
neutrino energy and the matter potential A.
We rewrite Eq. (13) more explicitly,

MM
D ðδ;ϕ1;ϕ2Þ ¼ Fðϕ1;ϕ2ÞP0RðδÞMV

D

× RTðδÞPT
0F

Tðϕ1;ϕ2Þ; ð15Þ

and wish to impose the conditionMM
D ¼ MV

D, meaning that
the decoherence matrix MV

D is invariant under rotations in
P. This situation is very convenient to deal with since the
neutrino matter oscillation plus quantum decoherence
probability formulas are easily found from its correspond-
ing formulas in vacuum (see [67]).
We want to prove that, given an invariant matrix MV

D
when δ ¼ 0, it is possible to derive invariant matrices
M̄V

D for other δ. We start with the invariance condition
MM

D ðδ;ϕ1;ϕ2Þ ¼ MV
D when δ ¼ 0,

MV
D ¼ Fðϕ1;ϕ2ÞP0MV

DP
T
0F

Tðϕ1;ϕ2Þ: ð16Þ

For the case δ ≠ 0, the invariance condition for
MM

D ðδ; ϕ̃1; ϕ̃2Þ ¼ M̄V
D reads

M̄V
D ¼ Fðϕ̃1; ϕ̃2ÞP0RðδÞM̄V

D

× RTðδÞPT
0F

Tðϕ̃1; ϕ̃2Þ: ð17Þ

Imposing the following relation to the preceding equation:

M̄V
D ¼ RTðδÞMV

DRðδÞ; ð18Þ

together with Eq. (16), we get

MM
D ðδ; ϕ̃1; ϕ̃2Þ ¼ Fðϕ̃1; ϕ̃2ÞFTðϕ1;ϕ2ÞMV

D ð19Þ

× Fðϕ1;ϕ2ÞFTðϕ̃1; ϕ̃2Þ: ð20Þ

Thus, if we demand Fðϕ1;ϕ2ÞFTðϕ̃1;ϕ̃2Þ¼RðδÞ, the con-
dition MM

D ðδ; ϕ̃1; ϕ̃2Þ ¼ M̄V
D is achieved, and M̄V

D is
invariant.

In Ref. [67], it is found that for δ ¼ 0; π the invariant
matrix MV

D is given by

MV
D ¼ −DiagðΓ1;Γ2;Γ1;Γ1;Γ2;Γ1;Γ2;Γ1Þ; ð21Þ

with Γ1=3 ≤ Γ2 ≤ 5Γ1=3. Substituting this MV
D into

Eq. (18), we can extrapolate that the corresponding
invariant M̂V

D for any δ is described by the following block
diagonal matrix:

M̄V
D ¼ RTðδÞMV

DRðδÞ ¼ −

0
BBBBBBBBB@

Γ1

Γ2

Γ1

Q

Q

Γ1

1
CCCCCCCCCA
;

ð22Þ

where the matrix Q is

Q¼
�
Γ1cos2δþΓ2 sin2δ ðΓ1−Γ2Þcosδsinδ
ðΓ1−Γ2Þcosδsinδ Γ2cos2δþΓ1 sin2δ

�
: ð23Þ

From the latter equation, we can calculate M̂V
D for

δ ¼ π=2; 3π=2 getting

M̄V
D ¼ RTðδÞMV

DRðδÞ
¼ −DiagðΓ1;Γ2;Γ1;Γ2;Γ1;Γ2;Γ1;Γ1Þ; ð24Þ

similar to the one mentioned in Ref. [67].

D. Adding Hamiltonian terms
in the weak coupling limit

At this point, it is interesting to make a comparison
between the approach given in [68] for defining invariant
matrices, and the one presented here and in [67]. With
the purpose of demanding energy conservation, the follow-
ing conditions are imposed in [68]: ½HVAC; V̂j� ¼ 0 and
½ĤM; V̂

M
j � ¼ 0, being that V̂j and V̂M

j are the dissipator
operators written in the VMB (for the pure vacuum case)
and in the MMB, respectively. To achieve the aforemen-
tioned conditions, it is required that V̂j changes when the
matter potential term Â is added to the vacuum Hamiltonian
HVAC, all of this in the VMB. The new dissipator operator
is defined by V̂new

j ¼ UT V̂jU
†
T, depending on the matter

potential and the neutrino energy, in a way that it recovers
its vacuum form when it is rotated to the MMB; this is
V̂M
j ¼ U†

T V̂
new
j UT ¼ U†

TUT V̂jU
†
TUT ¼ V̂j. This situation

is incongruent with the underlying regime used for describ-
ing the neutrinos as an open quantum system, which is the
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Born-Markov approximation (BM). The Born approxima-
tion is applied when the environment interacts weakly with
the neutrino system [72,73], while the Markovianity
assumption implies the use of the Lindblad form
[Eq. (2)] [74,75]. In this evolution, the system is modified
by the environment and parametrized by the dissipator
operators (i.e., the decoherence matrix), but not viceversa.
Thereby, the environment is considered unaffected by the
system, and the addition of the matter potential term to the
vacuum neutrino Hamiltonian should not change (or in a
negligible way) the dissipator operator V̂j.

E. Selected decoherence matrix models

Our analysis will be limited to diagonal decoherence
matrices due to their relative simplicity. While analytical
expressions are available for these matrices in the context of
vacuum oscillations [53], oscillations in matter can be
found through perturbative expansions. For a generic
matrix MV

D¼−DiagðΓ1;Γ2;Γ3;Γ4;Γ5;Γ6;Γ7;Γ8Þ, we can
make an expansion in the small quantities α ¼ Δm2

21=
Δm2

31; θ13 and Γ̄i ¼ ΓiL, assuming the latter is <0.1. The
lowest order contribution to the transition probability Pνμνe

is found to be

Pνμνe ¼ Pð0Þ
νμνe þ

1

4
cos2θ23½Γ̄1 þ Γ̄3 þ cos 4θ12ðΓ̄3 − Γ̄1Þ�

þ 1

12
ð1 − 3 cos 2θ23ÞΓ̄8; ð25Þ

where Pð0Þ
νμνe is the standard oscillation transition probability.

We also notice that only three decoherence parameters of
such a matrix dominate the contributions to the probability.
Furthermore, these terms do not depend on the neutrino
energy or matter potential, leading to a probability shift
across all energies—a property that will help us qualita-
tively explain our results. Using the current values of the
standard oscillation (SO) parameters given in Table I, this
shift turns out to be positive.
In the νμ → νμ channel, decoherence turns out to be a

subdominant effect and does not significantly affect the
shape of the curves, while in the νμ → νe channel, it is the

leading term (the standard oscillation (SO) transition
probability is led by terms proportional to θ213; α

2 and
αθ13Þ. For that reason we are not showing these proba-
bilities, although this channel is included in our analysis.

1. Model A

In light of this, the first one-parameter model we propose
for this study (referred from now on as model A) assumes
Γ3 ¼ Γ8 ¼ 0,

MV
D ¼ −DiagðΓ;Γ; 0;Γ=4;Γ=4;Γ=4;Γ=4; 0Þ; ð26Þ

which is an noninvariant decoherence matrix. The approxi-
mate expression for the transition probability ðνμ → νeÞ is

Pνμνe ¼Pð0Þ
νμνe þ

1

2
Γ̄cos2θ23sin22θ12

−
1

4
cos2θ23Γ̄2

�
sin42θ12þ sin24θ12

sin2ðAΔÞ
4A2Δ2

�

þ Γ̄θ13 sin2θ23 sin4θ12
4ð1−AÞAΔ ½sinðAΔÞcosðδþAΔÞ

−A2 sinΔcosðδþΔÞ�

−
αΓ̄

2A2Δ
cos2θ12cos2θ23sin22θ12× ðsin2AΔ−2AΔÞ:

ð27Þ

In this expression, Γ̄ ¼ ΓL, Δ ¼ Δm2
31L=4E and A ¼

ACC=Δm2
31. To obtain the antineutrino oscillation proba-

bilities, switch A → −A and δ → −δ.

2. Model B

The second model, from now on named model B, is an
invariant matrix based on (24),

MV
D ¼ −DiagðΓ; 5Γ=3;Γ;Γ; 5Γ=3;Γ; 5Γ=3;ΓÞ: ð28Þ

For such a matrix, we do not have a transition probability
formula akin to (27). However, we may still use (25) to
get a qualitative understanding of our results referred to
this model.

3. Analytical comparison between model A and B

The neutrino and antineutrino transition probabilities are
displayed in Fig. 1 for both of our proposed decoherence
models. As expected from the perturbative formula, the
main feature is the increased transition probability at all
energies. Note that the rise in the oscillation probability is
greatest for model B, consistent with (25) now that Γ8 ≠ 0
increasing the value of the shift. The peaks in the transition
probability occur between 2 and 4 GeV for both channels.

TABLE I. Relevant parameters assumed for our DUNE analysis.

Parameter Value Error

θ12 33.62° 0.77°
θ23 47.2° 2.9°
θ13 8.54° 0.15°
Δm2

21

10−5 eV2 7.40 0.21
Δm2

31

10−3 eV2 2.494 0.032
δ Varies � � �
ρ 2.97 g cm−3 � � �
Baseline L 1300 km � � �
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III. SIMULATION AND RESULTS

For DUNE simulations, we will use the optimized beam
as described in the Conceptual Design Report [70] and make
use of the files from Ref. [76]. We use an exposure of 150 kt
MW year exposure each for the neutrino and antineutrino
channels. Both the neutrino mode (forward horn current—
FHC) and antineutrino mode (reverse horn current—RHC)
are used for 3.5 yrs on each. We are also using both the
appearance (νμ → νe) and disappearance (νμ → νμ) channels
on neutrino and antineutrino modes. All neutral- and
charged-current interaction background rates discussed in
detail in Ref. [70] Sec. III.6.1 are included.
Throughout this section, we use the SO parameters from

the global fit based on data available in January 2018
[77,78], assuming normal ordering (NO) and some mod-
ifications. The ranges provided are not symmetric about the
fit values, but we will take them as symmetric by taking the
average of the one-sided deviations. Due to the relatively
unconstrained value of δ, we consider different values for
this parameter with special emphasis on δ ¼ −π=2, which is
rather similar to the current best fit value. As such, no priors
are assigned to δ. We summarize this information in Table I.
For all subsequent statistical analyses, we will use the

GLoBES package [79,80], while oscillation probabilities
are calculated using NuSQuIDS [81].
This study relies on the χ2 test statistic to compare data

generated by a set of “true” parameters ξtrue against a
hypothesis that assumes a set of “test” values ξ. Unless
otherwise stated, the parameters ξtrue will have the values in
Table I. The values of δ and Γ will be provided on a case-
by-case basis. In the context of DUNE and GLoBES, χ2 is
defined as

χ2ðξ; ξtrueÞ ¼
X
i

ðNiðξÞ − NiðξtrueÞÞ2
NiðξtrueÞ

; ð29Þ

where the Ni is the expected number of events in the i’th
energy bin. When including priors, GLoBES modifies χ2

by adding an extra term,

χ2 → χ2 þ
X
j

ðξj − ξtruej Þ2
σ2j

; ð30Þ

where the summation in j is over all parameters for which
σj ≠ 0. In this and all subsequent definitions for χ2, it is
implicit that Γ and γ are used interchangeably depending on
the assumed model.

A. Determination of standard oscillation parameters

Our first test consists of performing (Standard
Oscillation) SO fits on data that include decoherence.
The data are generated assuming the true parameter values
in Table I, for δtrue ¼ −π=2 and Γtrue and no priors. The test
hypothesis is Γ ¼ 0, and we obtain χ2min by marginalizing
over the SO parameters, attaining its minimum for a set of
parameters which we label as “fit”. We project the χ2

function on the θ13 − δ plane,

Δχ2 ¼ χ2ðθ13; δ;Γ ¼ 0; δtrue;ΓtrueÞ
− χ2minðθfit13; δfit;Γ ¼ 0; δtrue;ΓtrueÞ; ð31Þ

where all unmentioned test parameters are fixed to their
fit values.
We plot our results in Fig. 2. As we increase the value of

Γtrue, the SO fit shifts towards higher values of θ13 for both
models. We can explain this behavior through Eq. (25),
where as long as we increase Γ, the νμ → νe transition
probability grows in an energy-independent way, which, if
it is fitted under the SO assumption, can be misconstrued as
a larger mixing angle θ13. Both plots have similar shapes,
where model B has a more notable shift to higher θ13, a
feature that is explained by looking at the transition
probabilities in Fig. 1, with higher shifts appearing due
to the nonzero Γ3, Γ8 [see Eq. (25)]. As expected, the more
serious discrepancy between model B and SO, in com-
parison with the corresponding between model A and SO,
is also translated in a more relevant quantity, which is the
event rate (see Appendix C). It is important to note that this
higher sensitivity of model B will be reflected in all the
successive analysis (plots) presented in this manuscript.
On the other hand, the general shape of the contour plots

remains the same. We also made the same analysis using
the FHC and RHC separately, where the former provided
stronger constraints compared to the latter, because of the
higher statistics of the former. Similarly, we found the
disappearance probability alone does not provide good
restrictions on the parameter space based on the small
effect decoherence has on the νμ → νμ probability. We thus
expect the largest contributions to Δχ2 to come from the
appearance channel.

FIG. 1. Neutrino and antineutrino transition probabilities for
the decoherence models discussed in Sec. II E for decoherence
parameters Γ ¼ 0; 10−23 GeV. The value δ ¼ −π=2 is assumed.
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We point out that short baseline neutrino oscillation
experiments can measure the value of θ13 quite precisely
and will not be confused with the SOþ decoherence
scenario, since ΓL is much smaller than in DUNE. The
precision on θ13 is also expected to improve by the time
DUNE becomes operational. An interesting possibility
arises: if DUNE’s measurement of θ13 is incompatible
with those obtained from reactor experiments, then
decoherence would provide an explanation for this dis-
crepancy, particularly if DUNE’s measured θ13 is larger
than the accepted value.

B. Effects of decoherence on constraining δ

To test the ability of DUNE to constrain decoherence
parameters, we generate data assuming true values for δ and
Γ and make a χ2 plot on the δ, Γ plane. Our χ2 in this case
assumes δ and Γ as free parameters, and all remaining
parameters are fixed to their true fit values (there is no
marginalization here). Our findings are displayed in Fig. 3.

If we assume Γtrue ¼ 10−24 GeV, we find that the data
are still compatible with Γ=1024 GeV ¼ 2.3, 5.1, 7.4 (1.8,
3.3, and 4.3) for model A (B) at 1,3, and 5σ, respectively.
We note that model B’s limits are more stringent than
model A; a feature explained mostly by the increased
contribution from the first order correction to the transition
probability [see Eq. (25)]. For this assumed value of Γtrue,
both models are able to exclude the standard oscillation
scenario at the 1σ level.
Even in the presence of decoherence, δ is well con-

strained. In [67], we pointed out that the CP assymmetries
for δ ¼ �π=2 were similar for low neutrino energies, and it
was possible to confuse these two values of δ in the
presence of decoherence. We also mentioned that after
taking the whole of DUNE’s energy range into account
there was no similarity remaining. The aforementioned
point is consistent with our current results, where we found
that our plots have no secondary contours appearing in the
vicinity of δ ¼ π=2.

C. Constraining the decoherence parameter

For this study, the simulated data assume Γtrue ¼ 0, and a
fit is performed for a given test parameter Γ. Our test
statistic is

FIG. 2. Effects of decoherence on standard oscillation fits for
δtrue ¼ −π=2. We show the Δχ2 contours or Γtrue ¼ 0 GeV,
2 × 10−24 GeV, and 5 × 10−24 GeV (solid, dashed, and dotted
lines, respectively).

FIG. 3. Left(right) panel: DUNE’s ability to constrain the
decoherence parameter for Γtrue ¼ 10−24 GeV, assuming model
A(B). The central point ðδtrue;ΓtrueÞ ¼ ð−π=2; 10−24 GeVÞ is
marked in the graphs.
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χ2ðΓÞ ¼ χ2ðΓ; δtrue;Γtrue ¼ 0Þ; ð32Þ

where we marginalize over all standard oscillation param-
eters. We show the results in Fig. 4. The sensitivity to
Γ=ð10−24 GeVÞ for the model A is in the range 1.5–2.1,
5.4–6.7, and 8.2–10.3 at the 1σ; 3σ, and 5σ levels. On the
other hand, the mode of the invariant matrix, model B, has a
sensitivity almost invariant in δ, and it is stronger than one
predicted for model A, as we have already seen it in Fig. 3.
This is a result of the increased contribution from the
first order decoherence term for model B (see Fig. 1),
which does not depend on the CP phase; the effect of other
δ-dependent terms in a perturbative expansion are sup-
pressed, such as the Γθ13 term present in Eq. (27).

For either model, DUNE’s sensitivity to Γ is superior to
the previously reported KamLAND’s 95% C.L. sensitivity
of 6.8 × 10−22 GeV [56] and the 90% C.L. sensitivity of
1.2 × 10−23 GeV [68]. Our current results are also of the
same order of magnitude as those reported in a recent
IceCube study [69]. We do remark that the decoherence
models used in these previous studies are slightly different
than ours and act as benchmarks.

D. Mass ordering and CP violation sensitivity

If decoherence is present in nature, it is possible in
principle that SO fits become affected due to an attempt to
fit data to an inadequate hypothesis. In particular, an SO
fit to the decoherence data may identify CP violation
and wrongfully associate it with a nonzero δ. A similar
situation could arise in the case of mass ordering, where
DUNE’s ability to discriminate between normal and
inverted orderings (IO).
Mass ordering sensitivity is obtained by comparing

generated data from anNO assumption with decoherence
against an IO hypothesis without decoherence. When
generating data, a value of Γtrue is assumed and the test
statistic is marginalized in all oscillation parameters while
keeping Γ ¼ 0 fixed, meaning that

χ2MO¼ χ2ðΔm2
31<0; Γ¼0; Δm2true

31 >0; δtrue; ΓtrueÞ: ð33Þ

The sensitivities are presented in Fig. 5 for different
Γtrue. We see that, regardless of δtrue and our assumed
decoherence model, the sensitivity is well above 5σ for our
chosen values of the decoherence parameter and in fact
improves it. To explain this feature, we point out that the

FIG. 4. Sensitivity to the decoherence parameter Γ, as a
function of δtrue, for different confidence levels. Solid lines
correspond to model A, and dashed lines correspond to model B.

FIG. 5. Mass ordering and CP violation sensitivity for our decoherence matrix models, assuming a standard oscillation fit hypothesis.
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IO fit yielded similar values for the SO parameters for
all δtrue, with the fit value δfit in the vicinity of δ ¼ −π=2.
This occurred for all the Γtrue that we analyzed. When we
studied the IO fit, we noticed that the probability in the
νμ → νe channel is lower, and more well separated, than
that corresponding to the NO data in the energy range
2–4 GeV. Being that, as long as Γtrue increases, the NO
transition probabilities do as well. In return, the resulting
IO fit transition probabilities separate more and more from
the corresponding NO assumptions from the data. This
separation leads to the observed increase in sensitivity.
The impact of Γ on the sensitivity is strongest as we
approach δtrue ¼ π=2.
To obtain DUNE’s sensitivity to CP violation, we adopt

a definition similar to the one presented in [70],

χ2CP ¼ min½χ2ðδ ¼ 0;Γ ¼ 0; δtrue;ΓtrueÞ;
χ2ðδ ¼ π;Γ ¼ 0; δtrue;ΓtrueÞ�; ð34Þ

and we marginalize over all unmentioned test parameters.
We checked that, after marginalization, the oscillation
parameters remain approximately the same, with the
exception of θ13 that settles at higher values to account
for the increased event rates in the appearance channels due
to decoherence. The IO alternative was never preferred
during the minimization procedure of χ2. This observation
is easily explained by Fig. 5 because DUNE can distinguish
between the hierarchies with a large significance.
The data generated using NO have an additional fake CP

violation contribution coming from the matter potential
present in the term proportional to Γθ13, which is mistaken
in an SO fit as a nonzero CP violation. For this reason, even
when δtrue ¼ 0; π, decoherence may cause us to reject the
null hypothesis (no CP violation). Due to this decoherence
induced CP violation, decoherence lets us reject the null
hypothesis at a higher confidence level throughout all values
of δ. The aforementioned case is useful since this illustrates
the consequences of disregarding decoherence in the theo-
retical hypothesis, despite its presence in nature (the data).

FIG. 6. Same as the top panels in Fig. 5, but the fit hypothesis assumes decoherence.

FIG. 7. Total (signalþ background) appearance event rates for our decoherence models, assuming δ ¼ −π=2. Neutrino (antineutrino)
channel is shown in the left (right) panel.
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An alternative case is to redefine Eqs. (33) and (34) so
that Γ becomes a free parameter (i.e., we assume
decoherence in both the generated data and the fit hypoth-
esis). When this happens, we find that sensitivity decreases
both in CP and mass ordering, and the results are shown in
Fig. 6. It is natural that χ2 decreases once we release the
constraint on Γ, as it expands the parameter space that
can be explored during minimization. In particular,
decoherence introduces additional CP violation effects
which are present even when we assume δ ¼ 0 in our
hypothesis, allowing for improved fits and lowers Δχ2.
Interestingly enough, decoherence has very little impact on
CP sensitivity when we choose model A. The analogous
plot for mass ordering sensitivity is not shown because
discrepancies are small and sensitivity remains well above
5σ in any case.

IV. SUMMARY AND CONCLUSIONS

We have tackled diverse aspects of the decoherence
phenomenon in the context of neutrino oscillations.
From the theoretical side, we derived a general expression
for invariant decoherence matrices that are diagonal (under
rotations from VMB to MMB). The advantage of this
type of matrix is its simple implementation into the
matter oscillation probabilities formula as clarified in
[67]. On the other hand, we have probed invariant and
noninvariant decoherence matrices under realistic circum-
stances within a DUNE simulated environment. We have
achieved a sensitivity for the decoherence parameter of
Oð10−24 GeVÞ at 3σ and for δ ¼ −π=2, in the best case
scenario (the invariant matrix model). A very interesting
result is the presence of the degeneracy between Γ and δ,
predicted at the theoretical level in [67]: depending on the
value of the decoherence parameter, it becomes difficult
to disentangle the scenarios where the data contain
decoherence or not. Additionally, we have observed that,
if decoherence plus standard oscillation is embodied within
the data, the pure standard oscillation fit tends to select
higher values of sin2 θ13 compared to the pure oscillation
case. Finally, we have also seen that the decoherence
phenomenon mildly affects the DUNE sensitivity on the
mass hierarchy, while the CP sensitivity is clearly
improved but with the disadvantage that even a true lack
of CP violation (δtrue ¼ 0; π) can be confused with CP
violation.
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APPENDIX A: ROTATION MATRICES

We use the following forms of the unitary operators Uij:

U23 ¼

0
B@

1 0 0

0 cos θ23 sin θ23
0 − sin θ23 cos θ23

1
CA

U13 ¼

0
B@

cos θ13 0 sin θ13
0 1 0

− sin θ13 0 cos θ13

1
CA

U12 ¼

0
B@

cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

1
CA: ðA1Þ

APPENDIX B: DEFINITION OF P, RðδÞ AND R̂ðϕÞ
We define the two-dimensional rotation matrix sðθÞ by

sðθÞ ¼
�

cos θ sin θ

− sin θ cos θ

�
: ðB1Þ

The elements of P are defined as follows:

Pijðδ;ϕ1;ϕ2Þ¼2Tr½U†
Tðδ;ϕ1;ϕ2ÞτjUTðδ;ϕ1;ϕ2Þτi�: ðB2Þ

Now replacing UTðδ;ϕ1;ϕ2Þ ¼ U†
δUTð0; 0; 0ÞU†

ϕðϕ1;ϕ2Þ
in the above equation, we obtain

Pðδ;ϕ1;ϕ2Þ ¼ Fðϕ1;ϕ2ÞPð0; 0; 0ÞRðδÞ; ðB3Þ

where F, R are written in block-diagonal form,

RðδÞ ¼

0
BBB@

I3x3
sðδÞ

sðδÞ
1

1
CCCA ðB4Þ

Fðϕ1;ϕ2Þ ¼

0
BBBBB@

sð−ϕ1Þ
1

sð−ϕ2Þ
sðϕ1 − ϕ2Þ

1

1
CCCCCA
:

ðB5Þ

APPENDIX C: DUNE EVENT RATES EXAMPLE

We include the event rates for one of our simulated
experiments, using the central values of the oscillation
parameters and assuming δ ¼ −π=2. These rates are to be
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compared directly with the oscillation probabilities in
Fig. 1. While background rates are not shown explicitly,
they are mostly insensitive to decoherence effects. The only
exception is the ν̄e channel, where variations in the

background become relevant since they are comparable
to signal rates. It is clear that DUNE is much more sensitive
to model B due to the large differences between SO rates
and decoherence rates.
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