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We analyze, in a fully model-independent manner, the effects of new physics on a few semihadronic
three-body meson decays of the type Pi → Pff1f2, where Pi, Pf are well chosen pseudoscalar mesons and
f1;2 denote fermions out of which at least one gets detected in experiments. We find that the angular
distribution of events of these decays can probe many interesting new physics, such as the nature of the
intermediate particle that can cause lepton-flavor violation or presence of heavy sterile neutrino or new
intermediate particles or new interactions. We also provide angular asymmetries which can quantify the
effects of new physics in these decays. We illustrate the effectiveness of our proposed methodology with a
few well chosen decay modes showing how we can probe certain specific new physics possibilities without
necessarily worrying about any hadronic uncertainties.

DOI: 10.1103/PhysRevD.100.015005

I. INTRODUCTION

New physics (NP), or physics beyond the standard
model, involves various models that extend the well
verified standard model (SM) of particle physics by
introducing a number of new particles with novel properties
and interactions. Though various aspects of many of these
particles and interactions are constrained by existing
experimental data, we have yet to detect any definitive
signature of new physics in our experiments. Nevertheless,
recent experimental studies in B meson decays, such as
B → Kð�Þl−lþ [1], Bs → ϕl−lþ [2], B → Dð�Þlν [3], and
Bc → J=ψlν [4] (where l can be e, μ, or τ) have reported
anomalous observations raising the expectation of discov-
ery of new physics with more statistical significance. In this
context, model-independent studies of such semileptonic
three-body meson decay processes become important,
as they can identify generic signatures of new physics
which can be probed experimentally. In this paper, we
have analyzed the effects of new physics, in a model-
independent manner, on the angular distribution of a

general semihadronic three-body meson decay of the type
Pi → Pff1f2, where Pi and Pf are the initial and final
pseudoscalar mesons, respectively, and f1;2 denote fer-
mions (which may or may not be leptons but not quarks),
out of which at least one gets detected experimentally. The
presence of new interactions, or new particles such as
fermionic dark matter (DM) particles or heavy sterile
neutrinos or long-lived particles (LLP) would leave their
signature in the angular distribution, and we show by
example how new physics contributions can be quantified
from angular asymmetries. Our methodology can be used
for detection of new physics in experimental study of
various three-body pseudoscalar meson decays at various
collider experiments such as LHCb and Belle II.
When the final fermions f1;2 are leptons, the decay

Pi → Pff1f2 is usually referred to as the semileptonic
decay of the meson Pi. We must emphasize that, in this
paper, we consider the possibilities that the fermions f1 and
f2 could be either leptons or nonleptons (which includes
exotic fermions such as the ones related to dark matter or
long-lived ones), but not quarks. The existing literature is
rich in the analysis of semileptonic decays of pseudoscalar
mesons for probing the SM and beyond, including impor-
tant investigations towards estimation of the relevant
hadronic form factors. For a review on semileptonic decays
of the B meson, we urge the reader to see Ref. [5]. In
this paper, we consider not only exotic fermions in the
final state but also lepton-flavor violating processes, and
we showcase the effectiveness of angular analysis in
detecting the effects of new physics. We also show that
in certain specific cases one need not worry about hadronic
uncertainties.
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The structure of our paper is as follows. In Sec. II, we
discuss the most general Lagrangian and amplitude, fol-
lowing Lorentz invariance and including all possible NP
contributions to our process under consideration. The
relevant details of kinematics is then described in
Sec. III. This is followed by a discussion on the angular
distribution and the various angular asymmetries in Sec. IV,
keeping in mind the usage of the frame-independent Dalitz
plot for experimental study. In Sec. VA, we present a
classification of all of the decay modes under our consid-
eration. This is followed by a systematic discussion
of the effects of new physics on the angular distribution
in certain well chosen examples, in Secs. V B and V C,
with an emphasis on various aspects that are free from
hadronic uncertainties. We also provide an example of
equivalent parametrizations of new physics effects. In
Sec. VI, we conclude by highlighting the important
aspects of our methodology and its possible experimental
realization.

II. MOST GENERAL LAGRANGIAN
AND AMPLITUDE

The process under our consideration is Pi → Pff1f2,
where Pi;f denote pseudoscalar mesons which can be
B;Bs; Bc;D;K; π, etc., as appropriate, and f1f2 can be
l−lþ, ll̄0, lνl, lνS, lfDM, νlν̄l, νSν̄l, νlν̄S, νSν̄S,
fDMf̄DM, fDM1 fDM2 , fLLP1 fLLP2 (with l;l0 ¼ e, μ, τ denoting
leptons, νS being sterile neutrino, fDM1;2 as fermionic dark
matter, and fLLP1;2 as long-lived fermions). It is clear that our
analysis must be an all encompassing formulation by which
we can analyze not only processes such as B → Dlν that
are readily favored in the SM but also SM allowed rare
decays such as B → Kl−lþ and B → Dl−lþ as well as
the SM forbidden lepton-flavor violating processes such as
B→Pl�l0∓, where P¼π, K,D, l≠l0, and l;l0 ¼ e, μ, τ.
Therefore, our analysis has to be fully model independent
and general in nature. If we consider some specific NP
model, leptoquark models as an example, then we can
allow interaction vertices where quarks transform to lep-
tons, and vice versa. In such a case, the fundamental
description of the underlying process would include quark
and lepton fields together in every individual current.
However, by using Fierz transformations, we can rewrite
the product of these currents as a linear combination of
products of currents involving purely lepton fields and
purely quark fields. Finally, the quark-level description
would give rise to effective hadronic currents with appro-
priate form factors which are estimated in many different
ways, such as by using the heavy quark effective theory [6],
the lattice QCD [7], QCD light-cone sum rule [8], or the
covariant confined quark model [9], etc. Since we are
analyzing a diverse set of meson decays in a unified
formalism, we shall refrain from delving deeply into the

details of the form factors involved in any specific decay
mode. Considering the process Pi → Pff1f2 and applying
the Fierz transformations where necessary, we can write
down the most general form of the effective Lagrangian as
follows,

Leff ¼ JSðf̄1f2Þ þ JPðf̄1γ5f2Þ þ ðJVÞαðf̄1γαf2Þ
þ ðJAÞαðf̄1γαγ5f2Þ þ ðJT1

Þαβðf̄1σαβf2Þ
þ ðJT2

Þαβðf̄1σαβγ5f2Þ þ H:c:; ð1Þ

where JS, JP, ðJVÞα, ðJAÞα, ðJT1
Þαβ, ðJT2

Þαβ are the
different hadronic currents which effectively describe the
quark-level transitions from Pi to Pf meson.1 It should be
noted that we have kept both the σαβ and σαβγ5 terms. This
is because of the fact that the currents f̄1σαβf2 and
f̄1σαβγ5f2 describe two different physics aspects—namely,
the magnetic dipole and electric dipole contributions,
respectively. In the SM, vector and axial-vector currents
(mediated by photon, W�, and Z0 bosons) and the scalar
current (mediated by Higgs boson) contribute. So every
other term in Eq. (1) except the ones with JS, ðJVÞα, and
ðJAÞα can appear in some specific NP model. Since, in this
paper, wewant to concentrate on a fully model-independent
analysis to get generic signatures of new physics, we shall
refrain from venturing into details of any specific NP
model, which nevertheless are also useful. It is important to
note that JS, ðJVÞα, and ðJAÞα can also get modified due to
NP contributions.
In order to get the most general amplitude for our

process under consideration, we need to go from the
effective quark-level description of Eq. (1) to the meson-
level description by defining appropriate form factors.
It is easy to write down the most general form of the
amplitude for the process Pi → Pff1f2 depicted in Fig. 1
as follows,

MðPi → Pff1f2Þ ¼ FSðf̄1f2Þ þ FPðf̄1γ5f2Þ
þ ðFþ

Vpα þ F−
VqαÞðf̄1γαf2Þ

þ ðFþ
Apα þ F−

AqαÞðf̄1γαγ5f2Þ
þ FT1

pαqβðf̄1σαβf2Þ
þ FT2

pαqβðf̄1σαβγ5f2Þ; ð2Þ

1The subscripts S, P, V, A, T in the hadronic currents
denote the fact that the associated external fermionic
currents involving the f1, f2 fields are of scalar, pseudoscalar,
vector, axial vector, and tensor type, respectively. For the
hadronic currents and subsequently for the effective form
factors, we have followed the same notation as in Ref. [10].
Since Eq. (1) involves all of the Dirac bilinears, it does describe
effectively all possible interactions that preserve Lorentz
invariance.
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where FS, FP, F�
V , F

�
A , FT1

, and FT2
are the relevant form

factors2 and are defined as follows,

hPfjJSjPii ¼ FS; ð3aÞ

hPfjJPjPii ¼ FP; ð3bÞ

hPfjðJVÞαjPii ¼ Fþ
Vpα þ F−

Vqα; ð3cÞ

hPfjðJAÞαjPii ¼ Fþ
Apα þ F−

Aqα; ð3dÞ

hPfjðJT1
ÞαβjPii ¼ FT1

pαqβ; ð3eÞ

hPfjðJT2
ÞαβjPii ¼ FT2

pαqβ; ð3fÞ

with p≡ kþ k3 and q≡ k − k3 ¼ k1 þ k2, in which
k; k1; k2; k3 are the 4-momenta of Pi, f1, f2, and Pf,
respectively (see Fig. 1). All of the form factors appearing
in the amplitude in Eq. (2) and as defined in Eq. (3) are, in
general, complex and contain all NP information. It should
be noted that for brevity of expression to follow, we have
implicitly put all of the relevant Cabibbo-Kobayashi-
Maskawa matrix elements as well as coupling constants
and propagators inside the definitions of these form factors.
Moreover, these form factors also implicitly include con-
tributions from both the short-distance (QCD, weak inter-
action, and NP) effects and long-distance QCD effects.
Detailed study of how NP affects the form factors is very

helpful while considering specific decay modes and spe-
cific NP models. It must also be noted that all of the form
factors have an implicit dependence on q2 which is the
invariant mass of the f1f2 system. Since in our analysis we
are not going to consider the explicit variation of our
observables with respect to q2, we shall refrain from
discussing any details of the form factors. This helps us
to keep our analysis fully model independent. In the SM
and for our decays under consideration, only FS, F�

V , and
F�
A are present. The presence of NP can modify these as

well as introduce other form factors. These various NP
contributions would leave behind their signatures in the
angular distribution, for which we need to specify the
kinematics in a chosen frame of reference.

III. DECAY KINEMATICS

We shall consider the decay Pi → Pff1f2 in the
Gottfried-Jackson frame, especially the center-of-momen-
tum frame of the f1, f2 system, which is shown in Fig. 2. In
this frame, the parent meson Pi flies along the positive z
direction with 4-momentum k ¼ ðE;kÞ ¼ ðE; 0; 0; jkjÞ
and decays to the daughter meson Pf, which also flies
along the positive z direction with 4-momentum
k3 ¼ ðE3;k3Þ ¼ ðE3; 0; 0; jk3jÞ, and to f1, f2, which fly
away back to back with 4-momenta k1 ¼ ðE1;k1Þ and
k2 ¼ ðE2;k2Þ, respectively, such that by conservation
of 4-momentum we get k1 þ k2 ¼ 0, k ¼ k3, and
E ¼ E1 þ E2 þ E3. The fermion f1 (which we assume
can be observed experimentally) flies out subtending an
angle θ with respect to the direction of flight of the Pi
meson in this Gottfried-Jackson frame. The three invariant
mass squares involved in the decay under consideration are
defined as follows,

s ¼ ðk1 þ k2Þ2 ¼ ðk − k3Þ2; ð4aÞ

t ¼ ðk1 þ k3Þ2 ¼ ðk − k2Þ2; ð4bÞ

u ¼ ðk2 þ k3Þ2 ¼ ðk − k1Þ2: ð4cÞ

It is easy to show that sþ tþ u ¼ m2
i þm2

f þm2
1 þm2

2,
where mi, mf, m1, and m2 denote the masses of particles

FIG. 1. Feynman diagram for Pi → Pff1f2 considering f1 as a
particle and f2 as an antiparticle. Here the blob denotes the
effective vertex and includes contributions from all of the form
factors defined in Eq. (3).

FIG. 2. Decay of Pi → Pff1f2 in the Gottfried-Jackson frame.

2These eight form factors form a complete set of “effective”
form factors. As an example, let us consider the decay
B → Kμ−μþ, which is very well studied in the literature. The
underlying quark-level transition is b → sμ−μþ, which involves
flavor-changing neutral current and is, therefore, not allowed at
tree level in the SM. However, the decay does happen at loop
level via the famous penguin diagrams. For a detailed study of the
underlying physics in this decay, see Ref. [11]. From the
references in Ref. [12], we can see that, at the meson level,
the hadronic current (equivalently, hadronic matrix element) in
the SM can be decomposed into two components, one involving
pα and another involving qα, which can be compared with what
we have in Eq. (3) for the vector and axial-vector cases.
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Pi, Pf, f1, and f2, respectively. In the Gottfried-Jackson
frame, the expressions for t and u are given by

t ¼ at − b cos θ; ð5aÞ

u ¼ au þ b cos θ; ð5bÞ

where

at ¼ m2
1 þm2

f þ
1

2s
ðsþm2

1 −m2
2Þðm2

i −m2
f − sÞ; ð6aÞ

au ¼ m2
2 þm2

f þ
1

2s
ðs −m2

1 þm2
2Þðm2

i −m2
f − sÞ; ð6bÞ

b ¼ 1

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1; m
2
2Þλðs;m2

i ; m
2
fÞ

q
; ð6cÞ

with the Källén function λðx; y; zÞ defined as

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ:

It is clear that at, au, and b are functions of s only. For the
special case of m1 ¼ m2 ¼ m (say), we have at¼au¼
1
2
ðm2

i þm2
fþ2m2−sÞ and b¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−4m2=sÞλðs;m2

i ;m
2
fÞ

q
.

It is important to note that we shall use the angle θ in our
angular distribution.

IV. MOST GENERAL ANGULAR DISTRIBUTION
AND ANGULAR ASYMMETRIES

Considering the amplitude given in Eq. (2), the most
general angular distribution in the Gottfried-Jackson frame
is given by

d2Γ
dsd cos θ

¼ b
ffiffiffi
s

p ðC0 þ C1 cos θ þ C2cos2θÞ
128π3m2

i ðm2
i −m2

f þ sÞ ; ð7Þ

where C0, C1, and C2 are functions of s and are given by

C0 ¼ 2ð−jFT1
j2ð−Σm2

12s
2 þ 2Σm2

12ðΣm2Þifsþ ðΔm2Þ212s − Δa2tus

− 2ðΔm2Þ212ðΣm2Þif − ðΔm2Þ2ifΣm2
12 þ 2ΔatuðΔm2Þ12ðΔm2ÞifÞ

− 2ImðFþ
VF

�
T1
Þð−Σm12s2 þ 2Σm12ðΣm2Þifsþ Δm12ðΔm2Þ12s

− 2Δm12ðΔm2Þ12ðΣm2Þif − ðΔm2Þ2ifΣm12 þ ΔatuΔm12ðΔm2ÞifÞ
þ jFT2

j2ðΔm2
12s

2 − 2Δm2
12ðΣm2Þifs − ðΔm2Þ212sþ Δa2tusþ 2ðΔm2Þ212ðΣm2Þif

þ Δm2
12ðΔm2Þ2if − 2ΔatuðΔm2Þ12ðΔm2ÞifÞ

− 2ImðFþ
AF

�
T2
ÞðΔm12s2 − 2Δm12ðΣm2Þifs − ðΔm2Þ12Σm12s

þ 2ðΔm2Þ12Σm12ðΣm2Þif − ΔatuðΔm2ÞifΣm12 þ Δm12ðΔm2Þ2ifÞ
þ jFþ

A j2ðs2 − 2ðΣm2Þifs − Σm2
12sþ 2Σm2

12ðΣm2Þif þ ðΔm2Þ2if − Δa2tuÞ
þ jFþ

V j2ðs2 − 2ðΣm2Þifs − Δm2
12sþ 2Δm2

12ðΣm2Þif þ ðΔm2Þ2if − Δa2tuÞ
þ jF−

Aj2ðΣm2
12s − ðΔm2Þ212Þ − 2ReðFPF−�

A ÞðΣm12s − Δm12ðΔm2Þ12Þ
− jF−

V j2ððΔm2Þ212 − Δm2
12sÞ − 2ReðFSF−�

V ÞððΔm2Þ12Σm12 − Δm12sÞ
− jFSj2ðΣm2

12 − sÞ − jFPj2ðΔm2
12 − sÞ þ 2ReðFþ

AF
−�
A ÞððΔm2ÞifΣm2

12 − ΔatuðΔm2Þ12Þ
− 2ReðFPF

þ�
A ÞððΔm2ÞifΣm12 − ΔatuΔm12Þ − 2ReðFSF

þ�
V ÞðΔatuΣm12 − Δm12ðΔm2ÞifÞ

þ 2ReðFþ
VF

−�
V ÞðΔm2

12ðΔm2Þif − ΔatuðΔm2Þ12ÞÞ; ð8aÞ

C1 ¼ 8bðΔm12ðImðF−
VF

�
T1
Þs − ReðFPF

þ�
A ÞÞ þ Σm12ð−ImðF−

AF
�
T2
Þsþ ReðFSF

þ�
V Þ

− ðΔm2ÞifImðFþ
AF

�
T2
ÞÞ þ ΔatuðjFþ

V j2 þ jFþ
A j2Þ þ ðImðFSF�

T1
Þ þ ImðFPF�

T2
ÞÞs

þ ðΔm2Þ12ðReðFþ
VF

−�
V Þ þ ReðFþ

AF
−�
A ÞÞ þ ðΔm2ÞifΔm12ImðFþ

VF
�
T1
ÞÞ; ð8bÞ

C2 ¼ 8b2ððjFT2
j2 þ jFT1

j2Þs − jFþ
V j2 − jFþ

A j2Þ; ð8cÞ
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with Δatu ¼ at − au, Δm12 ¼ m1 −m2, Δmif ¼ mi −mf,
Σm12¼m1þm2, Σmif¼miþmf, ðΔm2Þ12¼Δm12Σm12¼
m2

1−m2
2, ðΔm2Þif ¼ ΔmifΣmif ¼ m2

i −m2
f, ðΣm2Þif ¼

m2
i þm2

f. In the limit m1 ¼ m2, which happens when
f1f2 ¼ l−lþ; νν̄, fDMf̄DM, etc., our expressions for the

angular distribution matches with the corresponding
expression in Ref. [10]. It is important to remember that
in the SM we come across scalar, vector, and axial vector
currents only. Therefore, in the SM, FSM

P ¼ FSM
T1

¼
FSM
T2

¼ 0, which implies that,

CSM
0 ¼ 2ðjðFþ

A ÞSMj2ðs2 − 2ðΣm2Þifs − Σm2
12sþ 2Σm2

12ðΣm2Þif þ ðΔm2Þ2if − Δa2tuÞ
þ jðFþ

V ÞSMj2ðs2 − 2ðΣm2Þifs − Δm2
12sþ 2Δm2

12ðΣm2Þif þ ðΔm2Þ2if − Δa2tuÞ
þ jðF−

AÞSMj2ðΣm2
12s − ðΔm2Þ212Þ − jðF−

VÞSMj2ððΔm2Þ212 − Δm2
12sÞ − jðFSÞSMj2ðΣm2

12 − sÞ
þ 2ReððFþ

A ÞSMðF−
AÞ�SMÞððΔm2ÞifΣm2

12 − ΔatuðΔm2Þ12Þ
þ 2ReððFþ

V ÞSMðF−
VÞ�SMÞððΔm2ÞifΔm2

12 − ΔatuðΔm2Þ12ÞÞ; ð9aÞ

CSM
1 ¼ 8bðΔatuðjðFþ

V ÞSMj2 þ jðFþ
A ÞSMj2Þ þ ðΔm2Þ12ðReððFþ

V ÞSMðF−
VÞ�SMÞ þ ReððFþ

A ÞSMðF−
AÞ�SMÞÞÞ; ð9bÞ

CSM
2 ¼ −8b2ðjðFþ

V ÞSMj2 þ jðFþ
A ÞSMj2Þ: ð9cÞ

It is interesting to note that in the special case of
m1 ¼ m2, such as in Pi → Pfl−lþ, we always have
CSM
1 ¼ 0. For specific meson decays of the form Pi →

Pff1f2 allowed in the SM, one can write down ðFSÞSM,
ðF�

V ÞSM, and ðF�
A ÞSM, at least in principle.3 The SM

prediction for the angular distribution can thus be compared
with the corresponding experimental measurement. In
order to quantitatively compare the theoretical prediction
with the experimental measurement, we define the follow-
ing three angular asymmetries, which can precisely probe
C0, C1, and C2 individually,

A0 ≡ A0ðsÞ ¼
− 1

6
ðR −1=2

−1 −7
Rþ1=2
−1=2 þ Rþ1

þ1=2Þ d2Γ
dsd cos θ d cos θ

dΓ=ds

¼ 3C0

ð6C0 þ 2C2Þ
; ð10aÞ

A1 ≡ A1ðsÞ ¼
−ðR 0

−1 −
Rþ1
0 Þ d2Γ

dsd cos θ d cos θ

dΓ=ds

¼ 3C1

ð6C0 þ 2C2Þ
; ð10bÞ

A2 ≡ A2ðsÞ ¼
2ðR −1=2

−1 −
Rþ1=2
−1=2 þ Rþ1

þ1=2Þ d2Γ
dsd cos θ d cos θ

dΓ=ds

¼ 3C2

ð6C0 þ 2C2Þ
: ð10cÞ

The angular asymmetries of Eq. (10) are functions of s, and
it is easy to show that A2 ¼ 3ð1=2 − A0Þ. We can do the
integration over s in Eq. (7) and define the following
normalized angular distribution,

1

Γ
dΓ

d cos θ
¼ T0 þ T1 cos θ þ T2cos2θ; ð11Þ

where

Tj ¼ 3cj=ð6c0 þ 2c2Þ ð12Þ

for j ¼ 0, 1, 2, and with

cj ¼
Z ðmi−mfÞ2

ðm1þm2Þ2
b

ffiffiffi
s

p
Cj

128π3m2
i ðm2

i −m2
f þ sÞ ds: ð13Þ

From Eq. (12), it is easy to show that T2 ¼ 3ð1=2 − T0Þ,
which also ensures that integration over cos θ on Eq. (11) is
equal to 1. It is interesting to note that the angular
distribution of Eq. (11) can be written in terms of the
orthogonal Legendre polynomials of cos θ as well,

1

Γ
dΓ

d cos θ
¼

X2
i¼0

hGðiÞiPiðcos θÞ: ð14Þ

Here we have followed the notation of Ref. [13], which also
analyzes decays of the type Pi → Pff1f2, with only
leptons for f1;2, in a model-independent manner but using
a generalized helicity amplitude method. The observables
hGðiÞi of Eq. (14) are related to T0, T1, and T2 of Eq. (11) as
follows,

3In the case of decays mediated by W�, the form factors
ðF�

V ÞSM and ðF�
A ÞSM are related by ðF�

V ÞSM ¼ −ðF�
A ÞSM and

ðFþ
V =F

þ
A ÞSM ¼ ðF−

V=F
−
AÞSM. However, for neutral current medi-

ated decays, ðF�
V ÞSM ≠ −ðF�

A ÞSM (in general), but ðFþ
V =F

þ
A ÞSM ¼

ðF−
V=F

−
AÞSM still remains valid.
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hGð0Þi ¼ T0 þ T2=3 ¼ 1=2; ð15aÞ

hGð1Þi ¼ T1; ð15bÞ

hGð2Þi ¼ 2T2=3: ð15cÞ

These angular observables hGðiÞi can be obtained by using
the method of moments [13,14]. Another important way to
describe the normalized angular distribution is by using a
flat term FH=2 and the forward-backward asymmetry AFB
[12] as follows,

1

Γ
dΓ

dcosθ
¼ 1

2
FHþAFB cosθþ

3

4
ð1−FHÞð1− cos2θÞ: ð16Þ

This form of angular distribution has also been used in the
experimental community [15] in the study of B → Kl−lþ.
The parameters FH and AFB are related to T0, T1, and T2 as
follows,

FH ¼ 2ðT0 þ T2Þ ¼ 3 − 4T0; ð17aÞ

AFB ¼ T1: ð17bÞ

Thus we have shown that Eqs. (11), (14), and (16) are
equivalent to one another. In this paper, we choose to work
using the normalized angular distribution in terms of T0,
T1, and T2, as shown in Eq. (11). This is because the terms
T0, T1, and T2 can be easily determined experimentally by
using the t-vs-u Dalitz plot, which does not depend on any
specific frame of reference. This Dalitz plot can be easily
divided into four segments, I, II, III, and IV, as shown in
Fig. 3. The segments are decided as follows,

Segment I∶ − 1 ≤ cos θ ≤ −0.5;

Segment II∶ − 0.5 < cos θ ≤ 0;

Segment II∶ 0 < cos θ ≤ 0.5;

Segment IV∶ 0.5 < cos θ ≤ 1:

The terms T0, T1, and T2 can thus be expressed in terms of
the following asymmetries,

T0 ¼ −
1

6

�
NI − 7ðNII þ NIIIÞ þ NIV

NI þ NII þ NIII þ NIV

�
; ð18aÞ

T1 ¼
ðNI þ NIIÞ − ðNIII þ NIVÞ
NI þ NII þ NIII þ NIV

; ð18bÞ

T2 ¼ 2

�
NI − ðNII þ NIIIÞ þ NIV

NI þ NII þ NIII þ NIV

�
; ð18cÞ

where Nj denotes the number of events contained in the
segment j. Since the t-vs-u Dalitz plot does not depend on
the frame of reference, we need not constraint ourselves
to the Gottfried-Jackson frame of Fig. 2, and we can work
in the laboratory frame as well. Furthermore, we can use the
expressions in Eq. (18) to search for NP.

V. ILLUSTRATING THE EFFECTS OF NEW
PHYSICS ON THE ANGULAR DISTRIBUTION

A. Classification of the Pi → Pf f 1f 2 decays

It should be emphasized that, for our methodology to
work, we need to know the angle θ in the Gottfried-Jackson
frame, or equivalently the t-vs-u Dalitz plot, which demand
that the 4-momenta of the final particles be fully known.
Usually, the 4-momenta of the initial and final pseudoscalar
mesons are directly measured experimentally. However,
depending on the detection possibilities of f1 and f2, we
can identify three distinct scenarios for our process
Pi → Pff1f2. We introduce the notations f✓i and f✗i to
denote whether the fermion fi gets detected (✓) or not (✗)
by the detector. Using this notation, the three scenarios are
described as follows.

(S1) Pi → Pf þ f✓1 þ f✓2 ≡ Pf þ “visible”. Here both
f1 and f2 are detected, e.g., when f1f2 ¼ l−lþ

or ll̄0.
(S2) Pi→fPfþf✓

1
þf✗

2

Pfþf✗
1
þf✓

2

g≡Pfþvisibleþ“invisible”. Here

either f1 or f2 gets detected, e.g., when f1f2 ¼ lνl,

lνS, lfDM, lfLLP.
(S3) Pi → Pf þ f✗1 þ f✗2 ≡ Pf þ invisible. Here neither
f1 nor f2 gets detected, e.g., when f1f2 ¼ νlν̄l, νlν̄S,
νSν̄l, νSν̄S, fDMf̄DM, fDM1 fDM2 , fLLP1 fLLP2 , etc.

It should be noted that the above classification is based on
our existing experimental explorations. What is undetected
today might get detected in the future with advanced
detectors. In such a case, we can imagine that, in the
future, the modes grouped in S2 might migrate to S1, and
those in S3 might be grouped under S2. Below we explore
each of the above scenarios in more detail.

FIG. 3. Two examples depicting the variation of cos θ in the
interior region of the t-vs-u Dalitz plot. The interior of the
Dalitz plot can be divided into four segments, I, II, III, and IV,
as shown here.
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B. Exploration of new physics effects
in each scenario

The first scenario (S1) is an experimenter’s delight, as in
this case all final 4-momenta can be easily measured and
the t-vs-u Dalitz plot can be obtained. Here our method-
ology can be used to look for the possible signature of new
physics in rare decays such as B → Dl−lþ (which can be
found in Ref. [10]) or to study the nature of new physics

contributing to lepton-flavor violating processes such as
B → Pl�l0∓, where P ¼ π, K, D, l ≠ l0 and l;l0 ¼ e, μ,
τ. Let us consider a few NP possibilities mediating this
lepton-flavor violating decay. There is no contribution
within the SM to such decays. Therefore, all contributions
to these decays come from NP alone.4 It is very easy to note
that, for the decay B → Pl−l0þ, from Eqs. (8) and (11)
we get

1

Γ
dΓ

d cos θ
¼

8>><
>>:

1=2 ðonly scalar or pseudoscalar interactionÞ;
T0 þ T2cos2θ ðonly tensorial interactionÞ;
T0 þ T1 cos θ þ T2cos2θ ðonly vector or axial-vector interactionÞ;

ð19Þ

where T2 ¼ 3ð1=2 − T0Þ, with the quantities T0, T1, and
T2 being easily obtainable from the Dalitz plot distribution
by using Eq. (18). It is clear from Eq. (19) that a scalar or
pseudoscalar interaction would give rise to a uniform (or
constant) angular distribution, while a tensorial interaction
gives a nonuniform distribution which is symmetric under
cos θ ↔ − cos θ and for this T0 ≤ 1=2. On the other hand, a
vector or axial-vector interaction can be described only by
the most general form of the angular distribution, with its
signature being T1 ≠ 0. Nevertheless, if a vector or axial-
vector interaction contributes to the flavor violating
processes B → Pl−l0þ, it is important to note that
T1 ∝ ðm2

l −m2
l0 Þ, where ml, ml0 denote the masses of

the charged leptons l− and l0þ, respectively. Therefore, we
should observe an increase in the value of T1 when going
from B → Pμ−eþ to B → Pτ−μþ to B → Pτ−eþ. This
would nail down the vector or axial-vector nature of the
NP if it is the only NP contributing to these decays. Thus
far we have analyzed the first scenario (S1) in which
the relevant decays can be easily probed with existing
detectors.
The second scenario (S2) can also be studied exper-

imentally with existing detectors. In this case, the missing
4-momentum can be fully deduced using conservation of
4-momentum. Thus the t-vs-u Dalitz plot can readily be
obtained. Using our methodology, the signatures of NP can
then be extracted. One promising candidate for search for
NP in this kind of scenario is in the decay B → PlN, where
P ¼ π, K, or D and N can be an active neutrino (νl) or
sterile neutrino (νS) or a neutral dark fermion (fDM) or a
long-lived neutral fermion (fLLP) which decays outside the
detector. These S2 decay modes offer an exciting oppor-
tunity for the study of NP effects.
The third scenario (S3), which has the maximum number

of NP possibilities, is also the most challenging one for the

current generation of experimental facilities due to the lack
of information about the individual 4-momentum of f1 and
f2. This implies that we cannot do any angular analysis for
these kinds of decays unless by some technological
advancement such as by using displaced vertex detectors5

we can manage to make measurement of the 4-momentum
or the angular information of at least one of the final
fermions. Getting 4-momenta of both of the fermions
would be ideal, but knowing the 4-momentum of either
one of them would suffice for our purposes. We are
optimistic that the advancement in detector technology
would push the current S3 decay modes to get labeled as S2
modes in the foreseeable future. It is important to note that,
once the current S3 modes enter the S2 category, we can
cover the whole spectrum of NP possibilities in the
Pi → Pff1f2 decays. Below we make a comprehensive
exploration of NP possibilities in the generalized S2 decay
modes, which includes the current S2 and S3 modes
together.

C. Probing the effects of new physics
in the S2 and generalized S2 scenarios

In the generalized S2 (GS2) scenario, we have decays of
the type

Pi →

�
Pf þ f✓1 þ f✗2
Pf þ f✗1 þ f✓2

�
≡ Pf þ visibleþ invisible;

where the detected (✓) or undetected (✗) nature is not
constrained by our existing detector technology. In some
cases, even with advanced detectors, either of the fermions
f1, f2 might not get detected simply because its direction of
flight lies outside the finite detector coverage, especially

4For some specific NP scenarios which can lead to such lepton-
flavor violating decays and for recent developments, see Ref. [16].

5There are many existing proposals for such displaced vertex
studies from other theoretical and experimental considerations
(see Refs. [17,18] and references contained therein for further
information).

ANGULAR DISTRIBUTION AS AN EFFECTIVE PROBE OF … PHYS. REV. D 100, 015005 (2019)

015005-7



when the detector is located farther from the place of origin
of the particle. Such possibilities are also included here. As
noted before, measuring the 4-momentum of either of the
final fermions would suffice to carry out the angular
analysis following our approach.
In this context, let us analyze the following decays.
(i) S2 decay: B → Pl−f✗, where P can be π or D and

where f✗ is a neutral fermion. In the SM, this
process is mediated by a W− boson and we have
f✗ ¼ ν̄l. The presence of NP can imply f✗ being a
sterile neutrino νS or a fermionic dark matter particle
fDM or a long-lived fermion fLLP, with additional
non-SM interactions.

(ii) GS2 decay: B → Kf✓1 f
✗
2 where f✓1 and f✗2 are both

neutral fermions. In the SM, this process is mediated
by a Z0 boson and we have f1f2 ¼ νlν̄l. However,
in the case of NP contribution, we can get pairs of
sterile neutrinos or fermionic dark matter or fer-
mionic long-lived particles, etc., along with non-
standard interactions as well. Here we are assuming
that either of the final neutral fermions leaves a
displaced vertex signature in an advanced detector
so that its 4-momentum or angular information
could be obtained. If the reconstruction of f✓1 is
not precise enough to distinguish it from active
neutrinos, then the angular distribution could be
used to look for the signature of NP. We shall
explicitly explore this interesting aspect in our
analysis.

1. New physics effects in the S2 decay B → Pl− f ✗

Analyzing the B → Pl−f✗ decay in the SM, we find that
only vector and axial vector currents contribute and that
F�
A ¼ −F�

V , while other form factors are zero. Also
considering the antineutrino to be massless, i.e., m2 ¼ 0
we find that

at ¼ m2
l þm2

P þ ðsþm2
lÞðm2

B −m2
P − sÞ=ð2sÞ;

au ¼ m2
P þ ðs −m2

lÞðm2
B −m2

P − sÞ=ð2sÞ;
b ¼ ðs −m2

lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

B;m
2
PÞ

q
=ð2sÞ;

where ml, mP, and mB denote the masses of the charged
lepton l− and mesons P and B, respectively. Substituting
this information into Eqs. (9) and (7), we get

d2ΓSM

dsd cos θ
¼ b

ffiffiffi
s

p ðCSM
0 þ CSM

1 cos θ þ CSM
2 cos2θÞ

128π3m2
Bðm2

B −m2
P þ sÞ ; ð20Þ

where

CSM
0 ¼ 4

�
jðFþ

V ÞSMj2ðλðs;m2
B;m

2
PÞ −m2

lðs − 2ðm2
B −m2

PÞÞ

−m4
lðm2

B −m2
PÞ2=s2Þ þ jðF−

VÞSMj2m2
lðs −m2

lÞ

þ 2ReððFþ
V ÞSMðF−

VÞ�SMÞm2
lðm2

B −m2
PÞ
�
1 −

m2
l

s

��
;

ð21aÞ

CSM
1 ¼ 16m2

lb

��
m2

B −m2
P

s

�
jðFþ

V ÞSMj2

þ ReððFþ
V ÞSMðF−

VÞ�SMÞ
�
; ð21bÞ

CSM
2 ¼ −16b2jðFþ

V ÞSMj2: ð21cÞ

It is important to notice that in Eq. (21) we have many terms
in the expression for CSM

0 that are proportional to some
power of the lepton mass, while the entire CSM

1 is directly
proportional to m2

l. If we compare the ml dependent and
ml independent contributions in CSM

0 , we find that the
dependent terms are suppressed by about a factor of
Oð2m2

l=m
2
BÞ, which is roughly 8 × 10−4 for a muon and

2 × 10−8 for an electron. Thus we can neglect these ml
dependent terms in comparison with mass independent
terms. Equivalently, we can consider charged leptons such
as electrons and muons as massless fermions, when
compared with the B meson mass scale. In the limit
ml → 0, the expression for angular distribution given in
Eq. (20) becomes much simpler,

d2ΓSM

dsd cos θ
¼ b3

ffiffiffi
s

p
8π3m2

Bðm2
B −m2

P þ sÞ jðF
þ
V ÞSMj2sin2θ: ð22Þ

Independent of the expression for ðFþ
V ÞSM, equivalently

independent of any hadronic uncertainties, it is easy to
show that the normalized angular distribution in the SM is
given by

1

ΓSM

dΓSM

d cos θ
¼ 3

4
sin2 θ; ð23Þ

which implies that T0 ¼ 3=4 ¼ −T2, T1 ¼ 0. Since the
distribution of events in the Dalitz plot is symmetric under
cos θ ↔ − cos θ, we have NI ¼ NIV and NII ¼ NIII, which
automatically satisfies the condition T1 ¼ 0. If we solve
T0 ¼ 3=4 ¼ −T2, we find that the number of events in the
different segments of the Dalitz plot (equivalently, the
number of events in the four distinct bins of cos θ) are
related to one another by

NI

NII
¼ 5

11
¼ NIV

NIII
: ð24Þ
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Any significant deviation from this would imply the
presence of NP effects. To illustrate the effects of NP on
the angular distribution in these types of decays, we
consider two simple and specific NP possibilities. Here
we assume the charged lepton to be massless (ml ¼ 0) and
the undetected fermion (f✗) to have mass m ≠ 0.

Scalar-type new physics.—Considering the simplest scalar-
type NP scenario, with FS ≠ 0, FP ¼ F�

V ¼ F�
A ¼ FT1

¼
FT2

¼ 0, we getCNP
0 ¼2ðs−m2ÞjFSj2 andCNP

1 ¼ 0 ¼ CNP
2 .

In otherwords, there is no angular dependence at all here, i.e.,

d2ΓNP

dsd cos θ
¼ b

ffiffiffi
s

p
64π3m2

Bðm2
B −m2

P þ sÞ ðs −m2ÞjFSj2;

where b ¼ s−m2

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

B;m
2
PÞ

p
andm2 ≤ s ≤ ðmB −mPÞ2.

If we do the integration over s, then the normalized angular
distribution, independent of any hadronic uncertainties, is
constant and equals 1=2. In fact, if such a new physics were
present, our observation of B → Pþ l− þ f✗ would have
the following angular distribution,

dΓ
d cos θ

¼ ΓSM

�
3

4
sin2 θ þ 1

2
ϵ0

�
;

wherewe have parametrized the new physics contribution in
terms of ϵ0 ¼ ΓNP=ΓSM. Here ϵ0 is not independent of any
hadronic uncertainties since, in the evaluation of both ΓSM

and ΓNP, the respective form factors play a major role.
Nevertheless, ϵ0 is an effective parameter that measures
how large or small the NP contribution is with respect to
that of the SM. Doing integration over cos θ, we get
Γ ¼ ΓSMð1þ ϵ0Þ ¼ ΓSM þ ΓNP. This implies

1

Γ
dΓ

d cos θ
¼ 3 sin2 θ þ 2ϵ0

4ð1þ ϵ0Þ
: ð25Þ

This angular distribution is shown in Fig. 4, where we have
varied ϵ0 in the range [0, 1], i.e., we have allowed for the
possibility that the NP contribution might be as large as that
of the SM. It is interesting to find that in Fig. 4, at two specific
values of cos θ, there is no difference between the standard
model prediction alone and the combination of standard
model and new physics contributions. These two points can
be easily obtained by equating Eqs. (23) and (25), and then
solving for cos θ gives us

cos θ ¼ �1=
ffiffiffi
3

p
≈�0.57735: ð26Þ

This corresponds to the angle θ ≈ 54.74°. At these two points
in cos θ, the normalized uniangular distribution always has
the value 0.5, even if there is some scalar new physics
contributing to our process under consideration.

From Eq. (25), it is clear that, despite the scalar
NP effect, the distribution is still symmetric under
cos θ ↔ − cos θ, and solving for the number of events in
the four segments of the Dalitz plot (equivalently, the four
cos θ bins), we get

NI

NII
¼ 5þ 8ϵ0

11þ 8ϵ0
¼ NIV

NIII
: ð27Þ

It is easy to see that when ϵ0 ¼ 0 we get back the SM
prediction of Eq. (24) as expected.

Tensor-type new physics.—Let us consider a tensor type of
new physics possibility in which FT1

≠ 0 and in which all
other form factors are zero. In such a case, we get

CNP
0 ¼ 2m2ðs −m2Þ λðs;m

2
B;m

2
PÞ

s
jFT1

j2;
CNP
1 ¼ 0;

CNP
2 ¼ 2ðs −m2Þ2 λðs;m

2
B;m

2
PÞ

s
jFT1

j2:

It is easy to notice that in the limit m → 0 we have C0 → 0
but C2=→0. If we do the integration over s, then the
normalized angular distribution is given by

1

ΓNP

dΓNP

d cos θ
¼ TNP

0 þ TNP
2 cos2 θ; ð28Þ

where TNP
2 ¼ 3ð1=2 − TNP

0 Þ and TNP
0 ¼ 3c0=ð6c0 þ 2c2Þ

with

cj ¼
Z ðmB−mPÞ2

m2

b
ffiffiffi
s

p
CNP
j

128π3m2
Bðm2

B −m2
P þ sÞ ds:

FIG. 4. Normalized uniangular distribution showing the effect
of a scalar new physics contribution to B → Pl−f✗ where we
have neglected the mass of the charged lepton l ¼ e, μ. This also
shows the normalized uniangular distribution showing the effect
of a scalar new physics contribution to B → Kf✓1 f

✗
2 considering

the m1 ¼ m2 case only.
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Here, by construction itself, the TNP
0 and TNP

2 terms are
independent of any form factors or, equivalently, free from
any hadronic uncertainties. It is also easy to notice that in
the limit m → 0 we have T0 ¼ 0. If such a new physics
were present, our observation of B → Pl−f✗ would have
the following angular distribution,

dΓ
d cosθ

¼ ΓSM

�
3

4
sin2 θþ

�
TNP
0 þ 3

�
1

2
− TNP

0

�
cos2 θ

�
ϵ

�
;

ð29Þ

where ϵ ¼ ΓNP=ΓSM is the NP parameter which can vary in
the range [0, 1], denoting the possibility that the NP
contribution can be as large as that of the SM, and TNP

0 acts
as a free parameter here which can vary in the range ½0; 3=4�,
in which dΓNP=d cos θ ≥ 0 for all values of cos θ. It must be
noted here that ϵ does dependon the appropriate form factors,
and hence it has hadronic uncertainties. Doing an integration
over cos θ, we get Γ ¼ ΓSMð1þ ϵÞ ¼ ΓSM þ ΓNP. This
implies

1

Γ
dΓ

d cos θ
¼ 3þ 4TNP

0 ϵ − 3ð4TNP
0 ϵ − 2ϵþ 1Þ cos2 θ

4ð1þ ϵÞ : ð30Þ

This angular distribution is shown in Fig. 5, in which we
have considered nine values of TNP

0 and varied ϵ in the
range [0, 1]. It is clearly evident in Fig. 5 that the TNP

0 ¼
3=4 case is always indistinguishable from the SM case, as it
should be. Just like the scalar-type new physics case, we
observe that there are two values of cos θ at which there is
no difference between the SM prediction alone and the

combination of SM and NP contributions. These two points
can be easily computed by equating Eqs. (23) and (30), and
then solving for cos θ, we once again find that

cos θ ¼ �1=
ffiffiffi
3

p
≈�0.57735; ð31Þ

which corresponds to the angle θ ≈ 54.74°. At these two
points in cos θ, the normalized uniangular distribution
always has the value 0.5, even if there is some tensor
new physics contributing to our process under consider-
ation. It should be noted that these are also the same points
where the scalar new physics contribution shows a similar
effect.
It is also easy to notice that the angular distribution given

in Eq. (30) is symmetric under cos θ ↔ − cos θ, and
solving for the number of events in the four segments of
the Dalitz plot (equivalently, the four cos θ bins), we get

NI

NII
¼ 5þ 2ϵð7 − 6TNP

0 Þ
11þ 2ϵð1þ 6TNP

0 Þ ¼
NIV

NIII
: ð32Þ

It is easy to see that, when ϵ ¼ 0 or TNP
0 ¼ 3=4, we get back

the SM prediction of Eq. (24), as expected.
Finally, we analyze new physics possibilities in the

decays belonging to the GS2 category. Because of the
very nature of the GS2 decay modes, the following
discussion of NP effects presumes the usage of advanced
detector technology to get angular information.

2. New physics effects in the GS2 decay B → Kf✓1 f
✗
2

As mentioned before, the GS2 decay modes were
originally part of S3, i.e., it is extremely difficult to get
angular distribution for these cases unless we innovate on
detector technology. Here we consider such a decay mode,
B → Kf✓1 f

✗
2 , in which both f1, f2 are neutral fermions who

have evaded, till now, all of our attempts to detect them near
their place of origin. But probably, with displaced vertex
detectors or some other advanced detector, we could bring
at least one of these fermions (say, f1) under the purview of
experimental study and measure its 4-momentum or angu-
lar information. The missing fermion (which is f2 in our
example here) might have flown in a direction along which
there is no detector coverage. To increase the sample size,
we should include B → Kf✗1f

✓
2 events also provided that

we know how to ascertain the particle or antiparticle nature
of f1 and f2. To illustrate this point, let us consider the
possibility f1f2 ¼ νSν̄S. In a displaced vertex detector, if
we see πþμ− events, they can be attributed to the decay of
νS, and similarly π−μþ events would appear from the decay
of ν̄S. In this case, we can infer the angle θ by knowing the
4-momentum of either f1 ¼ νS or f2 ¼ ν̄S (see Fig. 2). If
we find that both f1 and f2 leave behind their signature
tracks in the detector (i.e., f✓1 f

✓
2 ) it would be the most ideal

situation. But as we have already stressed, measuring the

FIG. 5. Normalized uniangular distribution showing the effect
of a tensor new physics contribution to B → Pl−f✗, where we
have neglected the mass of the charged lepton l ¼ e, μ. This set
of plots can also describe the effect of a vector new physics
contribution to B → Kf✓1 f

✗
2 when the final fermions are equally

massive.
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4-momenta of either of the fermions would suffice for our
angular studies.
In the SM, the only contribution to B → Kf✓1 f

✗
2 and

B → Kf✗1f
✓
2 would come from B → Kνlν̄l, where, as in

the case of NP, we have a number of possibilities that
includes sterile neutrinos, dark matter particles, and some
long-lived particles in the final state, f1f2 ¼ νlν̄S, νSν̄l,
νSν̄S, fDMf̄DM, fDM1 fDM2 , fLLPf̄LLP, fLLP1 fLLP2 , etc.6 One
can also consider nonstandard neutrino interactions also
contributing in these cases. To demonstrate our methodol-
ogy, we shall analyze only a subset of these various NP
possibilities in which f1 and f2 have the same mass, i.e.,
m1 ¼ m2 ¼ m (say), as this greatly simplifies the calcu-
lation. As we shall illustrate below, we not only can
detect the presence of NP but can ascertain whether it is
of scalar type or vector type, e.g., by analyzing the angular
distribution.
Before we go for new physics contributions, let us

analyze the SM contribution B → Kνlν̄l. Here there are
only vector and axial-vector currents contributions,
and F�

A ¼ −F�
V . Also the neutrino and antineutrino are

massless, i.e., m1 ¼ 0 ¼ m2, which implies at ¼ au ¼
1
2
ðm2

B þm2
K − sÞ and b ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

B;m
2
KÞ

p
, where mB

andmK denote the masses of B andK mesons, respectively.
Substituting this information into Eqs. (9) and (7), we get
the expression for d2ΓSM

dsd cos θ that is identical to Eq. (22) with
the appropriate substitution mP → mK . Irrespective of the
expression for the form factor, i.e., independent of any
hadronic uncertainties, it can be easily shown that the
normalized angular distribution in the SM is then given by
Eq. (23). Following the same logic as that given after
Eq. (23), we find that the number of events in the different
segments of the Dalitz plot (equivalently, the number of
events in the four distinct bins of cos θ) are related to one
another by Eq. (24). This sets the stage for us to explore
(i) a scalar type and (ii) a vector type of NP possibility, with
final fermions for which m1 ¼ m2 ¼ m ≠ 0.

Scalar-type new physics.—Once again we consider the
simplest scalar-type NP scenario, with FS ≠ 0, and other
form factors being zero. This leads us to

CNP
0 ¼ 2ðs − 4m2ÞjFSj2;

CNP
1 ¼ 0 ¼ CNP

2 :

In other words, there is no angular dependence at all here,
i.e.,

d2ΓNP

dsd cos θ
¼ b

ffiffiffi
s

p
64π3m2

Bðm2
B −m2

K þ sÞ ðs − 4m2ÞjFSj2; ð33Þ

where b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs−4m2Þλðs;m2

B;m
2
KÞ

p
=ð2 ffiffiffi

s
p Þ and 4m2 ≤ s ≤

ðmB −mKÞ2. If we do the integration over s, then for NP
only the normalized angular distribution, without any
hadronic uncertainties, is 1=2 at all values of cos θ.
Considering such a NP contributing in addition to the
SM, the experimentally observed angular distribution can
be written as

dΓ
d cos θ

¼ ΓSM

�
3

4
sin2 θ þ 1

2
ϵ0

�
;

where ϵ0 ¼ ΓNP=ΓSM is the new physics parameter
which can vary in the range [0, 1] if we assume the NP
contribution to be as large as that from the SM. Once again
ϵ0 does depend on the appropriate form factors. Doing
an integration over cos θ, we get Γ ¼ ΓSMð1þ ϵ0Þ ¼
ΓSM þ ΓNP. This implies

1

Γ
dΓ

d cos θ
¼ 3 sin2 θ þ 2ϵ0

4ð1þ ϵ0Þ
: ð34Þ

Since Eq. (34) is identical to Eq. (25), the angular
distribution for this case is also as shown in Fig. 4, where
we have varied ϵ0 in the range [0, 1]. Once again at two
specific values of cos θ—namely, cos θ ¼ �1=

ffiffiffi
3

p
≈

�0.57735 corresponding to the angle θ ≈ 54.74°—there
is no difference between the standard model prediction
alone and the combination of the standard model and scalar
new physics contributions. At these two points in cos θ, the
normalized uniangular distribution always has the value
0.5, even if there is some scalar new physics contributing to
our process under consideration.
Since the angular distribution shown in Eq. (34) is fully

symmetric under cos θ ↔ − cos θ, the number of events in
the four segments of the Dalitz plot (equivalently, in the
four cos θ bins) satisfies the following relationship,

NI

NII
¼ 5þ 8ϵ0

11þ 8ϵ0
¼ NIV

NIII
: ð35Þ

It is easy to see that ϵ0 ¼ 0 gives the SM prediction of 5=11,
as expected.

Vector-type new physics.—Let us now discuss another new
physics scenario, such as the case of a flavor-changing Z0 or
a dark photon γD giving rise to the final pair of fermions,
f1f2. We assume that, for this kind of new physics
scenario, Fþ

V ¼ FNP
V ≠ 0, and other form factors are zero.7

For this kind of new physics, we get
6In addition to the new physics possibilities considered here,

there can be additional contributions to the B → K þ invisible
decay, e.g., from SM singlet scalars contributing to the invisible
part discussed in Ref. [19]. As is evident, our analysis is instead
focused on a pair of fermions contributing to the invisible part.

7We can even consider F−
V ≠ 0 here. However, it is clear from

Eq. (8) that the additional terms containing F−
V vanish identically

when we consider m1 ¼ m2 ¼ m ≠ 0.
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CNP
0 ¼ 2jFNP

V j2λðs;m2
B;m

2
KÞ;

CNP
1 ¼ 0;

CNP
2 ¼ −8b2jFNP

V j2:

The angular distribution for the NP alone contribution can,
therefore, be written in terms of TNP

0 and TNP
2 , which are

directly proportional to CNP
0 and CNP

2 , respectively. It would
lead us to describe the complete angular distribution in
terms of TNP

0 and ϵ ¼ ΓNP=ΓSM using Eq. (30), and the
angular distribution would look like the one shown in
Fig. 5. However, it is possible to describe the effects of NP
on the angular distribution using a different set of param-
eters as well. For this, we start afresh with the angular
distribution for the NP contribution alone, which in our
case is given by

d2ΓNP

dsd cos θ
¼ bjFNP

V j2λðs;m2
B;m

2
KÞðs sin2 θ þ 4m2 cos2 θÞ

64π3m2
Bðm2

B −m2
K þ sÞ ffiffiffi

s
p :

Doing integration over cos θ, we obtain

dΓNP

ds
¼ bjFNP

V j2λðs;m2
B;m

2
KÞ

64π3m2
Bðm2

B −m2
K þ sÞ ffiffiffi

s
p

�
4sþ 8m2

3

�
:

Therefore, the normalized uniangular distribution, without
any hadronic uncertainties, is given by

1

dΓNP=ds
d2ΓNP

dsd cos θ
¼ 3

4

�
s sin2 θ þ 4m2 cos2 θ

sþ 2m2

�
: ð36Þ

It is interesting to compare this with the standard model
expression,

1

dΓSM=ds
d2ΓSM

dsd cos θ
¼ 3

4
sin2 θ: ð37Þ

Since the range for s is different in the SM and NP
scenarios, we cannot add Eqs. (36) and (37) directly.
Carrying out the integration over s, we get

dΓNP

d cos θ
¼ 3

4
ðS sin2 θ þ C cos2 θÞ;

where

S ¼
Z ðmB−mKÞ2

4m2

dΓNP

ds

�
s

sþ 2m2

�
ds;

C ¼
Z ðmB−mKÞ2

4m2

dΓNP

ds

�
4m2

sþ 2m2

�
ds:

Doing an integration over cos θ, we get ΓNP ¼ S þ C=2,
and hence

1

ΓNP

dΓNP

d cos θ
¼ 3ðS sin2 θ þ C cos2 θÞ

2ð2S þ CÞ :

Considering both the SM and NP contributions, the
uniangular distribution for the process B → Kf✓1 f

✗
2 is

given by

dΓ
d cos θ

¼ 3

4
ΓSMðð1þ ϵsÞ sin2 θ þ ϵc cos2 θÞ;

where ϵs ¼ S=ΓSM and ϵc ¼ C=ΓSM are the two parameters
which describe the effect of vector-type NP. Thus the
normalized angular distribution is given by

1

Γ
dΓ

d cos θ
¼ 3ð1þ ϵsÞ sin2 θ þ 3ϵc cos2 θ

4ð1þ ϵsÞ þ 2ϵc
: ð38Þ

It is important to note that ϵc and ϵs are dependent on the
appropriate form factors and hence have hadronic uncer-
tainties. It is also important to observe that, if we consider
the mass of the fermion f to be zero, i.e., m ¼ 0, then
ϵc ¼ 0 since C ¼ 0. In such a case, the uniangular dis-
tribution is the same as that in the SM case. This is
plausible, as in the SM case also, one has m ¼ 0 for the
neutrino mass, and only vector and axial-vector currents
contribute.
Assuming that the NP contribution can be smaller than or

as large as the SM contribution, i.e., 0 ≤ ΓNP ≤ ΓSM, we get

0 ≤ ϵs þ ϵc=2 ≤ 1:

Thus 0 ≤ ϵs ≤ 1 implies that 0 ≤ ϵc ≤ 2ð1 − ϵsÞ.
In Fig. 6, we have considered nine values of ϵs and have

varied ϵc in the range ½0; 2ð1 − ϵsÞ� to obtain the uniangular
distribution. It is clearly evident in Fig. 6 that the ϵc ¼ 0

FIG. 6. Normalized uniangular distribution showing the effect
of a vector new physics contribution to B → Kf✓1 f

✗
2 .

KIM, PARK, and SAHOO PHYS. REV. D 100, 015005 (2019)

015005-12



case is always indistinguishable from the SM case, as it
should be. Just like the scalar-type new physics case, we
observe that, at cos θ ¼ �1=

ffiffiffi
3

p
≈�0.57735, there is no

difference between the SM prediction alone and the
combination of SM and NP contributions.
It is also easy to notice that the angular distribution given

in Eq. (38) is symmetric under cos θ ↔ − cos θ, and
solving for the number of events in the four segments of
the Dalitz plot (equivalently, the four cos θ bins), we get

NI

NII
¼ 5ð1þ ϵsÞ þ 7ϵc

11ð1þ ϵsÞ þ ϵc
¼ NIV

NIII
: ð39Þ

It is easy to see that when ϵc ¼ 0 ¼ ϵs we get back the SM
prediction of 5=11, as expected.

D. Discussion

It should be noted that our discussions on the types
of NP contributions to the S2 and GS2 modes, specifically
B → Pl−f✗ and B → Kf✓1 f

✗
2 , respectively, has been fully

general. There are no complications arising out of hadronic
form factors since we have considered a normalized angular
distribution. It should be noted that our analysis also does
not depend on how large or small the masses of the
fermions f; f1;2 are, as long as they are nonzero.
It is also very interesting to note that both the scalar and

tensor type of NP for the B → Pl−f✗ decays, and both the
scalar and vector types of NP for the B → Kf✓1 f

✗
2 decays,

exhibit similar behaviors at cos θ ¼ �1=
ffiffiffi
3

p
. In order to

know the real reason behind this, we must do a very general
analysis. Let us assume that the most general angular
distribution for the processes B → Pl−f✗ and B → Kf✓1 f

✗
2

is given by Eq. (11). If we now equate this distribution to
the SM prediction of Eq. (23) and solve for cos θ after
substituting in Eq. (12), we find that

cos θ ¼ −c1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ 3ðc0 þ c2Þ2

p
3ðc0 þ c2Þ

; ð40Þ

where the cj’s (for j ¼ 0, 1, 2) are obtained from Eq. (13)
with appropriate substitutions of masses and form factors.
Thus Eq. (40) is the most general solution that we can get
for the two specific values of cos θ. However, let us look at
the specific case in which c1 ¼ 0. Only in this situation do
we get cos θ ¼ �1=

ffiffiffi
3

p
. Now it is clear that since, in both

the scalar and tensor types of NP considerations for the
B → Pl−f✗ decays and in both the scalar and vector types
of NP considerations for the B → Kf✓1 f

✗
2 decays, the

angular distribution did not have any term directly propor-
tional to cos θ (i.e., c1 ¼ 0), we obtained the same cos θ ¼
�1=

ffiffiffi
3

p
result in both the cases. Therefore, if the observed

normalized uniangular distribution does not have the value
0.5 at cos θ ¼ �1=

ffiffiffi
3

p
, it implies that c1 ≠ 0.

Another interesting aspect of the two specific NP
contributions that we have considered is that, from
Figs. 4–6, one can clearly see that the vector and tensor
types of NP can accommodate a much larger variation in
the angular distribution than the scalar-type NP. However,
there is also a certain part of the angular distribution for
which both scalar and vector (or tensor) types of NP give
identical results. This happens when

ϵ0 ¼
3ϵc

2ð1þ ϵs − ϵcÞ
¼ ϵð3 − 4TNP

0 Þ
1 − ϵð2 − 4TNP

0 Þ :

In order for ϵ0 to vary in the range [0, 1], we find that (i) for
0 ≤ ϵs ≤ 1, we have 0 ≤ ϵc ≤ 2ð1þ ϵsÞ=5 and (ii) for
0 ≤ ϵ ≤ 1, we have 1

2
≤ TNP

0 ≤ 3
4
. In these specific regions,

therefore, it would not be possible to clearly distinguish
whether scalar or vector- or tensor-typeNP is contributing to
our process under consideration. Nevertheless, our approach
provides a methodology to constrain these specific NP
hypotheses in a manner which does not require one to know
the form factors or hadronic uncertainties a priori. The
various ϵ’s we have introduced, though dependent on form
factors, can effectively probe NP in a clean manner.

VI. CONCLUSION

We have shown that all NP contributions to three-body
semihadronic decays of the type Pi → Pff1f2, where PiðfÞ
denotes an appropriate initial (final) pseudoscalar meson
and f1;2 are a pair of fermions, can be codified into the most
general Lagrangian which gives rise to a very general
angular distribution. The relevant NP information can be
obtained by using various angular asymmetries, provided
that at least one of the final pair of fermions has some
detectable signature, such as a displaced vertex, in the
detector. Depending on the detection feasibility of the final
fermions, we have grouped the Pi → Pff1f2 decays into
three distinct categories: (i) S1, where both f1 and f2 are
detected, (ii) S2, where either f1 or f2 gets detected, and
(ii) S3, where neither f1 nor f2 gets detected. We consider
the possibility that, with advancement in detector technol-
ogy, S3 decays could, in the future, be grouped under the
S2 category. We analyze some specific NP scenarios in
each of these categories to illustrate how NP affects the
angular distribution. Specifically we have analyzed (a) lep-
ton-flavor violating S1 decay B → Pl−l0þ (with P ¼ π,K,
D and l;l0 ¼ e, μ, τ) showing angular signatures of all
generic NP possibilities, (b) S2 decays of the type B →
Pl−f (where f is not detected in the laboratory) showing
the effect of a scalar-type and a tensor-type NP on the
angular distribution, and finally (c) S3 decays (more
correctly, generalized S2 decays) of the type B → Kff̄
(where either f or f̄ gets detected in an advanced detector)
showing the effects of a scalar-type and a vector-type NP
on the angular distribution. The effects on the angular

ANGULAR DISTRIBUTION AS AN EFFECTIVE PROBE OF … PHYS. REV. D 100, 015005 (2019)

015005-13



distribution can be easily estimated from Dalitz plot
asymmetries. The signatures of NP in an angular distribu-
tion are distinct once the process is chosen carefully.
Moreover, as shown in our examples, it can be possible,
in certain cases, to do the identification and quantification
of NP effects without worrying about hadronic uncertain-
ties. We are optimistic that our methodology can be put to
use in LHCb and Belle II in the study of appropriate B
meson decays, furthering our search for NP.
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