
 

Sensitivity bounds on heavy neutrino mixing jUμNj2 and jUτNj2
from LHCb upgrade

Gorazd Cvetič1,† and C. S. Kim2,*
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Decays of heavy pseudoscalar mesons B, Bc, Bs, and Ds at the LHCb upgrade are considered, which
produce either two equal sign muons or taus. In addition, we consider the analogous decays with opposite
sign muons or taus. All these decays are considered to be mediated by a heavy on-shell neutrino N. Such
decays of Bmesons, if not detected, will give, in general, stringent upper bounds on the heavy-light mixing
parameter jUμN j2 as a function of the neutrino mass MN ∼ 1 GeV, principally due to the large expected
number of produced mesons B. While some of the decays of the other mentioned mesons are attractive due
to a weaker Cabibbo-Kobayashi-Maskawa suppression, the expected produced number of such mesons is
significantly smaller that of B’s; therefore, the sensitivity bounds from such decays are, in general,
comparable or less restrictive. When τ pairs are produced, only two types of such decays are significant:
B�, B�

c → τ�τ�π∓ (and τ�τ∓π�), giving us stringent upper bounds on jUτN j2; the other decays with a pair
of τ, such as B0 → Dð�Þ−τþτþπ− (and Dð�Þ−τþτ−πþ), are prohibited or very suppressed by kinematics.
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I. INTRODUCTION

Various theories which can explain the masses of the
three light neutrinos suggest the existence of heavy
neutrinos, often referred to as sterile neutrinos. The
neutrinos in such theories are of the Majorana type; i.e.,
they are their own antiparticles. As a consequence, they
can produce, apart from lepton number conserving (LNC)
processes, lepton number violating (LNV) processes
through on-shell mediation. Dirac neutrinos can participate
only in LNC processes. However, at present there are many
open questions in the neutrino sector, among them:
(a) What is the nature of the neutrinos, i.e., are they
Majorana or Dirac particles? (b) How many heavy neu-
trinos exist and what are the values of their masses?
(c) What are the values of their heavy-light mixing
parameters UlN (where l ¼ e, μ, τ)?
The Majorana nature of the neutrinos can be established

by detection of LNV processes, such as neutrinoless double
beta decay (0νββ) [1], by specific scattering processes
[2,3], by LNV rare decays of hadrons (usually mesons)

[4–12], τ’s [12–14], and heavy gauge bosons W [15]
and Z [16]. In most of these processes, the analogous
LNC channels also occur (cf. in particular [11]); the correct
identification of such processes may sometimes have more
severe background problems though.
In some of these processes, the neutrino mass can also

be determined or constrained. If a considered pseudoscalar
meson M decays into an invisible channel, M → invisible,
then it is difficult or impossible to extract or constrain the
massMN of the involved neutrino(s) N (via invisible width
measurement), principally because we have competitive
irreducible standard model (SM) background M → νν̄νν̄
[17].1 However, if a rare decay process ofM is mediated by
an on-shell neutrinoN (MN ∼ 1 GeV), and, simultaneously,
all or most of the final state particles are detectable, then the
mass MN can be either determined (M2

N ¼ P2
f) or at least

reasonably constrained. In this work we consider the rare
decaysM → Nl → llπ�wherel ¼ μ or τ; i.e., all the final
state particles are charged and, in principle, detectable.
Furthermore, the phenomenon of oscillations [18]

between the three light neutrinos has been observed
[19]. If heavy neutrinos have almost degenerate mass, they
can also oscillate [20]. A somewhat related phenomenon
is the resonant CP violation which can arise in scattering
processes [21], rare meson decays [8,22–24], and rare τ
decays [14]. There are several models with almost
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1Due to the helicity suppression, the SM background M → νν̄
is negligible [17] in comparison.
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degenerate heavy neutrinos, among them the low-scale
seesaw models [25] and the neutrino minimal standard
model (νMSM) [26,27].
Various models with a seesaw mechanism [28] and

related models explain very low masses of the light
neutrino sector and contain heavy neutrinos with masses
MN ≫ 1 TeV [29], MN ∼ 1 TeV [30], and MN ∼ 1 GeV
[3,26,31]. In the latter type of models, not only are the
masses relatively low, but the heavy-light mixing param-
eters jUlN j2 are often less suppressed than in the
earlier seesaw models [29]. Our analysis will be made
with a view to such scenarios, i.e., MN ∼ 1 GeV and
jUlN j2 ∼ 10−6 − 10−4 (for l ¼ μ, τ).
In this work we continue and extend the analysis of

Ref. [32] of the sensitivity bounds on the heavy-light mixing
parameter jUμN j2 in the LHCb upgrade, where the rare
lepton number violating (LNV) decays of B-mesons with
two equal sign muons (LNV) were considered. Here, we
recalculate these rare B-decays, with the updated input
parameters [33], and calculate also the analogous decays
with opposite sign muons (LNC) when the neutrino N is
Dirac. If the intermediate neutrino N is Dirac, only LNC
processes take place; on the other hand, if N is Majorana,
both LNC and LNV processes take place. In addition, we
consider in this work the rare LNV and LNC decays of the
pseudoscalar mesonsM ¼ Bc, Bs, andDs, with two muons;
and the rare decays of M ¼ B and Bc with two taus. We
consider that the decays are mediated by a heavy on-shell
Majorana or Dirac neutrino N with massMN ∼ 1 GeV. The
considered decays with muons involve the meson decay into
vector V or pseudoscalar meson S and an off-shell W�,
where the latter gives a muon and a (on-shell) neutrino N:
M → VðSÞμN. The neutrino N propagates from the primary
vertex and decays at the secondary vertex within the detector,
producing a muon and a pion: M → VðSÞμN → VðSÞμμπ.
The considered decays are: (a) for B mesons B →
D�ðDÞμμπ and B → μμπ; (b) for Bc mesons Bc →
J=ΨðηcÞμμπ and Bc → μμπ; (c) for Bs mesons
Bs → D�

sðDsÞμμπ; (d) and for Ds mesons Ds → ΦðηÞμμπ
and Ds → μμπ. When the two charged leptons are τ’s in
the decays of the mentioned types, the kinematics allow only
the consideration of two decays: B → ττπ and Bc → ττπ.

II. THE FORMALISM USED

The analysis in Ref. [32], which we continue using here,
was based on the formalism and expressions obtained in
Ref. [34]. As in those references, we take the simplest
representative scenario of heavy neutrinos, namely one heavy
Majorana or Dirac neutrinoN (with massMN ∼ 1–10 GeV),
which has suppressed (heavy-light) mixing parameters UlN
with the light flavor neutrinos νl (l ¼ e, μ, τ):

νl ¼ UlNN þ
X3
k¼1

Ulνkνk: ð1Þ

Here, νk (k ¼ 1, 2, 3) are the three light neutrino mass
eigenstates.
Here, we summarize the expressions obtained in

Ref. [34]. The decay widths for M → VðSÞl1N →
VðSÞl1l2π are

ΓðM → VðSÞl1N → VðSÞl1l2πÞ

¼ ΓðM → VðSÞl1NÞΓðN → l2πÞ
ΓN

: ð2Þ

Here, lj denotes charged leptons; later we will have
l1 ¼ l2 ¼ μ or l1 ¼ l2 ¼ τ. The first factor, ΓðM →
VðSÞl1NÞ, was calculated in Ref. [34] for the case of
vector (V) and scalar (S) meson, and we refer to that
reference for details. We note that the mass MN ∼ 1 GeV
plays an important role. The second factor, ΓðN → l2πÞ, is
well known, and is also given explicitly in Refs. [32,34].
The total decay width ΓN ≡ ΓðN → allÞ was given and
evaluated numerically as a function of MN in Ref. [23] for
the case of Majorana neutrinos, and in Ref. [8] for the cases
of Dirac and Majorana neutrinos.
As pointed out in [32], the branching ratio of the

process has to be multiplied by the probability PN of the
intermediate N neutrino to decay within the detector. This
factor has to be considered with care, because it depends on
the kinematic parameter β00N which is the velocity of N in the
lab frame (Σ00). This β00N depends in a nontrivial way on the
quantities q2, q̂0, and p̂1, where q is the four-momentum of
the virtual W� (→ l1N), q̂0 is its unitary direction vector in
theM-rest frame (Σ0), and p̂1 is the direction of the produced
l1 in the W�-rest frame (i.e., l1N-pair rest frame, Σ):

PN ¼
�
1 − exp

�
−

LΓNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE00

Nðq2; q̂0; p̂1Þ=MNÞ2 − 1
p

��
: ð3Þ

Here, E00
N is the energy of N neutrino in the laboratory frame

(Σ00), andL is the effective length of the detector.2 We refer to
[32] for details. The true (effective) branching ratio Breff of
the process is then evaluated by integrating the correspond-
ing differential decay rates multiplied by the decay proba-
bility PN and divided by ΓM:

BreffðM→VðSÞl1N→VðSÞl1l2πÞ

¼ 1

ΓM

Z
dq2

Z
dΩq̂0

×
Z

dΩp̂1

dΓðM→VðSÞl1NÞ
dq2dΩq̂0dΩp̂1

ΓðN→l2πÞ
ΓN

×

�
1−exp

�
−

LΓNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE00

Nðq2; q̂0;p̂1Þ=MNÞ2−1
p

��
: ð4Þ

2The effective length L, in this sense, is considered to be
independent of the position in which the vertex of production of
N is situated and independent of the direction in which the
produced N travels.
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The values of the total decay widths ΓM were taken from
[33]: ΓBþ ¼4.018×10−13GeV; ΓB0 ¼ 4.330 × 10−13 GeV;
ΓBc

¼1.298×10−12GeV; ΓBs
¼4.326×10−13GeV;

ΓDs
¼ 1.306 × 10−12 GeV.

The decay widths ΓN ≡ ΓðN → allÞ of N Majorana and
Dirac neutrinos are obtained using the expressions of
Ref. [23] (Appendix B and Fig. 2 there); cf. also [8]
(Appendix A.3 and Fig. 2 there). They have the form,

ΓN ¼ K̃
G2

FM
5
N

96π3
; ð5Þ

where the factor K̃ in Eq. (5) has all the dependence on the
heavy neutrino mixing factors,

K̃ ¼ N eNjUeNj2 þN μN jUμN j2 þN τN jUτN j2: ð6Þ

The (dimensionless) numbers N lN are functions of the
mass MN , N lNðMNÞ ∼ 1–10. They are determined by the
formulas given in Appendix B of Ref. [23] which are based
on the approach of Ref. [6]. The results for N lNðMNÞ are
presented, e.g., as a curve in Fig. 2 of Ref. [23].
When the produced meson is a vector (V), the differ-

ential decay width dΓðM → Vl1NÞ=ðdq2dΩq̂0dΩp̂1
Þ is

complicated [34], due to both the vector nature of
the produced meson V and the nonzero mass of N
(and of l1); but it does not depend on the electric charge
of l1. The available literature does not shed light
unequivocally on the latter point, for which we refer to
the Appendix.
If no mesons V or S are produced, the differential decay

width for M → l1N is simpler; it depends only on the
direction p̂0

N of the on-shell N in the M-rest frame, and,
sinceM is (pseudo)scalar, we have dΓðM→l1NÞ=dΩp̂0

N
¼

ΓðM→l1NÞ=ð4πÞ. Further, the decay probability PN
also depends only on p̂0

N . This then gives (for details,
cf. [32,34])

BreffðM� → l�
1 N → l�

1 l
�
2 π

∓Þ

¼ 1

MM

1

4π

Z
dΩp̂0

N
ΓðM� → l�

1 NÞΓðN → l�
2 π

∓Þ
ΓN

×

�
1 − exp

�
−

LΓNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE00

Nðp̂0
NÞ=MNÞ2 − 1

p
��

: ð7Þ

III. NUMERICAL RESULTS FOR THE
ACHIEVABLE UPPER BOUND LIMITS OF jUlNj2

(l= μ, τ) AT THE LHCB UPGRADE

We will consider the mentioned rare decays of
M ¼ B;Bs; Bc, and Ds at the LHCb upgrade. We take
into account that the produced B mesons have a specific
distribution of the momentum ðjp⃗BjÞlab ≡ jp⃗00

Bj in the

laboratory (Σ00) frame, as given in Fig. 1(a).3 In practice,
we separated this distribution into ten bins with equal
weight (i.e., equal number of events), cf. Fig. 1(b), and
calculated the results by averaging over these ten bins. We
used the same distribution also whenM ¼ Bs andM ¼ Bc.
For the decays with M ¼ Ds, on the other hand, we took
jp⃗00

Ds
j ¼ 50 GeV as a representative case, produced in

LHCb by decays of Bs (and B̄s) mesons.
Further arithmetic averaging is made in the B-decays

by averaging over the modes with B� on the one hand
and B0 and B̄0 on the other hand, because the total decay
widths are somewhat different in the two cases (ΓB ¼
4.018 × 10−13 GeV, 4.330 × 10−13 GeV, respectively).
The (partial) decay widths for the decays M → Vl1N with
lþ
1 and l−

1 are the same, as mentioned in the previous
section and explained in the Appendix.
The effective detector length L in LHCb could be

considered to be approximately the length of the Vertex
Locator (VELO), which is about 1 m [35]. However, the
length can be extended beyond the locator, to about 2.3 m
[36]; we will take L ¼ 2.3 m.
For the values of the masses and Cabibbo-Kobayashi-

Maskawa (CKM) suppression matrix elements we used the
central values from [33]. Similarly, we used the values of
the decay constants (for the annihilation-type decays) fB ¼
0.1871 GeV [33], fBc

¼ 0.322 GeV [37], and fDs
¼

0.248 GeV [37] (the average in Ref. [33] is practically
the same, fDs

¼ 0.249 GeV). As mentioned in the previous
section, the total decay widths ΓN of N Majorana or Dirac
neutrinos are obtained using the expressions of Ref. [23]
(Appendix B there), based on the approach of Ref. [6].
Further, in our analysis for the rare decays with two

muons in the final state we considered only the mixing
elements jUμN j2 as nonzero; for those with two taus in the
final state we considered only jUτN j2 as nonzero. If, in
addition, other mixing elements were nonzero, this would
increase the total decay width ΓN , cf. Eqs. (5)–(6), and
would, as a consequence, decrease the effective branching
ratio Breff of the considered rare decays and make the upper
bound on the mixing element less stringent (higher).
The form factors used for the decays B → Dl1N are

from [38,39] (F1) and [34] (F0); for the decays B→D�l1N

from [40] (V; A1; A2) and [32,34] (A0); for Bs → Dð�Þ
s l1N

from [41]; for Bc → J=ΨðηcÞl1N from [42]; for Ds →
ηl1N from [43], and for Ds → ϕl1N from [44].
The effective branching ratios depend on the number of

produced mesonsM whose rare decays we are considering.
At the LHCb upgrade, the projected numbers are: NB ¼
4.8 × 1012; NBs

¼5.76×1011; NBc
¼ 2.4 × 1010 [36]. The

mesons Ds are mainly produced by decays of Bs mesons,

3We thank Sheldon L. Stone (LHCb Collaboration) for
providing us with this distribution.
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with a decay branching ratio around 0.9; therefore, we
take NDs

¼ 0.9NBs
¼ 5.18 × 1011.

The sensitivity upper bounds on the heavy-light mixing
parameters jUμN j2 and jUτN j2 at the 95% confidence limit
are then obtained by requiring Nevents ¼ 3.09 [45]. For
example, for rare B decays we require Breff ¼ 3.09=
ð4.8 × 1012Þ, and obtain the corresponding upper bounds
on jUμN j2 from the absence of rare decays producing two
muons, and on jUτN j2 when the two leptons are taus.4

It turns out that when the two charged leptons are muons,
all mentioned decays of B, Bs, Bc, and even Ds are
kinematically allowed. The LNV versions of such decays are

B0 → Dð�Þ−μþN → Dð�Þ−μþμþπ−;

Bþ → Dð�Þ0μþN → Dð�Þ0μþμþπ−; ð8aÞ

B0
s → Dð�Þ−

s μþN → Dð�Þ−
s μþμþπ−; ð8bÞ

Bþ
c → J=ΨðηcÞμþN → J=ΨðηcÞμþμþπ−; ð8cÞ

Dþ
s → ϕðηÞμþN → ϕðηÞμþμþπ−; ð8dÞ

and their charge-conjugate versions. The decays of the above
mesons are possible also when no vector (or pseudoscalar)
mesons are produced, i.e., when the decays are of the
annihilation-type. This is the case for the decays of charged
M ¼ B, Bc, and Ds:

M� → μ�N → μ�μ�π∓; ðM� ¼ B�; B�
c ; D�

s Þ: ð9Þ

When the two produced charged leptons are τ’s, the decays
of the type (8) are kinematically not possible; the only
decays with τ’s that are kinematically possible are

B�; B�
c → τ�N → τ�τ�π∓: ð10Þ

The mentioned decays, Eqs. (8)–(10), are first considered
to be LNV; i.e., the produced lepton pair is of equal sign
(μ�μ� or τ�τ�). In such a case, the neutrino N is
considered to be Majorana. The analogous LNC decays
are the decays with opposite sign lepton pairs; i.e.,
μ�μ�π∓ gets replaced by μ�μ∓π�, and τ�τ�π∓ by
τ�τ∓π�. The decay rates for the analogous LNC decays
are equal to those of LNV decays [34] when N is the
Majorana neutrino; in such a case, such LNC decays give
identical sensitivity limits for the mixing parameters
(jUμN j2; jUτN j2) as the corresponding LNV decays. On
the other hand, if N is a Dirac neutrino, only LNC decays
are possible, and the total decay width ΓN of the Dirac
neutrino is smaller than that of the corresponding
Majorana neutrino (with the same mass and the same
mixing parameter values). This is so because Dirac
neutrinos have a significantly smaller number of decay
channels than the Majorana neutrinos, resulting in about
40 per cent smaller ΓN ; i.e., the coefficientsN lN in Eq. (6)
are about 40 per cent smaller than in the Majorana case
(cf. Fig. 2 in Ref. [8]). Smaller ΓN implies that the
(weakly) ΓN-dependent part of the integrand for the
effective branching ratios Breff in Eqs. (4) and (7),

1

ΓN
×

�
1 − exp

�
−

LΓNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE00

N=MNÞ2 − 1
p

��

¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE00

N=MNÞ2 − 1
p −

1

2

L2ΓN

½ðE00
N=MNÞ2 − 1� þ � � � ; ð11Þ

becomes larger, and thus Breff becomes larger. This
implies that in the case of Dirac N the sensitivity limits
(upper bounds) on the mixing parameters become more
restrictive (smaller). This effect is expected to be appreci-
able only when ΓN is large, i.e., when MN is large.
The resulting sensitivity limits (upper bounds) on the

heavy-light mixing parameter jUμN j2, as a function of mass

0 100

(b)(a)

200 300 400
1

10

100

1000

p
B

(GeV)
0

1

10

102

103

200 400
B0 momentum [GeV/c]

FIG. 1. (a) The lab momentum (jp⃗00
Bj) distribution of the produced B0 mesons in LHCb (the shaded figure); (b) partition of the left-hand

shaded curve in ten bins of equal weight. The apparent bin with the largest height are in fact two bins (with almost equal height).

4The 95% confidence level on the upper bound refers to zero
signal events and zero known background events. In the case of
LNC events, the assumption of zero known (SM) background
events is probably not realistic.
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MN , for the decay processes involving the muon pair are
presented in Figs. 2(a)–(d). For each decay channel, we
presented the limits from LNV decays (for N Majorana)
and the limits when N is a Dirac neutrino (LNC decays
with N Dirac); the latter limits are, in general, only slightly
better (lower) and are clearly visible only in the case of
BðcÞ → μμπ decays at large masses MN ≈ 4.5–6.0 GeV. In
these figures we also included the present experimental
upper bounds on this parameter from various experiments:
the beam dump experiments PS191 [46], NuTeV [47], NA3
[48], and BEBC [49]; Belle experiment [50] which looked
for the rare LNV decays B → XlN (and N → lπ); and
DELPHI experiment [51] which looked for rare ZνN
decays with subsequent N decays. The present experimen-
tal LHCb upper bounds [52,53], from Bmeson decays with
two equal sign muons, are less restrictive than the combi-
nation of Belle and DELPHI bounds.
We can see that, within the kinematically allowed ranges,

the present experimental sensitivity limits can be improved
the most with B → Dð�Þμμπ decays for 1.75 GeV < MN <
2.95 GeV, and by Bc→μμπ decays for 2.95 GeV < MN <

5.8 GeV. Decays Bs → Dð�Þ
s μμπ give somewhat less

improved bounds than B → Dð�Þμμπ, in the mentioned
mass interval [1.75, 2.95] GeV. On the other hand, the rare

decays ofDs, Fig. 2(d), give bounds in the region of smaller
MN < 1.75 GeV (due to the smaller mass of Ds) where the
present experimental bounds are more stringent (by NuTeV
and PS191 experiments); the only exception is the small
interval 1.75 GeV < MN < 1.85 GeV where the decay
Ds → μμπ gives improved upper bounds.
The results of Fig. 2(a), for the rare B-meson decays,

largely agree with the results obtained by us earlier in
Ref. [32], the changes appearing mainly due to the updated
values of the input parameters [33]. We recall that the form
factors V and Aj for these decays are taken from Ref. [40]
and F1 from [39], and there they were determined in such a
way that the product of them with the CKMmatrix element
jVcbj is independent of the value of jVcbj (this does not
apply to the form factor F0 determined in [32]). Further,
here we took into account that in the B → D�μμπ decay the
results are independent of the sign of charge of the μ pair;
while previously in [32] we assumed a (weak) dependence
on this sign. However, this difference accounts for less
than one per cent in the obtained upper bounds, cf. the
Appendix. Therefore, here we obtain for the sensitivity
limits on jUμN j2 from B → D�μμπ practically the same
values as in Ref. [32]. From B → Dμμπ we obtain here the
values lower by about 2–4 per cent than in Ref. [32], mostly

(a) (b)

(c) (d)

FIG. 2. Sensitivity limits for jUμN j2 from the LHCb upgrade from LNVand LNC decays of B, Bc, Bs, and Ds mesons with two equal
sign or opposite sign muons in the final state. The massMN of the intermediate neutrino N is kinematically restricted to be on-shell. See
the text for further details.
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due to the updated value of jVcbj in the form factor F0. And
from B → μμπ the values of sensitivity limits jUμN j2 are
higher by about 4 per cent than in Ref. [32], mostly due to
the updated value of jVubj and of the decay constant fB.
We point out that in Ref. [32] no rare decays of Bc, Bs,

andDs were considered. Here we can see that the decays of
these mesons, with two muons in the final state, can be
considered as complementary to the analogous B meson
decays.5

When two τ leptons are in the final state, the only
kinematically allowed decays are B�, B�

c → τ�N →
τ�τ�π∓. Figure 3 shows improved upper bounds on
jUτN j2 from the decays BðcÞ → ττπ. The improvement is
better for Bc decays, and it is in the larger kinematically
allowed interval 2.0 GeV < MN < 4.4 GeV. The sensitiv-
ity limits for the case of LNC decays with the N Dirac
neutrino are only slightly lower, and the difference is
practically invisible in the figure. The present experimental
bounds, in the presented mass range, are from the DELPHI
experiment [51]. The new limits are important also in view
of the fact that, at the moment, the available experimental
limits on jUτN j2 are only from one experiment (DELPHI).
We point out that in Ref. [32] no such decays were
considered.
Some of the considered rare decays of Bc and Bs appear

theoretically equally or more attractive than the correspond-
ing rare decays of B mesons. For example, the annihilation
type decays Bc → lN → llπ are much less CKM-
suppressed than the corresponding charged B-meson

decays. Nonetheless, the obtained sensitivity limits on
jUμN j2 are only a little better in the Bc case. This is so
because the expected number of the produced Bc mesons in
LHCb upgrade is significantly lower than the expected
number of the produced B mesons. Nonetheless, in the
decays B; Bc → τN → ττπ, the mesons Bc give signifi-
cantly better results; this is so because the pair ττ is much
heavier than μμ, and thus the fact that Bc has a higher mass
than B becomes important.
A similar argument applies to the decays of Ds: the

sensitivity limits on jUμN j2 from Ds → μμπ are less
restrictive due to the suppressed expected number of
produced Ds.
In summary, in this work we extended the analysis of

our previous work [32] where the rare decays of B mesons
were considered. In the present analysis, we considered the
rare decays of the mesons M ¼ B;Bc; Bs, and Ds in the
future LHCb upgrade, where in the first vertex a vector (V)
or pseudoscalar (S) meson is produced together with a
charged lepton l1 and an on-shell ∼1 GeV Majorana or
Dirac neutrino N: M → VðSÞW� → VðSÞl1N. The pro-
duced ∼1 GeV neutrino is assumed to travel and decay
within the detector, N → l2π. Further, also the annihila-
tion-type rare decays were considered, i.e., those where no
V (or S) mesons are produced, M� → W�� → l1N →
l1l2π. The two charged leptons were assumed to be equal
sign muons or taus: l1l2 ¼ μ�μ� or τ�τ�; i.e., the decays
were assumed to be distinctly LNV. In addition, we
considered also the case of Dirac neutrino N, where the
analogous decays were LNC; i.e., l1l2 ¼ μ�μ∓ or τ�τ∓.
It turned out that, in the case that the considered decays
are not detected, the upper bounds on the mixing param-
eters jUμN j2 and jUτN j2 of ∼1 GeV neutrino can be
significantly improved.
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APPENDIX: DIFFERENTIAL DECAY
WIDTH FOR M → Vl1N

In this Appendix we clarify some aspects of the decays
M → Vl1N, which appear ambiguous in parts of the
literature.
When the pseudoscalar M decays into a vector particle

V, charged lepton l1, and heavy (∼1 GeV) neutrino N, the
differential decay width is significantly more complicated
than when a (pseudo)scalar S is produced instead of V.
Further, it is more complicated than the differential decay

FIG. 3. Sensitivity limits for jUτN j2 at the LHCb upgrade from
B�
ðcÞ → τ�N → τ�τ�π∓ decays. The mass MN of the intermedi-

ate neutrino N is kinematically restricted to be on-shell.

5The LNV decays Bc → J=Ψμμπ, μμπ, and Bs → DsðKÞμμπ
for LHCb were first considered in Ref. [10], for the future LHC-
run3 with assumed integrated luminosity of up to 50 fb−1. For Bc
decays they obtained upper bounds jUμN j2 ∼ 10−5 − 10−4 (we
obtained ∼10−6 − 10−5); for Bs decays they obtained upper
bounds somewhat less restrictive than the combined Belle and
DELPHI bounds.
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width when the neutrino and the charged leptons are
(practically) massless. The decay M → Vl1N is presented
schematically in Fig. 4. The complexity is reflected in the
structure of the hadronic matrix elements; in the specific
case when M ¼ B (and V ¼ D�) we have:

Hμ
ðη¼−1Þ ≡ hD�−ðpDÞjb̄γμð1 − γ5ÞcjB0ðpBÞi

¼ hD̄�0ðpDÞjb̄γμð1 − γ5ÞcjBþðpBÞi; ðA1aÞ
Hμ

ðη¼þ1Þ ≡ hD�þðpDÞjc̄γμð1 − γ5ÞbjB̄0ðpBÞi
¼ hD�0ðpDÞjc̄γμð1 − γ5ÞbjB−ðpBÞi; ðA1bÞ

while in the cases of M ¼ Bs (V ¼ D�
s), M ¼ Bc

(V ¼ J=Ψ), and M ¼ Ds (V ¼ ϕ) the matrix elements
Hμ

η are completely analogous. These matrix elements are
expressed with form factors V and Aj (j ¼ 0, 1, 2) in the
following way:

Hμ
η ¼ −i2η

εμναβ

ðMM þMVÞ
ϵ�νðpDÞαðpBÞβVðq2Þ

−
�
ðMM þMVÞϵ�μA1ðq2Þ

−
ϵ� · q

ðMM þMVÞ
ðpB þ pDÞμA2ðq2Þ

�

þ 2MV
ϵ� · q
q2

qμðA3ðq2Þ − A0ðq2ÞÞ; ðA2Þ

and A3ðq2Þ denotes

A3ðq2Þ ¼
1

2MV
½ðMM þMVÞA1ðq2Þ − ðMM −MVÞA2ðq2Þ�:

ðA3Þ
The first term in Eq. (A2) has a factor η ¼ �1, which is
obtained by the application of the charge conjugation
operation to the hadronic matrix elements; we have
η ¼ þ1 when l−

1 is produced, and η ¼ −1 when lþ
1 is

produced. More explicitly, the (reduced) decay amplitude
for the process B → D�l1N is

T ðη¼−1Þ

¼ U�
l1N

V�
cb
GFffiffiffi
2

p ½ūðNÞðpNÞγμð1 − γ5Þvðl1Þðp1Þ�Hμ
ðη¼−1Þ;

ðA4aÞ

T ðη¼þ1Þ

¼ Ul1NVcb
GFffiffiffi
2

p ½ūðl1Þðp1Þγμð1 − γ5ÞvðNÞðpNÞ�Hμ
ðη¼þ1Þ:

ðA4bÞ

When making the absolute square and summing over the
final leptonic helicities leads to

jT j2 ¼ jUl1N j2jVcbj2
G2

F

2
LμνHμH�

ν; ðA5Þ

where Lμν is the lepton tensor

Lμν ¼ 2tr½=pNγ
μ=p1γ

νð1þ ηγ5Þ�
¼ 8½pμ

Np
ν
1 þ pν

Np
μ
1 − gμνpN · p1 þ iηεμνδηðpNÞδðp1Þη�:

ðA6Þ

We use for γ5 and εμνδη the conventions of Ref. [54]. It turns
out that the η-dependence of the leptonic factor Lμν and of
the hadronic factor HμH�

ν cancel in the product (A5). If we
define θ1 as6 the angle between p⃗1 and ẑ ¼ q̂0, this then
leads, after some algebra and summation over the polariza-
tion vectors of D�, to the following differential decay rate:

dΓðM → Vl1NÞ
dq2dΩq̂0dΩp̂1

¼ 1

84π5
jUl1N j2jVqQj2G2

F

M2
M

λ̄1=22jq⃗0jq2
��

2

�
1 −

ðM2
N þM2

1Þ
q2

�
− λ̄sin2θ1

�
ððH̄þ1Þ2 þ ðH̄−1Þ2Þ

− 2λ̄1=2 cos θ1ððH̄þ1Þ2 − ðH̄−1Þ2Þ þ 2

��
1 −

ðM2
N þM2

1Þ
q2

�
− λ̄cos2θ1

�
ðH̄3Þ2

þ 4

�
M2

N −M2
1

q2

�
λ̄1=2 cos θ1H̄0H̄3 þ 2

�
−
�
M2

N −M2
1

q2

�
2

þ ðM2
N þM2

1Þ
q2

�
ðH̄0Þ2

�
: ðA7Þ

time

*W

N

B
u

q
)(

u

c

1
pB

p1

pN

D0*pD=pB–q

b

)(

FIG. 4. Schematical representation of the decay B−→D�0l−
1 N̄.

Other decays of the type M → Vl1N are completely analogous:
B̄0 → D�þl−

1 N̄; B̄0
s → D�þ

s l−
1 N̄; B−

c → J=Ψl−
1 N̄; D−

s → ϕl−
1 N̄.

6We recall: p⃗1 is the 3-momentum in the W� ¼ l1N rest frame Σ, and q⃗0 is the 3-momentum of W� in the B rest system Σ0.
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Here,M1 is the mass of l1, VqQ is the relevant CKMmatrix
element (VqQ ¼ Vcb for M ¼ B;Bs; Bc; VqQ ¼ Vcs for
M ¼ Ds), and the following notations were used:

jq⃗0j ¼ 1

2
MMλ

1=2

�
1;

M2
V

M2
M
;
q2

M2
M

�
; ðA8aÞ

λ̄≡ λ

�
1;
M2

1

q2
;
M2

N

q2

�
; ðA8bÞ

and7 H̄�1, H̄0 and H̄3 denote the following expressions
containing the mentioned form factors V and Aj (j ¼ 0,
1, 2, 3):

H̄�1 ¼ ðMM þMVÞA1ðq2Þ ∓ Vðq2Þ jq⃗0j2MM

ðMM þMVÞ
;

ðA9aÞ

H̄3 ¼ M2
M

2MV

ffiffiffiffiffi
q2

p
�
ðMM þMVÞA1ðq2Þ

�
1 −

ðq2 þM2
VÞ

M2
M

�

− 4A2ðq2Þ
jq⃗0j2

ðMM þMVÞ
�
; ðA9bÞ

H̄0 ¼ MMjq⃗0j
MV

ffiffiffiffiffi
q2

p ½ðMM þMVÞA1ðq2Þ − ðMM −MVÞA2ðq2Þ

þ 2MVðA0ðq2Þ − A3ðq2ÞÞ�: ðA9cÞ

In Appendix C of Ref. [34] we already obtained the
differential decay rate (A7) [Eq. (C19) there]; however,
apart from some not relevant typos there, in the para-
metrization (A2) of the hadronic matrix elements we used
the opposite sign in the first term there (proportional to V),

which is inconvenient because it then corresponds to a
negative form factor Vðq2Þ. As a consequence, the results
of Appendix C of Ref. [34] should be reinterpreted with the
substitution V ↦ −V in the formulas there. Therefore, the
term proportional to V in the differential decay rate (A7)
here [i.e., the term with ðH̄þ1Þ2 − ðH̄−1Þ2] has now the sign
opposite to that in Ref. [34]. Further, in Ref. [32] we
multiplied this term by η (¼ �1), the structure suggested in
the literature (cf. e.g., [55,56]) which is obtained by
keeping in the squared amplitude the η-dependence of
the leptonic part Lμν and regarding the hadronic part HμH�

ν

as η-independent. We recall the η-dependence of the
hadronic elements, Eq. (A2), is obtained by application
of the charge conjugation transformation to the hadronic
matrix elements. Furthermore, the measurements of the
differential decay rates Bþ → D̄�0lþ

1 νl1 [57] and B̄0 →
D�þl−

1 ν̄l1 [58] (for which MN ≈ 0 ≈M1) show that the
differential rate is an increasing function of cos θ1, i.e., that
the sign in front of the term ∼ cos θ1 in Eq. (A7) is negative

8

in both types of decays, i.e., independent of η.
The use of the expression (A7) in the integration (4) is, in

principle, sensitive to the discussed term ∼ cos θ1ððH̄þ1Þ2−
ðH̄−1Þ2Þ, because of θ1-dependence of the decay proba-
bility PN there in the integrand. However, this term appears
to affect the obtained upper bounds for jUlN j2 here
insignificantly, by less than one per cent.
Furthermore, if we directly integrate the differential

decay rate (A7) (as was the case in Ref. [34], considering
PN a constant), the discussed term ∼ cos θ1 gives exactly
zero. Namely, in such a case, the integration dΩp̂1

¼
2πd cos θl can be performed explicitly, and the subsequent
over dΩq̂0 gives the factor 4π, leading to the expression
Eq. (C20b) of Ref. [34]. The explicit expression for the
total decay width ΓðB → D�l1NÞ is then

ΓðM → Vl1NÞ ¼ jUl1N j2
64π3

G2
FjVqQj2
M2

M

Z ðMM−MVÞ2

ðMNþM1Þ2
dq2λ̄1=2jq⃗jq2

��
1 −

ðM2
N þM2

1Þ
q2

−
1

3
λ̄

��
2ðMM þMDÞ2A1ðq2Þ2

þ 8M2
Mjq⃗j2

ðMM þMVÞ2
Vðq2Þ2 þ M4

M

4M2
Vq

2

�
ðMM þMVÞ

�
1 −

ðq2 þM2
VÞ

M2
M

�
A1ðq2Þ −

4jq⃗j2
ðMM þMVÞ

A2ðq2Þ
�

2
�

þ
�
−
�
M2

N −M2
1

q2

�
2

þ ðM2
N þM2

1Þ
q2

�
4M2

Mjq⃗j2
q2

A0ðq2Þ2
�
: ðA10Þ

The explicit expression for this total decay width in Ref. [34] [Eq. (19) there] was written for the case of an approximation of
the form factor A0 as a combination of A1 and A2 [Eq. (17) there], but is written here, for completeness, in the form
independent of this approximation.

8We recall that ðH̄þ1Þ2 − ðH̄−1Þ2 ∝ −A1V according to Eq. (A9a).

7The use of the standard notation for λ is made:

λ1=2ðx; y; zÞ ¼ ½x2 þ y2 þ z2 − 2xy − 2yz − 2zx�1=2:
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