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Motivated by the flavored Peccei-Quinn symmetry for unifying flavor physics and string theory, we
investigate a supersymmetric extension of standard model for an explanation of inflation and leptogenesis
by introducing U(1) symmetries such that the U(1) — [gravity]* anomaly-free condition together with the
standard model flavor structure demands additional sterile neutrinos as well as no axionic domain-wall
problem. Such additional neutrinos may play a crucial role as a bridge between leptogenesis and new
neutrino oscillations along with high-energy cosmic events. In a realistic moduli stabilization, we show that
the moduli backreaction effect on the inflationary potential leads to the energy scale of inflation with the
inflaton mass in a way that the power spectrum of the curvature perturbation and the scalar spectral index
are to be well fitted with the latest Planck observation. We suggest that a new leptogenesis scenario could
naturally be implemented via the Affleck-Dine mechanism. So, we show that the resultant baryon
asymmetry, constrained by the sum of active neutrino masses and new high-energy neutrino oscillations,
crucially depends on the reheating temperature 7,,. And we show that the model has a preference on
T,n ~ 10° TeV, which is compatible with the required T, to explain the baryon asymmetry of the

Universe.
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I. INTRODUCTION

The standard model (SM) of particle physics has been
successful in describing properties of known matter and
forces to a great precision until now, but we are far from
satisfied since it suffers from some problems or theo-
retical arguments that have not been solved yet. These
include the following: inclusion of gravity in gauge
theory, instability of the Higgs potential, cosmological
puzzles of matter-antimatter asymmetry, dark matter,
dark energy, and inflation, and flavor puzzle associated
with the SM fermion mass hierarchies, their mixing
patterns with the CP-violating phases, and the strong
CP problem. The SM therefore cannot be the final
answer. It is widely believed that the SM should be
extended to a more fundamental underlying theory. If
nature is stringy, string theory should give insight into all
such fundamental problems or theoretical arguments.1 As
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'In Ref. [1], a concrete model is designed to act as a bridge
between string theory as a fundamental theory and low-energy
flavor physics.
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indicated in Refs. [1,2],2 several such fundamental
challenges strongly hint that a supersymmetric hybrid
inflation framework with new gauge symmetries as well
as higher-dimensional operators responsible for the SM
flavor puzzles may be a promising way to proceed.
Since astrophysical and cosmological observations have
increasingly placed tight constraints on parameters for
axion, neutrino, and inflation including the amount of
reheating, it is in time for a new scenario on axion, neutrino,
and inflation to mount an interesting challenge; see also
Refs. [2,3]. In a theoretical point of view, axion physics
including neutrino physics requires new gauge interactions
and a set of new fields that are SM singlets. Thus, in
extensions of the SM, sterile neutrinos and axions could
naturally be introduced, e.g., in view of U(1) symmetry.
For a new paradigm to explain the aforementioned funda-
mental challenges, in this paper, we investigate a minimal
and economic supersymmetric extension of the SM for an
explanation of inflation and leptogenesis, which can be
realized within the framework® of G = SM x U (1)x x Ay.
All renormalizable and nonrenormalizable operators

“Reference [2] introduces a superpotential for unifying flavor
and strong CP problems, the so-called flavored PQ symmetry
model in a way that no axionic domain-wall problem occurs.

*Here, the flavored PQ symmetry U(1), embedded in the non-
Abelian A, finite group [4] could economically explain the mass
hierarchies of quarks and leptons including their peculiar mixing
patterns as well as provide a neat solution to the strong CP
problem and its resulting axion [3].
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allowed by such gauge symmetries, non-Abelian discrete
symmetry, and R parity exist in the superpotential as in
Ref.[3]. Since nonperturbative quantum gravitational
effects spoil the axion solution to the strong CP problem
[5.6], in order to eliminate such breaking effects of the
axionic shift symmetry by gravity, the author in Ref. [3] has
imposed a U(1)y x [gravity]> anomaly cancellation con-
dition [3] in a way that no axionic domain-wall problem
occurs; thereby, additional sterile neutrinos are introduced.
Such sterile neutrinos are light or heavy and do not
participate in the weak interaction. Moreover, the latest
results [7] from Planck and baryon acoustic oscillations
(BAOs) show that the contribution of light sterile neutrinos
to NS at the big bang nucleosynthesis (BBN) [8] era is
negligible; such neutrinos may play a crucial role as a
bridge between leptogenesis and new neutrino oscillations
along with high-energy cosmic events.

In this paper, in order to provide an explanation for
inflation, we present a realistic moduli stabilization, which
is essential for the flavored PQ axions to be realized at the
low-energy scale [3]. Such moduli stabilization has moduli
backreaction effects on the inflationary potential, which
could provide a lucid explanation for the cosmological
inflation at the high-energy scale. Thus, such moduli
stabilization with the moduli backreaction effects on the
inflationary potential leads to the energy scale of inflation
with the inflaton mass, My, = \/§H 7, in a way that the
power spectrum of the curvature perturbation and the scalar
spectral index are to be well fitted with the latest Planck
observation [9]. And we suggest, interestingly enough, a
new leptogenesis scenario, which could naturally be imple-
mented through the Affleck-Dine (AD) mechanism for
baryogenesis [10] and its subsequent leptonic version, so-
called AD leptogenesis [11]. Interestingly enough, the
pseudo-Dirac mass splittings, suggested from the new
neutrino oscillations along with high-energy cosmic events
[3], strongly indicate the existence of lepton-number viola-
tion, which is a crucial ingredient of the present leptogenesis
scenario. So, the resultant baryon asymmetry is constrained
by the cosmological observable (i.e., the sum of active
neutrino masses) with the new high-energy neutrino oscil-
lations and crucially depends on the reheating temperature,
which depends on gravitational and nongravitational decays
of the inflaton and waterfall field. Since all the particles
including photons and baryons in the present Universe
ultimately originated from the inflaton and waterfall field
decays, it is crucial to reveal how the reheating proceeds. We
show that the reheating temperature is mainly determined by
the nongravitational decay of the waterfall field, leading to a
relatively low reheating temperature, which is consistent
with that for explaining the right value of the baryon
asymmetry of the Universe (BAU), Y,z ~8 x 107! [9],
together with the pseudo-Dirac mass splittings responsible
for new oscillations Am? ~O(107'2) eV2. In addition,
since gravitinos are present in the supersymmetric model,

we are going to address the gravitino overabundance
problem. We consider direct decays of the inflaton to
gravitinos competing with the thermal production in the
thermal plasma formed after reheating when setting limits on
the couplings governing inflaton decay; see Eq. (132).
The rest of this paper is organized as follows. In Sec. II,
we set up and review the model based on Ay x U(1)y
symmetry in order to investigate an economic supersym-
metry (SUSY) inflationary scenario and a new leptogenesis
via the AD mechanism. In Sec. III, first, we study a realistic
moduli stabilization in type IIB string theory with positive
vacuum energy, which is essential for the flavored Peccei-
Quinn (PQ) axions at low energy as well as a lucid
explanation for cosmological inflation at the high-energy
scale. And we investigate how the size moduli stabilized at a
scale close to Agyr significantly affect the dynamics of the
inflation as well as how the X-symmetry breaking scale
during inflation is induced and its scale is fixed at approx-
imately 0.3 x 10'® GeV by the amplitude of the primordial
curvature perturbation and the spectral index. The main
focus on Sec. IV is to show that a successful leptogenesis
scenario could be naturally implemented through the AD
mechanism and subsequently estimate the reheating temper-
ature that is required to generate sufficient lepton number
asymmetry following the hybrid F-term inflation. In turn,
we show that the successful leptogenesis is closely correlated
with the neutrino oscillations available on high- and low-
energy neutrinos and how the amount of reheating could
be strongly correlated with the successful leptogenesis.
Moreover, we discuss that it is reasonable for the reheating
temperature 7', ~ 10° TeV derived from the gravitational
decays of the inflaton and waterfall field to be compatible
with the required reheating temperature for the successful
leptogenesis. What we have done is summarized in Sec. V.

II. FLAVOR A4 x U(1)y SYMMETRY AND SETUP

Unless flavor symmetries are assumed, particle masses
and mixings are generally undetermined in the SM gauge
theory. To provide an elegant solution to the strong CP
problem and describe the present SM flavor puzzles asso-
ciated with the fermion mass hierarchies including their
mixing patterns, the author in Refs. [2,3] has introduced the
non-Abelian discrete A, flavor symmetry [12,13], which is
mainly responsible for the peculiar mixing patterns, as well
as an additional continuous symmetry U(1)y, which is
mainly for the vacuum configuration as well as for describ-
ing mass hierarchies of leptons and quarks. In Ref. [3], the
symmetry group for matter fields (leptons and quarks),
flavon fields, and driving fields' is A, x U(1)y, where

“The flavon fields are responsible for the spontaneous breaking
of the flavor symmetry, while the driving fields are introduced to
break the flavor group along required VEV directions and to
allow the flavons to get VEVs, which couple only to the flavons;
see the Appendix A.
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U(l)y =U(1)y, x U(1)x,. We take the U(1)y, -breaking
scale corresponding to the A, symmetry-breaking scale and
the U(1)y,-breaking scale to be separated by the Gibbons-
Hawking temperature, Ty = H;/2n, both of which are to
be much above the electroweak scale in our scenario,5 that is,

(Ho) < (@), (@) <2l<(@). (1)

where H; is the inflationary Hubble constant and the fields
®, = {®g,0} and ®, = {¥, P} are charged under the
U(1)x, and U(1)y, symmetries, respectively. So, we can
picture two secluded SUSY-breaking sectors by the infla-
tionary sector and by the visible sector in the present
Universe, i.e., SUSY = SUSY;,; x SUSY;, respectively.
Both sectors interact nongravitationally via the inflaton field
as well as gravitationally. Since the Kahler moduli super-
fields putting the GS mechanism into practice are not
separated from the SUSY,; during inflation, the U(1)y -
charged matter fields develop a large vacuum expectation
value (VEV) during inflation by taking tachyonic SUSY-

breaking scalar masses mg, ~ —Hj induced “dominantly”

by the U(1)y, D term, compared to the Hubble-induced soft

masses generated by the F-term SUSY breaking. On the
other hand, in the present Universe, both the U(1) -charged

matter fields @; and ®, develop large VEVs by the soft
SUSY-breaking mass. So, in the absence of direct inter-
actions, gravitational or otherwise, the U(1)y, -charged
chiral superfields @, have a two-fold enhanced SUSY, x
SUSY,;, Poincaré symmetry. However, gravitational inter-
actions explicitly break the SUSY down to true SUSYj,¢ X
SUSY,;, where SUSY;,; corresponds to the genuine super-
gravity (SUGRA) symmetry, while the orthogonal SUSY ;
is only approximate global symmetry. In each sector,
spontaneous breakdown of the F term occurs at a scale
F; (i = inf, vis) independently, producing a corresponding
Goldstino. In the presence of SUGRA, SUSY,, is gauged,
and thus its corresponding Goldstino is eaten by the
gravitino via the super-Higgs mechanism, leaving behind
the approximate global symmetry SUSY ;,, which is explic-
itly broken by SUGRA and thus its corresponding uneaten
Goldstino as a physical degree of freedom (d.o.f.). During
inflation and the beginning of reheating (preheating), the
SUSY;,s is mainly broken by the inflaton, implying the
Goldstino produced is mainly an inflatino; the gravitino
produced nonthermally is effectively massless as long as
H > m3/,. However, this correspondence does not neces-
sarily hold at late times, since the SUSY; is broken by the
other field in the true vacuum, implying that the

>See reference [3] on the symmetry-breaking scales from the
astrophysical constraints, and in more detail Sec. III D on the PQ
symmetry-breaking scale during inflation.

corresponding uneaten Goldstino gives masses mainly to
all the supersymmetric SM superpartners in the visible
sector.

III. INFLATION

The inflation that inflated the observable Universe
beyond the Hubble radius, and could have produced the
seed inhomogeneities needed for galaxy formation and the
anisotropies observed by COBE [14], must occur at an
energy scale V!'/4 <4 x 10'° GeV [15], well below the
Planck scale. At these relatively low energies, superstrings
are described by an effective N' = 1 supergravity theory
[16]. We work in the context of supersymmetric moduli
stabilization, in the sense that all moduli masses are
independent of the gravitino mass and large compared to
the scale of any other dynamics in the effective theory, e.g.,
the scale of inflation, my > H,;, where H; = \/V/3M%
is the Hubble scale during inflation. As in Refs. [1,3], the
size moduli with positive masses have been stabilized,
while leaving two axions massless and one axion massive,
ie., myp~mg>m3p. So, we will discuss that such
moduli stabilization has moduli backreaction effects on
the inflationary potential, in particular, the spectral index of
inflaton fluctuations, which provides a lucid explanation
for the cosmological inflation at the high-energy scale.
We are going to see how the size moduli stabilized at a
scale close to Agyr significantly affect the dynamics of the
inflation as well as how the X symmetry—breaking scale
during inflation is induced and its scale is fixed at
approximately 0.7 x 10'® GeV, close to Agyr, by the
amplitude of the primordial curvature perturbation.

The model addressed in Refs. [1,2] naturally causes a
hybrid inflation,’ in which the QCD axion and the lightest
neutralino charged under a stabilizing symmetry could
become components of dark mater. We work in a SUGRA
framework based on type IIB string theory and assume that
the dilaton and complex structure moduli are fixed at the
semiclassical level by turning on background fluxes [24].
Below the scale in which the complex structure and the
axio-dilaton moduli are stabilized through fluxes as in
Refs. [25,26], in the Einstein frame,” the SUGRA scalar
potential is

6Supersymmetirc realizations of F-term hybrid inflation were
first studied in Ref. [17]. And the hybrid inflation model in
supergravity [18-20] and the F-term hybrid inflation in super-
symmetric moduli stabilization [21] were studied in detail. See
also Refs. [22,23].

In the Jordan frame, since the sign of the kinetic term for
the scalar field is not positive definite, one cannot have a stable
ground state. Hence, the correct procedure is to transform the
potentials to the Einstein frame, and then the system in the
Einstein frame cannot decay to lower-energy states [27].
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1 o
V =eSM4 <ZG"GO, - 3) +3 DD, (2)

a

where  G*=G*G;  with G% = MAKP, Mp=
(87Gy)~1/? =2.436 x 10" GeV is the reduced Planck
mass with Newton’s gravitational constant Gy, and f;;
is the gauge kinetic function. And the F-term potential is
given by the first term on the right-hand side of Eq. (2); the
D term, the second term on the right-hand side of Eq. (2), is
quartic in the charged fields under the gauge group, and in
the model, it is flat along the inflationary trajectory so that it
can be ignored during inflation.® The generalized Kahler
potential, G, is given by

(W[

G= M2 +In—— e (3)

Here, the low-energy Kahler potential K and superpotential
W for moduli and matter superfields, invariant under U(1)y
gauged symmetry, are given in type IIB string theory by [1]

5GS
16 2VX>}

2, 4)

2
K= —M%ln{(T+T)H(T,-+T,-

i=1
+K+--- with

2
K = Zziq)je—xf‘/x,-@i + sz|(ﬂk
P x

W =Wy + W, + W, + W(T), (5)

in which (I)l = {q)s,®,®}, (I)Q = {lP, \i"}, @, = {To,(bg,
®;}, and dots represent higher-order terms. W, stands for
the constant value of the flux superpotential at its mini-
mum. Since the Kahler moduli do not appear in the
superpotential W at leading order, they are not fixed by
the fluxes. So, a nonperturbative superpotential W(T) is
introduced to stabilize the Kahler moduli [1], although
W(T) in Eq. (5) is absent at tree level. The Kahler moduli in
K of Eq. (4) control the overall size of the compact space,

T =p+1i6, T, =p;+i0; with i=1,2, (6)
where p(p;) are the size moduli of the internal manifold and
0(0;) are the axionic parts. As can be seen from the Kahler
potential above, the relevant fields participating in the four-
dimensional Green-Schwarz (GS) mechanism [28] are
the U(1)y -charged chiral matter superfields @;; the vector

superfields Vy, of the gauged U(1)y , which is anomalous;
and the Kahler moduli 7;. The matter superfields in

8Assuming the FI D terms do not appear during inflation,
& =0, it is likely that D terms in the inflaton sector do not give a
significant contribution to the inflaton potential. See Sec. III D.

K consist of all the scalar fields ®; that are not moduli and
do not have Planck-sized VEVs, and the chiral matter fields
@y are neutral under the U(1)y symmetry. We take, for
simplicity, the normalization factors Z; = Z, =1 and
the holomorphic gauge kinetic function f;; = &;;(1/ gf +
T;=1/g% +iar,/87° on the Kahler
moduli in the four-dimensional effective SUGRA in which
gx, are the four-dimensional gauge couplings of U(1)y .
Actually, gaugino masses require a nontrivial dependence
of the holomorphic gauge kinetic function on the Kahler
moduli. This dependence is generic in most of the models
of N' =1 SUGRA derived from extended supergravity and
string theory [29]. And vector multiplets V. in Eq. (4) are
the U(1)y, gauge superfields including gauge bosons A}

The GS parameter 695 characterizes the coupling of the
anomalous gauge boson to the axion.

Nonminimal SUSY hybrid inflation can be defined by
the superpotential W;,;, which is an analytic function,
together with a Kahler potential K, which is a real
function,

iaTj/Sizz), ie.,

W D Wi = g,%0 (YW — 1i3)). (7)
K 5 Ko = W0l + W B 4 &, 200
in “aM3
[Wol*¥? I‘I’ol PP Wl
+h ey U
M3 M3 6M?%,
(8)

where W, and W(¥) denote the inflaton and PQ fields,
respectively. Here, the dimensionless couplings g7, kg, ky ...
are of order unity. The PQ scalar fields play the role of the
waterfall fields; that is, the PQ phase transition takes place
during inflation such that the PQ scale py = py(t;) sets the
energy scale during inflation.

The kinetic terms of the Kahler moduli and scalar sectors
in the flat-space limit of the four-dimensional AN = 1
supergravity are expressed as

Liinetic = KTTay To'T + KT,-T[ ay ;0" Ti + K(I),@),- a;t(blaﬂq):L
©)

Here, we set K¢ g, = 1 for canonically normalized scalar
fields. In addition to the superpotential in Eq. (5) the Kahler
potential in Eq. (4) deviates from the canonical form due to
the contributions of nonrenormalizable terms scaled by a
UV cutoff Mp, invariant under both the gauge and the
flavor symmetries.

A. Supersymmetric moduli stabilization

In string theory, one must consider stabilization of the
volume moduli to explain why our Universe is four
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dimensional rather than ten dimensional. Since the three
moduli all appear in the Kahler potential (4), by solving the
F-term equations, the three size moduli and one axionic
partner with positive masses are stabilized, while leaving
two axions massless through an effective superpotential
W(T) [1]. As will be seen later, the two massless axion
directions will be gauged by the U(1) gauge interactions
associated with D-branes, and the gauged flat directions
of the F-term potential will be removed through the
Stuckelberg mechanism. The F-term scalar potential has
the form

oK/M3

(T+T) T, +T,)(Ty+T,)

x{ S K|D,WP

I=TT,,T,

VF:

3 -
——wwv+mwmwﬁ
7
(10)

for Vy, = 0, where K/ = 0 for I # J, I and J stand for T
and T}, and i and j stand for the bosonic components of
the superfields ®; and ¢;. Here, the Kahler covariant
derivative and Kahler metric are defined as D;W = 9;W +
WO,K/M?% and K3 = 0,0;K, where D;W = (D;W), and
K" is the inverse Kahler metric (K);7. For the Kahler
moduli 7 and T; to be stabilized, certain nonperturbative
terms are introduced as an effective superpotential [1],

W(T) — A((I)[)e‘“(T+T1+T2> 4 B(@i)e_b(T+T1+T2), (11)

where the coefficients a = 2z or 2z/N and b =2z or
27/M are the corrections arising from D3 instantons or
gaugino condensation in a theory with a product of non-
Abelian gauge groups SU(N) x SU(M). Here, A(®;) and
B(®;) are analytic functions of ®; transforming under
U(1)y, as

A(®;) — A(P,)e M),
B(®,) — B(®, el M) (12)

and invariant under the other gauge group. Since there are
two nonperturbative superpotentials of the form W,

Ae~“T | the structure of the effective scalar potential has two
nontr1v1al minima at different values of finite 7' ;). One
corresponds to a supersymmetric Minkowski vacuum,
which could be done through the background fluxes W,
while the other corresponds to a negative cosmological
constant, which gives rise to a supersymmetric anti-de
Sitter (AdS) vacuum. So, the height of the barrier separates
the local Minkowski minimum from the global AdS
minimum, and the gravitino mass vanishes at the super-
symmetric Minkowski minimum. As will be seen in
Eq. (50), the inflaton mass (my, ~ H;) is much smaller

than the size moduli masses, and consequently, the size
moduli will be frozen quickly during inflation without
perturbing the inflation dynamics. And it is expected that
H; < Agyr as a consequence of the enormous flatness of
the inflaton potential, where Agyr ~ 2 x 10'® GeV is the
scale gauge coupling unification in the supersymmetric
SM. The scalar potential of the fields p and p; has local
minimum at oy, ¢;, which is supersymmetric, i.e.,

W(oy.0;) =0, DrW(oy. 0:)

= DTiW(U()? 0[) = 0,

(13)
and Minkowski, i.e.,

Vi(69,0;) =0, (14)

A .
where 6y = 0, = H]Tbln(Z—B‘o)). And W, is fine tuned as

aAO =~ a—b aAO a—b
=-A - By 1
o ° <b30> <b30> - (13)

where Ay and B are constant values of order O(1) of
A(®;) and B(®;), respectively, at a set of VEVs (®;) that
cancel all the D terms, including the anomalous U(1)y ; see
Ref. [3]. Here, the constant W, is not analytic at the VEVs
(®;), where the moduli are stabilized at the local super-
symmetric Minkowski minumum. Moreover, since W(T) is
an effective superpotential, its analyticity does not need to
be guaranteed in the whole range of the @, fields, and so, as
will be shown later, the anomalous fayet-iliopoulos (FI)
terms at the global supersymmetric AdS minimum cannot be
canceled and act as uplifting potentials. Restoration of
supersymmetry in the supersymmetric local Minkowski
minimum implies that all particles of which the mass is
protected by supersymmetry are expected to light in the
vicinity of the minimum. However, supersymmetry breaks
down and all of these particles become heavy once one
moves away from the minimum of the effective potential.
This is exactly the situation required for the moduli trapping
near the enhanced symmetry points [30].

The F-term equations Dy W = Dy W = 0, where we set
the matter fields to zero, provide p = p; and lead to

aAe—?aape—iaHSl + bBe—?ah/)e—ih(?S‘
10t i HhOst
WO + Ae—3ape—1a0 + Be—Bbpe—le

2p

=0 (16

for Vy = 0, where 6" = 6 4 6, + 6,. This shows that the
three size moduli (p, p;) and one axionic direction 6* are
fixed, while the other two axionic directions (9?t =0-0,
and 65 = 6 — 0,) are independent of the above equation.
So, without loss of generality, we rebase the superfields T
with 6 = Im[T] and 7; with 65' = Im[T;] as
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TABLE L. Five independent input parameters my, y,, @, |7|, and uy(t;) = ¢¢/+/2, in the inflationary potential of Eq. (49) provide
predictions on N, and T,,/GeV with the constraints Ag(k)/107° in Eq. (66) and n, in Eq. (75), where cos@ = —1 and m; 2=
560 TeV in Eq. (27) are taken.

my a |72 H, P 7 n Ar(ko) N Tren

10" Gev s Vs 102 100 Gev 105 Gev 10" Gev s 107 e GeV
5.87238 0.85492  1.76989  3.22039 0.90076  8.28466 4.85231 0.96639 2.12745 51.42363 1.21034 x 107
1.72083 1.07814 —6.75512  3.78371 1.26228  9.78007 5.29929  0.96821 2.16809  50.55386  6.35558 x 10°
5.51975 1.06936  2.63451 3.59549 1.26311 9.69460 5.43800 0.97050 2.12643  50.06988 1.48699 x 10°
8.04311 090832 5.88591 3.25965 1.09422  8.84520 5.31575 0.96929 2.16518 48.41274 1.19008 x 10°
T=p+i0—>T=p+i6", numerically. Note that, due to the relation (aA,/ bBO)alTb =
T, =p;+i0; = T; = p; + i3 (17) e, see below Eq. (14), as the masses my and mg« increase,

Then, from the F-term scalar potential, while the gravitino
mass in the supersymmetric local Minkowski minimum
vanishes, the masses of the fields p, p;, p,, and 6%,
respectively, are obtained as

1 _
mi = 3 0107V plr_i—s,

aA a _3.b_
= 3:11 (WE—) {Aoa2 <a—AO) e + Byb? <a—AO) SHIb}Z,
MP (a - b) bBO bBO

1
2 T ]
Mg =5 K g 0pV Elr—7—g,

3w Ao\ 35 Ao\ 3%
e () -me(5) )
P 0 0

61n(552) m) a1

— 7% ! _A\By(a —b)?
+M‘},(a—b){ oBola )<b30
2_b2
><<L — —I—ab)},
21“(;57;2)

where a and b are positive constants, while A, and B are

constants in M3 units. Here, the mass squared of the size

moduli fields p(;) at the minimum is given by my =m} =

(18)

m2 = 300|Wrr(oo)|?/Mp, where  Wrr|umater fields—o =
a*Ae~T+T14T2) 4 p2Be=b(T+Ti4T2)  with Wyp = 0*°W/
(OT)?. With the conditions @ > 0 and b > 0, we obtain
positive values of masses; for an example, for A, = —2.13
and By = —1.65 with inputs a = 27/100 and b = 27x/60,
we obtain 6y ~6.17, W ~ —0.90, and’

the value of ¢ decreases. As will be seen in Sec. III and in
Table I, the moduli stabilized at a scale close to Agyr will
significantly affect the dynamics of the inflation and fit the
cosmological observables well.

B. Supersymmetry breaking and cosmological constant

As discussed before, the supersymmetric local
Minkowski vacuum at p = o, and p; = o; is absolutely
stable with respect to the tunneling to the vacuum with a
negative cosmological constant because the Minkowski
minimum is separated from a global AdS minimum by a
high barrier. This vacuum state becomes metastable after
the uplifting of an AdS minimum to the de Sitter (dS)
minimum with A, ~ 10712°M%. The other supersymmetric
global AdS minimum is defined by

W(og,0;) #0
DrW(o5,07) = Dy W(og,07) =0,

) =Dy, (20)
corresponding to the minimum of the potential with
Vags < 0. And at this AdS minimum, one can set the
value of the superpotential AW = (W) , 45 by tuning W, at
values of finite 65, 0;. The existence of FI terms £ for the
corresponding U(1)y implies the existence of the uplifting
potential, which makes a nearly vanishing cosmological
constant and induces SUSY breaking. A small perturbation
AW to the superpotential [31,32] is introduced in order to
determine SUSY-breaking scale. Then, the minimum of the
potential is shifted from zero to a slightly negative value at
o5 = 0y + op and o; = o, + Jp; by the small constant AW.
The resulting F-term potential has a supersymmetric AdS
minimum, and consequently the depth of this minimum is

given by Vgg = =3 eK/M; “AZ—Z‘Z which can be approximated
P
my =547 x 10'C GeV  my, ~7.61 x 10'® GeV,  (19)  in terms of W(cy + p,6; + 8p;) ~ AW + O(AW)? as
- A 2 — 2
’These values ensure my ~10'°17 GeV and [§;| = O(1) x  Vug(AW) = —iQ (AW) =- 32 <a aAb> (AW)2.
1073 through 7 = ¢3/(260)* in Eq. (33), satisfying the two M} 80y010, 8M}p lnb_BE

observables, i.e., the scalar spectral index n, and the power
spectrum of the curvature perturbations A% (ko) in Table L

(21)
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At the shifted minimum, SUSY is preserved, i.e.,
DyW(oo +p) =0 and Dy, W(o; + dp;) = 0, leading to

Wr(oo + 6p) = Wr (0g + 6p;) 23AW/20,. At this new
minimum, the displacements dp = dp; are obtained as
5 3AW
Pi) =5 - o
D = 26,Wrr(o9)

_ 3(a— b)AW )

2 () { Aga® (240)55 + Bob? ()

After adding the uplifting potentials, SUSY is broken, and
then the gravitino in the uplifted minimum acquires a mass

K 2
m3, = (eKIME) WP/ M:

|V ags| ~ |AW| (a—b)% (23)
3M3 M3 21“2’—22

The important point is that the masses my and mg:« in
Eq. (18) as well as the height of barrier from the runaway
direction do not have any relation to the gravitino mass,
i.e., my ~ mgs 3> m3 ;. Thus, we will consider the F-term
hybrid inflation for H; > mj3/, in the Sec. III.

The uplifting of the AdS minimum to the dS minimum
can be achieved by considering nontrivial fluxes for the
gauge fields living on the D7-branes [33], which can be
identified as field-dependent FI D terms in the ' = 1, 4D
effective action [34]. As shown in Refs. [33], the uplifting
of the AdS minimum induces SUSY breaking and is
achieved by adding to the potential two terms AV, =

mz, =

|VAdS|0? /p? if the uplifting term occurs due to a D term.
Similarly, we can parametrize the uplifting terms as

1 3
AV, =5, =5 Vasl (7)) 24

such that the value of the potential at the new minimum
becomes equal to the observed value of the cosmological
constant. So, the anomalous FI terms cannot be canceled
and act as the uplifting potential. And expanding the Kahler
potential K in components the term linear in V., produces

the FI factors & = de vy, —0Ap; as

GS

é:FI 8 i2 Ap (25)

Here, the displacements Ap; = p; — o5 in the moduli fields
are induced by the uplifting terms,

3M; |VAds|ﬁ

Ap; ~ ,
l WTT("O) Pi

(26)

which are achieved by 0, (Vp+ AV;) =0. Since the
uplifting terms by Ap; making the dS induce SUSY

breaking, all particles of which the mass is protected
from supersymmetry become massive. With the choice
of parameters above Eq. (19), the gravitino mass in Eq. (23)
corresponds to

m3/2 [ad 560 TeV, (27)

implying |AW| ~ 10~'' M3, which in turn means that the
FI terms proportional to |Vqs|/m3 are expected to be
strongly suppressed.

The cosmological constant A, has the same effect as an
intrinsic energy density of the vacuum p,,. = A.M%. The
dark energy density of the Universe, Qj = pyac/pPe> 18
expressed in terms of the critical density required to
keep the Universe spatially flat p, = 3H3M?%, where H, =
67.74 £ 0.46 kms~! Mpc~! is the present Hubble expan-
sion rate [9]. Using the dark energy density of the Universe
Q) = 0.6911 £ 0.0062 of Planck 2015 results [9], then one
finds the cosmological constant A, ~7.51 x 107121 M3,
From Eqgs. (21) and (24), one can fine tune the value of
the potential in its minimum, V., to be equal to the
observed tiny values 7.51 x 107121 Mm%,

{32 1))

The positive vacuum energy density resulting from a
cosmological constant implies a negative pressure, which
drives an accelerated expansion of the Universe, as
observed.

C. Moduli backreaction on inflation

Since, in general, the interference between the moduli
and inflaton sectors generates a correction to the infla-
tionary potential, we consider the effect of string moduli
backreaction on the inflation model which is linked to the
SUSY-breaking scale."’ In small-field inflation, such as
hybrid inflation, this produces a linear term in the inflaton
at leading order as in Ref. [35]. This is analogous to the
effect of supersymmetry breaking, which induces a linear
term proportional to the gravitino mass. Depending on its
size, such a linear term can have a significant effect on
inflationary observables well fitted in cosmic microwave
background (CMB) data, in particular, the spectral index of
scalar fluctuations.

At Ty =T = op due to W(oy) =0 = Wr(o), one
can obtain
Vil = Yoy 2, (29)
rlos = 2oy * (aagyay "o

There are many studies [35,36] on the moduli backreaction
effect on the inflation and its link to SUSY breaking.
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where V. is the inflation potential in the absence of
moduli sectors

. - 3
Vinf = K/M%{I(”|Dju/inf|2 _Wlwindz}' (30)
P

Since all powers of 26, in Eq. (29) can be absorbed by a
redefinition of W, the potential is rescaled as Vp|t,0 -

Vi + 39/‘4# |Wine|?, indicating that there is no backreac-
P

tion to the inflation on the moduli sector. However, due to
the effect of the inflationary large positive energy density,
see Eq. (37), the minima of the moduli are shifted by 6T
and 6T, and at this new shifted position, the potential is
minimized. The displacements are obtained by imposing
OrVlsy st = 0and 07, V|, .5, = 0, and the expression for
OT and 6T; can be expanded in powers of H;/my,

W. V3
5T zL\/_z
2\/0_0mTMP
1 - - 3
s AKT D Wi Wi = 2 Wi
+ 2(260)2m%~M%{ J fY) f M%;| f|
Wiznf 3 (3‘70)3/2WTTT(‘70) 1) H?
AVE M2m O\
P P T T
(31)

This implies that there is a supersymmetry breakdown by
the inflaton sector during inflation

1 _ H}
Dy Wlg s, = \/E(TO)%mTKJ ID Wi OiWing + O (m—%> ;
(32)

e, Dr, Wi, +oT, suppressed by one power of my vanish

in the limit of infinitely heavy moduli.

Since the moduli are very heavy, they stabilize quickly to
their minima, and the inflationary potential gets corrected
after setting 7' and T; to their minima as follows:

Vel Vit 5
Flowtoly = (250)3 2(200)5WTT(00)

&

M2
e r - _
X [Wmf { Vit + 5 K/ O;WiyeD; Winf}

H3
+ H.c} + O(—;)
my
. 2 M% .
Using  |Wyr(og)| = \/;\/—EmT and rescaling as

Vine/ (200)* = Vo(t;) and Wine/(260)%% = Wiye(1;), it is
evident that the inflationary potential due to the moduli
backreaction induces a linear term in the inflaton potential

(33)

5/3 1
Velsyvor,, = VO(tI){l C22meM3
2

|Po?
co[tP)
T

Clearly, as we can see here, in the limit m; — oo, the
interference term between string moduli and inflaton
sectors disappears.

(Wing + H.c.)}

(34)

D. Scale of PQ-symmetry breakdown
during inflation

In the following, let us consider the PQ phase transition
scale during inflation. Because of Eq. (1) during inflation,
we have

ve(ty) = vs(t;) = vr(t;) = 0. (35)
And the Kahler moduli fields we consider are stabilized
during inflation, and their potential has a local mini-
mum at finite moduli field values separated by a high
barrier from the runaway direction. Since the moduli
masses are much larger than the inflaton mass and
accordingly will be frozen quickly during inflation
without perturbing the inflaton dynamics, the height
of the barrier protecting metastable Minkowski (~dS)
space are independent of the gravitino mass; hence, the
inflationary Hubble constant is also independent of the
gravitino mass [32].

We consider the PQ symmetry-breaking scale, uy(?;),
during inflation. In the global SUSY minima where
Vsusy = 0, all the flavon and driving fields have trivial
VEVs, while the waterfall fields ¥(¥) can have nonzero
VEVs. The FI D terms must then be zero, i.e.,
&1 = &1 = 0. During inflation, if | ¥, takes a large value,
the waterfall fields stay at the origin of the field space (the
local minimum appears at (¥) = (¥) = 0), and the super-
potential is effectively reduced to

Wine (1) = —57%omi (1), (36)
with 72 = ¢3/(264)® and §; < 0, which gives a positive
contribution to the inflation energy

2

aVVin ! ~
7f( ) = Fiuy(t))

o, (37)

Vo(t;) = 3HIM} ~ '

and in turn drives inflation. Since the potential for |¥y| >

|¥6| = py(1;) with (¥) = (¥) = 0 is flat before the water-
fall behavior occurs, inflation takes place there. And the
waterfall behavior is triggered, when the inflaton ¥,
reaches the critical value |¥§|. Once |¥,| rolls down from
a large scale and approaches its critical value |W§|, the
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inflaton and waterfall fields get almost maximally mixed to
form mass eigenstates,

where W, ~ (+¥, —¥)/Vv/2 is orthogonal to ¥j. And
their corresponding mass eigenvalues are given by

1 ~ ~ -
¥ 275(‘1’0 +Y¥), Y~ 7—(‘1’ Yo1), myr = |G| (tr),  mg =|gr|ue(t;), me=0. (39)
Y o~ 1 (¥ + %), (38) Let us schematically see this is the case. The potential at
V2 the global SUSY limit
|
VES = B — i (1) + F¥ (PP + )
. 2(|Po|* — pa (1 0 b4
:(lp/* lp/)<g7(| 0| /’t\l’( 1)) " ) s ><~/*> + (40)
0 G ([Pol* + uy(t) ) \¥
|
implies the following: OW g 0K 0K
(i) When |¥y| < py(t;), one of the mass eigenstates, D Wint = e + M5 Oy Wi, Kaop = DO
¥, becomes tachyonic; the waterfall fields fixed at f
(¥) = (¥) = 0 are not stable since ¥(¥) have an (42)
opposite sign of U(1)y, charges. As can be seen - o
from Eq. (4), since the Kahler moduli superfields ~ and Do Wiye = (Do Wing)" with K% = (K ;5)™". The lowest-

putting the GS mechanism into practice are not
separated from the SUSY breaking by the inflaton
sector during inflation, by taking tachyonic SUSY-
breaking scalar masses m, ~ —H7 induced domi-
nantly by the U(1)y, D term, the waterfall field ¥’
rolls down its true minimum from a large scale.

(ii) The other W stays positive definite throughout
the inflationary trajectory up to a critical value
85 ~ (1)

(iii) After inflation, the Universe is dominated by both
the inflaton ¥, and one of waterfall fields, ¥, while
the other waterfall field ¥ gives a negligible
contribution to the total energy of the Universe.

(iv) After inflation and the waterfall transition mecha-
nism has been completed, ¥ approaches to zero,
and W' (¥') relax to the flat direction of the field
space given by W' = 4} (1;); the positive false
vacuum of the inflaton field breaking the global
SUSY spontaneously gets restored once inflation
has been completed.

Now, we discuss how the inflation could be realized

explicitly. The F-term scalar potential, the first term on the
right-hand side of Eq. (2), can be expressed as

X/ |Wintl*
V(¢a) _eK/MP{;KaaD WlnfD Wmf 3 A/l[ﬂlz)

(41)

with a being the bosonic components of the superfields

g?ﬁa e {‘i‘o,(i)g,ég,é)o,‘i’, ‘i’, és,@,é,éT} and where the
Kabhler covariant derivative and Kahler metric are defined as

order (i.e., global supersymmetric) inflationary F-term

potential V&P receives corrections for |¢b,|<Mp.
During inflation, working along the direction |¥|=
|¥| = 0, from Egs. (8) and (41), a small curvature needed
for the slow roll can be represented by the inflationary

potential Vi,
1-1
me - me =+ Vsugra + AV OOP (43)

The leading-order potential corrected by the interference
term induced by the moduli backreaction, including soft
SUSY-breaking terms associated with ¥, can be written in
Eq. (34) as

%—nﬂ (W + \st>}

(Graw pu3¥o + H.e.), (44)

v — Vo(fz){l n
+ my, |Wol* —

where V(#;) is the rescaled vacuum energy during inflation,
see Eq. (34), and ay, is the soft SUSY-breaking mass
parameter of order approximately mj . In Eq. (44), we only
have included the tadpole term since all other soft SUSY—
breaking terms are negligible during inflation. Substituting

Ky and Wi in Eq. (8) into Vit in Eq. (30) and minimizing
with respect to ¥ and ¥ for |¥y| > puy(1;) give

|‘I’o|2+ |lPo4+O<|‘Po|6>}
s o O\ e

(45)

Vi =B e){ 1,

where y, = 1 — 7k, /2 — 3k;. Such a supergravity-induced
mass squared is expected to have the same form as
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the ¥, mass squared, namely, Fud,(t;)/M3 = Vo(t;)/ M3,

which is the order of the Hubble constant squared
H7 = V(t;)/3M73. Then, the SUGRA contribution Ve,
to Vi, leads to

\% _ 2H21P 2 Vv |lPO|4 O |lPO|6 46
sugra — —Cq l| O‘ + OyszM}‘,—i_ M?, . ( )

The inflaton W, also receives the one-loop radiative correc-
tion in the potential [37] due to the mismatch between
masses of the scalar and fermion components of W(¥),
which are nonvanishing since SUSY is broken by
OWiyp /0¥y # 0. The corresponding one-loop correction
to the scalar potential is analytically calculated as

2
™
AV g = 1 gt = B . (a7

where F(x)= 1{(x +1)ln l+2lenx +1+21 qzu.,,x _3)

and the sum is taken over the field d.o.f. and f = 0 for the
scalar and f =1 for the fermion. Here, the Q is a
renormalizable scale, and x is defined as x = |¥y|/uw(t;) =

@/ (v 2uy(t;)), where @ is the normalized real scalar field. In
the limit x >> 1, i.e., ¢ 3> /2y (1;), this is approximated as

Gt (1 =2 9
Ng7ﬂlp( 1) lngﬂo ‘ (48)

If we let the inflaton field ¥, = @e™/+/2 and during the
inflation period, taking into account the radiative correc-
tion, supergravity effects, soft SUSY-breaking terms, and
moduli backerction effects, the inflationary potential is of
the form

53 JV ot
Vin - 1 +—= 0 Y
9) = Voli >{ FIP N peoso 1.
+8—F( )} + Grams o cos O
& Vo
+ = ( -k, —) (49)
2 Mp
where agms;, = —\/anlo. The moduli-induced slope par-

tially cancels the slope of the Coleman-Weinberg potential,
which flattens the inflationary trajectory and reduces
the distance in field space corresponding to the N, ~ 50
e-folds of inflation. And the inflaton mass my, is assumed
for k, =1 as

2
NG
S L (50)

since the inflaton acquires a mass of order the Hubble
constant, my, = H 1\/3, agreement of the theory’s predic-
tion for spectral index n, with observation strongly sug-
gests the presence of a negative Hubble-induced mass
term, and the k, parameter term vanishes identically. This
inflaton mass (> mj3/,) can directly be obtained from
Egs. (7) and (8) as

My, = |M§<€GVWOGWO>|% = \/§H1, (51)

where V,G, = 9,G, - T {;aG ; with the Christoffel symbol
T}, = G Gigp [38], and Vi, Gy, =~ —(Wy,/W)? is used.
This inflaton mass is in agreement with the above pre-
diction in Eq. (50).

Inflation stops at |W§| =~ uy(;), where the mass of ¥
becomes negative and the field acquires a nonvanishing
expectation value. To develop the VEV of the waterfall field
Y, we destabilize the waterfall field ¥ by taking tachyonic
Hubble-induced masses of the PQ-breaking waterfall
field, i.e., m, ~ —H7 < 0. Then, the VEV of the waterfall
field could be determined by considering both the SUSY-
breaking effect and a supersymmetric next-leading-order
term. The next-leading Planck-suppressed operator invari-
ant under A4 x U(1)y is given by

AW, ~ %\Poqﬂ@z, (52)
P

where we set the VEVs of all other matter fields to zero
except the waterfall field and neglect their corresponding
trivial operators. Note that the constant @ = O(a/87) with
a constant a being of order unity. Since the soft SUSY-
breaking terms are already present at the scale relevant to
inflation dynamics, the scalar potential for the waterfall
field ¥ at leading order reads

1 o ~
V‘Y(II)QED%( + oy [P|* + agimg [P
af? Raukdn

: 53
e e (53

where |G|, |&q,ih?i,| < |Dy, (17)| with |y g < 1 are
taken. Here, #y gy = |¥5| ~ O(|F*|/Mp) with F¥o =
K*¥¥oDy Wiy =~ /3H;Mp represents the Hubble-induced
soft scalar masses generated by the F-term SUSY breaking,
during inflation. If the tachyonic SUSY-breaking scalar
masses are dominantly induced by the U(1)y, D term,
Dy, (t;) ~ O(H7), compared to the Hubble-induced soft
masses generated by the F-term SUSY breaking, the

soft SUSY-breaking mass of ¥ during inflation is approxi-
mated by
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my(t;) = awidy + Dy, (t;) = —PyH7, with By > 0.
(54)

Then, the scalar potential in Eq. (53) for the waterfall field
Y is approximated well as

Rdnd

3

V(t) = —pyH7 P + |af? (55)

Here, the constant fy is of order unity, while & = a/(87)
with a being of order unity. We find the minimum as

3 2
vy(tr) = VT{;%H, (A:—:> , (56)

leading to M p > uy(t;) > H; and the PQ-breaking scales
during inflation,

piln) = ) \/;ﬂ ()

In supersymmetric theories based on SUGRA, since SUSY
breaking is transmitted by gravity, all scalar fields acquire
an effective mass of the order of the expansion rate during
inflation. So, we expect that the inflaton acquires a mass of
order the Hubble constant, which, in turn, indicates that the
soft SUSY-breaking mass (the inflaton mass my, ) during
inflation strongly depends on the scale of waterfall (or PQ)
fields by the Eq. (57); for example, for puy(t;) ~ 10'° GeV,
one obtains

H; ~2 %101 GeV (58)

for f; ~ 1 and &~ 1/(87) (see Table I).
After the inflation ends, for simplicity, we treat the mixed
mass eigenstates in Eq. (38) as the single-field eigenstates,
lP6 e ‘Po,

Y-y, ¥ S p (59)

Then, we express the superpotential (7) relevantly,
W D W(z2) + §;%(P¥ — 43), (60)

where W(z) is introduced to determine the SUSY-breaking
scale, see Sec. Il B, and 33 = ¢2/(20,)> corrected by the
string moduli backreaction. Then, the scalar potential in
Eq. (2) is extremized in the true vacuum if (9;V) = 0, and
the resulting cosmological constant should vanish if
(V) = 0. Together, these conditions are satisfied if

(G*G,) =3,  (GV;Gy+G) =0.  (6])

Then, the condition of the potential minimum reads

(M3{Gy,w,Gw, + Guy,Gy + Gy, G + Gy, G:}
+ pro> =0, (62)

(M3 {GypyGg + GywGy, + GyyGy + GwG:}

and the minimization condition for ¥ is the same as for V.
The inflaton mass (> ms3),), after inflation, is given by

0

My, =~ |MA1E<€GV%G@V\POG\P>|% =~ |g7|pg(t;), (64)

where Vy Gy = Wgy, /W is used, which is almost equal

to the mass of waterfall field ¥. This inflaton mass is in
agreement with Eq. (39). Since the z field is responsible
for the SUSY breaking, one obtains |G,| ~+/3/Mp, and,
in turn, the gravitino mass ms/, = (Mpe©/?) ~ |W|/ M3~
|W.|/v/3Mp. Assuming |Gy|~|Gg| < |¥|/M?%, one obtains
Gy ~ Wy/W, leading to Wy/W ~W/M% and Wy /W
¥/M3. Using Wy = §,%,W in Eq. (60), we obtain

(Wo) = ’tq—/l (65)

E. Cosmological observables

The inflaton as a source of inflation is displaced from its
minimum, and its slow-roll dynamics leads to an accel-
erated expansion of the early Universe. During inflation,
the Universe experiences an approximately dS phase with
the Hubble parameter H;. Quantum fluctuations during this
phase can lead to observable signatures in CMB radiation
temperature fluctuation, as the form of density perturbation,
in several ways [39], when the quantum fluctuations are
crossing back inside the Hubble radius long after inflation
has been completed. When interpreted in this way, inflation
provides a causal mechanism to explain the observed nearly
scale-invariant CMB spectrum:

(1) Quantum fluctuations of the inflaton field during
inflation give rise to fluctuations in the scalar
curvature and lead to the adiabatic fluctuations''
that grew into our cosmologically observed large-
scale structure much bigger than the Hubble radius
and then eventually got frozen. Adiabatic density
perturbations seeded by the quantum fluctuations of
the inflaton have a nearly scale-invariant spectrum,

"These correspond to fluctuations in the total energy density,
op #0, with no fluctuation in the local equation of state,
5(n;/s) =0. On the other hand, isocurvature perturbations
correspond to fluctuations in the local equation of state of some
species, 8(n;/s) # 0, with no fluctuation in the total energy
density, 6p = 0 [39].
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A% (ky), which is a cosmological observable of the
curvature perturbations. The power spectrum of
the curvature perturbations, A% (kg), reads in the
Planck 2015 result at 68% C.L. (for the base ACDM
model) [9]

A (ko) = (2.14125039) x 107%,  (66)
at the pivot scale k, = 0.002 Mpc~! (wave number),
which is compatible with the one suggested for the
COBE normalization [40].

(i) Fluctuations of the metric lead to tensor-B mode
fluctuations in the CMB radiation. Primordial gravi-
tational waves are generated with a nearly scale-
invariant spectrum, A7(k), which reads in the
Planck 2015 result [9] A2(ky) < 1.97 x 10719,

Mp (V)
2 \v

(iii) Quantum fluctuations are imprinted into every
massless scalar field in dS space during inflation,
with an approximately scale-invariant spectrum,
(|6¢(k)|?) = (H;/2x)?/(k*/27*) for a canonically
normalized scalar field ¢, which is essentially a
thermal spectrum at Gibbons-Hawking tempera-
ture Tgy = H;/2x. The other important cosmo-
logical observables imprinted in the CMB
spectrum are the following: the BAU (which will
be discussed in Sec. IV), the fractions of relic
abundance Qpy; (see Ref. [3]), and dark energy Q,
(see Sec. III B).

The slow-roll condition [41] is well satisfied up to the

critical point ¢ = \/2uy(t;), beyond which the waterfall
mechanism takes place. Here, the slow-roll parameters, ¢
and 7, are approximately derived from Eq. (49) as

(67)

€=
1/ 3 Mp\2 5 8
z_<9_72_P> {1+ fiﬂ_wﬂ_wic()sg(
2\8n° ¢ |97|mTMPMP
M V
n= Myt
Q%( >{3758ﬂ'( >2 1}<1 agms ¢ cos 0
8\ ¢ 2 97 Mp f]7ﬂl2y

where V, denotes a derivative with respect to the inflaton
field @ = v2ReW, and Mp > |¥y| > || (or Mp >
lp| > |@°|) is assumed. Recall that 32 = ¢7/(20,)>. The
above equations clearly show that the curvature of the
inflationary potential is dominantly affected by the moduli
backreaction in Eq. (34), the one-loop radiative correction
in Eq. (47), and soft SUSY-breaking term in Eq. (44). In
the slow-roll approximation, the number of e-foldings after
a comoving scale / has crossed the horizon is given by the
inflationary potential through

where ¢, is the value of the field at the comoving scale / and
@° is the one at the end of inflation. The field value ¢° is
determined from the condition Max{e(¢°), [n(¢°)|} =1
[42]. The power spectrum AZ % (ko) sensitively depends on
the theoretical parameters of the inflationary potential,

1 V3(¢1)
122°M$ [V, (@)

AR (ko) = (72)

a,m cos @ 872 m ?
3~/2€02 ) + Za‘f < 3/2> <£> cosH} < 1, (68)
91k 5 He e

(69)

>, In| < 1, (70)

|
where the potential V(¢;) and its derivative V,(¢;) are
evaluated at the epoch of the horizon exit for the comoving
scale k. It should be compared with the Planck 2015 result
(66). With the definition of the number of e-folds after a
comoving scale k, leaves the horizon, we can obtain the
corresponding inflaton value ¢;/Mp from Eq. (71). And
the number of e-folds N, corresponding to the comoving
scale kj is around 50, depending on the energy scales H,
and T,

0.002 Mpc~! 1 Tren
N, =49.1 +In( P )y Sy Treh
¢ + n( ko >+3n<1o4 GeV

1 H,
+31“<1010 Gev>’ R

where T, represents the maximal temperature of the last
radiation-dominated era, called the reheating temperature.
The tensor and scalar modes have spectra A; =
2H?/ (M%) and A, = A% (ko) [9], respectively. In the
supergravity F-term inflation we consider, the tensor-to-
scalar ratio r = A,/A; ~ 16¢(¢;) is much lower than the
Planck 2015 bound (r( g0 < 0.09), i.e., well bellow 1072,
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and the running of the spectral index dn,/dIn g, is always
smaller than 1073 and so is unobservable. And the scalar
spectral index n; is approximated as

ng=1—06¢(g;) +2n(p;) =~ 2n(@;). (74)

We can compare this quantity with the results of the Planck
2015 observation [9]:

n, = 0.967 4 0.004. (75)

For the power spectrum of the curvature perturbation in
Eq. (72) and the spectral index in Eq. (74) with Eqs. (67)
and (69) to be well fitted with the Planck 2015 observation,
the five independent parameters my, puy(t;), 75, @, and |g7|

mr[GeV]

8x10'®
7x10'F
6x10'°F

5% 10'°F

mr[GeV]

4% 10'F
3x10'°F

2x10'°F

—-2.52 =251 =250 -249 -248 -2.47
Log10[g,]

in Eq. (49) are needed, and those parameters with the
conditions (66) and (75) have predictions, my; =
O(10"7Y) > uy(1;) = ¢ /2 = O(10) GeV,  y, =
O(1 = 10), |a,| = O(1), and |§;] = O(1) x 10~* as in
Table I, in which we have set cosf = —1 and m3,, =
560 TeV [see Eq. (27)]. This table shows that the cosmo-
logical observables can be fitted well at the moduli
stabilizing scale close to Agyr and the PQ symmetry-
breaking scale induced at py(#;) ~ 0.3 x 10'® GeV < mj.
Figure 1 shows the behavior of the number of e-folds N, in
Eq. (73) in terms of the five independent parameters of the
inflationary potential in Eq. (49), my, py(t;), ay, 7, and
|G7], where each red band curve and cyan vertical band
stands for the allowed regions of the constraints A% (ko)
and n, in Eqs. (66) and (75), respectively. Each of the

1x10"
8x 10"

6x 10'°

mr[GeV]

4% 10"

2x10'°

—245 —2.44 —243 242 —2.41 —2.40
Logl0[g,]

40x10'
3.5%10'°
3.0x10'°

25x10'

mr[GeV]

2.0x10'"
1.5x 10"

1.0x10'

—2.44 —2.43 =242 -2.41 -2.40 —-2.39
Log10[g,]

FIG. 1. Contour plot for N, as a function of m and |g;| with the given values of ay, y,, ¢;, and ¢° in Table L, in which each red band
curve and cyan vertical band stands for the allowed regions of the constraints A% (kq) and n, in Eqs. (66) and (75), respectively. Each
intersection point among the white curve (A%2 (kg)), black solid curve (N,), and black vertical line (1) corresponds to each input value
with high accuracies in Table 1.
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contour plots in the clockwise direction corresponds to the
value of Table I in sequence from top to bottom. In the plots
showing contour lines for N, in terms of the parameter set
{mr,|7;|} with the given input values of the parameter
set {ay, 7,, g} in Table 1, each of the regions of red band
curve overlapped by the cyan vertical band represents each
of the regions allowed by the constraints A% (ko) and n, in
Egs. (66) and (75), leading to large uncertainties of
reheating temperature 7T, corresponding to the allowed
range of N,: 42.12 <N, <48.79 (left upper panel),
42.61 SN, <51.14 (right upper panel), 44.94 <N, <
53.84 (right lower panel), and 47.80 < N, < 52.33 (left
lower panel) with an assumption of m; < 10'7 GeV.

In the plots, especially, each intersection point among the
white curve [A%(ko)], red solid curve (NV,), and red vertical
line (n,) corresponds to each input value my, |G|, @, 7,
and py with such high accuracies in Table I. For the given
values of reheating temperature and parameter set
{my, ay,7,} in Table I, we obtain theoretical uncertainties
of Ap(ky) and ny, corresponding to the theoretical uncer-
tainties of the parameter set {mr, |g7|}:

Ar (ko) /107 = 2165187093552,
ny = 096929730002,
A (ko)/107° = 2.1264370.06457
n, = 0.9705013.30922,
Ar(ko)/107 = 2.1680970922%1.
n, = 0.96821700004
Ag (ko) /1070 = 2.127452006333,

ny = 0.96639+900024

for left upper panel,

for right upper panel,

for right lower panel,

for left lower panel,

(76)

where an assumption of m; < 10'7 GeV is considered
for the case of the left upper panel. Note that the high
accuracies in Eq. (76) are due to the fact that the slow-roll
parameter 7 given in Eq. (70) governing the spectral index
ng is very sensitive to values of the parameter |g;|. As
shown in Table I, the number of e-foldings in Eq. (73)
depends on the reheating temperature, which in turn
depends on the decay rate of the inflaton ¥, and waterfall
field ¥ into relativistic particles. In the following section,
we will see how the amount of reheating, 7', could be
strongly correlated with both baryogenesis via leptogenesis
and the yield of gravitinos.

IV. LEPTOGENESIS

Let us discuss how the matter-antimatter asymmetry of
the Universe could be realized in the context of the present
model. To account for a successful leptogenesis, we
introduce the AD mechanism for baryogenesis [10] and

its subsequent leptonic version, called AD leptogenesis
[11]. In the global SUSY limit, i.e., Mp — oo, as well as in
the energy scale where A4 x U(1)y is broken (see Ref. [3]),
some combinations of scalar fields do not enter the
potential, composing flat directions of the scalar potential.
So, taking the flat directions H, = L; = ¢;/\/2 (a gener-
ation index i = 1, 2, 3), then the AD flat directions for
leptogenesis [11] are {; = (2L;H,)'/?, where L; are scalar
components of the chiral multiplets L; of SU(2),-doublet
leptons. After integrating out the heavy Majorana neutri-
nos, Np, the effective operator is induced at low energies,

. v2
with M,’ = W—) s
w)i

where (M,,); = (UhyunsM.Upwins )i = 8; in Eq. (B10).
Recalling that the 3 x 3 mixing matrix U; = Upyns
diagonalizing the mass matrix M,, = —mEMz'm, partic-
ipates in the charged weak interaction, the active neutrino
mixing angles (6),,0)3,03,5¢cp) and the pseudo-Dirac
mass splittings &, responsible for new wavelength oscil-
lations characterized by the Am? could be obtained from
the mass matrix M,, formed by seesawing. Then, from
Egs. (B6) and (B7), we obtain the y — v powered mass
matrix as in Refs. [2,43],

1

W -
eff32Mi(

Z‘iHu)zv (77)

142F (1-Fy (1-F)y
Mby:moem (1_F)y2 (1+F+—23G)y% (14_%));2))3
(1-F)y; (1+59)y,y; (1+559)y3

- UF’MNSMW UZ’MNS’ (78)
y[ Uu

M <\/Z)§TA>2<\;§A> :
F = (ke +1)71, G= (ke —1)"'.  (79)

where

ov2,,2

mOE

In the limit y{ = y4 = y% (y2, y3 — 1), the mass matrix (78)
gives the tribimaximal mixing (TBM) angles [44] and their
corresponding mass eigenvalues |5;|:

1 1
Sin2912 = 5, Sin2923 = 5 , sin 913 = 0,
Am? Am?
81| == =3myl|F|, 8| = =2 = 3my,
|61 2m, my|F| |6, 2m, my
Am?
55| = = = 3my|G]. 80
|63 2m; my|G| (80)

These |5, are disconnected from the TBM mixing angles.
It is in general expected that deviations of y,, y; from unity,
leading to the nonzero reactor mixing angle [45,46],
ie.,, 0,3 ~8.5° at lo best fit [47], and in turn opening
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the possibility of searching for CP violation in neutrino
oscillation experiments. These deviations generate relations
between mixing angles and eigenvalues |5;|. Therefore,
Eq. (78) directly indicates that there could be deviations
from the exact TBM if the Dirac neutrino Yukawa
couplings in mp of Eq. (B6) do not have the same
magnitude, and the pseudo-Dirac mass splittings are all
of the same order

|61] = |6,] = |83] =~ O(my). (81)

As shown in Ref. [3] by numerical analysis, together with
well-fitted 6, and 6,3, the values of the atmospheric (6,3)
and Dirac CP phase (6.p) have a remarkable coincidence
with the recent data by the NOvA [48] and/or T2K [49]
experiments. From the overall scale of the mass matrix
in Eq. (79), the pseudo-Dirac mass splitting, d,, is expected
to be

2
~ U1 .
v sin’feV,

yl\/i[\

5, =204 x 10-11 (4242 10° GeV
2 . M

(82)

in which the scale of the heavy neutrino, M, can be
estimated from Eq. (B8) through the astrophysical con-
straints as M = [$g| x 2.757/39 x 10° GeV, which is con-
nected to the PQ symmetry-breaking scale via the axion
decay constant in Ref. [3]. Equation (82) shows that the
value of 6, depends on the magnitude $,v7/A since M is
constrained by the axion decay constraints; the smaller the
ratio vy/A, the smaller |5;|, responsible for the pseudo-
Dirac mass splittings, becomes.'> However, the value of |5
is constrained from Eq. (B12); for example, using tan f = 2

and vy/A ~ A2/+/2, we obtain
16,] = 1.50  1074[5%]2 eV. (83)

Since the potential is (almost) flat in these directions {;,
they have large initial VEVs in the early Universe; see
Eq. (88). Such flat directions are lifted by some effective
operators in a later epoch, receiving soft masses in the
SUSY-breaking vacuum. Then, the potential of the flat
directions, {;, is directly written as

1£:]°
AM?

ms;

8M,

Vo(&i) = mg |Ci* + (anC! +He.) + (84)

Here, in the mass terms mé, we have included soft scalar
masses generated by the F-term SUSY breaking, that is, the

12Moreover, the overall scale of the heavy neutrino mass M is
closely related to a successful leptogenesis (see the details in
Sec. IV), constraints of the mass-squared differences in Eq. (B11),
and the Cabbibo-Kobayashi-Maskawa mixing parameters; there-
fore, it is very important to fit the parameters v;/A and M.

contribution from the effective u term, W D pu.H, H,,
which gives mass terms p2;|¢;|>/2. Since our model lies in
the gravity-mediated SUSY-breaking mechanism, it is
expected that m,, ~ my, and |a,,| ~ O(1) in the A term."
The potential for {; in Eq. (84) is D flat, |{;| = 0, and also F
flat in the limit of &;(or Am?) — 0. So, the AD fields ; can
develop large VEVs during inflation. As discussed before,
during inflation, the energy density of the Universe is
dominated by the inflaton ¥, that is, V(#;) = 3HIM>.
The potential for the D-flat direction is generated from the
coupling between the AD fields {; and the inflaton ¥,
which generically takes the form

P, 2
Ko Kap = [Pl + G2 + <k¢,~ |M°| &+ H.c.)
P

[Po[?|¢?
+rei——m —t+ -, 85
Vei M% ( )
where k;; and y.; are complex and real constants, respec-
tively, and the dots represent higher-order terms which are
irrelevant for our discussion. Then, due to the finite energy
density of the inflaton ¥, during inflation, the AD fields {;
receive additional SUSY-breaking effects. And such a
SUGRA contribution reads

. H
Vsugra(Ci) = _CHH%|€i|2 + 8./\25 (aHg? + HC) (86)

Here, by taking ¢y > 0 with ¢y being of order unity, we
assume that the AD fields {; can obtain negative Hubble-
induced mass terms. From Egs. (84) and (86), the total
effective potential for the AD fields ¢; relevant to the
leptogenesis reads

V(Cl) = VO(CZ) + Vsugra(z:i)- (87)

Then, the minima of the potential are given by

1 1

(1¢il) =~ (25H>Z<ﬂHIUz sinzﬁ)§ SMp, (88)

Aml2

and arg(ay) +4arg({;) ~n(2n+1)/2 with n =0, 1, in
which we have used m; , ms,|a,,| < H;. The AD fields ¢;
at the origin are unstable due to the negative Hubble mass
terms in Eq. (86) and so roll down toward their global
SUSY minima of the potential in Eq. (87) during inflation.
Thus, the AD fields {; have large scales of approximately

Vv2H;/|8;] < Mp in Eq. (88) during inflation. This is

“In the context of Kallosh-Linde-type models, the dominant
contributions to the A term arise from loop corrections [50]
because at tree level A terms are strongly suppressed by 3, /mr;
hence, one needs a relatively large O(100) TeV gravitino mass in
order to get properly large A terms [S1].
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compatible with the fact that the Planck scale, M p, sets the
Universe’s minimum limit, beyond which the laws of
physics break. If we set the initial minima of the AD fields
to the (almost) Planck scale, the ratios m;/ Am? responsible
for the neutrino mass splittings §; (relevant to the low-
energy neutrino oscillation as well as the high-energy
neutrino at the IceCube telescope) could be restricted as

1 2m M3 3\1/2
S TP ( ) . (89)

51' Amlz ~ H[UZSinzﬁ EH

Using H;~10'"" GeV, v =246 GeV, sinf~1, and
1/v/10 £ ¢y £+/10, a lower bound can be roughly esti-
mated as

5;2(2-5)x 107 eV, (90)

which is very compatible with the constraints from the
neutrino data in Eq. (B12) as well as a successful lepto-
genesis in Eq. (98).

After inflation ends, the inflaton ¥, and waterfall field P
[see Egs. (38) and (59)] begin to oscillate around their
VEVs, () = py and (¥,) ~0 [the VEV of ¥, deviates
from zero because of the supergravity effect: (¥,) ~
m3,/|3;] at the true minimum [see Eq. (65)], and their
decays produce a dilute thermal plasma formed by colli-
sions of relativistic decay products. Since the energy
density of the Universe is still dominated by the inflaton
¥, and waterfall field ¥ during the inflaton and waterfall
field oscillations epoch, the AD fields potential is still
governed by the Hubble-induced mass terms in Eq. (86)
together with V,({;) in Eq. (84) at the first stage of
oscillation. Thus, the AD fields {; are trapped in the
minima determined mainly by the Hubble A term as in
Eq. (88) because the curvatures around the minima along
both the radial and angular directions are of the order of H;
also in this period. However, after inflation, the values of {;
in Eq. (88) gradually decrease to the order of {; masses as
the Hubble parameter H(T) decreases; then, the negative
Hubble-induced mass terms are eventually exceeded by
the Hubble parameter, i.e., ¢, H(T)? < m%j in the potential
(87). And the AD fields begin to oscillate around the
potential minima ({;) ~ 0 (actually, m,,) with H(T) = H
when the Hubble parameter H(T) of the Universe becomes
comparable to the SUSY-breaking mass m,, . (Hereafter,
“osc” labels the epoch when the coherent oscillations
commence.) Then, the interactions of dimension-5 oper-
ators create lepton number.

Now, we see how the lepton number is created. At the
beginning of the oscillation, the AD fields have the initial
values

4 VA (mem; 1/2
|Ci(tose)| =~ (gEH) (mglm vzsm2ﬂ> <Mp, (91)

Am?

in which m;, =~ H . is used. The evolution of the AD fields
g; after H ~ H . is described in a Friedmann-Robertson-
Walker universe by the equation of motion with the
potential V((;) as

V(&)
a¢;

&+ 3H(T)éi + ~ (), (92)

where H(T) = (7?9, (T)/90M3%)"/>T? ~1.66+/8xg,(T)T?/
M p is the Hubble rate for a radiation-dominated era with
the total number of effective d.o.f. g, (7') at a temperature 7
[52], OV(¢;)/0¢: zmécji, and a dot indicates the time
derivative. It is clear that the AD fields ¢; oscillate around
the origin (({;) ~ 0, the VEVs of {; deviate from zero due to
the SUGRA effect) and the amplitude of the oscillation
damps as |{;| o« H o t71.

Since the AD fields {; carry lepton number, the baryon
number asymmetry will be created during coherent oscil-
lation of the AD fields. The number density of the AD
fields is related to the lepton number density n; as

np = % (% ¢i—¢r %); then, from Eq. (92), the evolution

of n;_is given by

ony, ms/o a
—a:’ +3Hn; — z—j\ﬁlilm(amﬁ:?) - 2_./\/1,-Im(aH€?) =0.

(93)

Since the Hubble parameter H(7T') decreases as the temper-
ature decreases, the relative phase between «,, and ay
changes with time when the AD fields {; trace the valleys
determined mainly by the Hubble A term."* And during
their rolling towards the true minima, the contribution of
Im(ay¢?) is suppressed compared with Im(a,,¢?). Then,
the motion of ¢; in the angular direction generating lepton
number is expressed as

8”L- m3/2
—+3Hn; =~
or ML o

Im(a,,(}). (94)

where H = R(r)/R(r) and R(r) stands for the scale
factor of the expansion universe with cosmic time z. The
produced lepton number asymmetry at a time ¢ can be
obtained by integrating the above equation J(R’nj,)/

Ot ~ 532 R*Im(a,,¢t), where R = R(t). After the end of

inflation, the inflaton field ¥, and waterfall field ¥ begin to
oscillate around the potential minimum such that the
Universe is effectively matter dominated, which scales as

R* x H? x t>. And before the beginning of the ¢;

YIf there are no true minima, i.e., m3,, = 0, the AD fields get
eternally trapped in the minima (89), and there is no motion of {;
changing with time along the angular direction, leading to no
lepton number production.
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oscillation, due to |¢;| «« H'? «t7!/2, the net lepton
number generated keeps constant for the period 7 < 7.
During the matter-dominated epoch, the Hubble parameter
is related to the expansion time by H, = (2/3)t50. Then,
using Eq. (91), the generated lepton number at this stage
(t = tos) is given approximately by

m;v? sin” 3

Am2 (’713/2 || ) H oscOers  (95)

~H
np, (tosc) = F

where S5 ~ sin(4 arg {; + arga,,) represents an effective
CP-violating phase. It is expected that the production of net
lepton asymmetry occurs before the reheating process is
completed, i.e., I'y; = Iy, + Iy < Hoe, f. Eq. (108); the
production of lepton number is strongly suppressed after
the AD fields ¢; start their oscillations because Im(a,,¢?)
change their sign rapidly due to the oscillation of {;, and
the amplitude of {; oscillation is damped with expansion
[see below Eq. (92)]. Thus, after inflation, R3nLi|,:,m

Riny, li—t, ~ 11, (tr)/Praa(tg) stays constant until the infla-

ton ¥, and waterfall field ¥ decay into light particles. Here,
Praa(tr) = 3M3I2, is the energy density of the inflaton.
Then, the generated lepton number when the reheating
process is completed (1 = 75, H ~T;) is given by

Iﬂ.all

1) =m0 (32 ) (96)

The inflaton decays reheats the Universe, producing
entropy s of radiation such that pq(tg) = 3T ns(25)/4.
Then, the lepton number asymmetry is approximately
expressed as

(t &y m;v? sin?
s 36 MpAm; H,.

when the reheating process of the inflaton is completed.
Later, we will discuss the reheating temperature (see
Sec. IVB) and its related gravitino problem (see
Sec. IVA). Recall that the H.. depends on M, as
H . ~mg,. Since M; is directly related to the pseudo-
Dirac mass splittings &; as M; = (H,)?/8; in Eq. (B10) in
addition to O(8;) ~ O(6,) ~ O(83) = O(my) in Eq. (81),
there are three flat directions corresponding to the almost
degenerate neutrino pairs, i.e., the three generation AD
fields ¢;/v/2=1L;=H, with i =1, 2, 3. The lepton
asymmetries in Eq. (97) are converted into the baryon
asymmetry through nonperturbative sphaleron processes.
We are in the energy scale in which A4 x U(1)y x SUSY is
broken but the SM gauge group remains unbroken. So, the
baryon number produced is thermalized in a hot plasma
into real baryons at a relatively low temperature. Therefore,
the present baryon asymmetry can be expressed by

n np
73:0.35 Z =

=123 3

’3:1 ALW:,Z Treh
1.75 x 10'° eV~ \10* TeV
5eff EH m3/2|am|
Oeit ) () (T3/21m1) 98
x (0.1) (o.s)( H,.. (%8)

where np is the baryon number density and s is the entropy
density, and we have used sinf~1. Considering
1/4/10 < |a,,|, &y < /10 (being order of unity) and H . =~
ms, = mgils and, for convenience, defining x.,=
(m3)3|a,,|/Hosc)OeeCry» the resultant baryon asymmetry
only depends on the neutrino parameters m; and Am?,
Tren> and x.p. Once the values of T, and x,., are fixed,
quantitatively, the value of the BAU is inferred from the two
observations, m; (~m,) and Am?, independently: from
Egs. (B12), (B13), and (89), the following quantity could
be extracted as

m, 1/1 1 1
1010 ey-1 < Vi 2
¢ NZ:Am% 2(51+52+53>

<5x 108 eV, (99)

~8.67 x 10711 x

in which the upper bound is derived from an initial
condition of the AD fields in Eq. (89); the lower bound
comes from the neutrino data in Eqgs. (B12) and (B13).
In terms of Ypp = (np — nB)/s|t0day (which is conserved
throughout the thermal evolution of the Universe), the BBN
results [53] and the CMB measurement [9] read at
95% C.L.

YEBN — (8.10 + 0.85) x 10711,

YMB — (8.67 +0.05) x 10711, (100)

As shown in Fig. 2, taking into account oo > 0.01 [see below
Eq. (95)], 1//10 < &y, |a,,| < /10 [see below Egs. (86)

and (84)], and IOIOCV_I§Z[%§5XIO]36V_1 in

Eq. (99), for the baryon asymmetry in Eq. (98) to satisfy
the BBN results and CMB measurement, a range of plausible
reheating temperature could be obtained as

O(100) GeV < Ty <3 % 10° TeV,  (101)

where the lower bound is due to the electroweak scale. Later,
we will show that the bound of Eq. (101) could be consistent
with the bound from Eq. (130).

Recall that our scenario lies in the gravity-mediated SUSY-
breaking mechanism; see below Eq. (84).
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Ir ‘ ‘ ‘ ‘ explicitly broken by SUGRA and thus its corresponding

uneaten Goldstino as a propagating d.o.f.
ol ] During inflation and the beginning of reheating (pre-

L y,5 10" = 8.67

LOg 1 O[Xreh]

Ser < 0.01

2 3 4
Logl0[T,ep/TeV]

FIG. 2. Region plot for the successful leptogenesis Y,, =
8.67 x 107! (cyan region) as a function of T,,/TeV and
Xeeh = (M52 @ |/ Hose)SeeCr, Where the regions 10'0 eV™! <

S <5 % 1013 eVl in Eq. (99) are used. Especially, for the

i Am2 ~
case of my); > Hoge, 1/v10 S €y, |a,,| < V10, and e < 1, the
horizontal line represents a lower bound of x,,.

A. Gravitino production

It is well known that thermal leptogensis in the super-
symmetric framework, which is one of the attractive
mechanisms for the origin of matter, requires a large
reheating temperature in the early Universe, T, ~ M| >
10° GeV, where M, is a lightest heavy neutrino mass. The
gravitino, which appears in all models with local super-
symmetry, is the superpartner of the graviton. Gravitino is
produced thermally [54] or nonthermally [55-59] in the
cosmological history. The excessive production of grav-
itinos in the early Universe may destroy the nucleosyn-
thesis of the light elements for unstable gravitinos or
overclose the Universe for the stable gravitinos [60].
Since the gravitino is present in the supersymmetric model,
we are going to address the (unstable) gravitino overabun-
dance problem.

As mentioned in Sec. II, there are two secluded
SUSY-breaking sectors, i.e., SUSY =SUSY;,; x SUSY ;.
Gravitational interactions explicitly break the SUSY down
to true SUSY,,r x SUSY i, where SUSY;,¢ corresponds to
the genuine SUGRA symmetry, while the orthogonal
SUSY,; is approximate global symmetry. In each sector,
spontaneous breakdown of the F term occurs at a scale F;
(i = inf, vis) independently, producing a corresponding
Goldstino. Hence, in the presence of SUGRA, the SUSY¢
is gauged, and thus its corresponding Goldstino is eaten
by the gravitino via the super-Higgs mechanism, leaving
behind the approximate global symmetry SUSY ,;,, which is

heating) when SUSY is spontaneously broken, there are
possible productions of fermonic quanta which are strongly
coupled to the inflaton field. During this stage, the SUSY
is mainly broken by the inflaton, implying that the
Goldstino produced is mainly the inflatino (instead of
the gravitino in the low energy); the gravitino produced
nonthermallyI6 is effectively massless as long as the
Hubble parameter is larger than the gravitino mass,
H > mj3;, [58]. However, this correspondence does not
necessarily hold at late times, since the SUSY; is broken
by other fields in the true vacuum.

After the inflation ends, the inflaton W, and waterfall field
¥ release their energy into a thermal plasma by the decays,
and the Universe is reheated. Since all the particles including
photons and baryons in the present Universe are ultimately
originated from the decays, it is crucial to reveal how the
reheating proceeds. In SUGRA framework, with the linear
Kahler potential in Eq. (8), the inflaton field ¥, has a
nonvanishing auxiliary field Gy, . Such a nonvanishing
auxiliary field allows the inflaton decay into a pair of the
gravitinos, the decay process of which is crucial in the
reheating process [56]. The constraint on the inflaton
potential Gy, depending on the gravitino mass must be
satisfied to avoid an overproduction of the gravitino keeping
the success of the standard cosmology. In the unitary gauge
in the FEinstein frame, the Goldstino (the longitudinal
component of the gravitino) can be gauged away through
the super-Higgs mechanism, leading to the vanishing of the
gravitino-Goldstino mixing. Then, the relevant interactions
for the inflaton decay into a pair of gravitinos reads [38]

1 _
—e L= geﬂypg(G‘{’oap\PO - G\Poaqué)ll/y}’pll/a

G2

+TMP(G‘Y0\PO + Gy, Vo) w, v v lw,,  (102)

where y, is the gravitino field. The real and imaginary
components of the inflaton field have the same decay rate at
leading order [57],

s =T(Yo = w30 +w3))
1 M2 2 2
n P (G )P ) () L (103)
2887[ K\PU\iJO 0 Mp m3/2 0

'“The inflatinos produced during inflation and preheating may
be partially converted to the gravitinos in the low energy, since
Gy, is generically nonzero in the true minimum [61]. At this
stage, since the inflationary sector and the sector responsible for
the low-energy effective SUSY breaking are distinct, the grav-
itinos generated nonthermally are produced with a sufficiently
low abundance.
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in the limit of my, > ms,, after canonical normalization
¥, =, /Ky,y,¥Yo. The decay rate is enhanced by the
gravitino mass in the denominator, which comes from the
Goldstino (mainly as the inflatino) in the massless limit.
The decay into the gravitinos only proceeds at the stage
H < m3), when the SUSY-breaking contribution of the
inflaton is subdominant [56]. Thus, the gravitinos produced
at the reheating epoch by the inflaton decay through the
interaction (102) should coincide with those in the low
energy.

Now, we estimate how much the gravitinos are pro-
duced at the reheating epoch. After the inflation ends, both
the inflaton ¥, and waterfall field ¥ oscillate around the
potential minimum and dominate the Universe until the
reheating. Using |Gy, | < [Wo|/M73, one obtains Wy, /W =~
Wo/Mp. Inserting Gyy, = =W, /W2, Gyy, =~ =YWy, /
(WM3) £ 3,9/ (m3,M3), and Gy, ~v3Wy,/(WMp)
into Egs. (62) and (63), we obtain

3m3; (P)

3<‘P0>N3 m3/2 DM ()
2G> My’

My g MR

(Gy,) ~ (Gy) ~ (104)

which indicates (Gy,) is much larger than (Gy). Then,
from Egs. (103) and (64), the inflaton decay width is
roughly given by

1 (mg \* (e(t)\?
Dy (b)) (AR .
V27 3 <MP> ( Mp "

At the reheating epoch, gravitinos are produced by the

nonthermal inflaton decay process (Y;P/Oz, the yield of the

(105)

gravitinos by the inflaton decay) as well as by the thermal
scattering (Y’ t3h/2, the yield of the gravitinos produced by
thermal scatterings); the ratio of gravitino-to-entropy den-
sity is given by Y3/, = Y;y/(’z + Yt3h/2’ which remains con-
stant as the Universe expands as long as there is no
additional entropy production. Gravitinos'’ thermally pro-
duced in the early Universe, predominantly via 2 — 2
inelastic scatterings of gluons and gluinos by the QCD
process, have a potential problem for the thermal history
of the Universe. However, since their relic density,
Qgh/zhz, and contribution to the energy density, th/z,
grow with the reheating temperature after inflation, the
yield of the gravitinos thermally produced is estimated
as YY), ~ 107'%(Ty;,/10° TeV) [54,63], which is harmless
with the gravitino mass ms;,, ~ 100 TeV in Eq. (27)
with the reheating temperature satisfying the successful

"The production of gravitinos after inflation has been studied
in some detail [62].

leptogenesis in Eq. (101). On the other hand, the gravitino
yield produced by the inflaton decay process ¥y — W3/, +
W5/, via the interaction (102) is

Yy
w,  Mp 13037
Yip=——=2——2—,

1

106
S F‘PO 4]’)1\{10 ( )

where n;F/‘)z is the number density of gravitinos by the

inflaton decay and s = (27°/45)g,,(T)T? is the entropy
density with g¢,,(7T) being the effective number of the
massless d.o.f. at the temperature 7.

The gravitino yield is severely constrained by BBN,
Y3, < Y2Y, in order to keep the success of the standard

scenario of BBN [62]. Otherwise, the decay products of the
gravitino would change the abundances of primordial light
elements too much and consequently conflict with the
observational data. Reference [64,65] shows that, when
the hadronic branching ratio of the gravitino decay is of

yBBN

order unity, Y32 ~ 107'¢ for m3;, ~ 1 TeV and Y32 ~

10715-13 for mys, ~ 10 TeV; for msy;, 2 100 TeV, the
constraint disappears. On the other hand, in the context
of supersymmetric moduli stabilization in which moduli
are strongly stabilized, at tree level, the gaugino masses
and A terms are strongly suppressed by mj3,,/m; and as
such effectively vanish [51], while the dominant contribu-
tions to the gaugino masses and A terms arise from
loop corrections [50]: my, = b,g2/(167%)(F€/C,) and
A = —=(rijn/167%)(F€/Cy), where b, =11,1,-3 for
a=1, 2, 3 are the one-loop beta function coefficients,
vijk are the anomalous dimensions of the matter fields, and
FC/Cy~mj 2. Thus, to have suitably large gaugino
masses, relatively large O(100) TeV gravitino masses must
be considered [51].

B. Reheating temperature

To estimate Y ;P/”z, we have to calculate the decay width of

the inflaton and waterfall fields, [, at the reheating epoch.

Since inflation leaves the early Universe cold and
empty, the inflaton ¥, and waterfall field ¥ in which all
energy resides in must transfer their energy to a
radiation-dominated plasma in local thermodynamic
equilibrium at a temperature sufficient to allow standard
nucleosynthesis T, > T(BBN). So, the Universe must
be reheated after inflation. The energy of the inflaton
Y, and waterfall field ¥ is transferred to the SM sector
through their gravitational and/or nongravitational
decays once their fields acquire finite VEVs, which
in turn produce SM matter. Their decay products
thermalize.

We are in the case in which the inflaton ¥, and waterfall
field ¥ dominate the energy of the Universe when they
decay. The reheating temperature 7, resulting from the
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perturbative decays of the inflaton ¥, and waterfall field
pre may be estimated by using the relation

l—‘all = 3I{(Trﬁ:h) (107)

at the end of the reheating process, where the Hubble
parameter H(T) is given in the radiation-dominated era of

the Universe. Inflaton W, and waterfall field ¥ decays
reheat the Universe, when Ty = 3H (T ),

10 1/4 )
Treh = (ﬂzg > \/ FallMP’ with

Fap = Ty, + T3 + T + T3, (108)
where ¢.(T) is the number of the relativistic d.o.f.
in the plasma" and My + T and Iy +T¥°
stand for gravitational and nongravitational decay widths,
respectively.

As in Ref. [3], in the supersymmetric visible sector, the
inflaton ¥, and waterfall field ¥ couple to the SM particles
via the following interactions dominantly,

P\ 2
WD g‘POLPOHqu + j\]c (X) QZCCHW (109)

where gy, is a real and positive coupling constant, while the
hat Yukawa coupling . is of order unity complex number.
Here, O, is the second-generation left-handed quark
doublet, which transforms as 1” under A; symmetry; the
right-handed charm quark ¢¢ ~ 1’ under A,. The first term
is also associated with the y term since the VEV of ¥ is
given by (W) ~ms,,/|77]. And so, the inflaton with a
nonzero VEV can decay into the visible sector through the
nongravitational coupling of the inflaton to matter with the
decay rate

Iy =T (¥ — 2 Higgsinos) + (¥, — 2 Higgses)

(110)

where the masses of the final states compared to that of the
inflaton are neglected. For the second term in Eq. (109),

The energy transfer from the inflaton and waterfall field to
the SM fields in general proceeds both through nonperturbative
effects and perturbative decays [66].

We estimate the total number of effectively massless d.o.f.
of the radiation, ¢,(7), at temperature of the order of the
decay rate of the inflaton and waterfall field I'y;; i.e., there
are 17 bosons and 48 Weyl fermions for Tgy < T < mj3);:
g*(T) = Zj:bosonsgj(Tj/T)4 + (7/8)Zj:fermionsgj(Tj/T)4 =
34 + (7/8)96 = 118, where T; denotes the effective temper-
ature of any species j.

expanding the waterfall field ¥ and the Higgs field H,,,
without loss of generality, as

¥ 5ot i),
(111)

the second term in Eq. (109) is expressed in terms of the
Lagrangian form as

o v\ h, V2 o _
_E_yc<ﬂA) vu{1+\/§0 —I—E(h l¢\y)}CLCR

+ H.c.

(112)

Here, the waterfall field ¥ with a nonzero VEV can decay
into the visible sector through the nongravitational coupling

of the waterfall field ¥ to matter with the decay rate

i |yc|2< ¥ )4<vu>2
s ~ '"P—)C —_— ms
¥ ( ) \/—A Vg ¥

|93[*
g m~’
8z ¥

(113)

where gg = 9. (v4/v2A)? (v, /vg), and the mass of the final
state compared to that of the waterfall field ¥ is neglected.
Using [9.|~1, vg/v2A =1/v2, and v,/vg =107,
where 4~ 0.225, sinff~ 1, and vg ~ 1.7 x 10!° GeV [3],
we obtain
lgg| = 2.5 x 10710, (114)
Next, we consider the gravitational effects on the
reheating temperature. The inflaton ¥, and waterfall field
¥ with nonzero VEVs can also decay into the visible sector
through the SUGRA effects [55]. Then, the reheating can
be induced by the inflaton and waterfall fields decay
through nonrenormalizable interactions. The relevant inter-
actions for the matter-fermion production are provided in
the Einstein frame as [38]

i ‘
6_1/:, — EKij*ijﬂay)(l

[ PR
+ MKU* (K58M¢0 - K0*6”¢*0))(]yﬂ)(l
I . . p
- MK i Lop( ) vy
1

+3 eK/2My (D,D;W)y'y’ + Hee, (115)

where  D,D,W =W, + 54w+ K pw 4+ K pw-
P P P

K.K. rk . .
1‘1’13‘31 W - M; D,W. Here, ¢' and y' stand for the matter
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fields, and ¢' collectively denotes on arbitrary fields
including the inflaton ¥, and waterfall field ¥. And the
matter-scalar production is represented by the kinetic term
and the scalar potential

—e_l[: = lKlj*6ﬂ¢laﬂ¢*l
e85k (D)D) - 7y WP,
(116)

In the model superpotential, the supersymmetric visible
sector contains the renormalizable interactions

1
W D y,05t°H, —l—EMRN"N", (117)

where the first term is the top quark operator as in Ref. [2],
and the second term comes from Eq. (B1) after the U(1)y is
spontaneously broken. First, we consider the partial decay
width of the inflaton. The partial decay width of the inflaton
through the neutrino Yukawa coupling is [55]

F\IZ(ESugra) _ r(\PO N Nch) + F(\IJO N Nch)
N ‘7@0 . AM2\ 1/2
32n my, )

K/M3,

(118)

where c@o ~e ; (sum over

Ky w 2
— O Waene — |‘k NCk
M2 VNN 20y e 31,

k) and M is the heavy neutrino mass given in Eq. (BS). For
the minimal Kahler potential, for simplicity, using Eq. (65),

the parameter c{{\fo can be approximately given by

e () ) - () )

(119)

where in the last equality the inflaton mass my, in Eq. (39)
or Eq. (64) is used. And the partial decay width of the
inflaton through the top quark Yukawa coupling is [55]

Ff{(,zugra) =TI'(¥y — 3scalars)

+ (Yo — 1scalar + 2 fermions)
Clp06 mq, 2

m\y .
=256 \ M, ) "

where the masses of the final-state particles are neglected,

the additional numerical factor comes from SU(3) x SU(2),
2 | K v
KM WP Wi 0;H 3F\1/0Hu Wi (14

). Similarly, the parameter clI,O is approximately given by

(120)

2
and ct (sum over

2 2 2
e = (S2) e = (222 ) (M) .z
P My, Mp
In addition, the decay rate into the visible sector through the
top and neutrino Yukawa couplings is much larger than that
into the gluons and gluinos via the anomalies of SUGRA
[55]. Then, from Egs. (118) and (120), the inflaton decay

rate through the gravitational coupling of the inflaton to
matter is approximately given by

F;g}l,]fra ~ Iﬁfl(’sugra) + I‘g(gsugra)
ey (372 2 (g (1) \? [ 2]y, (0w, \?
167[ m\po Mp 871'2 MP
M\? AM?\ 3
+ —_— 1 - —2 .
Mp m\yo
Second, similar to the above case of the inflaton field, the

waterfall field decay rate through the gravitational coupling
of the waterfall field to matter is approximately given by

(122)

sugra _ y-t(sugra) N (sugra)
g™ =TI +1y
_my (He(t)\2 [ 2]y (mg\?
T 16z \ M, 87> \Mp
M2 4M>\ 2
— 1- .
) (3
Then, from Egs. (122) and (123), the decay rate of inflaton
through gravitational effects is much smaller than that of
the waterfall field, i.e., Ff;gra > Ff;,lfra, for my, > my),.
And the waterfall field decay rate through the gravitational

coupling of the waterfall field to matter is approximately
given by

(123)

| s~ugra|2
I‘*filllgra ~ I-‘fi(lsugra) + l—\g(sugra) _ - me. (1 24)
where
o <o) (0 (mg2 LMY Y

Given that mg ~ 10" GeV, py(t;) ~10'° GeV, M~
10° GeV, y, ~ 1, and ms ), ~ O(100) TeV, we clearly have
LY 4T > Ty 4+ TY for gy, ~ g5*", and

sugra._ 1)=9

% (126)

Then, the total decay rate of the inflaton and waterfall fields
in Eq. (107) is approximately given by
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Doy 2 T + T, (127)
which is much larger than I';;, in Eq. (105). Putting
Egs. (113) and (124) into Eq. (108), the reheating temper-
ature can be expressed as

10 \ /4 2 sugra
Tyep =~ pyy my, Mp(|gy,|* + |g 1*).  (128)

where mg =~ my, is used. Since there is no information on
the size of the renormalizable superpotential coupling gy,
of the inflaton to the Higgses and Higgssinos, first we

consider the case of Iy ~Dy® > Iy + T + Ty
sugra

In this case, that is, gy, > |g95° |, the size of the nggs—
inflaton coupling can severely restrict the lower limit on

T.n in Eq. (128) as
1/2
)

Ty 2 10* Tev (2o I
10 0.94 x 10

(1) 12
x| —2 ,
6.7 x 101° GeV

(129)

where we have used m.PO |G7|py(2;) in Egs. (39) and
(64). This lower limit* on T en, 18 in conflict with the limit
for the successful leptogenesis in Egs. (98) and (101) for
0.01 < &y < 1. Hence, we can conclude that for [g5*"| 2
9w, from Eq. (128) the reheating temperature is in a good
approximation given in terms of Eq. (126) by

Ty ~ 10° TeV (130)
for the successful letogenesis with Egs. (98)-(101).
Inserting Eqgs. (105) and (127) into Eq. (106), the produc-
tion of the gravitinos can depend on the size of the Higgs-
inflaton coupling

8 10710\2/ T
v, 32 10- 17( . ) < o >
9w, 10° TeV

« 7] w(t) 5
0.94 x 10~ '

3
3) (6.7 x 101 GeV
Since the yield Yz ) is inversely proportional to |gy, | and

(131)

proportional to T (Y 32 is also proportional to T',), the
total yield Y3, =~ Y n+ y¥o 3/» can depend on the size of the

Higgs-inflaton coupling, |gy,|, with the given reheating
temperature for the successful leptogenesis. And the con-
straint Y3/, < Y32 disappears as in Ref. [65] for the
gravitino mass ms;, ~ 100 TeV in Eq. (27) with the given

“Note that, as seen from Fig. 2, for values of J.; being fine
tuned, i.e., 6.4 < 0.01, the lower limit (129) could be allowed for
a successful leptogenesis.

reheating temperature. So, we have an upper bound on the
size of the Higgs-inflaton coupling, |gy, |,
reheating temperature for the successful leptogenesis;

|9, | < lgg™ 1 =8 x 1071°. (132)
Since the size of Higgs-inflaton coupling can have an upper
bound with the given reheating temperature, the first term
in Eq. (109) can contribute to the sizable u term.

V. CONCLUSION

The model is based on the SM x U(1)y x A, symmetry,
which is essential for the flavored PQ axions at low energy.
Note that the U(1)y-charged Kahler moduli superfields
put the GS anomaly cancellation mechanism into practice.
As the U(1)y-breaking scales according to Ref. [3] are
secluded by the Gibbons-Hawking temperature Tgy =
H;/2r, the model is designed in a way in which gravita-
tional interactions explicitly break SUSY down to
SUSY;,s x SUSY,;,, where SUSY;,; corresponds to the
supergravity symmetry, while the orthogonal SUSY; is
approximate global symmetry. Hence, in the presence of
SUGRA, the SUSY ¢ is gauged, and thus its corresponding
Goldstino is eaten by the gravitino via the super-Higgs
mechanism, leaving behind the approximate global sym-
metry SUSY ;,, which is explicitly broken by SUGRA and
thus its corresponding uneaten Goldstino as a physical
d.o.f. giving masses to all the supersymmetric SM
superpartners.

To provide an explanation for inflation, we have con-
sidered a realistic supersymmetric moduli stabilization.
Such moduli stabilization has moduli backreaction effects
on the inflationary potential, in particular, the spectral index
of inflaton fluctuations. During inflation, the Universe
experiences an approximately dS phase with the infla-
tionary Hubble constant H; ~ 2 x 10! GeV. In the present
inflation model which provides intriguing links to UV-
complete theories like string theory, the PQ scalar fields
lI‘('i’) play the role of the waterfall fields; that is, the PQ
phase transition takes place during inflation such that the
PQ scale py(#;) during inflation is fixed by the amplitude of
the primordial curvature perturbation and turns out to be
roughly 0.3 x 10'® GeV. We have found that such moduli
stabilization with the moduli backreaction effects on the
inflationary potential could lead to the energy scale of
inflation in a way in which the power spectrum of the
curvature perturbation and the scalar spectral index are to
be fitted well with the Planck 2015 observation [9]. And we
have driven that the inflaton mass during inflation is given
by My, = \/§H ;> Which is much larger than the gravitino
mass, and its mass is in agreement with its theory prediction
for the spectral index with observation.

Through the introduction of U(1), symmetry in a way
in which the U(1)y — [gravity]? anomaly-free condition
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together with the SM flavor structure demands additional
sterile neutrinos as well as no axionic domain-wall problem
[3], the additional neutrinos may play a crucial role as a
bridge between leptogenesis and new neutrino oscillations
along with high-energy cosmic events. We have shown that a
successful leptogenesis scenario could be naturally imple-
mented through the Affleck-Dine mechanism. The pseudo-
Dirac mass splittings, which are suggested from new
neutrino oscillations along with high-energy cosmic events,
strongly indicate the existence of lepton-number violation,
which is a crucial ingredient of the present leptogenesis
scenario. The resultant baryon asymmetry is constrained by
the cosmological observable (i.e., the sum of active neutrino
masses) with the new high-energy neutrino oscillations. In
addition, the resultant baryon asymmetry, which crucially
depends on the reheating temperature, is suppressed for
relatively high reheating temperatures. We have shown that
the right value of the BAU, Y,z ~8 x 107!, prefers a
relatively low reheating temperature with the well-
constrained pseudo-Dirac mass splittings responsible for
new oscillations Am?. Moreover, we have shown that it is
reasonable for the reheating temperature Ty, ~ 10° TeV
derived from the gravitational decays of the inflaton and
waterfall field to be compatible with the required reheating
temperature for the successful leptogenesis, leading to
Am? ~ 10712 eV2. We have stressed that the present model
requires 3, ~ O(100) TeV gravitino mass in order to have
suitable large gaugino masses.
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APPENDIX A: SUPERPOTENTIAL DEPENDENT
ON DRIVING FIELDS

To impose the A, flavor symmetry [4] on our model
properly, apart from the usual two Higgs doublets H,, 4
responsible for electroweak symmetry breaking, which are
invariant under A, (i.e., flavor singlets 1 with no T flavor),
the scalar sector is extended by introducing two types of
new scalar multiplets, flavon fields @7, ©g, O, O, ¥, ¥ that
are SU(2) singlets and driving fields @g , <I>g, 0y, ¥, that
are associated to a nontrivial scalar potential in the
symmetry-breaking sector; we take the flavon fields @,
@ to be Ay triplets and O, O, ¥, ¥ to be A, singlets, and
the driving fields ®7, @ to be A, triplets and O, ¥ to be
A, singlets, that are SU(2)-singlets. Under A4 x U(1)yX
U(1)g, the driving, flavon, and Higgs fields are assigned as

TABLE II. Representations of the driving, flavon, and Higgs
fields under A4 x U(1)x. Here, U(1)x = U(1)y, x U(1)y, sym-
metries, which are generated by the charges X; = —2p and
Xzz—q.

Field @] @ 0, ¥, & & © 6 ¥ ¥ H, H,
Ay 3 3 1.1 3 3 1 1 11 1 1
Ul)y 0 4p 4p 0 -=2p 0 -2p-2p—q g 0 O
Ul)py 2 2 2 2 0 0 0 0 00 0 O

in Table II. The superpotential dependent on the driving
fields, which is invariant under SU(3).xSU(2), x
U(1)y xU(1)yxAy, is given at leading order by

W, = O (idr + §Pr®r) + O (9, PsPs + 9,0Ds)
+ 0y (g;PsPs + 9,00 + gs00 + g6 O)

+ g7P0 (P — piy), (A1)
where the fields ¥ and ¥ charged by —¢g and g, respec-
tively, are ensured by the U(1)y symmetry extended to a
complex U(1) due to the holomorphy of the supepotential.
SUSY hybrid inflation, defined by the last term in the
above superpotential, provides a compelling framework for
the understanding of the early Universe, in which ¥, and
¥(P) are identified as the inflaton and waterfall fields,

respectively. Note, here, that the PQ scale py = +/vyvg/2
corresponding to the scale of the spontaneous symmetry-
breaking scale sets the energy scale of inflation during
inflation, see Eq. (57), as well as the energy scale at present
in Ref. [3].

APPENDIX B: A DIRECT LINK BETWEEN LOW
AND HIGH-ENERGY NEUTRINOS

Once the scalar fields @y, ©, (:), ¥, and P get VEVs, the
flavor symmetry U(1)y x A4 is spontaneously broken, and
at energies below the electroweak scale, all leptons obtain
masses. Since the masses of Majorana neutrino Ny are
much larger than those of the Dirac and light Majorana
ones, after integrating out the heavy Majorana neutrinos,
we obtain the following effective Lagrangian for neutrinos:

1 - 123 1 .
—ﬁ“:vﬁa(yi SR)MI./ +_NRMRN;€

S% 2
_ g =
+OrMC + =W, y"v; + Hec. B1
RVlelL N LY"'vL (B1)
—mL M= T
with My:< DR D mDS). (B2)
Mpgs Mg

And the charged lepton mass term and the Dirac and
Majorana neutrino mass terms read
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yo 0 0
My=10 y, 0 |u,
0 0 vy,
445, 0 0
(\/5) y N2
— )25 L B
0 @ 0 |(5) e ®)
0 0 A
yi 00 v \16
mps=10 9 0 v, B4
»s oo |(2) (B4)
0 0 33
w00 51
vy [V v
Mg=|0 0 3% |-%(-2 ) °, (BS
S ) Y2 \/E (\/ZA \/EA ( )
0 ¥ 0
# 0 ;
o vr Uy
mp = 0 0 s Uy
P N RYCT (f A)
0 3% O
1 0 O .
" vr Vg
=910 O —_— vy, B6
0 y3 0
1+3ke?  —ike'”  —ike'
My = ——Ke"/’ %kei‘/’ 1-1 Ke”/’ M (B7)
— Keld) 1_ ldl gkel(/)
where v, = (H,;) =vcosf/\/2 and v, = (H,) = vsinB//2
with v ~ 246 GeV, and
Y2 % y3 % K= ) y )
- /\_1/’ - /\_1/’ - AIYR F 41
y i 2 M
Vg . ~ Ve
¢ = ar (A—) with M = |J¢—|. B8
g Yo 9\/§ ( )

Here, all the hat Yukawa couplings are of order unity.
In Eq. (B2), the Majorana neutrino mass terms M,, and
M and the Dirac mass term mpg are given by
M, = UZMDI/UZ =
M S = U ;M S U j{’

_mgME 1mD7
mps = UxMU}, (B9
where the “hat” matrices represent diagonal mass matrices
of their corresponding leptons and U () are their diagonal
left- (right-)mixing matrices. Since mpg is dominant over
M,, and Mgy due to Egs. (B4)-(B7), the low-energy
effective light neutrinos become pseudo-Dirac particles.
The pseudo-Dirac mass splitting, &, can be given by

s=M,, +M;~M,, (B10)

where the second equality is due to |M,,| > |M|. As is

well known, because of the observed hierarchy |Am3,, | =

im?, — (mZ, +m}))/2| > Am}, = m], —m; > 0 and the

requirement of a Mikheyev-Smirnov-Wolfenstein reso-
nance for solar neutrinos, there are two possible neutrino
mass  spectra: (i) the normal mass  ordering

m; < ml <ml, m: <m? <m? and (i) the inverted

mass ordering m? <mZ < m,%z, mZ < mi <mi
which the mass-squared differences in the kth pair Am3 =
m;_ —m? are small enough that the same mass ordering

applies for both the eigenmasses, that is,

5, N

Ami = 2my|5,| < m?, (B11)

for all k=1, 2, 3. It is anticipated that Am? < Am3,
|Am3,,,|; otherwise, the effects of the pseudo-Dirac neu-
trinos should have been detected. But in the limit at which
Am3 =0, it is hard to discern the pseudo-Dirac nature
of neutrinos. The pseudo-Dirac mass splittings could be
limited by several constraints, that is, the active neutrino
mass hierarchy, the BBN constraints on the effective
number of species of light particles during nucleosynthesis,
the solar neutrino oscillations; we roughly estimate a bound
for the tiny mass splittings
6 x 10719 < Am3/eV? < 1.8 x 10712, (B12)

where the upper bound comes form the solar neutrino
oscillations [67] and the lower bound comes from the
inflationary (Sec. III) and leptogenesis (Sec. IV) scenarios
by assuming21 m,, ~0.01 eV.

Letting the mass of active neutrino be m,,
sum of light neutrino masses given by

Am AmZ  Am?
Zmbk = Ly 243 (B13)
) 33

is bounded by 0.06 < ) ;m, /eV < 0.194; the lower limit
is extracted from the neutrino oscillation measurements,
and the upper limit* is given by the Planck Collaboration
[7], which is subject to the cosmological bounds ) ;m, <
0.194 eV at 95% CL (the CMB temperature and polariza-
tion power spectrum from Planck 2015 in combination
with the BAO data, assuming a standard ACDM cosmo-
logical model).

= my, then the

?In the present model, the lightest effective neutrino mass
cannot be extremely small because the values of J; through the
relation (B11) are constrained by the u — 7 powered mass matrix
in Eq. (78).

Massive neutrinos could leave distinct signatures on the
CMB and large-scale structure at different epochs of the
Universe’s evolution [68]. To a large extent, these signatures
could be extracted from the available cosmological observations,
from which the total neutrino mass could be constrained.
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