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Higgs doublets may come in three generations. The scalar sector of the resulting three-Higgs-doublet
model (3HDM) may be constrained by global symmetry groups G leading to characteristic phenom-
enology. There exists the full list of symmetry groups G realizable in the 3HDM scalar sector and the
expressions for G-symmetric scalar potentials written in special bases where the generators of G take
simple form. However recognizing the presence of a symmetry in a generic basis remains a major technical
challenge, which impedes efficient exploration of the 3HDM parameter space. In this paper, we solve this
problem using the recently proposed approach, in which basis-independent conditions are formulated as
relations among basis-covariant objects. We develop the formalism and derive basis-independent necessary
and sufficient conditions for the 3HDM scalar sector to be invariant under each of the realizable symmetry
group. We also comment on phenomenological consequences of these results.
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I. INTRODUCTION

A. Historical context

The scalar potential of the Standard Model (SM)
minimally includes a single doublet of SUð2ÞL which
reduces the electroweak symmetry to electromagnetism
via the Brout-Englert-Higgs mechanism, see the recent
review [1] and references therein. The associated single
physical Higgs boson has been observed [2,3] and is now
being extensively investigated at the LHC. However
whether the Higgs sector is indeed as minimal as
postulated by the SM or if the observed 125 GeV
Higgs is just the first state of a rich scalar sector is
presently unknown. This question can only be answered
by experiment. In anticipation of possible future hints or
discoveries, theorists investigate other, nonminimal Higgs
sectors and look for novel ways to experimentally probe
them, see, e.g., [4].
A simple and well motivated generalization of the SM is

extending the scalar sector to include further SUð2ÞL
doublets. This can be thought of as bringing to the scalar
sector the concept of generations present in the SM fermion
sector. Historically, the main motivations for going beyond
the minimal scalar sector of the SM were to gain insight

into the origin of CP violation (CPV) and into the general
flavor puzzle.
In 1973, T. D. Lee suggested that CP can be broken

spontaneously in a model with two Higgs doublets
(2HDM) [5,6]: one starts with a Lagrangian which is
explicitly CP-invariant but observes that the vacuum
expectation values (vevs) emerging after the scalar potential
minimization break the symmetry. However, one typically
obtains in this case dangerously large tree-level flavor
changing neutral currents (FCNCs). Although they can be
eliminated by imposing natural flavor conservation (NFC)
[7,8], this extra requirement precludes any CP violation,
explicit or spontaneous. This clash was removed by S.
Weinberg in 1976 in a model with three Higgs doublets
(3HDM) [9] with explicit CPVand later by G. Branco in the
spontaneously CP-violating model [10,11]. See also, e.g.,
[12,13] for more possibilities to control FCNCs in N-Higgs
doublet models (NHDMs).
The late 1970s also witnessed a surge of activity on

linking the fundamental fermion masses with the entries of
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix.
3HDMs equipped with discrete symmetry groups offered
many intriguing opportunities. In 3HDMs, the number of
Higgs doublets matches the number of fermion generations,
which is viewed as an appealing feature of the models.
Various examples of the 3HDM were constructed based on
symmetry groups such as S3 [14–17], S4 [18–20], and
Δð54Þ [21]. More details of NHDMs including further
historical context can be found in [4].
During the 1990s and 2000s, exploration of multi-Higgs-

doublet model was dominated by 2HDMs, boosted by two
Higgs doublets being required in minimal supersymmetric
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extensions [22]. In the past decade, 3HDMs gradually
regained interest since in many aspects they are capable of
delivering more than 2HDMs. The attractive phenomeno-
logical features of 3HDMs include richer scalar spectrum,
CPV simultaneously with dark matter candidates [23],
geometrical CPV [24,25], a novel type of CP symmetry,
which is of order 4 rather than of order 2 [26–28] and which
is physically distinct from the usual CP [29], and of course
a variety of discrete symmetry groups.
Given that the 3HDM scalar and Yukawa sectors can be

equipped with global symmetries,1 which have a profound
effect on phenomenology, a classification program was
undertaken a decade ago to list all symmetry-related
situations possible in 3HDMs. First, the list of all
Abelian symmetries realizable in the 3HDM without
leading to accidental symmetries was obtained in [30,31]
and later extended to Yukawa sectors in [32–34]. Next, the
full list of all discrete non-Abelian symmetry groups
realizable in the 3HDM scalar sector was derived in
[35,36]. Continuous non-Abelian groups were not listed
but it is straightforward to include them. In the present
work, we complete this classification by treating all
symmetry groups realizable in the scalar sector of the
3HDM, both discrete and continuous, including all the
cases of CP-conserving models.
Finally, a G-symmetric potential can have minima which

either conserve or (partially) break the symmetry group.
The full list of all symmetry breaking patterns for each
group G was presented in [37]. One particularly important
conclusion was that, for sufficiently large discrete group G,
there remains some residual symmetry in any minimum. In
the light of the theorem formulated initially in [38] and
refined in [39], this incomplete breaking leads to unrealistic
fermion sectors.

B. The challenge of basis independent recognition:
The example of CP symmetry

Models which involve several fields with equal quantum
numbers possess notorious large basis-change freedom,
which can seriously impede their efficient exploration. Two
models may look completely different and in fact corre-
spond to the same physics, merely written in different
bases. A model can also contain a symmetry, but if its
Lagrangian is written in a generic basis, the presence
of this symmetry may be obscured. In order to detect
the presence of symmetries, one must develop and apply
symmetry recognition checks which do not rely on the
choice of basis.
The traditional basis-invariant approach to NHDMs

with symmetries is best illustrated by the problem of
finding necessary and sufficient conditions of explicit
CP-conservation in the scalar sector. In order to understand

the properties of the potential under the action of a general
CP transformation [40–42], one constructs CP-odd invar-
iants (CPI), first identified in [43] and further developed in
[44–49]. One writes the coupling coefficients of the scalar
potential as tensors under the basis change group, then fully
contracts these tensors to produce various basis invariant
quantities, and selects those invariants which flip sign
under the action of a general CP transformation. Although
the explicit expression of the general CP transformation is
basis-dependent, its action on basis invariants is the same in
all bases, and therefore one gets an unambiguous identi-
fication of CPIs.
Although there are infinitely many CPIs, there exists a

finite number of “generating” CPIs. If all of these gen-
erating CPIs are zero, then all other CPIs are also zero, and
the model is explicitly CP conserving. One just needs to
identify these generating invariants, and this is where the
problem becomes difficult.
In the case of the 2HDM, the four generating CPIs were

established in [46–48] with the aid of computer algebra.
They were almost immediately derived in a much more
transparent way within the bilinear formalism, which
appeared first in [50] and which was developed further
and applied to CP-conservation in [51–55]. Very recently,
the four CPIs of 2HDM were rederived in an alternative
approach based on fields rather than bilinears [56].
Extension of these methods to the 3HDM turned out very

challenging. Although the CPIs can be easily constructed
[49], it is unclear how to find the set of generating CPIs.
It was done, for example, in simpler cases of 3HDMs
with non-Abelian symmetries with triplets [57,58], but it
remains unsolved in the general 3HDM. Whether the
methods of [56] can be generalized to the 3HDM and
solve this problem remains an open question and requires
additional work.
Meanwhile, an alternative approach made its debut in

2006 [59] and was recently exploited fully in [60,61].
The idea is that it is not obligatory to use basis invariants
in order to establish basis-independent conditions. One
can also formulate these conditions in the form of basis-
independent relations among basis-covariant objects [61].
Using this approach, the basis-independent necessary and
sufficient conditions were formulated for the usual CP
symmetry [59] and for the CP symmetry of order 4
(CP4) [60], as well as for the simultaneous presence of
the two forms of CP symmetry. With these results, the
issue of explicit CP conservation in 3HDMs is now
settled.

C. Toward basis independent recognition of other
symmetries in 3HDM

The “success story” above supports the idea of using
basis-covariant objects of the bilinear formalism to detect
all other symmetries of 3HDMs. This is what we accom-
plish in the present work for all the realizable symmetry

1We stress that we only consider symmetry transformations
which leave the kinetic term invariant.

I. DE MEDEIROS VARZIELAS and I. P. IVANOV PHYS. REV. D 100, 015008 (2019)

015008-2



groups, Abelian and non-Abelian. The essence of our
procedure is the following. We select a symmetry group,
write the general Higgs potential invariant under it in a
convenient basis, derive the bilinear-space objects in
that basis, identify their structural properties, and then
establish basis-invariant criteria which implement these
features. The end result is a set of checks which can be
performed in any basis, such that the model possesses a
given symmetry group if and only if the potential passes
these checks.
The layout of the paper is as follows. In Sec. II we

outline the bilinear space technique, describe the products
of the adjoint space vectors based on the SUð3Þ invariant
tensors fijk and dijk, and then show the idea of dissecting
the adjoint space with the aid of these vectors. These
tools will play the crucial role in detecting symmetries in
a basis-invariant way. Then, in following three sections,
we apply these methods to all symmetry groups available
in the 3HDM scalar sector, starting with the Abelian
ones, then continuing to non-Abelian ones. We then
conclude with an outlook of how to use the results of this
paper in phenomenological scans of the 3HDM parameter
space. Additional technical details and derivations are
contained in Appendixes. In particular, in Appendix C we
give the complete list of the conditions for all the
symmetry groups realizable in the scalar sector of
the 3HDM.

II. BILINEAR SPACE FORMALISM

A. Orbit space

We begin with a brief review of the bilinear formalism
with specific application to 3HDMs [62,63]. We work with
N ¼ 3 Higgs doublets ϕa, a ¼ 1, 2, 3, all having the same
electroweak quantum numbers. The most general renorma-
lizable 3HDM potential can be compactly written as

V ¼ Yabðϕ†
aϕbÞ þ Zabcdðϕ†

aϕbÞðϕ†
cϕdÞ: ð1Þ

We construct the following 1þ 8 gauge-invariant bilinear
combinations ðr0; riÞ:

r0 ¼
1ffiffiffi
3

p ϕ†
aϕa; ri ¼ ϕ†

aðtiÞabϕb; i ¼ 1;…; 8: ð2Þ

Here, ti ¼ λi=2 are generators of the SUð3Þ algebra
satisfying

½ti; tj� ¼ ifijktk; and fti; tjg ¼ 1

3
δij13 þ dijktk; ð3Þ

with the SUð3Þ structure constants fijk and the fully
symmetric SUð3Þ invariant tensor dijk. With the usual
choice of basis for the Gell-Mann matrices λi, these have
the nonzero components

f123 ¼ 1; f147 ¼ −f156 ¼ f246 ¼ f257 ¼ f345 ¼ −f367 ¼
1

2
; f458 ¼ f678 ¼

ffiffiffi
3

p

2
; ð4Þ

as well as

d146 ¼ d157 ¼ −d247 ¼ d256 ¼
1

2
; d344 ¼ d355 ¼ −d366 ¼ −d377 ¼

1

2
;

d118 ¼ d228 ¼ d338 ¼ −d888 ¼
1ffiffiffi
3

p ; d448 ¼ d558 ¼ d668 ¼ d778 ¼ −
1

2
ffiffiffi
3

p : ð5Þ

Group-theoretically, r0 is an SUð3Þ singlet and ri realizes the adjoint representation of SUð3Þ. The coefficient in the
definition of r0 is not fixed by this construction. We use here the definition borrowed from [62] but alternative normalization
factors are possible [63]; the exact choice is not essential here. In the Gell-Mann basis, the bilinears ri have the following
form:

r1 þ ir2 ¼ ϕ†
1ϕ2; r4 þ ir5 ¼ ϕ†

1ϕ3; r6 þ ir7 ¼ ϕ†
2ϕ3;

r3 ¼
1

2
ðϕ†

1ϕ1 − ϕ†
2ϕ2Þ; r8 ¼

1

2
ffiffiffi
3

p ðϕ†
1ϕ1 þ ϕ†

2ϕ2 − 2ϕ†
3ϕ3Þ: ð6Þ

The real vectors r obtained in this way do not fill the entire real eight-dimensional space R8 (the adjoint space, whose
vectors will be denoted as x), but a 7D manifold in it, which is called the orbit space. The points of this space are in one-to-
one correspondence with gauge orbits within the Higgs fields space ϕa. Algebraically, the orbit space is defined by the
following (in)equalities [62]:

r0 ≥ 0; r20 − r2i ≥ 0; dijkrirjrk þ
1

2
ffiffiffi
3

p r0ðr20 − 3r2i Þ ¼ 0: ð7Þ
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A basis change in the space of Higgs doublets ϕa → Uabϕb
with U ∈ SUð3Þ leaves r0 unchanged and induces an
SOð8Þ rotation of the vector ri. However, not all SOð8Þ
rotations can be obtained in this way; they must conserve,
in addition, dijkrirjrk.

B. Constructions in the adjoint space

The main advantage of changing to the bilinear space is
that the potential V becomes a quadratic rather than quartic
function of variables:

V ¼ M0r0 þMiri þ Λ0r20 þ Lir0ri þ Λijrirj: ð8Þ

This generic expression holds for any NHDM. M0, Λ0,
the entries of the real vectors M, L lying in the adjoint
space RN2−1, and the ðN2 − 1Þ × ðN2 − 1Þ entries of the
real symmetric matrix Λ, are all expressed in terms of the
components of the tensors Yab and Zabcd in (1).
In 2HDMs, any SOð3Þ rotation in the adjoint space can

be induced by a basis change of the two Higgs doublets.
Therefore, the matrix Λ can always be diagonalized and
its eigenvectors can always be aligned with the axes x1,
x2, and x3. These eigenvectors as well as the vectors M,
L are covariant objects and transform in the same way
under basis changes. Using SOð3Þ invariant tensors δij
and ϵijk, one can contract these vectors and obtain basis
invariants.
In 3HDMs, the potential (8) contains two 8D vectors M

and L and the 8 × 8 real symmetric matrix Λ. The lack of
the full SOð8Þ rotational freedom implies that it is not
guaranteed that Λ can be diagonalized by a basis change.
Nevertheless, Λ can always be expanded over its eigen-
system, and eigenvalues and eigenvectors can be found, at
least numerically.
We can now formulate the main idea which was recently

proposed in [61] and which we fully develop in the
present work.

The basis-invariant information encoded in the eigen-
system of Λ and in the vectors M and L completely
determines all physically relevant structural properties
of the scalar sector of a 3HDM. Although all the
vectors in the adjoint space are not invariant under
basis changes, their relative orientation as well as their
orientation with respect to the orbit space (7) is basis
invariant. The challenge is to extract this basis-
invariant information and to link it to the symmetry
groups of 3HDMs.

The main tool which will help us overcome this challenge is
to make full use of the two additional SUð3Þ invariant
tensors fijk and dijk defined in (3). Given any two vectors a
and b in the adjoint space, one can use these tensors to
define their f- and d-products as well as a nonlinear action
on a vector:

FðabÞ
i ≡ fijkajbk; DðabÞ

i ≡ ffiffiffi
3

p
dijkajbk;

DðaaÞ
i ≡ ffiffiffi

3
p

dijkajak: ð9Þ

These products respect group covariance: vectors F and D
transform as adjoint SUð3Þ representations and, if needed,
can be used in additional products.2

These products were first used in [59] as building blocks
of the basis-invariant algorithm to detect the usual CP
symmetry in 3HDMs. For more than a decade, there were
no follow-up studies. In fact, it was not broadly acknowl-
edged by the community that these basis-invariant con-
ditions for explicit CP conservation had been established in
3HDMs. Very recently, this approach was revived and
further developed in [60] where the basis-invariant con-
ditions for CP4 were established. These two papers provide
the complete answer to the question of the basis-invariant
recognition of a CP symmetry in 3HDMs and the same
methodology enables the detection of other symmetries
possible in 3HDMs. This is what we are going to achieve in
the present paper.

C. Properties of the f and d-products

The vectors F and D defined in (9) obey certain
remarkable properties, which follow from various relations
among SUð3Þ-invariant tensors, see, e.g., [64]. First, using
the Jacobi identity dijkfklm þ djlkfkim þ dlikfkjm ¼ 0,
one observes that vectors FðabÞ and DðabÞ are always
orthogonal:

DðabÞ
k FðabÞ

k ¼
ffiffiffi
3

p
aiai0bjbj0dijkfki0j0

¼
ffiffiffi
3

p
aiai0bjbj0 ð−dji0kfkij0 − di0ikfkjj0 Þ

¼ −DðabÞ
k FðabÞ

k ¼ 0: ð10Þ

Any of these two vectors can be zero, but not simulta-
neously, because their norms satisfy

jDðabÞj2 þ jFðabÞj2 ¼ a⃗2b⃗2: ð11Þ

For contraction of two d’s, one has in SUð3Þ the following
relation:

dijkdklm þ djlkdkim þ dlikdkjm

¼ 1

3
ðδijδlm þ δilδjm þ δimδjlÞ: ð12Þ

Using it, one can derive

2Group-theoretically, vectors F and D represent the antisym-
metric and symmetric octets of the direct product 8 ⊗ 8 of
SUð3Þ. Using appropriate projectors, one can also extract higher-
dimensional representations out of this product. However since
they reside in a different space, we do not involve them in our
analysis.
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DðaaÞDðabÞ ¼ a⃗2ða⃗ b⃗Þ; jDðaaÞj2 ¼ ða⃗2Þ2;
DðaaÞDðbbÞ þ 2jDðabÞj2 ¼ a⃗2b⃗2 þ 2ða⃗ b⃗Þ2: ð13Þ

This means that the nonlinear action of d defined via
a ↦ DðaaÞ preserves the norm of unit vectors. If a and b
are orthonormal, then DðaaÞ and DðabÞ are orthogonal and
the absolute value of DðabÞ can be computed from the last
relation: jDðabÞj ¼ sinðφAB=2Þ, where φAB is the angle
between vectors DðaaÞ and DðbbÞ. In particular, if it
happens that DðaaÞ ¼ DðbbÞ, then DðabÞ ¼ 0, while if
DðaaÞ ¼ −DðbbÞ, then jDðabÞj ¼ 1.

D. Detecting subspaces

The expressions for the tensors fijk and dijk make it clear
that not all directions in the adjoint spaceR8 are equivalent.
There are basis-invariant features which distinguish various
subspaces of R8 with equal dimensions. We will see below
that 3HDMs equipped with various symmetry groups differ
by the subspaces in which the vectors M and L and the
eigenvectors of Λ reside. Therefore, the first key step
toward our goal is to develop a set of basis-invariant checks
which detect that (eigen)vectors belong to a subspace of R8

with certain properties.
The checks which are described in this section and

elaborated in full detail in the Appendixes A and B will
be used to detect the direction x8, the subspace ðx3; x8Þ,
various patterns of thematrixΛ in its orthogonal complement

V6 ¼ ðx1; x2; x4; x5; x6; x7Þ; ð14Þ

among others. We stress that these checks detect certain
basis-invariant conditions. It is never needed to actually
switch to a preferred basis to perform a check. For example,
“detecting an eigenvector in direction x8” means detecting
basis-invariant conditions which indicate that there exists a
basis choice where that vector is aligned with x8.
To illustrate the detection technique, let us consider a

unit vector a in the adjoint space and compute DðaaÞ. Then,
one observes that DðaaÞ ¼ −a if and only if there exists a
basis in which a is aligned along x8.
The proof follows by direct calculation. The vectors a of

the adjoint space R8 are in one-to-one correspondence with
traceless Hermitian 3 × 3matrices A ¼ 2aiti, ai ¼ TrðAtiÞ.
The Hermitian matrix A can always be diagonalized by a
basis change. Back in the adjoint space, this means that any
vector a can be brought to the ðx3; x8Þ subspace. Using the
explicit expressions for the components of dijk given in (5),
which are valid in any basis, one finds that DðaaÞ also stays
in the same ðx3; x8Þ subspace:

DðaaÞ
3 ¼ 2a3a8; DðaaÞ

8 ¼ a23 − a28;

jDðaaÞj2 ¼ ða23 þ a28Þ2 ¼ 1: ð15Þ

In polar coordinates on the ðx3; x8Þ plane, this operation
acts on the angular variable of a as α ↦ π=2 − 2α. Hence,
the three directions α ¼ π=2, π=6, and 5π=6 are stable
under this action (cf. [62] for more details on this
construction). The first direction corresponds to a being
aligned with x8, while the other two directions can be
brought to it by a basis change (a cyclic permutation of the
three doublets). Finally, if one insists on the sign in the
relation DðaaÞ ¼ −a, then the unit vector a must be aligned
with the positive x8 direction.
The observation just made is the basis of what we call

Check-(8): if there exists an eigenvector of Λ, denoted eð8Þ,
which satisfies

Dð88Þ ¼ −eð8Þ; ð16Þ

then, in the appropriate basis, eð8Þ is along axis x8, and the
matrix Λ takes the block-diagonal form with a 7 × 7 block
and a stand-alone entry Λ88. Such an eigenvector does not
have to be unique.
Next, let us find when two adjoint space vectors a and b

can be simultaneously brought to the ðx3; x8Þ subspace.
This is possible if and only if the corresponding traceless
Hermitian matrices A and B commute. Back in the adjoint
space, this is equivalent to

FðabÞ ¼ 0: ð17Þ

Thus, we obtain Check-(38): if Λ has two orthogonal
eigenvectors a and b which satisfy (17), then there exists a
basis change which brings both of them to the ðx3; x8Þ
plane. The matrix Λ takes the block-diagonal form with a
2 × 2 block in this subspace and the 6 × 6 block in its
orthogonal complement V6. Again, it is not guaranteed that
such a pair of eigenvectors is unique.
One can give an alternative formulation for Check-(38)

using d-products. Indeed, due to Eq. (11), f-orthogonality
implies that jDðabÞj ¼ 1, and then, using Eq. (13), one
obtains that DðaaÞDðbbÞ ¼ −1. This is only possible if
DðaaÞ ¼ −DðbbÞ. One can also show the converse: starting
fromDðaaÞ ¼ −DðbbÞ for two orthogonal eigenvectors of Λ,
one recovers Eq. (17).
Notice that passing Check-(38) does not guarantee that

the two eigenvectors are aligned with the axes x3 and x8.
For that, one needs to require an extra condition, and the
criterion for this to happen can be summarized as

DðaaÞ ¼ −DðbbÞ ¼ −a: ð18Þ

We thus formulate Check-(3)(8): if matrix Λ has two
eigenvectors a and b satisfying (18), then, in the appro-
priate basis, a is aligned with x8 and b is aligned with x3.
The two eigenvectors emerging from Check-(3)(8)

appear in it on different footing. It becomes clear if one
reformulates this check as a two-step procedure: first,
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perform Check-(8) to detect a, and then observe that there
exists another vector b such that FðabÞ ¼ 0. This second
vector can only be within the subspace ðx1; x2; x3Þ, and it
can be aligned with x3 if needed. This procedure makes it
evident that vector b is not unique; there is the entire 3D
subspace which is both orthogonal and f-orthogonal to the
vector a passing Check-(8).
This observation allows us to formulate Check-(123)(8):

if Λ passes Check-(8) and if, in addition, it has three other
mutually orthogonal eigenvectors b; b0; b00 which are
orthogonal and f-orthogonal to eð8Þ

Fðb8Þ ¼ Fðb08Þ ¼ Fðb008Þ ¼ 0; ð19Þ

then in an appropriate basis, eð8Þ is along x8, while vectors
ðb; b0; b00Þ span the subspace ðx1; x2; x3Þ. If needed, these
eigenvectors can be aligned with the axes by a basis
change. Thus, the matrix Λ takes in this basis the block-
diagonal form with the diagonal entries Λ11, Λ22, Λ33, Λ88,
and the 4 × 4 block in the orthogonal complement

V4 ¼ ðx4; x5; x6; x7Þ: ð20Þ

These simple examples give an overall impression of how
one can detect subspaces in R8 with distinct basis-invariant
properties and ensure that Λ has certain block-diagonal
form in an appropriate basis. In the Appendixes A and B,
we further develop this technique and derive several other
checks. We also add here that, when deriving properties of
certain subspaces, one often has a choice of which vectors
to use, F or D. Most checks below we will make use of
vectors D, although in some cases an equivalent formu-
lation in terms of vectors F is also possible, in the light of
the relations listed in the previous subsection.
Sparing the details presented in Appendixes A and B, we

give here a list of the checks for Λ, which detect various
special subspaces or patterns inside subspaces.

(i) Check-(8) detects a 1D subspace (Λ acquires a
block-diagonal form with blocks 7þ 1);

(ii) Check-(38) detects a 2D subspace (6þ 2);
(iii) Check-(3)(8) detects two 1D subspaces

(6þ 1þ 1);
(iv) Check-(123)(8) detects four 1D subspaces (4þ 1þ

1þ 1þ 1);
(v) Check-(123) and Check-(257) detect two inequi-

valent 3D subspaces (5þ 3), closely related to the
SUð2Þ and SOð3Þ subgroups of SUð3Þ;

(vi) Check-(1238), or equivalently Check-(4567), de-
tects a 4D subspace (4þ 4).

For Λ matrices passing Check-(38), the 6D subspace V6

can further split or can demonstrate special patterns.
(i) Check-(12) detects another 2D subspace (4þ

2þ 2);
(ii) Check-(12)(45)(67) detects all 2D subspaces (2þ

2þ 2þ 2);

(iii) Check-Z3 detects a pattern within V6 characteristic
for the Z3 symmetry group.

For Λ matrices passing Check-(38) and Check-(12), the 4D
subspace V4 can still demonstrate special patterns charac-
teristic for two nonequivalent implementations of Uð1Þ
symmetry:

(i) Check-Uð1Þ1;
(ii) Check-Uð1Þ2.
In the following sections, we will show how various

symmetries groups imposed on the 3HDM scalar sector can
be detected in the basis-invariant way via these checks.

III. ABELIAN GROUPS

A. Rephasing symmetries

Let us first recapitulate the main features of the classi-
fication of Abelian symmetry groups in the scalar sector of
3HDMs [30,31]. All Abelian subgroups of SUð3Þ, in a
certain basis, can be represented by rephasing groups.3

Only a few of them can be used to define models which
do not possess additional accidental family symmetries.
These groups are

Z2; Z3; Z4; Z2 × Z2; Uð1Þ;
Uð1Þ × Z2; Uð1Þ ×Uð1Þ: ð21Þ

All of them are subgroups of the maximal Abelian group
Uð1Þ ×Uð1Þ. Qualitatively, the larger the symmetry group
is, the fewer are the free parameters remaining in the
potential, and the tighter are the conditions one needs to
impose to define the model.
The maximal Abelian group Uð1Þ ×Uð1Þ (maximal

torus) is a two-parametric subgroup of SUð3Þ of the
following transformations:

Uð1Þ1 ¼ diagðeiα; e−iα; 1Þ; Uð1Þ2 ¼ diagðe−2iβ; eiβ; eiβÞ;
α; β ∈ ½0; 2π�: ð22Þ

Notice that the two transformations Uð1Þ1 and Uð1Þ2 differ
by their eigenvalue multiplicities. There is no basis change
which would map any Uð1Þ1-transformation into any
Uð1Þ2 transformation. Also, notice that ZðSUð3ÞÞ ≃ Z3,
the center of SUð3Þ generated by diagðω;ω;ωÞ is located
insideUð1Þ2. If one wants to construct the maximal torus in
PSUð3Þ ≃ SUð3Þ=ZðSUð3ÞÞ, one would get the same
Uð1Þ1 and Uð1Þ2, as (22) but with β ∈ ½0; 2π=3�.

3As explained in [31], for a proper construction, one should
use Abelian subgroups of PSUð3Þ ≃ SUð3Þ=ZðSUð3ÞÞ rather
then SUð3Þ. In this case, one additional Abelian subgroup
appears, Z3 × Z3.
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B. Uð1Þ × Uð1Þ 3HDM

Let us now write the 3HDM potential symmetric under
Uð1Þ ×Uð1Þ:

V0 ¼
X
a

m2
aϕ

†
aϕa þ

X
a

λaðϕ†
aϕaÞ2 þ

X
a<b

½λabðϕ†
aϕaÞðϕ†

bϕbÞ

þ λ0abðϕ†
aϕbÞðϕ†

bϕaÞ�: ð23Þ
It contains 3 quadratic terms and 9 quartic terms, all with
real coefficients. The model is automatically CP-conserv-
ing; the CP symmetry can be generated, for instance, by the
usual conjugation.
In the adjoint space, one gets scalars

Λ0 ¼
1

3
ðλ1 þ λ2 þ λ3 þ λ12 þ λ13 þ λ23Þ;

M0 ¼
1ffiffiffi
3

p ðm2
1 þm2

2 þm2
3Þ; ð24Þ

the two vectors

M3 ¼ m2
1 −m2

2; M8 ¼
1ffiffiffi
3

p ðm2
1 þm2

2 − 2m2
3Þ;

L3 ¼
2ffiffiffi
3

p
�
λ1 − λ2 þ

λ13 − λ23
2

�
;

L8 ¼
2ffiffiffi
3

p
�
λ1 þ λ2 − 2λ3 þ λ12 −

λ13 þ λ23
2

�
: ð25Þ

and

Λ¼

0
BBBBBBBBBBBBB@

λ012 · · · · · · ·

· λ012 · · · · · ·

· · Λ33 · · · · Λ38

· · · λ013 · · · ·

· · · · λ013 · · ·

· · · · · λ023 · ·

· · · · · · λ023 ·

· · Λ38 · · · · Λ88

1
CCCCCCCCCCCCCA

ð26Þ

with

Λ33 ¼ λ1 þ λ2 − λ12; Λ38 ¼
1ffiffiffi
3

p ðλ1 − λ2 − λ13 þ λ23Þ;

Λ88 ¼
1

3
ðλ1 þ λ2 þ 4λ3 þ λ12 − 2λ13 − 2λ23Þ: ð27Þ

One observes that Λ has a generic 2 × 2 block in the
ðx3; x8Þ subspace, while in the subspace V6 [Eq. (14)], it
has the diagonal, pairwise-degenerate structure within the
subspaces ðx1; x2Þ, ðx4; x5Þ, and ðx6; x7Þ. The two vectors
M and L have nonzero components in the ðx3; x8Þ
subspace.

Using the results of Secs. II D and Appendix B 1, we can
easily formulate necessary and sufficient basis-invariant
conditions for the 3HDM potential to be Uð1Þ ×Uð1Þ
symmetric:

(i) the matrix Λ must pass Check-(38) and Check-(12)
(45)(67);

(ii) each pair of eigenvectors in Check-(12)(45)(67)
must correspond to the same eigenvalue;

(iii) the vectors M and L must be orthogonal to the six
eigenvectors of V6.

C. Uð1Þ 3HDM

Groups Uð1Þ1 and Uð1Þ2 in (22) are distinct, and
imposing each of them constrains the potential in a different
way. Imposing Uð1Þ1 leads, in addition to V0 [Eq. (23)], to
one more term:

VUð1Þ1 ¼ λ5ðϕ†
1ϕ3Þðϕ†

2ϕ3Þ þ H:c: ð28Þ
with complex λ5. Since λ5 is the only complex parameter,
one can rephase the doublets to make it real, which implies
that Uð1Þ1 automatically leads to explicit CP conservation.
In the adjoint space, the blocks of Λ in ðx3; x8Þ and ðx1; x2Þ
are unchanged, while within the subspace V4 [Eq. (20)], the
block is modified by the additional term to

0
BBB@

λ013 0 Reλ5 −Imλ5

0 λ013 −Imλ5 −Reλ5
Reλ5 −Imλ5 λ023 0

−Imλ5 −Reλ5 0 λ023

1
CCCA: ð29Þ

This pattern in V4 can be detected by conditions formulated
in Appendix B 3. Thus, the necessary and sufficient
basis-invariant conditions for the 3HDM potential to be
Uð1Þ1-symmetric are

(i) the matrix Λ passes Check-(38) and Check-(12);
(ii) the two eigenvectors of Check-(12) correspond to

the same eigenvalue;
(iii) within V4, Λ passes Check-Uð1Þ1;
(iv) the vectors M and L are orthogonal to the six

eigenvectors in V6.
In contrast to Uð1Þ1, Uð1Þ2 allows for several new terms

in addition to V0:

VUð1Þ2 ¼ m2
23ϕ

†
1ϕ2 þ λ̄5ðϕ†

1ϕ2Þ2
þ ðϕ†

1ϕ2Þðλ̄6ϕ†
1ϕ1 þ λ̄7ϕ

†
2ϕ2 þ λ̄8ϕ

†
3ϕ3Þ

þ λ̄08ðϕ†
1ϕ3Þðϕ†

3ϕ2Þ þ H:c: ð30Þ

All coefficients here can be complex. Even if one sets some
of them real by a basis change, several complex coefficients
will remain. Thus, the Uð1Þ2-symmetric 3HDM can be
explicitly CP violating.
In the adjoint space, one sees that vectors M and L can

now have unconstrained components in the subspace
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ðx1; x2; x3; x8Þ. The matrix Λ has a block-diagonal form
with two blocks 4 × 4. The block in the subspace
ðx1; x2; x3; x8Þ is generic, and therefore its eigenvalues
are unconstrained. The block in its orthogonal complement
V4 shows the following pattern:

0
BBB@

λ013 0 Reλ̄08 Imλ̄08
0 λ013 −Imλ̄08 Reλ̄08

Reλ̄08 −Imλ̄08 λ023 0

Imλ̄08 Reλ̄08 0 λ023

1
CCCA; ð31Þ

which is different from (29). Thus, the necessary and
sufficient basis-invariant conditions for the 3HDM poten-
tial to be Uð1Þ2-symmetric are

(i) the matrix Λ passes Check-(4567) described in
Appendix A 3;

(ii) within V4, Λ passes Check-Uð1Þ2 described in
Appendix B 3;

(iii) the vectors M and L are orthogonal to the four
eigenvectors in V4.

D. Uð1Þ × Z2 3HDM

If one keeps, out of all terms in VUð1Þ2 , only
λ̄5ðϕ†

1ϕ2Þ2 þ H:c:, then the potential is invariant not only
under Uð1Þ2 but also under the Z2 subgroup of Uð1Þ1,
which flips the sign of ϕ1. Since we are left with only
one complex coefficient, this model is explicitly CP
conserving.
The new term preserves the block-diagonal form of Λ in

Eq. (26) apart from the 2 × 2 block in the ðx1; x2Þ subspace.
This block becomes generic, so that the eigenvalue degen-
eracy is lifted. Thus, the basis-invariant conditions for the
Uð1Þ × Z2 3HDM are the same as forUð1Þ ×Uð1Þ 3HDM
with only this condition relaxed.

E. Z2 × Z2 3HDM

Restricting the previous case to the discrete subgroup
of arbitrary sign flips, one obtains the famous Weinberg
model with the symmetry group Z2 × Z2 [9]. The Higgs
potential contains, in addition to V0, the following three
terms:

VZ2×Z2
¼ λ̄12ðϕ†

1ϕ2Þ2 þ λ̄23ðϕ†
2ϕ3Þ2 þ λ̄31ðϕ†

3ϕ1Þ2 þ H:c:;

ð32Þ

where all coefficients can be complex. If Imðλ̄12λ̄23λ̄31Þ≠0,
then it is impossible to make all coefficients real by
any basis change, and the model is explicitly CP violating.4

If it is real, then the model is explicitly CP conserving and
is known as Branco’s model [10,11].
In the adjoint space, the generic form within the subspace

ðx3; x8Þ is unchanged, while in V6 the new terms (32) with
generic complex λ̄12, λ̄23, and λ̄31, drive the completely
diagonal Λ of Eq. (26) into a block-diagonal form with
three 2 × 2 blocks within subspaces ðx1; x2Þ, ðx4; x5Þ,
and ðx6; x7Þ. All these blocks are generic, so that the
eigenvalues are not constrained. Using the rephasing
freedom, one can diagonalize at least two of the three
blocks. If the third one also gets diagonalized, we have the
explicitly CP-conserving case (Branco’s model), if not, we
have the explicitly CP-violating case (Weinberg’s model).
The necessary and sufficient basis-invariant conditions

for the Z2 × Z2-symmetric 3HDM are given by the
simplified version of the Uð1Þ ×Uð1Þ case:

(i) the matrix Λ passes Check-(38) and Check-(12)
(45)(67);

(ii) the vectors M and L are orthogonal to the six
eigenvectors in V6.

ExplicitCP conservation, that is, whether this isWeinberg’s
or Branco’s model, can be detected by Check-(257)
described in Appendix A 2 and first derived in [59].

F. Z4 3HDM

The Z4-symmetric 3HDM can only arise as a particular
case of the Uð1Þ1 3HDM. The Z4-symmetric potential
contains, in addition to V0, two extra terms:

VZ4
¼ λ5ðϕ†

1ϕ3Þðϕ†
2ϕ3Þ þ λ̄12ðϕ†

1ϕ2Þ2 þ H:c: ð33Þ

Since there are only two complex coefficients, they can be
made real via rephasing, and the model is explicitly CP
conserving. The matrix Λ has the familiar features: a
generic block in the subspace ðx3; x8Þ, a generic block
in the subspace ðx1; x2Þ, and the block-diagonal structure
(29) in V4. The basis-invariant conditions are the same as
for Uð1Þ1, with the removal of the condition of the
eigenvalue degeneracy within the subspace ðx1; x2Þ, i.e.,

(i) the matrix Λ passes Check-(38) and Check-(12);
(ii) within V4, Λ passes Check-Uð1Þ1;
(iii) the vectors M and L are orthogonal to the six

eigenvectors in V6.

G. Z3 3HDM

The Z3-symmetric 3HDM can also only arise as a
particular case of the Uð1Þ1 3HDM. Its potential contains,
in addition to V0, three extra terms:

VZ3
¼ λ5ðϕ†

1ϕ3Þðϕ†
2ϕ3Þ þ λ6ðϕ†

2ϕ1Þðϕ†
3ϕ1Þ

þ λ7ðϕ†
3ϕ2Þðϕ†

1ϕ2Þ þ H:c:; ð34Þ

where all coefficients can be complex. Even if one makes
two of them real (for example λ6 and λ7), the other (e.g., λ5)

4Even with complex coefficients, there remains the possibility
of a generalized CP symmetry which does not commute with
Z2 × Z2. This case is treated in Sec. IV E.
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can still be complex, thus the possibility of explicit CP
violation remains.
The matrix Λ still has a generic block in ðx3; x8Þ, while

within V6 it takes the following form:

0
BBBBBBBBB@

λ012 0 Reλ6 Imλ6 Reλ7 Imλ7

0 λ012 Imλ6 −Reλ6 −Imλ7 Reλ7
Reλ6 Imλ6 λ013 0 Reλ5 −Imλ5

Imλ6 −Reλ6 0 λ013 −Imλ5 −Reλ5
Reλ7 −Imλ7 Reλ5 −Imλ5 λ023 0

Imλ7 Reλ7 −Imλ5 −Reλ5 0 λ023

1
CCCCCCCCCA

ð35Þ

This matrix has three twice-degenerate eigenvalues. In
Appendix B 2, we prove that this pattern emerges if and
only if all three pairs of eigenvectors corresponding to
the same eigenvalue pass Check-Z3. Therefore, the
basis-invariant necessary and sufficient conditions for
Z3-symmetric 3HDM are

(i) the matrix Λ passes Check-(38);
(ii) the six eigenvalues of Λ within V6 display 2þ2þ2

degeneracy, and each pair of the eigenvectors
passes Check-Z3;

(iii) the vectors M and L are orthogonal to the six
eigenvectors in V6.

Explicit CP conservation within Z3 3HDM implies that, in
a certain basis, all coefficients are real. The 6 × 6 block
then splits into two 3 × 3 blocks, which are closed under
the f-product, so that this feature can be detected by
Check-(257).

H. Z2 3HDM

Finally, the smallest symmetry group one can impose is
Z2 generated, for example, by the sign flip of doublet ϕ3. In
the adjoint space, the only feature one observes is that Λ
splits into two 4 × 4 blocks: one in the ðx1; x2; x3; x8Þ
subspace and the other in V4. The structure of each block is
unconstrained. In Appendix A 3 we formulated Check-
(1238) which detects exactly this splitting of Λ. It must be
accompanied with the requirement that vectorsM and L are
orthogonal to the eigenvectors from V4.
In summary, in this section we gave basis-invariant con-

ditions for each rephasing symmetry group in 3HDM,
starting from the largest one Uð1Þ ×Uð1Þ and then descen-
ding to its subgroups. As the symmetry is reduced, we see
that qualitatively the conditions are gradually relaxed.

IV. GROUPS WITH 2D REPRESENTATIONS

A. Uð2Þ-symmetric 3HDM

We now move to the symmetry groups with two-
dimensional irreducible representations. As before, we
begin with the largest subgroup of SUð3Þ with 2D

irreducible representation, Uð2Þ≃ðSUð2Þ×Uð1ÞÞ=Z2. In
the basis where SUð2Þ transformations act nontrivially on
ϕ1, ϕ2 and Uð1Þ transformations are of the type Uð1Þ2, the
potential takes the form

VUð2Þ ¼ m2
1ðϕ†

1ϕ1 þ ϕ†
2ϕ2Þ þm2

3ϕ
†
3ϕ3

þ λ1ðϕ†
1ϕ1 þ ϕ†

2ϕ2Þ2 þ λ3ðϕ†
3ϕ3Þ2

þ λ012½jϕ†
1ϕ2j2 − ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ�

þ λ13ðϕ†
1ϕ1 þ ϕ†

2ϕ2Þðϕ†
3ϕ3Þ

þ λ013ðjϕ†
1ϕ3j2 þ jϕ†

2ϕ3j2Þ; ð36Þ

which is the Uð1Þ ×Uð1Þ potential (23) with the additional
constraints

m2
1 ¼ m2

2; λ1 ¼ λ2; λ13 ¼ λ23; λ013 ¼ λ023; ð37Þ

and

λ12 ¼ 2λ1 − λ012: ð38Þ

In the adjoint space, one sees that the vectors M and L, in
this basis, are along axis x8. The only off-diagonal element
of Λ in (26) is now zero, Λ38 ¼ 0, so that Λ becomes
diagonal with the following unit blocks:

Λ ¼

0
B@

λ01213 · ·

· λ01314 ·

· · Λ8

1
CA ð39Þ

and Λ8 ¼ 4ðλ1 þ λ3 − λ13Þ=3 − λ012=3. The converse is also
true: if L, M are parallel to x8 and Λ exhibits this pattern,
then the potential is invariant under Uð2Þ symmetry.
To determine the basis-invariant conditions for the

Uð2Þ symmetry to be present, we first need to detect the
special direction x8. This is done by Check-(8) described in
Sec. II D: if there exists an eigenvector eð8Þ satisfying (16),
then in the appropriate basis it can be aligned with the
positive direction of axis x8. We also require that L and M
are aligned in the same direction. Next, one must observe
that the eigenvalues of Λ display the degeneracy pattern
3þ 4þ 1, with the nondegenerate eigenvalue correspond-
ing to eð8Þ. Moreover, the eigenvectors corresponding to
the triple-degenerate eigenvalue must pass Check-(123)
described in Appendix A 2. If all these conditions are
satisfied, the model has the Uð2Þ symmetry.

B. Oð2Þ-symmetric 3HDM

When going from SUð2Þ ×Uð1Þ to smaller groups
with 2D irreducible representations, one first notices that
imposing SUð2Þ alone automatically leads to an accidental
Uð1Þ, bringing one back to the previous case. Thus, we
consider next the symmetry group Oð2Þ ≃ SOð2Þ⋊Z2.
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When describing SOð2Þ transformations, it is convenient to
work in the basis where they are given either by orthogonal
rotations in the ðϕ1;ϕ2Þ subspace or by rephasing trans-
formations fromUð1Þ1. In the former case, the extra Z2 can
be generated by a reflection with respect to any direction in
this subspace:

b̂2 ¼

0
B@

cδ sδ 0

sδ −cδ 0

0 0 1

1
CA; ð40Þ

with cδ ¼ cos δ and sδ ¼ sin δ, angle δ being a free
parameter, while in the latter case the generator can be
the transformation b2

b2 ¼

0
B@

0 eiδ 0

e−iδ 0 0

0 0 1

1
CA: ð41Þ

In the real Oð2Þ basis, the most general potential compat-
ible with this symmetry contains, in addition to Eq. (36),
the following terms:

VOð2Þ ¼ λ̄12ðImϕ†
1ϕ2Þ2

þ
�
λ̄13
2

½ðϕ†
1ϕ3Þ2 þ ðϕ†

2ϕ3Þ2� þ H:c:

�
: ð42Þ

In the adjoint space, the matrix Λ takes the following form:

ΛSOð2Þ⋊Z2
¼

0
BBBBBBBBBBBBBBB@

λ012 · · · · · · ·

· λ012 þ λ̄12 · · · · · ·

· · λ012 · · · · ·

· · · λ013 þ Reλ̄13 −Imλ̄13 · ·

· · · −Imλ̄13 λ013 − Reλ̄13 · · ·

· · · · · λ013 þ Reλ̄13 −Imλ̄13 ·

· · · · −Imλ̄13 λ013 − Reλ̄13 ·

· · · · · · · Λ8

1
CCCCCCCCCCCCCCCA

: ð43Þ

In the rephasing basis, one takes V0 as in (23), applies the conditions (37), and adds theUð1Þ1-symmetric terms (28) without
any constraint on λ5. The resulting matrix Λ acquires a slightly different form:

ΛUð1Þ⋊Z2
¼

0
BBBBBBBBBBBBBBB@

λ012 · · · · · · ·

· λ012 · · · · · ·

· · 2λ1 − λ12 · · · · ·

· · · λ013 · Reλ5 −Imλ5 ·

· · · · λ013 −Imλ5 −Reλ5 ·

· · · Reλ5 −Imλ5 λ013 · ·

· · · −Imλ5 −Reλ5 · λ013 ·

· · · · · · · Λ8

1
CCCCCCCCCCCCCCCA

: ð44Þ

In both cases one observes that the eigenvalue degeneracy
pattern becomes 1þ 2þ 2þ 2þ 1, where the nondegen-
erate eigenvalues can only correspond to x8 and an
eigenvector in the subspace ðx1; x2; x3Þ.
To detect the presence of this symmetry group in a basis

invariant way, we first detect the eigenvector eð8Þ via
Check-(8) and then the three eigenvectors in the subspace
ðx1; x2; x3Þ via Check-(123)(8), described in section II D.
Next, one checks that two among the three eigenvalues
within ðx1; x2; x3Þ are degenerate, which singles out the

corresponding subspace V2. The exact choice depends on
the basis choice; the two forms of Λ in (43) and (44)
correspond to two such choices.
With these conditions, one knows that Λ has a separate

4 × 4 block in V4 with two twice degenerate eigenvalues
and one needs to establish its structure. Applying the
methods described in Appendix B 3 to any of the above
two forms of Λ, one can establish the following basis-
invariant conditions. Take a pair of eigenvectors a and b
corresponding to the same eigenvalue. Then they satisfy
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DðaaÞ þDðbbÞ ¼ −eð8Þ; DðaaÞ −DðbbÞ ∈ V2; DðabÞ ∈ V2:

ð45Þ
Thus, the basis-invariant algorithm for detecting an Oð2Þ
symmetry in 3HDM is

(i) verify that Λ passes Check-(8) and Check-(123)(8);
(ii) check that at least two of the eigenvectors from

the subspace ðx1; x2; x3Þ correspond to the same
eigenvalue;

(iii) check that the remaining four eigenvectors from V4

also correspond to two twice degenerate eigenval-
ues, and the eigenvectors in each pair satisfy (45).

(iv) check that L and M are aligned with eð8Þ.

C. D4-symmetric 3HDM

If one starts with the Z4 symmetric model given by V0 in
(23) and VZ4

in (33) and imposes the conditions (37), then
the potential acquires yet another symmetry of order 2
given by (41). No other conditions on parameters λ5 and λ̄12
are needed. The total family symmetry group is then
D4 ≃ Z4⋊Z2, on top of which one also has a CP symmetry.
The basis-invariant algorithm for detecting this symmetry
can be formulated as:

(i) the matrix Λ passes Check-(3)(8) and Check-(12);
(ii) within V4, Λ passes Check- Uð1Þ1;
(iii) the vectors M and L are aligned with eð8Þ.

D. S3-symmetric 3HDM

To construct an S3-invariant 3HDM, one starts with the
Z3-symmetric case with the potential V0 in (23) and VZ3

in
(34), and imposes an additional symmetry b2 [Eq. (41)]. As
before, one obtains the same constraints (37) as well as the
new constraint on the Z3-symmetric parameters:

jλ6j ¼ jλ7j: ð46Þ
Coefficients λ5, λ6, and λ7 can still be complex with
arbitrary phases, as for any phase choice for λ6 and λ7,
there exists a parameter δ in (41) such that b2 is indeed a
symmetry of the potential.
In the adjoint space, we see a picture similar to the

previous case. The subspace ðx3; x8Þ splits into separate x3
and x8 subspaces, and the matrix Λ acquires two eigen-
vectors along these directions, eð3Þ and eð8Þ. The vectors L
and M must be aligned with eð8Þ. The 6 × 6 block of Λ
within the subspace V6 keeps its form (35) but it is now
constrained by the relation (46).
We find that the shortest way to implement it in the basis-

invariant way is to calculate vectors

Ki ¼ dijkΛjk; Kð2Þ
i ¼ dijkðΛ2Þjk; ð47Þ

and require them to be aligned with x8. Starting from (35),
one finds that the only new conditions arise from their x3
components:

K3 ¼ λ013 − λ023 ¼ 0;

Kð2Þ
3 ¼ λ0213 þ jλ5j2 þ jλ6j2 − ðλ0223 þ jλ5j2 þ jλ7j2Þ ¼ 0;

ð48Þ

from which one immediately recovers (46).
In summary, the basis-invariant algorithm for S3-

symmetric 3HDM is
(i) the matrix Λ passes Check-(3)(8);
(ii) the six eigenvalues of Λ within V6 display the 2þ

2þ 2 degeneracy, and each pair of the eigenvectors
passes Check-Z3;

(iii) check that the four vectors L, M, K and Kð2Þ are
aligned with eð8Þ.

In general, the S3 3HDM can be explicitly CP-violating.
If one wishes to check if CP is explicitly conserved, one
needs to perform the same Check-(257) which was dis-
cussed before.

E. Exotic CP situations

Finally, there are two situations in which one starts with
Abelian Higgs family symmetry groups but implements in
addition a CP symmetry in such a way that the resulting
symmetry group has 2D irreducible representation.
The first case is the 3HDM invariant under CP4.

This model was proposed in [26] and the basis-invariant
algorithm for detecting CP4 was presented in [60].
Formulated in the language of the present paper, this
algorithm proceeds as follows, using the vectors in (47):

(i) the matrix Λ passes Check-(8) and Check-(123)(8);
(ii) the four vectors L, M, K and Kð2Þ are aligned

with eð8Þ.
The second case is the unusual realization of the CP

symmetric Z2 × Z2 model, when the CP symmetry is
of order 2 but it does not commute with the Z2 × Z2

family symmetry group. Group-theoretically, the symmetry

content is described by ðZ2 × Z2Þ⋊ZðCPÞ
2 where the extra

ZðCPÞ
2 is a generalizedCP symmetry which acts onZ2 × Z2

by transposing its generators a1 and a2: ðCPÞ−1a1CP¼ a2.
This group can also be presented as generated by an order-4
CP transformation a1CP and the usual CP transformation,
which do not commute. This model represents, therefore, a
more constrained version of CP4 3HDM; we refer to [60]
for a basis-invariant strategy of detecting it.

V. GROUPS WITH 3D REPRESENTATIONS

A. SUð3Þ-symmetric 3HDM

Moving to symmetry groups with irreducible triplet
representations, we begin with the largest group available,
SUð3Þ. The SUð3Þ-symmetric 3HDM has only three terms
in the scalar potential:
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VSUð3Þ ¼ m2ðϕ†
1ϕ1 þ ϕ†

2ϕ2 þ ϕ†
3ϕ3Þ þ λðϕ†

1ϕ1 þ ϕ†
2ϕ2 þ ϕ†

3ϕ3Þ2
þ λ0½jϕ†

1ϕ2j2 þ jϕ†
2ϕ3j2 þ jϕ†

3ϕ1j2 − ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ − ðϕ†
2ϕ2Þðϕ†

3ϕ3Þ − ðϕ†
3ϕ3Þðϕ†

1ϕ1Þ�: ð49Þ

The second line of Eq. (49) represents ðP8
i¼1 r

2
i Þ − r20,

which is a nonpositive quantity. Thus, in the adjoint space,
this potential is characterized by vectors L ¼ 0 and M ¼ 0
and Λ ¼ λ018, which is invariant under all SOð8Þ rotations.
Clearly, the potential will have this form in any basis, which
will be immediately recognized. Still, we can formulate
the basis-invariant condition for the SUð3Þ symmetry as
absence of any vector and the full degeneracy among the
eigenvalues of Λ.

B. SOð3Þ-symmetric 3HDM

The next possibility is to impose the SOð3Þ subgroup of
SUð3Þ. In the basis where the SOð3Þ generators are t2, t5,
t7, the rotations in the space of doublets ϕa are purely real.
Looking into how the bilinear combinations ϕ†

aϕb trans-
form under SOð3Þ, one sees that the real symmetric
combinations form the 5-plet of SOð3Þ and the imaginary
antisymmetric combinations form a triplet. Therefore, back
in the adjoint space, SOð3Þ transformations do not mix the
subspaces Vþ ¼ ðx1; x3; x4; x6; x8Þ and V− ¼ ðx2; x5; x7Þ.
Thus, the matrix Λ can now be written as Λ115 þ Λ213,
with the two distinct eigenvalues Λ1 and Λ2 corresponding
to Vþ and V− respectively.
The basis-invariant detection of the SOð3Þ symmetry

consists in checking that vectors L and M are absent,
detecting the 5þ 3 degeneracy pattern of the eigenvalues,
and finally verifying that the eigenvectors corresponding

to the triple degenerate eigenvalue satisfy Check-(257)
described in Appendix A 2.
We remark that the potentials of SOð3Þ and SUð3Þ-

symmetric 3HDMs were written in a basis-invariant way
in [65]. The approach used there was to classify all Higgs
field bilinears, both electroweak singlets and higher dimen-
sional representations of the electroweak gauge group, in
irreducible representations of SOð3Þ or SUð3Þ. Then, one
looks for products of these gauge-covariant and internal
symmetry covariant objects, which would be both gauge
and SOð3Þ or SUð3Þ invariant. The resulting potential,
Eq. (3.10) of Ref. [65], is basis independent by construction
and corresponds to our SOð3Þ-symmetric expression.
Removing the last term by setting λT ¼ 0, leads to the
SUð3Þ-invariant potential, which corresponds to our
Eq. (49). However, the task of identifying the presence
of the SOð3Þ symmetry in a 3HDM potential written in a
generic basis was not addressed in that publication.

C. A4 and S4-symmetric 3HDMs

Next, we pass to the discrete groups with irreducible
triplet representation which can arise in the scalar sector of
3HDM. Two of them can be obtained as extensions of the
Z2 × Z2 group by the permutation symmetries of three of
its generators: A4≃ðZ2×Z2Þ⋊Z3 and S4 ≃ ðZ2 × Z2Þ⋊S3.
In the basis where Z2 × Z2 is given by the sign flips of
individual doublets, the A4-symmetric potential is written
as a constrained version of (23) and (32):

VA4
¼ m2ðϕ†

1ϕ1 þ ϕ†
2ϕ2 þ ϕ†

3ϕ3Þ þ λðϕ†
1ϕ1 þ ϕ†

2ϕ2 þ ϕ†
3ϕ3Þ2

þ λ38½ðϕ†
1ϕ1Þ2 þ ðϕ†

2ϕ2Þ2 þ ðϕ†
3ϕ3Þ2 − ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ − ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ − ðϕ†

3ϕ3Þðϕ†
1ϕ1Þ�

þ λ0ðjϕ†
1ϕ2j2 þ jϕ†

2ϕ3j2 þ jϕ†
3ϕ1j2Þ þ fλ̄12ðϕ†

1ϕ2Þ2 þ λ̄23ðϕ†
2ϕ3Þ2 þ λ̄31ðϕ†

3ϕ1Þ2 þ H:c:g: ð50Þ

Here, the parameters λ̄12, λ̄23, and λ̄31 can be complex with
arbitrary phases but equal absolute values:

jλ̄12j ¼ jλ̄23j ¼ jλ̄31j≡ λ̄: ð51Þ
If these conditions are satisfied, then the potential (50)
possesses the A4-symmetry, in which the Z3 generator
is given by cyclic permutations of the doublets accom-
panied with suitable phase factors. If, in addition,
Imðλ̄12λ̄23λ̄31Þ¼0, the symmetry group enlarges to S4.
Indeed, one can switch to the basis where these three
coefficients are real, and the potential becomes symmetric
under any (not just cyclic) permutations of the three
doublets. Notice that in either case, the model is explicitly
CP-conserving.

In the adjoint space, one notices that L ¼ 0 and M ¼ 0,
while the matrix Λ takes, just as in the Z2 × Z2 case, the
block-diagonal form with blocks in the subspaces ðx3; x8Þ,
ðx1; x2Þ, ðx4; x5Þ, and ðx6; x7Þ. However, the ðx3; x8Þ block
is now simply 3λ3812, while the other three 2 × 2 blocks
within V6 have identical pairs of eigenvalues λ0 � 2λ̄ but
arbitrarily oriented eigenvectors. For the S4-symmetric
case, their orientation is correlated, though, and in a certain
basis all eigenvectors in V6 can be aligned with the axes,
which renders the matrix Λ diagonal. In either case, one
observes the eigenvalue degeneracy pattern 2þ 3þ 3.
Notice also that by setting, in addition, 3λ38 ¼ λ0 þ 2λ̄,
one would recover the SOð3Þ-symmetric case.
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The basis-invariant algorithm for detection of the A4

symmetry is
(i) verify that the matrix Λ passes Check-(38) with

degenerate eigenvalues;
(ii) verify that Λ passes Check-(12)(45)(67) and dis-

plays three identical pairs of eigenvalues;
(iii) the vectors L and M are absent.

In order to detect the S4 symmetry, one additionally
requires that one of the triplets of V6 eigenvectors
sharing the same eigenvalue, is closed under the action
of d-product.

D. Δð54Þ and Σð36Þ-symmetric 3HDM

The symmetry group Δð27Þ ⊂ SUð3Þ is generated by
two order-3 transformations, which are traditionally chosen
to be rephasing transformations diagðω;ω2; 1Þ and cyclic
permutations which can be accompanied by rephasings.5 It
turns out that Δð27Þ-symmetric 3HDM automatically
acquires an accidental Z2 symmetry which makes the total
symmetry group of the model Δð54Þ.
The general Δð54Þ-symmetric 3HDM potential has the

form similar to (50) but with the different last bracket:

VΔð54Þ ¼ m2ðϕ†
1ϕ1 þ ϕ†

2ϕ2 þ ϕ†
3ϕ3Þ þ λðϕ†

1ϕ1 þ ϕ†
2ϕ2 þ ϕ†

3ϕ3Þ2

þ λ38½ðϕ†
1ϕ1Þ2 þ ðϕ†

2ϕ2Þ2 þ ðϕ†
3ϕ3Þ2 − ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ − ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ − ðϕ†

3ϕ3Þðϕ†
1ϕ1Þ�

þ λ0ðjϕ†
1ϕ2j2 þ jϕ†

2ϕ3j2 þ jϕ†
3ϕ1j2Þ

þ fλ5ðϕ†
1ϕ3Þðϕ†

2ϕ3Þ þ λ6ðϕ†
2ϕ1Þðϕ†

3ϕ1Þ þ λ7ðϕ†
3ϕ2Þðϕ†

1ϕ2Þ þ H:c:g: ð52Þ

Just like in the Z3-symmetric case, the coefficients λ5, λ6,
and λ7 can be complex, but, in order for the potential to be
invariant under cyclic permutations, they must have the
same absolute values:

jλ5j ¼ jλ6j ¼ jλ7j: ð53Þ

One can perform rephasing transformations to set these
three parameters equal to λ̄, where λ̄3 ¼ λ5λ6λ7. Addition-
ally, if these parameters satisfy Imðλ5λ6λ7Þ ¼ 0, then there
exists a basis in which they all are real, up to powers of ω,
and the model is explicitly CP-conserving.
In the adjoint space, one observes the absence of vectors

M and L, and for Λ, the simple structure 3λ3812 in the

ðx3; x8Þ block, and the residual 6 × 6 block in V6 which has
the same structure as (35) but with equal diagonal elements
and with the off-diagonal elements satisfying the conditions
(53). The eigenvalues of this 6 × 6 block exhibit the
2þ 2þ 2 degeneracy pattern and are equal to

λ0 þ 2Reλ̄; λ0 þ 2Reðωλ̄Þ; λ0 þ 2Reðω2λ̄Þ: ð54Þ

In the CP-conserving case, two of the three real parts
coincide, and the degeneracy pattern is promoted to 2þ 4.
The eigenvectors of Λ within V6 can also be found

explicitly:

a ¼ 1ffiffiffi
3

p ð1; 0; 1; 0; 1; 0Þ; b ¼ 1ffiffiffi
3

p ð0; 1; 0;−1; 0; 1Þ;

a0 ¼ 1ffiffiffi
3

p ðcω;−sω; cω;−sω; 1; 0Þ; b0 ¼ 1ffiffiffi
3

p ðsω; cω;−sω;−cω; 0; 1Þ;

a00 ¼ 1ffiffiffi
3

p ðcω; sω; cω; sω; 1; 0Þ; b00 ¼ 1ffiffiffi
3

p ð−sω; cω; sω;−cω; 0; 1Þ; ð55Þ

where cω ≡ Reω ¼ −1=2, sω ≡ Imω ¼ ffiffiffi
3

p
=2, and each

ða; bÞ-pair corresponds to the same eigenvalue. Each pair of
these vectors satisfies DðaaÞ ¼ −DðbbÞ ¼ a, which coin-
cides with Check-(3)(8) which we used above for detection
of the eð8Þ and eð3Þ eigenvectors. Therefore, we arrive at

remarkable simple basis-invariant condition for the CP-
violating Δð54Þ-symmetric 3HDM:

(i) the eigenvalues of the matrix Λ display the degen-
eracy pattern 2þ 2þ 2þ 2;

(ii) for each eigenvalue, the two eigenvectors a, b pass
Check-(3)(8);

(iii) vectors M ¼ 0, L ¼ 0.
The CP-conserving case corresponds to the situation where
the four pairs of eigenvectors exhibit the above properties
but the eigenvalue degeneracy pattern becomes 2þ 2þ 4.

5The commutator of the two generators of Δð27Þ lies in
the center of SUð3Þ. Therefore, if viewed as a subgroup of
PSUð3Þ ≃ SUð3Þ=ZðSUð3ÞÞ, it corresponds to the Abelian group
Z3 × Z3.
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Finally, the largest discrete symmetry group which can
be imposed on the 3HDM scalar sector is Σð36Þ, which is
twice larger than Δð54Þ.6 It arises in the real λ̄ basis if the
coefficients of VΔð54Þ satisfy an additional constraint:
3λ38 ¼ λ0 þ 2λ̄. The potential then becomes symmetric
under the following transformation of order 4:

d ¼ 1ffiffiffi
3

p

0
B@

1 1 1

1 ω2 ω

1 ω ω2

1
CA; ð56Þ

such that d2 describes the transposition of ϕ2 ↔ ϕ3.
Adding d to the symmetry generators leads to Σð36Þ≃
ðZ3 × Z3Þ⋊Z4. The basis-invariant path to this symmetry
group is to observe the four pairs of eigenvectors satisfying
the same conditions as for the Δð54Þ-case, but with the
eigenvalue degeneracy pattern 4þ 4.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we solved the notoriously difficult problem
of recognizing in a basis-independent way whether a
3HDM scalar potential has a symmetry. Similar methods
for 2HDM existed for more than a decade, but generalizing
them beyond two doublets proved challenging. Within
3HDM, prior to this work, it was known which symmetry
groups G can be imposed on its scalar sector and how to
write general potentials invariant under each G in a special
basis, in which the generators of G take simple form.
However it was always understood that if the same G-
symmetric 3HDM was written in a different basis, the
presence of G would be hidden and recognizing it would
become very challenging.
Developing the ideas suggested very recently in [60,61],

we constructed a novel formalism which efficiently detects
structural properties of 3HDM scalar sectors in any basis.
The key role is played by the constructions in the adjoint
space of the SUð3Þ basis transformation group, and
specifically by the products of the adjoint-space vectors
based on the SUð3Þ-invariant tensors fijk and dijk.
Despite being technical, the results of this paper remove

an important obstacle on the road toward efficient phe-
nomenological exploration of 3HDMs. When performing a
scan over the scalar parameter space, one can now detect
not only the symmetry group but also proximity of a model
to a symmetric situation. Since various symmetry groups
can lead to certain patterns in the scalar and flavor sectors,
all models sufficiently close to these symmetric cases will
inherit some of these features. This proximity can now be
detected irrespective of basis choice.
This is particularly important for models which contain

not only three Higgs doublets equipped with a symmetry

group G but also additional fields. The loop corrections by
these fields can modify effective Higgs self-couplings,
shifting the model in the parameter space away from the
chosen G-symmetric point. With the results of this work,
one can quantify this shift in basis-independent way.
One can also investigate situations when a model is close

to several symmetry situations simultaneously. In this case,
one may observe and explore competing effects of prox-
imity to the two symmetry groups. Such studies will
generate not only numerical results but also a qualitative
intuition of how one should build multi-Higgs-doublet
models with desired phenomenological properties.

ACKNOWLEDGMENTS

We thankCelsoNishi, João P. Silva, andAndreas Trautner
for many useful discussions and comments on the paper.
We acknowledge funding from the Portuguese Fun-dação
para a Ciência e a Tecnologia (FCT) through the FCT
Investigator Contracts No. IF/00989/2014/CP1214/CT0004
and No. IF/00816/2015 and through the Projects No. UID/
FIS/00777/2013, No. UID/FIS/00777/2019, No. CERN/
FIS-PAR/0004/2017, and No. PTDC/FIS-PAR/29436/
2017, which are partially funded through Programa
Operacional Competitividade e Internacionalização
(FEDER), COMPETE, Quadro de Referência Estratégica
Nacional, and the European Union. We also acknowledge
the support from National Science Center, Poland, via the
project Harmonia (UMO-2015/18/M/ST2/00518).

APPENDIX A: DETECTING SUBSPACES

We showed in Sec. II D that the products of adjoint space
vectors a and b

FðabÞ
i ≡ fijkajbk; DðabÞ

i ≡ ffiffiffi
3

p
dijkajbk;

DðaaÞ
i ≡ ffiffiffi

3
p

dijkajak: ðA1Þ
can be used to identify basis-invariant features of the
subspaces to which these vectors belong. These products
satisfy relations (13) and (11), which we now rewrite
assuming vectors a and b are orthonormal:

DðaaÞDðabÞ ¼ 0; jDðaaÞj2 ¼ 1;

DðaaÞDðbbÞ þ 2jDðabÞj2 ¼ 1; jDðabÞj2 þ jFðabÞj2 ¼ 1:

ðA2Þ
When applied to the eigenvectors of Λ, this technique
can ensure that in an appropriate basis Λ has a block-
diagonal form.

1. 1D and 2D subspaces

The two examples given in the main text correspond to
basis-invariant detection of 1D and 2D subspaces. Let us
summarize them here for completeness.

6The notation Σð36Þ indicates the subgroup of PSUð3Þ, which
becomes Σð36φÞ, the group of order 108, within SUð3Þ.
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(i) If a vector a satisfiesDðaaÞ ¼ −a, then there exists a
basis in which a is aligned with þx8 direction.
When applied to the eigenvectors of Λ, this require-
ment constitutes Check-(8). No other basis-
invariant condition detecting an 1D subspace with
different properties exists.

(ii) If two vectors a and b satisfy FðabÞ ¼ 0, or
alternatively DðaaÞ ¼ −DðbbÞ, then there exists a
basis in which they both lie in the ðx3; x8Þ subspace.
If, in addition, one observes that DðaaÞ ¼
−DðbbÞ ¼ −a, then these vectors are aligned with
x8 and x3, respectively. When applied to the
eigenvectors of Λ, these two versions of the
conditions give Check-(38) and Check-(3)(8), re-
spectively. Notice also that if it happens that two
eigenvectors passing Check-(38) correspond to the
same eigenvalue, one can always find their linear
combinations which will pass Check-(3)(8).

2. Detecting 3D subspaces

As we already described in Sec. II D, having identified
an eigenvector eð8Þ via Check-(8), we can easily detect if
there are three other eigenvectors spanning the subspace
ðx1; x2; x3Þ; this was formulated as Check-(123)(8).
However, it is also possible to detect three eigenvectors
from this 3D subspace even without the presence of eð8Þ.
Suppose one has three orthonormal vectors a, b, c which

are closed under f-product:

FðabÞ ¼ c; FðbcÞ ¼ a; FðcaÞ ¼ b: ðA3Þ

Then their respective Hermitian matrices A, B, C form the
suð2Þ subalgebra of suð3Þ. It implies that, back in the
adjoint space, one can always rotate them to the space
ðx1; x2; x3Þ and, if needed, align them with the axes. This
observation is the basis of Check-(123): if one finds three
mutually orthogonal eigenvectors of Λ which obey (A3),
then there exist a basis in which Λ has a 3 × 3 block in
ðx1; x2; x3Þ, and, moreover, this block can be diagonalized.
Using the relations (A2), one can reformulate the

conditions (A3) in terms of D’s. Indeed, since the three
vectors F’s have unit absolute values, their respective
DðabÞ ¼ DðbcÞ ¼ DðacÞ ¼ 0, and as a result we observe

DðaaÞ ¼ DðbbÞ ¼ DðccÞ: ðA4Þ

Notice that this version of Check-(123) may be easier to
verify than (A3) because one is not forced to test all pairs of
eigenvectors.
The conserve is also true: if three orthonormal vectors a,

b, c satisfy (A4), then one can rotate them to the ðx1; x2; x3Þ
subspace. Indeed, from the relations (A2) one concludes
that DðabÞ ¼ DðbcÞ ¼ DðacÞ ¼ 0. This means that the
three corresponding Hermitian traceless matrices A, B, C

anticommute with each other. Thus, they form the 3D
Clifford algebra and, despite being 3 × 3matrices, they can
be expressed as Pauli matrices within a 2 × 2 block and
zeros otherwise. Back in the adjoint space, this means that
a, b, c are located in the ðx1; x2; x3Þ subspace.
It is also possible that the three orthonormal vectors a, b,

c, which are closed under f-product, need to be corrected
by the factor 2:

2FðabÞ ¼ c; 2FðbcÞ ¼ a; 2FðcaÞ ¼ b: ðA5Þ

Then, the matrices A, B, C form the soð3Þ subalgebra of
suð3Þ. One can always rotate the three vectors to the
subspace V− ¼ ðx2; x5; x7Þ or to other equivalent subspaces
such as ðx2; x4; x6Þ, etc. This property is the basis of
Check-(257), which was used in [59] to detect explicit
CP conservation in 3HDM.

3. Detecting 4D subspaces

A direct inspection of the nonzero elements of the
tensors fijk and dijk given in Eqs. (4) and (5) reveals
that they contain an odd number of indices from the set
(1,2,3,8) and an even number of indices from the set
(4,5,6,7).7 Taking any four orthonormal vectors a; b; c; d ∈
ðx1; x2; x3; x8Þ, we observe that their f-products stay
within the same subspace. Therefore, the corresponding
Hermitian matrices A, B, C, D form a 4D subalgebra
of suð2Þ × uð1Þ ⊂ suð3Þ.
Conversely, if we observe that four orthonormal vectors

a, b, c, d are such that all their f-products lie in the same
4D space spanned by a, b, c, d, then their Hermitian
matrices form a 4D subalgebra of suð3Þ, which can only be
suð2Þ × uð1Þ. Therefore, there exists a basis, in which
vectors a, b, c, d lie in ðx1; x2; x3; x8Þ.
Applying this observation to the eigenvectors of Λ,

we obtain Check-(1238), or equivalently Check-(4567):
if Λ has four mutually orthogonal eigenvectors whose
f-products lie in the same 4D subspace, then and only then
there exists a basis in which Λ takes the block-diagonal
form with two 4 × 4 blocks, one lying in ðx1; x2; x3; x8Þ and
the other lying in ðx4; x5; x6; x7Þ.

APPENDIX B: SPLITTING V6

If Λ passes Check-(38), it takes, in an appropriate basis,
a block-diagonal form with a 2 × 2 block within ðx3; x8Þ
and a 6 × 6 block within the subspace V6 ¼ ðx1; x2;
x4; x5; x6; x7Þ. In certain symmetry constrained cases, this
block can be split further or can exhibit specific patterns.

7The similar observation applies to the splitting (3,6,7,8) vs
(1,2,4,5), and to the splitting (3,4,5,8) vs (1,2,6,7), which differ
just by Higgs doublet permutation. For definiteness, we focus on
the first splitting.
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Here, we investigate the relevant options and give their
basis-invariant conditions.

1. Detecting 2 × 2 blocks

Since Check-(38) is passed, we already have a pair of
eigenvectors which define the ðx3; x8Þ subspace. Let us now
pick up two orthonormal vectors a; b ∈ V6. If their
products satisfy

DðabÞ ¼ 0 and DðaaÞ ¼ DðbbÞ ∈ ðx3; x8Þ; ðB1Þ

then, as we prove below, there exists a basis, in which the
vectors a and b lie within subspace ðx1; x2Þ or ðx4; x5Þ or
ðx6; x7Þ. This feature is the basis of Check-(12): if, after
passing Check-(38), the matrix Λ has two eigenvectors
within V6 which satisfy (B1), then its has a 2 × 2 block
located within subspace ðx1; x2Þ or ðx4; x5Þ or ðx6; x7Þ.
The proof goes as follows. Denote a ¼ ða1; a2; a4;

a5; a6; a7Þ and b ¼ ðb1; b2; b4; b5; b6; b7Þ and compute

the D-products explicitly. First, write down DðabÞ
3 ¼ 0,

DðabÞ
8 ¼ 0:

ða4b4 þ a5b5Þ − ða6b6 þ a7b7Þ ¼ 0;

2ða1b1 þ a2b2Þ − ða4b4 þ a5b5Þ − ða6b6 þ a7b7Þ ¼ 0:

ðB2Þ

Together with the orthogonality condition a⃗ b⃗ ¼ 0, they
lead to

a1b1 þ a2b2 ¼ a4b4 þ a5b5 ¼ a6b6 þ a7b7 ¼ 0: ðB3Þ

This implies the following structure for b:

b ¼ ð−σa2; σa1; σ0a5;−σ0a4;−σ00a7; σ00a6Þ; ðB4Þ

with some real coefficients σ, σ0, σ00.
Next, fromDðaaÞ ¼ DðbbÞ within the subspace ðx3; x8Þ as

well as from the normalization condition a⃗2 ¼ b⃗2 ¼ 1, we
see that σ’s can only be �1.
Finally, using this form of b, let us explicitly writeDðabÞ,

DðaaÞ and DðbbÞ within V6:

DðabÞ ¼ −
ffiffiffi
3

p

2

0
BBBBBBBBB@

ðσ0 þ σ00Þða4a7 − a5a6Þ
ðσ0 þ σ00Þða4a6 þ a5a7Þ
ðσ þ σ00Þða1a7 þ a2a6Þ
ðσ þ σ00Þð−a1a6 þ a2a7Þ
ðσ þ σ0Þð−a1a5 þ a2a4Þ
ðσ þ σ0Þða1a4 þ a2a5Þ

1
CCCCCCCCCA
; ðB5Þ

and

DðaaÞ ¼
ffiffiffi
3

p

0
BBBBBBBB@

a4a6 þ a5a7
−a4a7 þ a5a6
a1a6 − a2a7
a1a7 þ a2a6
a1a4 þ a2a5
a1a5 − a2a4

1
CCCCCCCCA
; DðbbÞ ¼ −

ffiffiffi
3

p

0
BBBBBBBB@

σ0σ00ða4a6 þ a5a7Þ
σ0σ00ð−a4a7 þ a5a6Þ
σσ00ða1a6 − a2a7Þ
σσ00ða1a7 þ a2a6Þ
σσ0ða1a4 þ a2a5Þ
σσ0ða1a5 − a2a4Þ

1
CCCCCCCCA
: ðB6Þ

SettingDðaaÞ ¼ 0 within V6 implies that among the three pairs ða1; a2Þ, ða4; a5Þ, and ða6; a7Þ only one can be nonzero, and
the same applies to b. Thus, vectors a and b are located within one of these three blocks. If they are eigenvectors of Λ, it
implies that the corresponding 2 × 2 block is decoupled from the rest. Notice that by permuting the Higgs doublets, one can
always make this block to lie within the ðx1; x2Þ subspace.
If two pairs of eigenvectors from V6 pass Check-(12), then the entire 6 × 6 matrix Λ within V6 is split in three 2 × 2

blocks located within subspace ðx1; x2Þ or ðx4; x5Þ or ðx6; x7Þ. If Λ has this property, we say it passes Check-(12)(45)(67).

2. Z3 pattern inside V6

Let us relax the conditions (B1) which defined Check-(12) and require now that

DðabÞ ∈ V6; DðaaÞ −DðbbÞ ∈ V6; DðaaÞ þDðbbÞ ∈ ðx3; x8Þ; ðB7Þ

which we call Check-Z3. That is, we now allow for
nonzero vectors DðabÞ and DðaaÞ −DðbbÞ provided they
belong to V6. Repeating the calculations of Appendix B 1,
we see that all components of a and b can be nonzero.

However b must still be of the form (B4) with
σ ¼ σ0 ¼ σ00 ¼ �1.
Next, suppose the two eigenvectors of Λ, which we

denote e and e0, satisfy (B7) and correspond to the same
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eigenvalue λ. It can be immediately checked that their
contribution to the eigensystem expansion for Λ,
eiej þ e0ie

0
j, has the following form:

0
BBBBBBBBB@

c12 0 g6 h6 g7 h7
0 c12 h6 −g6 −h7 g7
g6 h6 c13 0 g5 −h5
h6 −g6 0 c13 −h5 −g5
g7 −h7 g5 −h5 c23 0

h7 g7 −h5 −g5 0 c23

1
CCCCCCCCCA

ðB8Þ

It is remarkable that this block has exactly the same form
as in the Z3-symmetric 3HDM, Eq. (35). Therefore, if the
eigenvalues of Λ within V6 are pairwise degenerate, and if
the three corresponding pairs of eigenvectors satisfy
Check-Z3 given in Eq. (B7), then we obtain the Z3-
symmetric model. Notice that the three pairs of eigenvec-
tors may be in arbitrary orientation with respect to each
other; apart from mutual orthogonality, there are no
constraints.
To prove the converse statement, we notice that the 6 × 6

block (B8) keeps its structural form when raised to any
power. It has three pairwise degenerate eigenvalues, there-
fore it can be written generically as

λ1ðe1ie1j þ e01ie
0
1jÞ þ λ2ðe2ie2j þ e02ie

0
2jÞ

þ λ3ðe3ie3j þ e03ie
0
3jÞ: ðB9Þ

Its square and cube have the same form with squared and
cubed eigenvalues, respectively. This can happen only if
each eigensystem eiej þ e0ie

0
j has the form (B8). Con-

tracting it with
ffiffiffi
3

p
dijk gives the vector DðeeÞ þDðe0e0Þ, and

one can verify by explicit calculation that it indeed belongs
to ðx3; x8Þ.

Next, we checked with Mathematica that each pair of
eigenvectors ðe; e0Þ of this matrix has the form of vectors a
and b as in (B4). That is, not only are the eigenvectors
ðe; e0Þ themselves orthogonal and equally normalized but
so are their 2D components within the subspaces ðx1; x2Þ,
ðx4; x5Þ and ðx6; x7Þ. This immediately implies that DðabÞ

and DðeeÞ −Dðe0e0Þ cannot have any components in the
ðx3; x8Þ. Thus, we arrive at all three conditions of Check-Z3

in (B7).

3. Uð1Þ patterns inside V4

Suppose two vectors a; b ∈ V4 ¼ ðx4; x5; x6; x7Þ. By
inspecting entries of the tensor dijk, one sees that DðabÞ,
DðaaÞ, and DðbbÞ must all lie in the subspace ðx1; x2; x3; x8Þ.
In this situation, let us now impose a requirement similar
to (B1):

DðabÞ ¼ 0 and DðaaÞ ¼ DðbbÞ: ðB10Þ

Then, one can establish by direct computation that for any
a ¼ ða4; a5; a6; a7Þ one can pick up the vector b ¼
ða5;−a4; a7;−a6Þ to satisfy (B10).
Now, suppose Λ has passed Check-(4567) and, within

the subspace V4, it has two pairs of eigenvectors which
satisfy (B10). Then we say is passed Check-Uð1Þ2. Writing
Λ via the eigensystem expansion, we get the 4 × 4 block of
the following form:

0
BBB@

c13 0 g8 h8
0 c13 −h8 g8
g8 −h8 c23 0

h8 g8 0 c23

1
CCCA: ðB11Þ

This form is exactly what we obtained for the 3HDM
invariant under Uð1Þ2 symmetry.
Alternatively, we can also impose a different condition:

DðabÞ ¼ 0 in ðx3; x8Þ; DðaaÞ ¼ DðbbÞ in ðx3; x8Þ; DðaaÞ ¼ −DðbbÞ in ðx1; x2Þ: ðB12Þ

Notice that, unlike the previously considered example, this
set of conditions explicitly distinguishes subspaces ðx1; x2Þ
and ðx3; x8Þ. Thus, it can be used only after we have already
passed Check-(38) and Check-(12).
Now, once again, suppose that within V4, matrix Λ

has two degenerate eigenvalues each corresponding to a
pair of eigenvectors which satisfy (B12). Then we say Λ
passes Check-Uð1Þ1. The 4 × 4 block constructed via the
eigensystem expansion now has the following form:

0
BBB@

c13 0 g5 h5
0 c13 h5 −g5
g5 h5 c23 0

h5 −g5 0 c23

1
CCCA: ðB13Þ

It reproduces the corresponding block for the 3HDM
invariant under Uð1Þ1 symmetry.
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APPENDIX C: SUMMARY LIST

For the reader’s convenience, we collect here the con-
ditions for all the symmetry groups of the 3HDM scalar
sector, sorted by increasing order. When a symmetry group
G can produce both CP-violating and CP-conserving
models, we indicate separately G and G CPC. The purpose
of this list is to give an overview; this is why the description
is rather terse. The details can be recovered in the main text
and in other Appendixes.
Discrete groups:
(i) CPC: Check-(257) → V−, see Appendix A 2;

M, L⊥V−;
(ii) Z2: Check-(1238) → V4, see Appendix A 3;

M, L⊥V4;
(iii) Z2 CPC: Check-(257) and Check-(1238) → 5D

subspace V− ∪ V4 ¼ V24567; M, L⊥V24567;
(iv) Z3: Check-(38) → V6, see Sec. II D; 2þ 2þ 2

degeneracy within V6; Check-Z3 for each pair of
eigenvectors, see Appendix B 2; M, L⊥V6; see
Sec. III G for details.

(v) Z3 CPC: the same as Z3 plus Check-(257)
with V− ⊂ V6;

(vi) Z4 CPC: Check-(38), Check-(12), and Check-
Uð1Þ1; M, L⊥V6; see Appendix B 3 and
Sec. III F;

(vii) Z2 × Z2: Check-(38) and Check-(12)(45)(67); M,
L⊥V6; see Sec. III E;

(viii) Z2 × Z2 CPC: same as Z2 × Z2 plus Check-(257)
with V− intersecting each of V12, V45, V67 by 1D
subspaces;

(ix) CP4: Check-(8) and Check-(123)(8); L,M, K, Kð2Þ

along eð8Þ; see Ref. [60] for details;
(x) ðZ2 × Z2Þ⋊CP: same as CP4 plus an algorithm

described in Appendix B3 of Ref. [60];
(xi) S3: Check-(3)(8), see section II D; 2þ 2þ 2

degeneracy within V6; Check-Z3 for each pair of
eigenvectors, see Appendix B 2; L, M, K, Kð2Þ

along eð8Þ; see Sec. IV D.

(xii) S3 CPC: same as S3 plus Check-(257) with
V− ∈ V6;

(xiii) D4 CPC: Check-(3)(8), Check-(12), Check-Uð1Þ1;
M, L along eð8Þ; see Sec. IV C;

(xiv) A4 CPC: Check-(38) and Check-(12)(45)(67);
2þ 3þ 3 degeneracy; M, L ¼ 0; see Sec. V C;

(xv) S4 CPC: same as A4; one triplet of degenerate
eigenvectors is closed under d-product;

(xvi) Δð54Þ: 2þ 2þ 2þ 2 degeneracy; each pair of
eigenvectors passes Check-(3)(8); M, L ¼ 0; see
Sec. V D;

(xvii) Δð54Þ CPC: same as Δð54Þ but with degeneracy
pattern 2þ 2þ 4;

(xviii) Σð36Þ CPC: same as Δð54Þ but with degeneracy
pattern 4þ 4;

Continuous groups:
(i) Uð1Þ1 CPC: Check-(38), Check-(12), and Check-

Uð1Þ1; 2þ 2 degeneracy in V4; M, L⊥V6; see
Appendix B 3 and Sec. III C;

(ii) Uð1Þ2: Check-(1238) and Check-Uð1Þ1;M, L⊥V4;
see Appendix B 3 and Sec. III C;

(iii) Uð1Þ2 CPC: same as Uð1Þ2 plus Check-(257) with
a 2D intersection V4 ∩ V−;

(iv) Uð1Þ × Z2 CPC: Check-(38) and Check-(12)(45)
(67); M, L⊥V6; two subspaces among V12, V45,
V67 show generate eigenvalues; see Sec. III D;

(v) Uð1Þ × Uð1Þ CPC: Check-(38) and Check-(12)(45)
(67); M;L⊥V6; subspaces V12, V45, V67 show
generate eigenvalues; see Sec. III B;

(vi) Oð2Þ CPC: Check-(8) and Check-(123)(8); degen-
eracy patterns 1þ 2 in V123 and 2þ 2 in V4; each
pair of eigenvectors in V4 satisfies Eq. (45); M, L
along eð8Þ; see Sec. IV B

(vii) Uð2Þ CPC: Check-(8) and Check-(123); 3þ 4þ 1

degeneracy pattern; M, L along eð8Þ; see Sec. IVA;
(viii) SOð3Þ CPC: 3þ 5 degeneracy pattern; Check-(257)

for the tripletof eigenvectors;M,L ¼ 0; seeSec. IV B
(ix) SUð3Þ CPC: Λ ∝ 18.
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