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Higgs doublets may come in three generations. The scalar sector of the resulting three-Higgs-doublet
model (3BHDM) may be constrained by global symmetry groups G leading to characteristic phenom-
enology. There exists the full list of symmetry groups G realizable in the 3HDM scalar sector and the
expressions for G-symmetric scalar potentials written in special bases where the generators of G take
simple form. However recognizing the presence of a symmetry in a generic basis remains a major technical
challenge, which impedes efficient exploration of the 3HDM parameter space. In this paper, we solve this
problem using the recently proposed approach, in which basis-independent conditions are formulated as
relations among basis-covariant objects. We develop the formalism and derive basis-independent necessary
and sufficient conditions for the 3HDM scalar sector to be invariant under each of the realizable symmetry
group. We also comment on phenomenological consequences of these results.
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I. INTRODUCTION

A. Historical context

The scalar potential of the Standard Model (SM)
minimally includes a single doublet of SU(2), which
reduces the electroweak symmetry to electromagnetism
via the Brout-Englert-Higgs mechanism, see the recent
review [1] and references therein. The associated single
physical Higgs boson has been observed [2,3] and is now
being extensively investigated at the LHC. However
whether the Higgs sector is indeed as minimal as
postulated by the SM or if the observed 125 GeV
Higgs is just the first state of a rich scalar sector is
presently unknown. This question can only be answered
by experiment. In anticipation of possible future hints or
discoveries, theorists investigate other, nonminimal Higgs
sectors and look for novel ways to experimentally probe
them, see, e.g., [4].

A simple and well motivated generalization of the SM is
extending the scalar sector to include further SU(2),
doublets. This can be thought of as bringing to the scalar
sector the concept of generations present in the SM fermion
sector. Historically, the main motivations for going beyond
the minimal scalar sector of the SM were to gain insight
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into the origin of CP violation (CPV) and into the general
flavor puzzle.

In 1973, T. D. Lee suggested that CP can be broken
spontaneously in a model with two Higgs doublets
(2ZHDM) [5,6]: one starts with a Lagrangian which is
explicitly CP-invariant but observes that the vacuum
expectation values (vevs) emerging after the scalar potential
minimization break the symmetry. However, one typically
obtains in this case dangerously large tree-level flavor
changing neutral currents (FCNCs). Although they can be
eliminated by imposing natural flavor conservation (NFC)
[7,8], this extra requirement precludes any CP violation,
explicit or spontaneous. This clash was removed by S.
Weinberg in 1976 in a model with three Higgs doublets
(B3HDM) [9] with explicit CPV and later by G. Branco in the
spontaneously CP-violating model [10,11]. See also, e.g.,
[12,13] for more possibilities to control FCNCs in N-Higgs
doublet models (NHDMs).

The late 1970s also witnessed a surge of activity on
linking the fundamental fermion masses with the entries of
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix.
3HDMs equipped with discrete symmetry groups offered
many intriguing opportunities. In 3HDMs, the number of
Higgs doublets matches the number of fermion generations,
which is viewed as an appealing feature of the models.
Various examples of the 3HDM were constructed based on
symmetry groups such as S; [14-17], S4 [18-20], and
A(54) [21]. More details of NHDMs including further
historical context can be found in [4].

During the 1990s and 2000s, exploration of multi-Higgs-
doublet model was dominated by 2HDMs, boosted by two
Higgs doublets being required in minimal supersymmetric
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extensions [22]. In the past decade, 3HDMs gradually
regained interest since in many aspects they are capable of
delivering more than 2HDMs. The attractive phenomeno-
logical features of 3HDMs include richer scalar spectrum,
CPV simultaneously with dark matter candidates [23],
geometrical CPV [24,25], a novel type of CP symmetry,
which is of order 4 rather than of order 2 [26—28] and which
is physically distinct from the usual CP [29], and of course
a variety of discrete symmetry groups.

Given that the 3HDM scalar and Yukawa sectors can be
equipped with global symmetries,1 which have a profound
effect on phenomenology, a classification program was
undertaken a decade ago to list all symmetry-related
situations possible in 3HDMs. First, the list of all
Abelian symmetries realizable in the 3HDM without
leading to accidental symmetries was obtained in [30,31]
and later extended to Yukawa sectors in [32—-34]. Next, the
full list of all discrete non-Abelian symmetry groups
realizable in the 3HDM scalar sector was derived in
[35,36]. Continuous non-Abelian groups were not listed
but it is straightforward to include them. In the present
work, we complete this classification by treating all
symmetry groups realizable in the scalar sector of the
3HDM, both discrete and continuous, including all the
cases of CP-conserving models.

Finally, a G-symmetric potential can have minima which
either conserve or (partially) break the symmetry group.
The full list of all symmetry breaking patterns for each
group G was presented in [37]. One particularly important
conclusion was that, for sufficiently large discrete group G,
there remains some residual symmetry in any minimum. In
the light of the theorem formulated initially in [38] and
refined in [39], this incomplete breaking leads to unrealistic
fermion sectors.

B. The challenge of basis independent recognition:
The example of CP symmetry

Models which involve several fields with equal quantum
numbers possess notorious large basis-change freedom,
which can seriously impede their efficient exploration. Two
models may look completely different and in fact corre-
spond to the same physics, merely written in different
bases. A model can also contain a symmetry, but if its
Lagrangian is written in a generic basis, the presence
of this symmetry may be obscured. In order to detect
the presence of symmetries, one must develop and apply
symmetry recognition checks which do not rely on the
choice of basis.

The traditional basis-invariant approach to NHDMs
with symmetries is best illustrated by the problem of
finding necessary and sufficient conditions of explicit
CP-conservation in the scalar sector. In order to understand

'We stress that we only consider symmetry transformations
which leave the kinetic term invariant.

the properties of the potential under the action of a general
CP transformation [40-42], one constructs CP-odd invar-
iants (CPI), first identified in [43] and further developed in
[44-49]. One writes the coupling coefficients of the scalar
potential as tensors under the basis change group, then fully
contracts these tensors to produce various basis invariant
quantities, and selects those invariants which flip sign
under the action of a general CP transformation. Although
the explicit expression of the general CP transformation is
basis-dependent, its action on basis invariants is the same in
all bases, and therefore one gets an unambiguous identi-
fication of CPIs.

Although there are infinitely many CPIs, there exists a
finite number of “generating” CPIs. If all of these gen-
erating CPIs are zero, then all other CPIs are also zero, and
the model is explicitly CP conserving. One just needs to
identify these generating invariants, and this is where the
problem becomes difficult.

In the case of the 2HDM, the four generating CPIs were
established in [46—48] with the aid of computer algebra.
They were almost immediately derived in a much more
transparent way within the bilinear formalism, which
appeared first in [50] and which was developed further
and applied to CP-conservation in [51-55]. Very recently,
the four CPIs of 2HDM were rederived in an alternative
approach based on fields rather than bilinears [56].

Extension of these methods to the 3HDM turned out very
challenging. Although the CPIs can be easily constructed
[49], it is unclear how to find the set of generating CPIs.
It was done, for example, in simpler cases of 3HDMs
with non-Abelian symmetries with triplets [57,58], but it
remains unsolved in the general 3HDM. Whether the
methods of [56] can be generalized to the 3HDM and
solve this problem remains an open question and requires
additional work.

Meanwhile, an alternative approach made its debut in
2006 [59] and was recently exploited fully in [60,61].
The idea is that it is not obligatory to use basis invariants
in order to establish basis-independent conditions. One
can also formulate these conditions in the form of basis-
independent relations among basis-covariant objects [61].
Using this approach, the basis-independent necessary and
sufficient conditions were formulated for the usual CP
symmetry [59] and for the CP symmetry of order 4
(CP4) [60], as well as for the simultaneous presence of
the two forms of CP symmetry. With these results, the
issue of explicit CP conservation in 3HDMs is now
settled.

C. Toward basis independent recognition of other
symmetries in SHDM

The ‘“‘success story” above supports the idea of using
basis-covariant objects of the bilinear formalism to detect
all other symmetries of 3HDMs. This is what we accom-
plish in the present work for all the realizable symmetry
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groups, Abelian and non-Abelian. The essence of our
procedure is the following. We select a symmetry group,
write the general Higgs potential invariant under it in a
convenient basis, derive the bilinear-space objects in
that basis, identify their structural properties, and then
establish basis-invariant criteria which implement these
features. The end result is a set of checks which can be
performed in any basis, such that the model possesses a
given symmetry group if and only if the potential passes
these checks.

The layout of the paper is as follows. In Sec. II we
outline the bilinear space technique, describe the products
of the adjoint space vectors based on the SU(3) invariant
tensors f;; and d;j, and then show the idea of dissecting
the adjoint space with the aid of these vectors. These
tools will play the crucial role in detecting symmetries in
a basis-invariant way. Then, in following three sections,
we apply these methods to all symmetry groups available
in the 3HDM scalar sector, starting with the Abelian
ones, then continuing to non-Abelian ones. We then
conclude with an outlook of how to use the results of this
paper in phenomenological scans of the 3HDM parameter
space. Additional technical details and derivations are
contained in Appendixes. In particular, in Appendix C we
give the complete list of the conditions for all the
symmetry groups realizable in the scalar sector of
the 3HDM.

f123 =1,

as well as

1
dise = dis7 = —doyy = dyse = 5

1

d118 = d228 = d338 = _d888 = %,

1
f147:_f156:f246:f257:f345:_f367:§’

I1. BILINEAR SPACE FORMALISM
A. Orbit space

We begin with a brief review of the bilinear formalism
with specific application to 3HDMs [62,63]. We work with
N = 3 Higgs doublets ¢,, a = 1, 2, 3, all having the same
electroweak quantum numbers. The most general renorma-
lizable 3HDM potential can be compactly written as

V =Y (dis) + Zavea(Dathy) (bidba). (1)

We construct the following 1 4 8 gauge-invariant bilinear
combinations (ry, r;):

1 .
ro=\73¢&¢a, re=gi(t) ey, i=1,...8 (2

Here, t; =4;/2 are generators of the SU(3) algebra
satisfying

. 1
[titj] = ifiute. and  {1;,1;} = §5ij13 + dijiti, (3)

with the SU(3) structure constants f,; and the fully
symmetric SU(3) invariant tensor d;;. With the usual
choice of basis for the Gell-Mann matrices 4;, these have
the nonzero components

V3
f458:f678:7v (4)
1
dyug = dyss = —dze = —d377 = 5
1
dyyg = dssg = dggg = dp7s = ———=. 5
448 558 668 778 23 (5)

Group-theoretically, ry is an SU(3) singlet and r; realizes the adjoint representation of SU(3). The coefficient in the
definition of r( is not fixed by this construction. We use here the definition borrowed from [62] but alternative normalization
factors are possible [63]; the exact choice is not essential here. In the Gell-Mann basis, the bilinears r; have the following
form:

r+ir =¢T¢2, ry +irs =¢J1r¢3, re +irg :4’;453’

Loy i Lo i i

Va2 = — — s Ve = + - 2 ! . 6

3 =5 (191 = ad2) 8 2\5(471451 b2 = 2393) (6)
The real vectors r obtained in this way do not fill the entire real eight-dimensional space R® (the adjoint space, whose
vectors will be denoted as x), but a 7D manifold in it, which is called the orbit space. The points of this space are in one-to-
one correspondence with gauge orbits within the Higgs fields space ¢,. Algebraically, the orbit space is defined by the
following (in)equalities [62]:

ro >0, rs—r? >0, dyjririryg + 2 —3r2) =0. (7)

L
rol\r,
23 °
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A basis change in the space of Higgs doublets ¢, — U ;¢
with U € SU(3) leaves r, unchanged and induces an
SO(8) rotation of the vector r;. However, not all SO(8)
rotations can be obtained in this way; they must conserve,
in addition, d;jirir;ry.

B. Constructions in the adjoint space

The main advantage of changing to the bilinear space is
that the potential V becomes a quadratic rather than quartic
function of variables:

V = Moyrg+ M;r; + Aogr} + Liror, + Ayrirj. (8)

This generic expression holds for any NHDM. M, A,
the entries of the real vectors M, L lying in the adjoint
space RV'~!, and the (N2 —1) x (N> — 1) entries of the
real symmetric matrix A, are all expressed in terms of the
components of the tensors Y, and Z ., in (1).

In 2HDMs, any SO(3) rotation in the adjoint space can
be induced by a basis change of the two Higgs doublets.
Therefore, the matrix A can always be diagonalized and
its eigenvectors can always be aligned with the axes xi,
X,, and x3. These eigenvectors as well as the vectors M,
L are covariant objects and transform in the same way
under basis changes. Using SO(3) invariant tensors &;;
and ¢;;, one can contract these vectors and obtain basis
invariants.

In 3HDMs, the potential (8) contains two 8D vectors M
and L and the 8 x 8 real symmetric matrix A. The lack of
the full SO(8) rotational freedom implies that it is not
guaranteed that A can be diagonalized by a basis change.
Nevertheless, A can always be expanded over its eigen-
system, and eigenvalues and eigenvectors can be found, at
least numerically.

We can now formulate the main idea which was recently
proposed in [61] and which we fully develop in the
present work.

The basis-invariant information encoded in the eigen-
system of A and in the vectors M and L completely
determines all physically relevant structural properties
of the scalar sector of a 3HDM. Although all the
vectors in the adjoint space are not invariant under
basis changes, their relative orientation as well as their
orientation with respect to the orbit space (7) is basis
invariant. The challenge is to extract this basis-
invariant information and to link it to the symmetry
groups of 3HDMs.

The main tool which will help us overcome this challenge is
to make full use of the two additional SU(3) invariant
tensors f;;x and d,;; defined in (3). Given any two vectors a
and b in the adjoint space, one can use these tensors to
define their f- and d-products as well as a nonlinear action
on a vector:

5 Dgab) = \/gdijkajbk’
Dgaa) = \/gdijkajak. (9)

These products respect group covariance: vectors F and D
transform as adjoint SU(3) representations and, if needed,
can be used in additional products.2

These products were first used in [59] as building blocks
of the basis-invariant algorithm to detect the usual CP
symmetry in 3HDMs. For more than a decade, there were
no follow-up studies. In fact, it was not broadly acknowl-
edged by the community that these basis-invariant con-
ditions for explicit CP conservation had been established in
3HDMs. Very recently, this approach was revived and
further developed in [60] where the basis-invariant con-
ditions for CP4 were established. These two papers provide
the complete answer to the question of the basis-invariant
recognition of a CP symmetry in 3HDMs and the same
methodology enables the detection of other symmetries
possible in 3HDMs. This is what we are going to achieve in
the present paper.

C. Properties of the f and d-products

The vectors F and D defined in (9) obey certain
remarkable properties, which follow from various relations
among SU(3)-invariant tensors, see, e.g., [64]. First, using
the Jacobi identity dijkfklm + djlkfkim + dlikfkjm = O,
one observes that vectors F(@) and D) are always
orthogonal:

Dg{ab) FI({ab) = \/ga[a'/b b '/dijkfki/j/

i'YjYj
= \/gaiai’bjbj’(_dji’kf kij — diif kjj’)
= D\ F\") — (10)

Any of these two vectors can be zero, but not simulta-
neously, because their norms satisfy

D)2 | Flab) 2 = G257, (11)

For contraction of two d’s, one has in SU(3) the following
relation:

d;jxdiim + djdiim + diiedijm

1
=3 (60 + 6iSjm + Simdj1)- (12)

Using it, one can derive

*Group-theoretically, vectors F and D represent the antisym-
metric and symmetric octets of the direct product 8 ® 8 of
SU(3). Using appropriate projectors, one can also extract higher-
dimensional representations out of this product. However since
they reside in a different space, we do not involve them in our
analysis.
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Dlaa) plab) — 32(2 1_7')’ |D(aa)|2 —_ (52)2’
D@ p®b) 4 2|plab) 2 = G25* 4 2(G b)>. (13)

This means that the nonlinear action of d defined via
a — D' preserves the norm of unit vectors. If « and b
are orthonormal, then D@4 and Db) are orthogonal and
the absolute value of D®) can be computed from the last
relation: |D(@?)| = sin(p,p/2), where @45 is the angle
between vectors D@ and D®?)  In particular, if it
happens that D@ = D(®?)  then D) =0, while if
D) = —p®) then |D\@)| = 1.

D. Detecting subspaces

The expressions for the tensors f;;; and d;;; make it clear
that not all directions in the adjoint space R® are equivalent.
There are basis-invariant features which distinguish various
subspaces of R® with equal dimensions. We will see below
that 3HDM s equipped with various symmetry groups differ
by the subspaces in which the vectors M and L and the
eigenvectors of A reside. Therefore, the first key step
toward our goal is to develop a set of basis-invariant checks
which detect that (eigen)vectors belong to a subspace of R3
with certain properties.

The checks which are described in this section and
elaborated in full detail in the Appendixes A and B will
be used to detect the direction xg, the subspace (x3,xg),
various patterns of the matrix A in its orthogonal complement

Ve = (Xl,xz,x4ﬂx51x6,x7), (14)

among others. We stress that these checks detect certain
basis-invariant conditions. It is never needed to actually
switch to a preferred basis to perform a check. For example,
“detecting an eigenvector in direction xg” means detecting
basis-invariant conditions which indicate that there exists a
basis choice where that vector is aligned with xg.

To illustrate the detection technique, let us consider a
unit vector a in the adjoint space and compute D(“?)_ Then,
one observes that D(“) = —g if and only if there exists a
basis in which a is aligned along xg.

The proof follows by direct calculation. The vectors a of
the adjoint space R® are in one-to-one correspondence with
traceless Hermitian 3 x 3 matrices A = 2q;t;, a; = Tr(At;).
The Hermitian matrix A can always be diagonalized by a
basis change. Back in the adjoint space, this means that any
vector a can be brought to the (x5, xg) subspace. Using the
explicit expressions for the components of d;j; given in (5),

which are valid in any basis, one finds that D(@®) also stays
in the same (x3,xg) subspace:

Dgaa) 2 2

(aa)
D3 = 2asag, = a3 — ag,

DU = (a5 + ag)* = 1. (15)

In polar coordinates on the (x3,xg) plane, this operation
acts on the angular variable of a as a + 7/2 — 2a. Hence,
the three directions a = /2, n/6, and 57/6 are stable
under this action (cf. [62] for more details on this
construction). The first direction corresponds to a being
aligned with xg, while the other two directions can be
brought to it by a basis change (a cyclic permutation of the
three doublets). Finally, if one insists on the sign in the
relation D(“?) = —q, then the unit vector a must be aligned
with the positive xg direction.

The observation just made is the basis of what we call
Check-(8): if there exists an eigenvector of A, denoted e(®),
which satisfies

D®8) = (), (16)

then, in the appropriate basis, e(®) is along axis xg, and the
matrix A takes the block-diagonal form with a 7 x 7 block
and a stand-alone entry Agg. Such an eigenvector does not
have to be unique.

Next, let us find when two adjoint space vectors a and b
can be simultaneously brought to the (xs3,xg) subspace.
This is possible if and only if the corresponding traceless
Hermitian matrices A and B commute. Back in the adjoint
space, this is equivalent to

Flab) =0, (17)

Thus, we obtain Check-(38): if A has two orthogonal
eigenvectors a and b which satisfy (17), then there exists a
basis change which brings both of them to the (x3,xg)
plane. The matrix A takes the block-diagonal form with a
2 x 2 block in this subspace and the 6 x 6 block in its
orthogonal complement V. Again, it is not guaranteed that
such a pair of eigenvectors is unique.

One can give an alternative formulation for Check-(38)
using d-products. Indeed, due to Eq. (11), f-orthogonality
implies that [D(“)| = 1, and then, using Eq. (13), one
obtains that D@ p(®?) — _1  This is only possible if
D) = _D(b) One can also show the converse: starting
from D(%) = —D(®?) for two orthogonal eigenvectors of A,
one recovers Eq. (17).

Notice that passing Check-(38) does not guarantee that
the two eigenvectors are aligned with the axes x; and xg.
For that, one needs to require an extra condition, and the
criterion for this to happen can be summarized as

D) = _pbb) — _g, (18)

We thus formulate Check-(3)(8): if matrix A has two
eigenvectors a and b satisfying (18), then, in the appro-
priate basis, a is aligned with xg and b is aligned with x3.

The two eigenvectors emerging from Check-(3)(8)
appear in it on different footing. It becomes clear if one
reformulates this check as a two-step procedure: first,
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perform Check-(8) to detect a, and then observe that there
exists another vector b such that F(“*) = 0. This second
vector can only be within the subspace (x;,x,, x3), and it
can be aligned with x3 if needed. This procedure makes it
evident that vector b is not unique; there is the entire 3D
subspace which is both orthogonal and f-orthogonal to the
vector a passing Check-(8).

This observation allows us to formulate Check-(123)(8):
if A passes Check-(8) and if, in addition, it has three other
mutually orthogonal eigenvectors b, b’,b” which are
orthogonal and f-orthogonal to e(®)

F08) — p0'8) — p'8) — (19)

then in an appropriate basis, e® is along x5, while vectors
(b,b',b") span the subspace (x;,x,,x3). If needed, these
eigenvectors can be aligned with the axes by a basis
change. Thus, the matrix A takes in this basis the block-
diagonal form with the diagonal entries A, Asy, As3, Ags,
and the 4 x 4 block in the orthogonal complement

Vi = (x4, X5, X6, X7). (20)

These simple examples give an overall impression of how
one can detect subspaces in R® with distinct basis-invariant
properties and ensure that A has certain block-diagonal
form in an appropriate basis. In the Appendixes A and B,
we further develop this technique and derive several other
checks. We also add here that, when deriving properties of
certain subspaces, one often has a choice of which vectors
to use, F or D. Most checks below we will make use of
vectors D, although in some cases an equivalent formu-
lation in terms of vectors F is also possible, in the light of
the relations listed in the previous subsection.

Sparing the details presented in Appendixes A and B, we
give here a list of the checks for A, which detect various
special subspaces or patterns inside subspaces.

(i) Check-(8) detects a 1D subspace (A acquires a
block-diagonal form with blocks 7 + 1);
(i1) Check-(38) detects a 2D subspace (6 + 2);

(iii) Check-(3)(8) detects two 1D  subspaces
G+14+1);

(iv) Check-(123)(8) detects four 1D subspaces (4 + 1+
1+1+1);

(v) Check-(123) and Check-(257) detect two inequi-
valent 3D subspaces (5 + 3), closely related to the
SU(2) and SO(3) subgroups of SU(3);
(vi) Check-(1238), or equivalently Check-(4567), de-
tects a 4D subspace (4 + 4).
For A matrices passing Check-(38), the 6D subspace V¢
can further split or can demonstrate special patterns.
(1) Check-(12) detects another 2D subspace (4 +
2+2);
(i1) Check-(12)(45)(67) detects all 2D subspaces (2 +
24+242);

(iii) Check-Z5 detects a pattern within V¢ characteristic
for the Z; symmetry group.
For A matrices passing Check-(38) and Check-(12), the 4D
subspace V, can still demonstrate special patterns charac-
teristic for two nonequivalent implementations of U(1)
symmetry:
(i) Check-U(1);;

(ii) Check-U(1)s.

In the following sections, we will show how various
symmetries groups imposed on the 3HDM scalar sector can
be detected in the basis-invariant way via these checks.

ITI. ABELIAN GROUPS

A. Rephasing symmetries

Let us first recapitulate the main features of the classi-
fication of Abelian symmetry groups in the scalar sector of
3HDMs [30,31]. All Abelian subgroups of SU(3), in a
certain basis, can be represented by rephasing groups.
Only a few of them can be used to define models which
do not possess additional accidental family symmetries.
These groups are

2y, Z3, Zy,
U(l) x Z,,

Z,xZ,,  U(l),
U(1) x U(1). (21)

All of them are subgroups of the maximal Abelian group
U(1) x U(1). Qualitatively, the larger the symmetry group
is, the fewer are the free parameters remaining in the
potential, and the tighter are the conditions one needs to
impose to define the model.

The maximal Abelian group U(1) x U(1) (maximal
torus) is a two-parametric subgroup of SU(3) of the
following transformations:

U(1), = diag(e®, e7@,1), U(1), = diag(e?”, e, e'f),
a,p € 0,2x]. (22)

Notice that the two transformations U(1), and U(1), differ
by their eigenvalue multiplicities. There is no basis change
which would map any U(1),-transformation into any
U(1), transformation. Also, notice that Z(SU(3)) ~ Z3,
the center of SU(3) generated by diag(w, @, ®) is located
inside U(1),. If one wants to construct the maximal torus in
PSU(3)~SU(3)/Z(SU(3)), one would get the same
U(1), and U(1),, as (22) but with g € [0,2x/3].

As explained in [31], for a proper construction, one should
use Abelian subgroups of PSU(3)~SU(3)/Z(SU(3)) rather
then SU(3). In this case, one additional Abelian subgroup
appears, Z3 X Z3.
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B. U(1) x U(1) 3HDM

Let us now write the 3HDM potential symmetric under
U(l) xU(1):

Vo=> mpida+ > dalditha)* + > ar(dlih) (b bs)

a<b
A (Padhy) (B ba))- (23)

It contains 3 quadratic terms and 9 quartic terms, all with
real coefficients. The model is automatically CP-conserv-
ing; the CP symmetry can be generated, for instance, by the
usual conjugation.

In the adjoint space, one gets scalars

1
No =3 (0 + At 2+ g+ Jus + ).
1
M, = 7§(m% + m3 +mj3), (24)

the two vectors

1
M; :m%—m%, My :—(m%—i—m%—Zm%),

V3

2 A3 /123>
L — A =4 + ,
3 \/§< 1— 4 )

2 A1z +123>
Ly =— A +4 =243+ 1) ————=|. 25
8 \/§<1 2 3+ 412 5 (25)
and

!
12
!
12
As3 - Asg
)«/
A= . (26)
A3
A3
Ay
Asg Agg

with
Ayy =y + 40— Ass = —= (4 = Ay — Ays + Ags)
33 =4 2 — A2, 38_\/5 | — 42 — A3+ 423),

1
Agg = = (A + Ay + 425 + Ap — 2443 — 2403). (27)

3

One observes that A has a generic 2 x 2 block in the
(x3,xg) subspace, while in the subspace V¢ [Eq. (14)], it
has the diagonal, pairwise-degenerate structure within the
subspaces (x, x»), (x4, X5), and (xg, x7). The two vectors
M and L have nonzero components in the (x3,xg)
subspace.

Using the results of Secs. II D and Appendix B 1, we can
easily formulate necessary and sufficient basis-invariant
conditions for the 3HDM potential to be U(1) x U(1)
symmetric:

(1) the matrix A must pass Check-(38) and Check-(12)
(45)(67);

(i1) each pair of eigenvectors in Check-(12)(45)(67)

must correspond to the same eigenvalue;

(iii) the vectors M and L must be orthogonal to the six

eigenvectors of V.

C. U(1) 3HDM

Groups U(1), and U(1), in (22) are distinct, and
imposing each of them constrains the potential in a different
way. Imposing U(1), leads, in addition to V, [Eq. (23)], to
one more term:

Vo), = 4s(#]és)(des) + Hee.

with complex 5. Since 45 is the only complex parameter,
one can rephase the doublets to make it real, which implies
that U(1), automatically leads to explicit CP conservation.
In the adjoint space, the blocks of A in (x3, xg) and (x1, x,)
are unchanged, while within the subspace V, [Eq. (20)], the
block is modified by the additional term to

(28)

s 0  Reds —Imis
0 A —Imls —Red
13 5 5 ( ) 9)
Reds -Imis Ay 0
—Im5 —Rel5 0 }/23

This pattern in V4 can be detected by conditions formulated
in Appendix B 3. Thus, the necessary and sufficient
basis-invariant conditions for the 3HDM potential to be
U(1),-symmetric are
(i) the matrix A passes Check-(38) and Check-(12);
(i1) the two eigenvectors of Check-(12) correspond to
the same eigenvalue;
(iii) within V4, A passes Check-U(1),;
(iv) the vectors M and L are orthogonal to the six
eigenvectors in V.
In contrast to U(1),, U(1), allows for several new terms
in addition to V:

Vow, = m§3¢"1'¢2 + /_15(¢-1r¢2)2
+ (¢12) Asib1 + apir + dsbihs)

+ % (#]¢h3) (¢5p) + Hee. (30)

All coefficients here can be complex. Even if one sets some
of them real by a basis change, several complex coefficients
will remain. Thus, the U(1),-symmetric 3HDM can be
explicitly CP violating.

In the adjoint space, one sees that vectors M and L can
now have unconstrained components in the subspace
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(x1, X2, x3,xg). The matrix A has a block-diagonal form
with two blocks 4 x 4. The block in the subspace
(x1,x2,x3,xg) is generic, and therefore its eigenvalues
are unconstrained. The block in its orthogonal complement
V, shows the following pattern:

13 0 Re/_lg Im/_ig
0 yi —ImZ, Rel.
5 13_/ / 8 8 ’ (3 1 )
Redy —Imig 15, 0

Iml; Relj 0 b
which is different from (29). Thus, the necessary and
sufficient basis-invariant conditions for the 3HDM poten-
tial to be U(1),-symmetric are
(1) the matrix A passes Check-(4567) described in
Appendix A 3;
(i) within V4, A passes Check-U(1), described in
Appendix B 3;
(iii) the vectors M and L are orthogonal to the four
eigenvectors in V.

D. U(1) x Z, 3HDM

If one keeps, out of all terms in Vy),, only

)
/_15(471452)2 + H.c., then the potential is invariant not only
under U(1), but also under the Z, subgroup of U(1),,
which flips the sign of ¢;. Since we are left with only
one complex coefficient, this model is explicitly CP
conserving.

The new term preserves the block-diagonal form of A in
Eq. (26) apart from the 2 x 2 block in the (x1, x,) subspace.
This block becomes generic, so that the eigenvalue degen-
eracy is lifted. Thus, the basis-invariant conditions for the
U(1) x Z, 3HDM are the same as for U(1) x U(1) 3HDM
with only this condition relaxed.

E. Zz X Zz 3HDM

Restricting the previous case to the discrete subgroup
of arbitrary sign flips, one obtains the famous Weinberg
model with the symmetry group Z, x Z, [9]. The Higgs
potential contains, in addition to V, the following three
terms:

Vaaz, = Aia(102)° + D3 (933)” + 251 (#¢1)* + Hec,
(32)
where all coefficients can be complex. If Im(4;,4,345;) #0,

then it is impossible to make all coefficients real by
any basis change, and the model is explicitly CP violating.4

“Even with complex coefficients, there remains the possibility
of a generalized CP symmetry which does not commute with
Z, X Z,. This case is treated in Sec. IV E.

If it is real, then the model is explicitly CP conserving and
is known as Branco’s model [10,11].

In the adjoint space, the generic form within the subspace
(x3,xg) is unchanged, while in Vi the new terms (32) with
generic complex A5, Ay, and 3, drive the completely
diagonal A of Eq. (26) into a block-diagonal form with
three 2 x 2 blocks within subspaces (x;,x,), (x4,xs),
and (xg,x7). All these blocks are generic, so that the
eigenvalues are not constrained. Using the rephasing
freedom, one can diagonalize at least two of the three
blocks. If the third one also gets diagonalized, we have the
explicitly CP-conserving case (Branco’s model), if not, we
have the explicitly CP-violating case (Weinberg’s model).

The necessary and sufficient basis-invariant conditions
for the Z, x Z,-symmetric 3HDM are given by the
simplified version of the U(1) x U(1) case:

(i) the matrix A passes Check-(38) and Check-(12)
(45)(67);
(i1) the vectors M and L are orthogonal to the six
eigenvectors in V.
Explicit CP conservation, that is, whether this is Weinberg’s
or Branco’s model, can be detected by Check-(257)
described in Appendix A 2 and first derived in [59].

F. Z, 3HDM

The Z4-symmetric 3HDM can only arise as a particular
case of the U(1); 3HDM. The Z,-symmetric potential
contains, in addition to V, two extra terms:

Vz, = 25(d¢3) (d3) + Aia(#]hs)? + Hee.  (33)

Since there are only two complex coefficients, they can be
made real via rephasing, and the model is explicitly CP
conserving. The matrix A has the familiar features: a
generic block in the subspace (x3,xg), a generic block
in the subspace (xy,x,), and the block-diagonal structure
(29) in V. The basis-invariant conditions are the same as
for U(1),, with the removal of the condition of the
eigenvalue degeneracy within the subspace (x, x,), i.e.,
(i) the matrix A passes Check-(38) and Check-(12);
(i) within V,, A passes Check-U(1);;
(iii) the vectors M and L are orthogonal to the six
eigenvectors in V.

G. Z; 3HDM

The Z;-symmetric 3HDM can also only arise as a
particular case of the U(1), 3HDM. Its potential contains,
in addition to V, three extra terms:

Vz, = 25(]03) (#3d3) + A6 (1) (Bib1)
+ 47 (i) (d]¢h2) + Hec., (34)

where all coefficients can be complex. Even if one makes
two of them real (for example A4 and 4;), the other (e.g., 15)
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can still be complex, thus the possibility of explicit CP
violation remains.

The matrix A still has a generic block in (x3,xg), while
within Vg it takes the following form:

X, 0  Rel Imlg Rely Imi
0 A, Imls -Rels —Iml; Rel
Reds Imls A, 0  Rels —Imis
Iml —Rely O Xy —Imls —Rels
Rel, —Iml; Rels —Imls A 0
Imd; Rel; —Imds —Reds 0 b

(35)

This matrix has three twice-degenerate eigenvalues. In
Appendix B 2, we prove that this pattern emerges if and
only if all three pairs of eigenvectors corresponding to
the same eigenvalue pass Check-Z;. Therefore, the
basis-invariant necessary and sufficient conditions for
Zz-symmetric 3HDM are

(i) the matrix A passes Check-(38);

(ii) the six eigenvalues of A within V¢ display 242 +2
degeneracy, and each pair of the eigenvectors
passes Check-Z3;

(iii) the vectors M and L are orthogonal to the six
eigenvectors in V.

Explicit CP conservation within Z; 3HDM implies that, in
a certain basis, all coefficients are real. The 6 x 6 block
then splits into two 3 x 3 blocks, which are closed under
the f-product, so that this feature can be detected by
Check-(257).

H. Z, 3HDM

Finally, the smallest symmetry group one can impose is
Z, generated, for example, by the sign flip of doublet ¢5. In
the adjoint space, the only feature one observes is that A
splits into two 4 x 4 blocks: one in the (xi,x,,x3,Xg)
subspace and the other in V. The structure of each block is
unconstrained. In Appendix A3 we formulated Check-
(1238) which detects exactly this splitting of A. It must be
accompanied with the requirement that vectors M and L are
orthogonal to the eigenvectors from V.

In summary, in this section we gave basis-invariant con-
ditions for each rephasing symmetry group in 3HDM,
starting from the largest one U(1) x U(1) and then descen-
ding to its subgroups. As the symmetry is reduced, we see
that qualitatively the conditions are gradually relaxed.

IV. GROUPS WITH 2D REPRESENTATIONS
A. U(2)-symmetric 3HDM

We now move to the symmetry groups with two-
dimensional irreducible representations. As before, we
begin with the largest subgroup of SU(3) with 2D

irreducible representation, U(2)~(SU(2)xU(1))/Z,. In
the basis where SU(2) transformations act nontrivially on
@1, ¢, and U(1) transformations are of the type U(1),, the
potential takes the form

Vu) = mi(pid) + ¢ids) + m3pies
+ A1 (i1 + Bih)? + Aa(Bihs)?
+ Al g — (911 (93h2))
+Ai3(h]1 + bies) (Bibs)
+ 20511 + s ), (36)

which is the U(1) x U(1) potential (23) with the additional
constraints

’1/13 = ’1/237 (37)

Ao =2y = 2. (38)

In the adjoint space, one sees that the vectors M and L, in
this basis, are along axis xg. The only off-diagonal element
of A in (26) is now zero, Asg = 0, so that A becomes
diagonal with the following unit blocks:

A1y
A= ‘ ZIE VI (39)
Ag

and Ag = 4(4; + A3 — 413)/3 — #},/3. The converse is also
true: if L, M are parallel to xg and A exhibits this pattern,
then the potential is invariant under U(2) symmetry.

To determine the basis-invariant conditions for the
U(2) symmetry to be present, we first need to detect the
special direction xg. This is done by Check-(8) described in
Sec. I1 D: if there exists an eigenvector e(®) satisfying (16),
then in the appropriate basis it can be aligned with the
positive direction of axis xg. We also require that L and M
are aligned in the same direction. Next, one must observe
that the eigenvalues of A display the degeneracy pattern
3 + 4 + 1, with the nondegenerate eigenvalue correspond-
ing to e®. Moreover, the eigenvectors corresponding to
the triple-degenerate eigenvalue must pass Check-(123)
described in Appendix A 2. If all these conditions are
satisfied, the model has the U(2) symmetry.

B. O(2)-symmetric 3HDM

When going from SU(2) x U(1) to smaller groups
with 2D irreducible representations, one first notices that
imposing SU(2) alone automatically leads to an accidental
U(1), bringing one back to the previous case. Thus, we
consider next the symmetry group O(2) ~SO(2)xZ,.
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When describing SO(2) transformations, it is convenient to
work in the basis where they are given either by orthogonal
rotations in the (¢, ¢,) subspace or by rephasing trans-
formations from U(1),. In the former case, the extra Z, can
be generated by a reflection with respect to any direction in
this subspace:

Cs Ss 0

S
i)
I

Ss —Cs 0 s (40)

0 0 1
with ¢5 =cosd and ss =sing, angle O being a free

parameter, while in the latter case the generator can be
the transformation b,

I
12

M+ i

I
12

23+ Redys

A w7 = _
50(2)xZ, Iml,s

0 €9 0
by=|e® 0 0 (41)
0 0 1

In the real O(2) basis, the most general potential compat-
ible with this symmetry contains, in addition to Eq. (36),
the following terms:

Vo) = 212<Im¢f¢2)2
+ {%3 [(#1s)” + (#33)°] + Hc} (42)

In the adjoint space, the matrix A takes the following form:

—Im/_113
e (43)
/113 - Re/113

/1/13 + Reﬁl_g

—Im/;

A3 —Redys

Ag

In the rephasing basis, one takes V as in (23), applies the conditions (37), and adds the U(1),-symmetric terms (28) without
any constraint on As. The resulting matrix A acquires a slightly different form:

i
i
24 =4
N s | Rels —Imis )
Xy —Imis —Rels
Reds —Imis 3
—Imi; —Rels . 3

In both cases one observes that the eigenvalue degeneracy
pattern becomes 1 +2 + 2 42 4+ 1, where the nondegen-
erate eigenvalues can only correspond to xg and an
eigenvector in the subspace (xy, x5, x3).

To detect the presence of this symmetry group in a basis
invariant way, we first detect the eigenvector ¢® via
Check-(8) and then the three eigenvectors in the subspace
(x1,x2,x3) via Check-(123)(8), described in section II D.
Next, one checks that two among the three eigenvalues
within (x, x5, x3) are degenerate, which singles out the

Ag

corresponding subspace V,. The exact choice depends on
the basis choice; the two forms of A in (43) and (44)
correspond to two such choices.

With these conditions, one knows that A has a separate
4 x 4 block in V, with two twice degenerate eigenvalues
and one needs to establish its structure. Applying the
methods described in Appendix B 3 to any of the above
two forms of A, one can establish the following basis-
invariant conditions. Take a pair of eigenvectors a and b
corresponding to the same eigenvalue. Then they satisfy

015008-10



RECOGNIZING SYMMETRIES IN A 3HDM IN A BASIS- ...

PHYS. REV. D 100, 015008 (2019)

D) 4 pbb) — _(B) - plaa) _pbb) ey, plab) gy,

(45)

Thus, the basis-invariant algorithm for detecting an O(2)
symmetry in 3HDM is
(1) verify that A passes Check-(8) and Check-(123)(8);
(i) check that at least two of the eigenvectors from
the subspace (x;,x,,x3) correspond to the same
eigenvalue;
(iii) check that the remaining four eigenvectors from V,
also correspond to two twice degenerate eigenval-
ues, and the eigenvectors in each pair satisfy (45).
(iv) check that L and M are aligned with e(®).

C. Ds-symmetric SHDM

If one starts with the Z, symmetric model given by V, in
(23) and V7, in (33) and imposes the conditions (37), then
the potential acquires yet another symmetry of order 2
given by (41). No other conditions on parameters A5 and ,,
are needed. The total family symmetry group is then
D, ~ Z4xZ,, on top of which one also has a CP symmetry.
The basis-invariant algorithm for detecting this symmetry
can be formulated as:

(1) the matrix A passes Check-(3)(8) and Check-(12);
(ii) within V4, A passes Check- U(1),;
(iii) the vectors M and L are aligned with e®).

D. S3-symmetric 3HDM

To construct an Ss-invariant 3HDM, one starts with the
Z3-symmetric case with the potential V, in (23) and V7, in
(34), and imposes an additional symmetry b, [Eq. (41)]. As
before, one obtains the same constraints (37) as well as the
new constraint on the Z;-symmetric parameters:

46| = [47]. (40)

Coefficients As, 4¢, and 4; can still be complex with
arbitrary phases, as for any phase choice for A¢ and 4,
there exists a parameter ¢ in (41) such that b, is indeed a
symmetry of the potential.

In the adjoint space, we see a picture similar to the
previous case. The subspace (x3, xg) splits into separate x5
and xg subspaces, and the matrix A acquires two eigen-
vectors along these directions, e® and e(®). The vectors L
and M must be aligned with e®. The 6 x 6 block of A
within the subspace V¢ keeps its form (35) but it is now
constrained by the relation (46).

We find that the shortest way to implement it in the basis-
invariant way is to calculate vectors

Ki=dghy, K =dg(N),,  (47)
and require them to be aligned with xg. Starting from (35),
one finds that the only new conditions arise from their x5
components:

Ky =213 = 453 =0,

K = 22 + 452 + [ = (A3 + |45 + |4 2) =0,
(48)

from which one immediately recovers (46).
In summary, the basis-invariant algorithm for S;-
symmetric 3HDM is
(1) the matrix A passes Check-(3)(8);
(ii) the six eigenvalues of A within V¢ display the 2 +
2 4 2 degeneracy, and each pair of the eigenvectors
passes Check-Z5;
(ili) check that the four vectors L, M, K and K® are
aligned with e®).
In general, the S35 3HDM can be explicitly CP-violating.
If one wishes to check if CP is explicitly conserved, one
needs to perform the same Check-(257) which was dis-
cussed before.

E. Exotic CP situations

Finally, there are two situations in which one starts with
Abelian Higgs family symmetry groups but implements in
addition a CP symmetry in such a way that the resulting
symmetry group has 2D irreducible representation.

The first case is the 3HDM invariant under CP4.
This model was proposed in [26] and the basis-invariant
algorithm for detecting CP4 was presented in [60].
Formulated in the language of the present paper, this
algorithm proceeds as follows, using the vectors in (47):

(i) the matrix A passes Check-(8) and Check-(123)(8);
(ii) the four vectors L, M, K and K@ are aligned
with e(®),

The second case is the unusual realization of the CP
symmetric Z, X Z, model, when the CP symmetry is
of order 2 but it does not commute with the Z, x Z,

family symmetry group. Group-theoretically, the symmetry

content is described by (Z, x Zz)leéCP) where the extra

chp) is a generalized CP symmetry which acts on Z, x Z,
by transposing its generators a; and a,: (CP)™'a,CP = a,.
This group can also be presented as generated by an order-4
CP transformation a; CP and the usual CP transformation,
which do not commute. This model represents, therefore, a
more constrained version of CP4 3HDM; we refer to [60]
for a basis-invariant strategy of detecting it.

V. GROUPS WITH 3D REPRESENTATIONS
A. SU(3)-symmetric 3HDM

Moving to symmetry groups with irreducible triplet
representations, we begin with the largest group available,
SU(3). The SU(3)-symmetric 3HDM has only three terms
in the scalar potential:
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Vsu) = m*(id1 + das + dibs) + Adid1 + pids + Pleps)?
+ X Pihal? + 19332 + |1 P — (0001 (daha) — (3ha) (hiehs) — (Bidbs) (@i ebi))- (49)

The second line of Eq. (49) represents (3.8 %) — 73,
which is a nonpositive quantity. Thus, in the adjoint space,
this potential is characterized by vectors L =0 and M = 0
and A = 1’1, which is invariant under all SO(8) rotations.
Clearly, the potential will have this form in any basis, which
will be immediately recognized. Still, we can formulate
the basis-invariant condition for the SU(3) symmetry as
absence of any vector and the full degeneracy among the
eigenvalues of A.

B. SO(3)-symmetric 3HDM

The next possibility is to impose the SO(3) subgroup of
SU(3). In the basis where the SO(3) generators are f,, fs,
17, the rotations in the space of doublets ¢, are purely real.
Looking into how the bilinear combinations ¢Z¢b trans-
form under SO(3), one sees that the real symmetric
combinations form the 5-plet of SO(3) and the imaginary
antisymmetric combinations form a triplet. Therefore, back
in the adjoint space, SO(3) transformations do not mix the
subspaces V= (xy, x3, x4, Xg, Xg) and V_ = (x5, x5, x7).
Thus, the matrix A can now be written as A;1s + A,15,
with the two distinct eigenvalues A; and A, corresponding
to V, and V_ respectively.

The basis-invariant detection of the SO(3) symmetry
consists in checking that vectors L and M are absent,
detecting the 5 + 3 degeneracy pattern of the eigenvalues,
and finally verifying that the eigenvectors corresponding

|
to the triple degenerate eigenvalue satisfy Check-(257)
described in Appendix A 2.

We remark that the potentials of SO(3) and SU(3)-
symmetric 3HDMs were written in a basis-invariant way
in [65]. The approach used there was to classify all Higgs
field bilinears, both electroweak singlets and higher dimen-
sional representations of the electroweak gauge group, in
irreducible representations of SO(3) or SU(3). Then, one
looks for products of these gauge-covariant and internal
symmetry covariant objects, which would be both gauge
and SO(3) or SU(3) invariant. The resulting potential,
Eq. (3.10) of Ref. [65], is basis independent by construction
and corresponds to our SO(3)-symmetric expression.
Removing the last term by setting Ay = 0, leads to the
SU(3)-invariant potential, which corresponds to our
Eq. (49). However, the task of identifying the presence
of the SO(3) symmetry in a 3HDM potential written in a
generic basis was not addressed in that publication.

C. A; and S -symmetric 3HDMs

Next, we pass to the discrete groups with irreducible
triplet representation which can arise in the scalar sector of
3HDM. Two of them can be obtained as extensions of the
Z, x Z, group by the permutation symmetries of three of
its generators: Ay~ (Z, X Z,)xZ5 and Sy ~ (Z, X Z,)xS;.
In the basis where Z, x Z, is given by the sign flips of
individual doublets, the A,-symmetric potential is written
as a constrained version of (23) and (32):

Va, = mX (@ + dhbs + ids) + Abjd1 + dipr + dips)*
+ 2ag[(9001)* + (32)> + (933)% — (D1h1) (b)) — (Bieha) (bi3) — (D53 ) (] ¢h1)]
+ﬂ/(|¢i¢2|2 + |¢§¢3|2 + |¢;¢1 1?) + {/_112(451(/72)2 +/_123(¢;¢3)2 + A3y (¢;¢1)2 +H.c.}. (50)

Here, the parameters 1,5, 4,3, and 3; can be complex with
arbitrary phases but equal absolute values:

|/_112| = |/_123| = |131| =1 (51)

If these conditions are satisfied, then the potential (50)
possesses the A,-symmetry, in which the Z; generator
is given by cyclic permutations of the doublets accom-
panied with suitable phase factors. If, in addition,
Im(A;542343,) =0, the symmetry group enlarges to S,.
Indeed, one can switch to the basis where these three
coefficients are real, and the potential becomes symmetric
under any (not just cyclic) permutations of the three
doublets. Notice that in either case, the model is explicitly
CP-conserving.

|

In the adjoint space, one notices that L =0 and M = 0,
while the matrix A takes, just as in the Z, x Z, case, the
block-diagonal form with blocks in the subspaces (x3, xg),
(x1,%2), (x4,x5), and (xg,x7). However, the (x3,xg) block
is now simply 34351,, while the other three 2 x 2 blocks
within Vi have identical pairs of eigenvalues A’ & 21 but
arbitrarily oriented eigenvectors. For the S,-symmetric
case, their orientation is correlated, though, and in a certain
basis all eigenvectors in Vg can be aligned with the axes,
which renders the matrix A diagonal. In either case, one
observes the eigenvalue degeneracy pattern 2 + 3 + 3.
Notice also that by setting, in addition, 3135 = A’ + 24,
one would recover the SO(3)-symmetric case.
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The basis-invariant algorithm for detection of the A,
symmetry is
(1) verify that the matrix A passes Check-(38) with
degenerate eigenvalues;
(ii) verify that A passes Check-(12)(45)(67) and dis-
plays three identical pairs of eigenvalues;
(ii1) the vectors L and M are absent.
In order to detect the S; symmetry, one additionally
requires that one of the triplets of Vg eigenvectors
sharing the same eigenvalue, is closed under the action
of d-product.
|

D. A(54) and X(36)-symmetric 3HDM

The symmetry group A(27) C SU(3) is generated by
two order-3 transformations, which are traditionally chosen
to be rephasing transformations diag(w, w?, 1) and cyclic
permutations which can be accompanied by rephas.ings.5 It
turns out that A(27)-symmetric 3HDM automatically
acquires an accidental Z, symmetry which makes the total
symmetry group of the model A(54).

The general A(54)-symmetric 3HDM potential has the
form similar to (50) but with the different last bracket:

Vagssy = m2(@id1 + ity + didps) + Al + dips + dis)
+ 2ag[(B11)> + (Ph)> + (933)> = (bib1) (Dheh2) — (d2ha) (D) — (Bihs) ()]

+ 2 (1]l + s + |31 %)

+ {As(D]h3) (d5b3) + A6 (B3h1) (Bi1) + Aa (i) (] ¢h) + Hee.}. (52)

Just like in the Z5-symmetric case, the coefficients 1s, g,
and 4, can be complex, but, in order for the potential to be
invariant under cyclic permutations, they must have the
same absolute values:

45| = [46| = [47]. (53)

One can perform rephasing transformations to set these
three parameters equal to A, where 13 = 15¢A;. Addition-
ally, if these parameters satisfy Im(4s54g4;) = 0, then there
exists a basis in which they all are real, up to powers of w,
and the model is explicitly CP-conserving.

In the adjoint space, one observes the absence of vectors
M and L, and for A, the simple structure 34531, in the
|

1

a=-——=(1,0,1,0,1,0), b=
\@( )
1

a = —=(Cpr =S4 Cop» =S4, 1,0),
\@( )
1

a" = —=(CpsSp Cops S 1,0),
\/§( )

where ¢, =Rew = —1/2, s, = Imw = v/3/2, and each
(a, b)-pair corresponds to the same eigenvalue. Each pair of
these vectors satisfies D@ = —p?) = 4 which coin-
cides with Check-(3)(8) which we used above for detection
of the e® and e® eigenvectors. Therefore, we arrive at

>The commutator of the two generators of A(27) lies in
the center of SU(3). Therefore, if viewed as a subgroup of
PSU(3) =~ SU(3)/Z(SU(3)), it corresponds to the Abelian group
Z3 X Z3.

b// —

|
(x3, xg) block, and the residual 6 x 6 block in V¢ which has
the same structure as (35) but with equal diagonal elements
and with the off-diagonal elements satisfying the conditions
(53). The eigenvalues of this 6 x 6 block exhibit the
2 4+ 2 + 2 degeneracy pattern and are equal to

A+ 2Rel, A+ 2Re(wA), AV +2Re(w?l).  (54)

In the CP-conserving case, two of the three real parts
coincide, and the degeneracy pattern is promoted to 2 + 4.

The eigenvectors of A within V¢ can also be found
explicitly:

(0,1,0,-1,0,1),
b’zi(s Cor» —Se» —Cas 0, 1)
\/§ w’ ~w’ [OX [OX ’ k)
1
—= (=845 Cap» Saps —C» 0, 1), 55
\/§( ) (55)

[
remarkable simple basis-invariant condition for the CP-
violating A(54)-symmetric 3HDM:
(i) the eigenvalues of the matrix A display the degen-
eracy pattern 2 +2 + 2 + 2;
(i1) for each eigenvalue, the two eigenvectors a, b pass
Check-(3)(8);
(ii1) vectors M =0, L = 0.
The CP-conserving case corresponds to the situation where
the four pairs of eigenvectors exhibit the above properties
but the eigenvalue degeneracy pattern becomes 2 + 2 + 4.
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Finally, the largest discrete symmetry group which can
be imposed on the 3HDM scalar sector is X(36), which is
twice larger than A(54).° It arises in the real 1 basis if the
coefficients of V(s4) satisfy an additional constraint:
3)33 = A’ +21. The potential then becomes symmetric
under the following transformation of order 4:

. 1 1
d=—|1 o* o |, 56
7 : (56)

o

such that @” describes the transposition of ¢, < ¢s.
Adding d to the symmetry generators leads to X(36) =
(Z3 x Z3)xZ,. The basis-invariant path to this symmetry
group is to observe the four pairs of eigenvectors satisfying
the same conditions as for the A(54)-case, but with the
eigenvalue degeneracy pattern 4 + 4.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we solved the notoriously difficult problem
of recognizing in a basis-independent way whether a
3HDM scalar potential has a symmetry. Similar methods
for 2HDM existed for more than a decade, but generalizing
them beyond two doublets proved challenging. Within
3HDM, prior to this work, it was known which symmetry
groups G can be imposed on its scalar sector and how to
write general potentials invariant under each G in a special
basis, in which the generators of G take simple form.
However it was always understood that if the same G-
symmetric 3HDM was written in a different basis, the
presence of G would be hidden and recognizing it would
become very challenging.

Developing the ideas suggested very recently in [60,61],
we constructed a novel formalism which efficiently detects
structural properties of 3HDM scalar sectors in any basis.
The key role is played by the constructions in the adjoint
space of the SU(3) basis transformation group, and
specifically by the products of the adjoint-space vectors
based on the SU(3)-invariant tensors f; and d, .

Despite being technical, the results of this paper remove
an important obstacle on the road toward efficient phe-
nomenological exploration of 3HDMSs. When performing a
scan over the scalar parameter space, one can now detect
not only the symmetry group but also proximity of a model
to a symmetric situation. Since various symmetry groups
can lead to certain patterns in the scalar and flavor sectors,
all models sufficiently close to these symmetric cases will
inherit some of these features. This proximity can now be
detected irrespective of basis choice.

This is particularly important for models which contain
not only three Higgs doublets equipped with a symmetry

®The notation X(36) indicates the subgroup of PSU(3), which
becomes X(36¢), the group of order 108, within SU(3).

group G but also additional fields. The loop corrections by
these fields can modify effective Higgs self-couplings,
shifting the model in the parameter space away from the
chosen G-symmetric point. With the results of this work,
one can quantify this shift in basis-independent way.
One can also investigate situations when a model is close
to several symmetry situations simultaneously. In this case,
one may observe and explore competing effects of prox-
imity to the two symmetry groups. Such studies will
generate not only numerical results but also a qualitative
intuition of how one should build multi-Higgs-doublet
models with desired phenomenological properties.
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APPENDIX A: DETECTING SUBSPACES

We showed in Sec. II D that the products of adjoint space
vectors a and b

ab

FE )= fijkajbks DE”b) = \/gdijkajbka
(

Diaa) = \/gdijkajak. (Al)

can be used to identify basis-invariant features of the
subspaces to which these vectors belong. These products
satisfy relations (13) and (11), which we now rewrite
assuming vectors a and b are orthonormal:

Dlaa) plab) — ),
Dlaa) p(bb) | 2|D(ab>‘2 =1,

| D<aa)|2 =1,

|D(ab)|2 4 |F(ab)|2 =1.
(A2)

When applied to the eigenvectors of A, this technique

can ensure that in an appropriate basis A has a block-
diagonal form.

1. 1D and 2D subspaces

The two examples given in the main text correspond to
basis-invariant detection of 1D and 2D subspaces. Let us
summarize them here for completeness.
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(i) Ifavector a satisfies D99 = —ga, then there exists a
basis in which a is aligned with +xg direction.
When applied to the eigenvectors of A, this require-
ment constitutes Check-(8). No other basis-
invariant condition detecting an 1D subspace with
different properties exists.

(i) If two vectors a and b satisfy F (ab) = 0, or
alternatively D(@®) = —D(®?) then there exists a
basis in which they both lie in the (x3, xg) subspace.
If, in addition, one observes that D@9 =
—D"?) = _g, then these vectors are aligned with
xg and x5, respectively. When applied to the
eigenvectors of A, these two versions of the
conditions give Check-(38) and Check-(3)(8), re-
spectively. Notice also that if it happens that two
eigenvectors passing Check-(38) correspond to the
same eigenvalue, one can always find their linear
combinations which will pass Check-(3)(8).

2. Detecting 3D subspaces

As we already described in Sec. II D, having identified
an eigenvector ¢® via Check-(8), we can easily detect if
there are three other eigenvectors spanning the subspace
(x1,%2,x3); this was formulated as Check-(123)(8).
However, it is also possible to detect three eigenvectors
from this 3D subspace even without the presence of e(®).

Suppose one has three orthonormal vectors a, b, ¢ which
are closed under f-product:

[Fib =¢,  FlI—a,  Fe9=p] (A3)

Then their respective Hermitian matrices A, B, C form the
su(2) subalgebra of su(3). It implies that, back in the
adjoint space, one can always rotate them to the space
(x1,x2,x3) and, if needed, align them with the axes. This
observation is the basis of Check-(123): if one finds three
mutually orthogonal eigenvectors of A which obey (A3),
then there exist a basis in which A has a 3 x 3 block in
(x1,x2, x3), and, moreover, this block can be diagonalized.

Using the relations (A2), one can reformulate the
conditions (A3) in terms of D’s. Indeed, since the three
vectors F’s have unit absolute values, their respective
Dlab) = pbe) — plac) — () and as a result we observe

D(ua) _ D(hb) — D(cc) (A4)
Notice that this version of Check-(123) may be easier to
verify than (A3) because one is not forced to test all pairs of
eigenvectors.

The conserve is also true: if three orthonormal vectors «,
b, ¢ satisfy (A4), then one can rotate them to the (x;, x5, x3)
subspace. Indeed, from the relations (A2) one concludes
that D@) = D<) = plac) = (. This means that the
three corresponding Hermitian traceless matrices A, B, C

anticommute with each other. Thus, they form the 3D
Clifford algebra and, despite being 3 x 3 matrices, they can
be expressed as Pauli matrices within a 2 x 2 block and
zeros otherwise. Back in the adjoint space, this means that
a, b, ¢ are located in the (x;,x,, x3) subspace.

It is also possible that the three orthonormal vectors a, b,
¢, which are closed under f-product, need to be corrected
by the factor 2:

2F@) — ¢ 2Fbd) —4  2FC@ —p]  (A5)

Then, the matrices A, B, C form the so(3) subalgebra of
su(3). One can always rotate the three vectors to the
subspace V_ = (x,, x5, x7) or to other equivalent subspaces
such as (x,,x4,%g), etc. This property is the basis of
Check-(257), which was used in [59] to detect explicit
CP conservation in 3HDM.

3. Detecting 4D subspaces

A direct inspection of the nonzero elements of the
tensors f;j and d;; given in Egs. (4) and (5) reveals
that they contain an odd number of indices from the set
(1,2,3,8) and an even number of indices from the set
4,5 ,6,7).7 Taking any four orthonormal vectors a, b, ¢, d €
(x1,X2,x3,xg), we observe that their f-products stay
within the same subspace. Therefore, the corresponding
Hermitian matrices A, B, C, D form a 4D subalgebra
of su(2) x u(1) C su(3).

Conversely, if we observe that four orthonormal vectors
a, b, ¢, d are such that all their f-products lie in the same
4D space spanned by a, b, ¢, d, then their Hermitian
matrices form a 4D subalgebra of su(3), which can only be
su(2) x u(1). Therefore, there exists a basis, in which
vectors a, b, ¢, d lie in (x, x5, X3, Xg).

Applying this observation to the eigenvectors of A,
we obtain Check-(1238), or equivalently Check-(4567):
if A has four mutually orthogonal eigenvectors whose
f-products lie in the same 4D subspace, then and only then
there exists a basis in which A takes the block-diagonal
form with two 4 x 4 blocks, one lying in (xy, x, X3, xg) and
the other lying in (x4, x5, X, X7).

APPENDIX B: SPLITTING V¢

If A passes Check-(38), it takes, in an appropriate basis,
a block-diagonal form with a 2 x 2 block within (x3, xg)
and a 6x 6 block within the subspace Vg = (xi,xs,
X4, X5, Xg, X7). In certain symmetry constrained cases, this
block can be split further or can exhibit specific patterns.

"The similar observation applies to the splitting (3,6,7.8) vs
(1,2,4,5), and to the splitting (3,4,5,8) vs (1,2,6,7), which differ
just by Higgs doublet permutation. For definiteness, we focus on
the first splitting.
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Here, we investigate the relevant options and give their
basis-invariant conditions.

1. Detecting 2 x 2 blocks

Since Check-(38) is passed, we already have a pair of
eigenvectors which define the (x3, xg) subspace. Let us now
pick up two orthonormal vectors a,b € Vg. If their
products satisfy

D) =0 and DU = DP) € (x5, xq),

(B1)

then, as we prove below, there exists a basis, in which the
vectors a and b lie within subspace (x,x,) or (x4, x5) or
(xg,x7). This feature is the basis of Check-(12): if, after
passing Check-(38), the matrix A has two eigenvectors
within V¢ which satisfy (B1), then its has a 2 x 2 block
located within subspace (x,x,) or (x4, x5) or (xg,x7).
The proof goes as follows. Denote a = (ay,a,, ay,
as,ag,a;) and b = (by, by, by, bs, bg,by) and compute
(ab)

the D-products explicitly. First, write down Dy~ =0,
Déab) =0:
(asby + asbs) — (agbs + azb7) =0,
2(ayby + ayby) — (asby + asbs) — (aghs + a;b7) = 0.
(B2)
|
auae + asay
—dyday + dsdg
ajag — ara
D(aa) _ \/g 1¢%6 267 ’

apay + ardg
ayay + asas

apds — drdy

Together with the orthogonality condition ib= 0, they
lead to

albl + a2b2 = Cl4b4 + a5b5 = a6b6 + a7b7 =0. (B3)
This implies the following structure for b:
b = (-oay,0a,,6'as,—c'a,,—0c"a;,0"ag), (B4)

with some real coefficients o, ¢, ¢”.
Next, from D(“?) = D(*) within the subspace (x3, xg) as

well as from the normalization condition @ = b> = 1, we
see that ¢’s can only be +1.

Finally, using this form of b, let us explicitly write D(4?),
D@ and D) within V:

(0 + ) )
(0 + 0")(asas + asas)
V3| (o+0d")(aia; + ayae)
2 | (0+ ") (~ara + aray)
(0 +0')(—ajas + aya,)

(6 +0')(ajas + azas)

a,ay — dsdg

and

o'o"(agas + asay)

6’0'"(—(14617 + Cl5616)
oo’ (ayag — ara
- _\3 (aja6 — ayay)
o' (aja; + ayae)

o
60/(61]614 + Clzas)
oo’ (ajas — aray)

Setting D(“) = ( within V¢ implies that among the three pairs (a,, a,), (a4, as), and (ag, a;) only one can be nonzero, and
the same applies to b. Thus, vectors a and b are located within one of these three blocks. If they are eigenvectors of A, it
implies that the corresponding 2 x 2 block is decoupled from the rest. Notice that by permuting the Higgs doublets, one can
always make this block to lie within the (x;,x,) subspace.

If two pairs of eigenvectors from Vg pass Check-(12), then the entire 6 x 6 matrix A within V is split in three 2 x 2
blocks located within subspace (x|, x,) or (x4, x5) or (xg, x7). If A has this property, we say it passes Check-(12)(45)(67).

2. Z; pattern inside V¢
Let us relax the conditions (B1) which defined Check-(12) and require now that

D) evy,  DW)—pP ey, pla 4 plh) g (x5, xy),

(B7)

which we call Check-Z5. That is, we now allow for
nonzero vectors D) and D) — D?) provided they
belong to V. Repeating the calculations of Appendix B 1,
we see that all components of a and b can be nonzero.

However b must still be of the form (B4) with
c=0 =o¢"==*l.

Next, suppose the two eigenvectors of A, which we
denote e and ¢/, satisfy (B7) and correspond to the same
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eigenvalue A. It can be immediately checked that their
contribution to the eigensystem expansion for A,
e;e; + eje’, has the following form:

i€
cp 0 Ye he 97 hy
0 cn he -9 —h1 o
9 he c13 0 gs  —hs
hs  —gs 0 ci3 —hs —gs
91 —h; g5 —hs 0
h; g1 —hs —gs 0 €23

(B8)

It is remarkable that this block has exactly the same form
as in the Z5-symmetric 3HDM, Eq. (35). Therefore, if the
eigenvalues of A within Vg are pairwise degenerate, and if
the three corresponding pairs of eigenvectors satisfy
Check-Z5 given in Eq. (B7), then we obtain the Z;-
symmetric model. Notice that the three pairs of eigenvec-
tors may be in arbitrary orientation with respect to each
other; apart from mutual orthogonality, there are no
constraints.

To prove the converse statement, we notice that the 6 x 6
block (B8) keeps its structural form when raised to any
power. It has three pairwise degenerate eigenvalues, there-
fore it can be written generically as

Mlerier; + €y €);) + haleyier; + eyer))

+ Z3(esiez; + eye5)). (B9)
Its square and cube have the same form with squared and
cubed eigenvalues, respectively. This can happen only if
each eigensystem e;e; + eﬁe} has the form (B8). Con-
tracting it with \/§dl~jk gives the vector D(¢?) + D(¢¢) and
one can verify by explicit calculation that it indeed belongs
to ()C3, xg).

|

Next, we checked with Mathematica that each pair of
eigenvectors (e, ¢’) of this matrix has the form of vectors a
and b as in (B4). That is, not only are the eigenvectors
(e, ¢') themselves orthogonal and equally normalized but
so are their 2D components within the subspaces (x, x,),
(x4.x5) and (xg,x7). This immediately implies that D)
and D) — D(¢¢) cannot have any components in the

(x3, x3). Thus, we arrive at all three conditions of Check-Z;
in (B7).

3. U(1) patterns inside V,

Suppose two vectors a,b € V4 = (xy4, x5, X6, %7). By
inspecting entries of the tensor d;j, one sees that Dlb),
D) and D*) must all lie in the subspace (x;, x5, X3, X3).
In this situation, let us now impose a requirement similar
to (B1):

[D“) =0 and D) = p®P |

(B10)

Then, one can establish by direct computation that for any
a = (ay,as,ag,a;) one can pick up the vector b =
(as,—ay, a;, —ag) to satisfy (B10).

Now, suppose A has passed Check-(4567) and, within
the subspace V,, it has two pairs of eigenvectors which
satisfy (B10). Then we say is passed Check-U(1),. Writing
A via the eigensystem expansion, we get the 4 x 4 block of
the following form:

€13 0 93 hg
0 ci3 —hg  gg

Bl11
gs —hg 3 0 ( )

hg  gs 0 e
This form is exactly what we obtained for the 3HDM

invariant under U(1), symmetry.
Alternatively, we can also impose a different condition:

D) = 0in (x3,x5), D) =DP) in (x3,x5), DW= -D") in (x,x,).| (B12)
Notice that, unlike the previously considered example, this ci3 0 g5 hs
set of conditions explicitly distinguishes subspaces (x;, x,) 0 ¢35 hs —gs
and (x3, xg). Thus, it can be used only after we have already (B13)

passed Check-(38) and Check-(12).

Now, once again, suppose that within V,, matrix A
has two degenerate eigenvalues each corresponding to a
pair of eigenvectors which satisfy (B12). Then we say A
passes Check-U(1),. The 4 x 4 block constructed via the
eigensystem expansion now has the following form:

9s hs ¢y 0
hs —gs 0 €23

It reproduces the corresponding block for the 3HDM
invariant under U(1), symmetry.
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APPENDIX C: SUMMARY LIST

For the reader’s convenience, we collect here the con-
ditions for all the symmetry groups of the 3HDM scalar
sector, sorted by increasing order. When a symmetry group
G can produce both CP-violating and CP-conserving
models, we indicate separately G and G CPC. The purpose
of this list is to give an overview; this is why the description
is rather terse. The details can be recovered in the main text
and in other Appendixes.

Discrete groups:

(i) CPC: Check-(257) — V_, see Appendix A2;
M, L1V_;

(i) Z,: Check-(1238) — V4, see Appendix A3;
M , LJ_V4,

(iii) Z, CPC: Check-(257) and Check-(1238) — 5D
subspace V_ U Vy = Vouse7; M, LLVyys67;

(iv) Z;3: Check-(38) — Vi, see Sec. IID; 24242
degeneracy within V¢; Check-Z; for each pair of
eigenvectors, see Appendix B2; M, L1Vg; see
Sec. I G for details.

(v) Z; CPC: the same as Z; plus Check-(257)
with V_ C Vy;

(vi) Z4, CPC: Check-(38), Check-(12), and Check-
U(l);; M, LL1lVg see Appendix B3 and
Sec. III'F;

(vil) Z, x Z,: Check-(38) and Check-(12)(45)(67); M,
L1Vg; see Sec. Il E;

(vill) Z, x Z, CPC: same as Z, x Z, plus Check-(257)
with V_ intersecting each of V,, V45, Vg; by 1D
subspaces;

(ix) CP4: Check~(8) and Check-(123)(8); L, M, K, K
along 6(8); see Ref. [60] for details;

(x) (Zy x Z)xCP: same as CP4 plus an algorithm
described in Appendix B3 of Ref. [60];

(xi) S3: Check-(3)(8), see section IID; 24242
degeneracy within V¢; Check-Z5 for each pair of
eigenvectors, see Appendix B2; L, M, K, K®
along e®); see Sec. IV D.

(xii) S35 CPC: same as S§; plus Check-(257) with
V_e€e Vé;
(xiii) D4 CPC: Check-(3)(8), Check-(12), Check-U(1),;
M, L along ¢®); see Sec. IV C;
(xiv) A4 CPC: Check-(38) and Check-(12)(45)(67);
2 + 3 + 3 degeneracy; M, L = 0; see Sec. V C;
(xv) S4; CPC: same as Ay; one triplet of degenerate
eigenvectors is closed under d-product;
(xvi) A(54): 2+2+42+2 degeneracy; each pair of
eigenvectors passes Check-(3)(8); M, L = 0; see
Sec. VD;
(xvii) A(54) CPC: same as A(54) but with degeneracy
pattern 2 4 2 4 4;
(xviii) X(36) CPC: same as A(54) but with degeneracy
pattern 4 + 4;
Continuous groups:

(i) U(1); CPC: Check-(38), Check-(12), and Check-
U(1);; 2+ 2 degeneracy in V4; M, LLVg; see
Appendix B 3 and Sec. III C;

(ii) U(1),: Check-(1238) and Check-U(1),; M, LLV;
see Appendix B 3 and Sec. 11 C;

(iii) U(1), CPC: same as U(1), plus Check-(257) with
a 2D intersection V, N V_;

(iv) U(1) x Z, CPC: Check-(38) and Check-(12)(45)
(67); M, LLVg; two subspaces among V,, Vys,
V; show generate eigenvalues; see Sec. III D;

(v) U(1) x U(1) CPC: Check-(38) and Check-(12)(45)
(67); M,LLVy; subspaces Vi,, V45, Vg7 show
generate eigenvalues; see Sec. III B;

(vi) O(2) CPC: Check-(8) and Check-(123)(8); degen-
eracy patterns 1 4+ 2 in V53 and 2 + 2 in V,; each
pair of eigenvectors in V, satisfies Eq. (45); M, L
along ¢®); see Sec. IVB
(vii) U(2) CPC: Check-(8) and Check-(123); 3 +4 + 1
degeneracy pattern; M, L along e®); see Sec. IVA;
(viii) SO(3) CPC: 3 + 5 degeneracy pattern; Check-(257)
for the triplet of eigenvectors; M, L = 0;see Sec. IV B
(ix) SU(3) CPC: A « 1j.
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