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Motivated by the flavored Peccei-Quinn symmetry for unifying flavor physics and string theory, we
investigate a supersymmetric extension of standard model for an explanation of inflation and leptogenesis
by introducing Uð1Þ symmetries such that the Uð1Þ − ½gravity�2 anomaly-free condition together with the
standard model flavor structure demands additional sterile neutrinos as well as no axionic domain-wall
problem. Such additional neutrinos may play a crucial role as a bridge between leptogenesis and new
neutrino oscillations along with high-energy cosmic events. In a realistic moduli stabilization, we show that
the moduli backreaction effect on the inflationary potential leads to the energy scale of inflation with the
inflaton mass in a way that the power spectrum of the curvature perturbation and the scalar spectral index
are to be well fitted with the latest Planck observation. We suggest that a new leptogenesis scenario could
naturally be implemented via the Affleck-Dine mechanism. So, we show that the resultant baryon
asymmetry, constrained by the sum of active neutrino masses and new high-energy neutrino oscillations,
crucially depends on the reheating temperature Treh. And we show that the model has a preference on
Treh ∼ 103 TeV, which is compatible with the required Treh to explain the baryon asymmetry of the
Universe.
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I. INTRODUCTION

The standard model (SM) of particle physics has been
successful in describing properties of known matter and
forces to a great precision until now, but we are far from
satisfied since it suffers from some problems or theo-
retical arguments that have not been solved yet. These
include the following: inclusion of gravity in gauge
theory, instability of the Higgs potential, cosmological
puzzles of matter-antimatter asymmetry, dark matter,
dark energy, and inflation, and flavor puzzle associated
with the SM fermion mass hierarchies, their mixing
patterns with the CP-violating phases, and the strong
CP problem. The SM therefore cannot be the final
answer. It is widely believed that the SM should be
extended to a more fundamental underlying theory. If
nature is stringy, string theory should give insight into all
such fundamental problems or theoretical arguments.1 As

indicated in Refs. [1,2],2 several such fundamental
challenges strongly hint that a supersymmetric hybrid
inflation framework with new gauge symmetries as well
as higher-dimensional operators responsible for the SM
flavor puzzles may be a promising way to proceed.
Since astrophysical and cosmological observations have

increasingly placed tight constraints on parameters for
axion, neutrino, and inflation including the amount of
reheating, it is in time for a new scenario on axion, neutrino,
and inflation to mount an interesting challenge; see also
Refs. [2,3]. In a theoretical point of view, axion physics
including neutrino physics requires new gauge interactions
and a set of new fields that are SM singlets. Thus, in
extensions of the SM, sterile neutrinos and axions could
naturally be introduced, e.g., in view of Uð1Þ symmetry.
For a new paradigm to explain the aforementioned funda-
mental challenges, in this paper, we investigate a minimal
and economic supersymmetric extension of the SM for an
explanation of inflation and leptogenesis, which can be
realized within the framework3 of G≡ SM ×Uð1ÞX × A4.
All renormalizable and nonrenormalizable operators*axionahn@naver.com
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1In Ref. [1], a concrete model is designed to act as a bridge
between string theory as a fundamental theory and low-energy
flavor physics.

2Reference [2] introduces a superpotential for unifying flavor
and strong CP problems, the so-called flavored PQ symmetry
model in a way that no axionic domain-wall problem occurs.

3Here, the flavored PQ symmetry Uð1ÞX embedded in the non-
Abelian A4 finite group [4] could economically explain the mass
hierarchies of quarks and leptons including their peculiar mixing
patterns as well as provide a neat solution to the strong CP
problem and its resulting axion [3].
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allowed by such gauge symmetries, non-Abelian discrete
symmetry, and R parity exist in the superpotential as in
Ref. [3]. Since nonperturbative quantum gravitational
effects spoil the axion solution to the strong CP problem
[5,6], in order to eliminate such breaking effects of the
axionic shift symmetry by gravity, the author in Ref. [3] has
imposed a Uð1ÞX × ½gravity�2 anomaly cancellation con-
dition [3] in a way that no axionic domain-wall problem
occurs; thereby, additional sterile neutrinos are introduced.
Such sterile neutrinos are light or heavy and do not
participate in the weak interaction. Moreover, the latest
results [7] from Planck and baryon acoustic oscillations
(BAOs) show that the contribution of light sterile neutrinos
to Neff

ν at the big bang nucleosynthesis (BBN) [8] era is
negligible; such neutrinos may play a crucial role as a
bridge between leptogenesis and new neutrino oscillations
along with high-energy cosmic events.
In this paper, in order to provide an explanation for

inflation, we present a realistic moduli stabilization, which
is essential for the flavored PQ axions to be realized at the
low-energy scale [3]. Such moduli stabilization has moduli
backreaction effects on the inflationary potential, which
could provide a lucid explanation for the cosmological
inflation at the high-energy scale. Thus, such moduli
stabilization with the moduli backreaction effects on the
inflationary potential leads to the energy scale of inflation
with the inflaton mass, mΨ0

¼ ffiffiffi
3

p
HI , in a way that the

power spectrum of the curvature perturbation and the scalar
spectral index are to be well fitted with the latest Planck
observation [9]. And we suggest, interestingly enough, a
new leptogenesis scenario, which could naturally be imple-
mented through the Affleck-Dine (AD) mechanism for
baryogenesis [10] and its subsequent leptonic version, so-
called AD leptogenesis [11]. Interestingly enough, the
pseudo-Dirac mass splittings, suggested from the new
neutrino oscillations along with high-energy cosmic events
[3], strongly indicate the existence of lepton-number viola-
tion, which is a crucial ingredient of the present leptogenesis
scenario. So, the resultant baryon asymmetry is constrained
by the cosmological observable (i.e., the sum of active
neutrino masses) with the new high-energy neutrino oscil-
lations and crucially depends on the reheating temperature,
which depends on gravitational and nongravitational decays
of the inflaton and waterfall field. Since all the particles
including photons and baryons in the present Universe
ultimately originated from the inflaton and waterfall field
decays, it is crucial to reveal how the reheating proceeds. We
show that the reheating temperature is mainly determined by
the nongravitational decay of the waterfall field, leading to a
relatively low reheating temperature, which is consistent
with that for explaining the right value of the baryon
asymmetry of the Universe (BAU), YΔB ≃ 8 × 10−11 [9],
together with the pseudo-Dirac mass splittings responsible
for new oscillations Δm2

i ≃Oð10−12Þ eV2. In addition,
since gravitinos are present in the supersymmetric model,

we are going to address the gravitino overabundance
problem. We consider direct decays of the inflaton to
gravitinos competing with the thermal production in the
thermal plasma formed after reheating when setting limits on
the couplings governing inflaton decay; see Eq. (132).
The rest of this paper is organized as follows. In Sec. II,

we set up and review the model based on A4 ×Uð1ÞX
symmetry in order to investigate an economic supersym-
metry (SUSY) inflationary scenario and a new leptogenesis
via the AD mechanism. In Sec. III, first, we study a realistic
moduli stabilization in type IIB string theory with positive
vacuum energy, which is essential for the flavored Peccei-
Quinn (PQ) axions at low energy as well as a lucid
explanation for cosmological inflation at the high-energy
scale. And we investigate how the size moduli stabilized at a
scale close to ΛGUT significantly affect the dynamics of the
inflation as well as how the X-symmetry breaking scale
during inflation is induced and its scale is fixed at approx-
imately 0.3 × 1016 GeV by the amplitude of the primordial
curvature perturbation and the spectral index. The main
focus on Sec. IV is to show that a successful leptogenesis
scenario could be naturally implemented through the AD
mechanism and subsequently estimate the reheating temper-
ature that is required to generate sufficient lepton number
asymmetry following the hybrid F-term inflation. In turn,
we show that the successful leptogenesis is closely correlated
with the neutrino oscillations available on high- and low-
energy neutrinos and how the amount of reheating could
be strongly correlated with the successful leptogenesis.
Moreover, we discuss that it is reasonable for the reheating
temperature Treh ∼ 103 TeV derived from the gravitational
decays of the inflaton and waterfall field to be compatible
with the required reheating temperature for the successful
leptogenesis. What we have done is summarized in Sec. V.

II. FLAVOR A4 × U(1)X SYMMETRY AND SETUP

Unless flavor symmetries are assumed, particle masses
and mixings are generally undetermined in the SM gauge
theory. To provide an elegant solution to the strong CP
problem and describe the present SM flavor puzzles asso-
ciated with the fermion mass hierarchies including their
mixing patterns, the author in Refs. [2,3] has introduced the
non-Abelian discrete A4 flavor symmetry [12,13], which is
mainly responsible for the peculiar mixing patterns, as well
as an additional continuous symmetry Uð1ÞX, which is
mainly for the vacuum configuration as well as for describ-
ing mass hierarchies of leptons and quarks. In Ref. [3], the
symmetry group for matter fields (leptons and quarks),
flavon fields, and driving fields4 is A4 ×Uð1ÞX, where

4The flavon fields are responsible for the spontaneous breaking
of the flavor symmetry, while the driving fields are introduced to
break the flavor group along required VEV directions and to
allow the flavons to get VEVs, which couple only to the flavons;
see the Appendix A.
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Uð1ÞX ≡Uð1ÞX1
× Uð1ÞX2

. We take the Uð1ÞX1
-breaking

scale corresponding to the A4 symmetry-breaking scale and
the Uð1ÞX2

-breaking scale to be separated by the Gibbons-
Hawking temperature, TGH ¼ HI=2π, both of which are to
be much above the electroweak scale in our scenario,5 that is,

hHu;di ≪ hΦTi; hΦ1i <
HI

2π
< hΦ2i; ð1Þ

where HI is the inflationary Hubble constant and the fields
Φ1 ¼ fΦS;Θg and Φ2 ¼ fΨ; Ψ̃g are charged under the
Uð1ÞX1

and Uð1ÞX2
symmetries, respectively. So, we can

picture two secluded SUSY-breaking sectors by the infla-
tionary sector and by the visible sector in the present
Universe, i.e., SUSY ¼ SUSYinf × SUSYvis, respectively.
Both sectors interact nongravitationally via the inflaton field
as well as gravitationally. Since the Kahler moduli super-
fields putting the GS mechanism into practice are not
separated from the SUSYinf during inflation, the Uð1ÞX2

-
charged matter fields develop a large vacuum expectation
value (VEV) during inflation by taking tachyonic SUSY-
breaking scalar masses m2

Φ2
∼ −H2

I induced “dominantly”
by the Uð1ÞX2

D term, compared to the Hubble-induced soft
masses generated by the F-term SUSY breaking. On the
other hand, in the present Universe, both theUð1ÞXi

-charged
matter fields Φ1 and Φ2 develop large VEVs by the soft
SUSY–breaking mass. So, in the absence of direct inter-
actions, gravitational or otherwise, the Uð1ÞX2

-charged
chiral superfields Φ2 have a two-fold enhanced SUSYinf ×
SUSYvis Poincaré symmetry. However, gravitational inter-
actions explicitly break the SUSY down to true SUSYinf ×
SUSYvis, where SUSYinf corresponds to the genuine super-
gravity (SUGRA) symmetry, while the orthogonal SUSYvis
is only approximate global symmetry. In each sector,
spontaneous breakdown of the F term occurs at a scale
Fi (i ¼ inf, vis) independently, producing a corresponding
Goldstino. In the presence of SUGRA, SUSYinf is gauged,
and thus its corresponding Goldstino is eaten by the
gravitino via the super-Higgs mechanism, leaving behind
the approximate global symmetry SUSYvis, which is explic-
itly broken by SUGRA and thus its corresponding uneaten
Goldstino as a physical degree of freedom (d.o.f.). During
inflation and the beginning of reheating (preheating), the
SUSYinf is mainly broken by the inflaton, implying the
Goldstino produced is mainly an inflatino; the gravitino
produced nonthermally is effectively massless as long as
H > m3=2. However, this correspondence does not neces-
sarily hold at late times, since the SUSYvis is broken by the
other field in the true vacuum, implying that the

corresponding uneaten Goldstino gives masses mainly to
all the supersymmetric SM superpartners in the visible
sector.

III. INFLATION

The inflation that inflated the observable Universe
beyond the Hubble radius, and could have produced the
seed inhomogeneities needed for galaxy formation and the
anisotropies observed by COBE [14], must occur at an
energy scale V1=4 ≤ 4 × 1016 GeV [15], well below the
Planck scale. At these relatively low energies, superstrings
are described by an effective N ¼ 1 supergravity theory
[16]. We work in the context of supersymmetric moduli
stabilization, in the sense that all moduli masses are
independent of the gravitino mass and large compared to
the scale of any other dynamics in the effective theory, e.g.,
the scale of inflation, mTi

> HI , where HI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=3M2

P

p
is the Hubble scale during inflation. As in Refs. [1,3], the
size moduli with positive masses have been stabilized,
while leaving two axions massless and one axion massive,
i.e., mT ∼mθst ≫ m3=2. So, we will discuss that such
moduli stabilization has moduli backreaction effects on
the inflationary potential, in particular, the spectral index of
inflaton fluctuations, which provides a lucid explanation
for the cosmological inflation at the high-energy scale.
We are going to see how the size moduli stabilized at a
scale close to ΛGUT significantly affect the dynamics of the
inflation as well as how the X symmetry–breaking scale
during inflation is induced and its scale is fixed at
approximately 0.7 × 1016 GeV, close to ΛGUT, by the
amplitude of the primordial curvature perturbation.
The model addressed in Refs. [1,2] naturally causes a

hybrid inflation,6 in which the QCD axion and the lightest
neutralino charged under a stabilizing symmetry could
become components of dark mater. We work in a SUGRA
framework based on type IIB string theory and assume that
the dilaton and complex structure moduli are fixed at the
semiclassical level by turning on background fluxes [24].
Below the scale in which the complex structure and the
axio-dilaton moduli are stabilized through fluxes as in
Refs. [25,26], in the Einstein frame,7 the SUGRA scalar
potential is

5See reference [3] on the symmetry-breaking scales from the
astrophysical constraints, and in more detail Sec. III D on the PQ
symmetry-breaking scale during inflation.

6Supersymmetirc realizations of F-term hybrid inflation were
first studied in Ref. [17]. And the hybrid inflation model in
supergravity [18–20] and the F-term hybrid inflation in super-
symmetric moduli stabilization [21] were studied in detail. See
also Refs. [22,23].

7In the Jordan frame, since the sign of the kinetic term for
the scalar field is not positive definite, one cannot have a stable
ground state. Hence, the correct procedure is to transform the
potentials to the Einstein frame, and then the system in the
Einstein frame cannot decay to lower-energy states [27].
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V ¼ eGM4
P

�X
α

GαGα − 3

�
þ 1

2
f−1ij D

iDj; ð2Þ

where Gα ¼ Gαβ̄Gβ̄ with Gαβ̄ ¼ M2
PK

αβ̄, MP ¼
ð8πGNÞ−1=2 ¼ 2.436 × 1018 GeV is the reduced Planck
mass with Newton’s gravitational constant GN , and fij
is the gauge kinetic function. And the F-term potential is
given by the first term on the right-hand side of Eq. (2); the
D term, the second term on the right-hand side of Eq. (2), is
quartic in the charged fields under the gauge group, and in
the model, it is flat along the inflationary trajectory so that it
can be ignored during inflation.8 The generalized Kahler
potential, G, is given by

G ¼ K
M2

P
þ ln

jWj2
M6

P
: ð3Þ

Here, the low-energy Kahler potential K and superpotential
W for moduli and matter superfields, invariant underUð1ÞX
gauged symmetry, are given in type IIB string theory by [1]

K ¼ −M2
P ln

�
ðT þ T̄Þ

Y2
i¼1

�
Ti þ T̄i −

δGSi
16π2

VXi

��

þ K̃ þ � � � with

K̃ ¼
X2
i¼1

ZiΦ
†
i e

−XiVXiΦi þ
X
k

Zkjφkj2; ð4Þ

W ¼ WY þWv þW0 þWðTÞ; ð5Þ

in which Φ1 ¼ fΦS;Θ; Θ̃g, Φ2 ¼ fΨ; Ψ̃g, φi ¼ fΨ0;ΦT
0 ;

ΦTg, and dots represent higher-order terms. W0 stands for
the constant value of the flux superpotential at its mini-
mum. Since the Kahler moduli do not appear in the
superpotential W at leading order, they are not fixed by
the fluxes. So, a nonperturbative superpotential WðTÞ is
introduced to stabilize the Kahler moduli [1], although
WðTÞ in Eq. (5) is absent at tree level. The Kahler moduli in
K of Eq. (4) control the overall size of the compact space,

T ¼ ρþ iθ; Ti ¼ ρi þ iθi with i ¼ 1; 2; ð6Þ

where ρðρiÞ are the size moduli of the internal manifold and
θðθiÞ are the axionic parts. As can be seen from the Kahler
potential above, the relevant fields participating in the four-
dimensional Green-Schwarz (GS) mechanism [28] are
the Uð1ÞXi

-charged chiral matter superfields Φi; the vector
superfields VXi

of the gauged Uð1ÞXi
, which is anomalous;

and the Kahler moduli Ti. The matter superfields in

K consist of all the scalar fields Φi that are not moduli and
do not have Planck-sized VEVs, and the chiral matter fields
φk are neutral under the Uð1ÞXi

symmetry. We take, for
simplicity, the normalization factors Zi ¼ Zk ¼ 1 and
the holomorphic gauge kinetic function fij ¼ δijð1=g2j þ
iaTj

=8π2Þ, i.e., Ti ¼ 1=g2Xi
þ iaTi

=8π2 on the Kahler
moduli in the four-dimensional effective SUGRA in which
gXi

are the four-dimensional gauge couplings of Uð1ÞXi
.

Actually, gaugino masses require a nontrivial dependence
of the holomorphic gauge kinetic function on the Kahler
moduli. This dependence is generic in most of the models
ofN ¼ 1 SUGRA derived from extended supergravity and
string theory [29]. And vector multiplets VXi

in Eq. (4) are
the Uð1ÞXi

gauge superfields including gauge bosons Aμ
i .

The GS parameter δGSi characterizes the coupling of the
anomalous gauge boson to the axion.
Nonminimal SUSY hybrid inflation can be defined by

the superpotential Winf , which is an analytic function,
together with a Kahler potential Kinf , which is a real
function,

W ⊃ Winf ¼ g7Ψ0ðΨΨ̃ − μ2ΨÞ; ð7Þ

K̃ ⊃ Kinf ¼ jΨ0j2 þ jΨj2 þ jΨ̃j2 þ ks
jΨ0j4
4M2

P

þ k1
jΨ0j2jΨj2

M2
P

þ k2
jΨ0j2jΨ̃j2

M2
P

þ k3
jΨ0j6
6M4

P
þ � � �

ð8Þ

where Ψ0 and ΨðΨ̃Þ denote the inflaton and PQ fields,
respectively. Here, the dimensionless couplings g7; ks; k1;2;…
are of order unity. The PQ scalar fields play the role of the
waterfall fields; that is, the PQ phase transition takes place
during inflation such that the PQ scale μΨ ¼ μΨðtIÞ sets the
energy scale during inflation.
The kinetic terms of the Kahler moduli and scalar sectors

in the flat-space limit of the four-dimensional N ¼ 1
supergravity are expressed as

Lkinetic¼KTT̄∂μT∂μT̄þKTiT̄i
∂μTi∂μT̄iþKΦiΦ̄i

∂μΦi∂μΦ†
i :

ð9Þ

Here, we set KΦiΦ̄i
¼ 1 for canonically normalized scalar

fields. In addition to the superpotential in Eq. (5) the Kahler
potential in Eq. (4) deviates from the canonical form due to
the contributions of nonrenormalizable terms scaled by a
UV cutoff MP, invariant under both the gauge and the
flavor symmetries.

A. Supersymmetric moduli stabilization

In string theory, one must consider stabilization of the
volume moduli to explain why our Universe is four

8Assuming the FI D terms do not appear during inflation,
ξFIi ¼ 0, it is likely thatD terms in the inflaton sector do not give a
significant contribution to the inflaton potential. See Sec. III D.
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dimensional rather than ten dimensional. Since the three
moduli all appear in the Kahler potential (4), by solving the
F-term equations, the three size moduli and one axionic
partner with positive masses are stabilized, while leaving
two axions massless through an effective superpotential
WðTÞ [1]. As will be seen later, the two massless axion
directions will be gauged by the Uð1Þ gauge interactions
associated with D-branes, and the gauged flat directions
of the F-term potential will be removed through the
Stuckelberg mechanism. The F-term scalar potential has
the form

VF ¼ eK̃=M
2
P

ðT þ T̄ÞðT1 þ T̄1ÞðT2 þ T̄2Þ

×

� X
I¼T;T1;T2

KIĪjDIWj2 − 3

M2
P
jWj2 þ KiījDiWj2

�

ð10Þ

for VXi
¼ 0, where KIJ̄ ¼ 0 for I ≠ J, I and J stand for T

and Ti, and i and j stand for the bosonic components of
the superfields Φi and φi. Here, the Kahler covariant
derivative and Kahler metric are defined as DIW ≡ ∂IW þ
W∂IK=M2

P and KIJ̄ ≡ ∂I∂ J̄K, where DĪW̄ ¼ ðDIWÞ, and
KIJ̄ is the inverse Kahler metric ðKÞ−1IJ̄ . For the Kahler
moduli T and Ti to be stabilized, certain nonperturbative
terms are introduced as an effective superpotential [1],

WðTÞ ¼ AðΦiÞe−aðTþT1þT2Þ þ BðΦiÞe−bðTþT1þT2Þ; ð11Þ

where the coefficients a ¼ 2π or 2π=N and b ¼ 2π or
2π=M are the corrections arising from D3 instantons or
gaugino condensation in a theory with a product of non-
Abelian gauge groups SUðNÞ × SUðMÞ. Here, AðΦiÞ and
BðΦiÞ are analytic functions of Φi transforming under
Uð1ÞXi

as

AðΦiÞ → AðΦiÞei
a

16π2
ðδGS

1
Λ1þδGS

2
Λ2Þ;

BðΦiÞ → BðΦiÞei
b

16π2
ðδGS

1
Λ1þδGS

2
Λ2Þ ð12Þ

and invariant under the other gauge group. Since there are
two nonperturbative superpotentials of the form Wnp ¼
Ae−aT , the structure of the effective scalar potential has two
nontrivial minima at different values of finite TðiÞ. One
corresponds to a supersymmetric Minkowski vacuum,
which could be done through the background fluxes W0,
while the other corresponds to a negative cosmological
constant, which gives rise to a supersymmetric anti-de
Sitter (AdS) vacuum. So, the height of the barrier separates
the local Minkowski minimum from the global AdS
minimum, and the gravitino mass vanishes at the super-
symmetric Minkowski minimum. As will be seen in
Eq. (50), the inflaton mass (mΨ0

∼HI) is much smaller

than the size moduli masses, and consequently, the size
moduli will be frozen quickly during inflation without
perturbing the inflation dynamics. And it is expected that
HI ≪ ΛGUT as a consequence of the enormous flatness of
the inflaton potential, where ΛGUT ≃ 2 × 1016 GeV is the
scale gauge coupling unification in the supersymmetric
SM. The scalar potential of the fields ρ and ρi has local
minimum at σ0, σi, which is supersymmetric, i.e.,

Wðσ0; σiÞ ¼ 0; DTWðσ0; σiÞ ¼ DTi
Wðσ0; σiÞ ¼ 0;

ð13Þ

and Minkowski, i.e.,

VFðσ0; σiÞ ¼ 0; ð14Þ

where σ0 ¼ σi ¼ 1
a−b lnðaA0

bB0
Þ. And W0 is fine tuned as

W0 ¼ −A0

�
aA0

bB0

�
−3 a

a−b
− B0

�
aA0

bB0

�
−3 b

a−b
; ð15Þ

where A0 and B0 are constant values of order Oð1Þ of
AðΦiÞ and BðΦiÞ, respectively, at a set of VEVs hΦii that
cancel all theD terms, including the anomalousUð1ÞXi

; see
Ref. [3]. Here, the constant W0 is not analytic at the VEVs
hΦii, where the moduli are stabilized at the local super-
symmetric Minkowski minumum. Moreover, sinceWðTÞ is
an effective superpotential, its analyticity does not need to
be guaranteed in the whole range of the Φi fields, and so, as
will be shown later, the anomalous fayet-iliopoulos (FI)
terms at the global supersymmetric AdS minimum cannot be
canceled and act as uplifting potentials. Restoration of
supersymmetry in the supersymmetric local Minkowski
minimum implies that all particles of which the mass is
protected by supersymmetry are expected to light in the
vicinity of the minimum. However, supersymmetry breaks
down and all of these particles become heavy once one
moves away from the minimum of the effective potential.
This is exactly the situation required for the moduli trapping
near the enhanced symmetry points [30].
The F-term equations DTW ¼ DTi

W ¼ 0, where we set
the matter fields to zero, provide ρ ¼ ρi and lead to

aAe−3aρe−iaθ
st þ bBe−3bρe−ibθ

st

þW0 þ Ae−3aρe−iaθ
st þ Be−3bρe−ibθ

st

2ρ
¼ 0 ð16Þ

for VXi
¼ 0, where θst ≡ θ þ θ1 þ θ2. This shows that the

three size moduli ðρ; ρiÞ and one axionic direction θst are
fixed, while the other two axionic directions (θst1 ≡ θ − θ1
and θst2 ≡ θ − θ2) are independent of the above equation.
So, without loss of generality, we rebase the superfields T
with θst ¼ Im½T� and Ti with θsti ¼ Im½Ti� as
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T ¼ ρþ iθ → T ¼ ρþ iθst;

Ti ¼ ρi þ iθi → Ti ¼ ρi þ iθsti : ð17Þ

Then, from the F-term scalar potential, while the gravitino
mass in the supersymmetric local Minkowski minimum
vanishes, the masses of the fields ρ, ρ1, ρ2, and θst,
respectively, are obtained as

m2
T ¼

1

2
KTT̄∂T∂ T̄VFjT¼T̄¼σ0

¼
3lnðaA0

bB0
Þ

M4
Pða−bÞ

�
A0a2

�
aA0

bB0

�
−3 a

a−bþB0b2
�
aA0

bB0

�
−3 b

a−b
�

2

;

m2
θst ¼

1

2
KTT̄∂θst∂θstVFjT¼T̄¼σ0

¼ 3W0

M4
P

�
−A0a3

�
aA0

bB0

�
−3 a

a−b
− B0b3

�
aA0

bB0

�
−3 b

a−b
�

þ
6 lnðaA0

bB0
Þ

M4
Pða − bÞ

�
−A0B0ða − bÞ2

�
aA0

bB0

�
−3aþb

a−b

×

�
a2 − b2

2 lnðaA0

bB0
Þ þ ab

��
; ð18Þ

where a and b are positive constants, while A0 and B0 are
constants in M3

P units. Here, the mass squared of the size
moduli fields ρðiÞ at the minimum is given by m2

T ≡m2
ρ ¼

m2
ρi ¼ 3σ0jWTTðσ0Þj2=M4

P, where WTT jall matter fields¼0 ¼
a2Ae−aðTþT1þT2Þ þ b2Be−bðTþT1þT2Þ with WTT ≡ ∂2W=
ð∂TÞ2. With the conditions a > 0 and b > 0, we obtain
positive values of masses; for an example, for A0 ¼ −2.13
and B0 ¼ −1.65 with inputs a ¼ 2π=100 and b ¼ 2π=60,
we obtain σ0 ≃ 6.17, W0 ≃ −0.90, and9

mT ≃ 5.47 × 1016 GeV mθst ≃ 7.61 × 1016 GeV; ð19Þ

numerically. Note that, due to the relation ðaA0=bB0Þ 1
a−b ¼

eσ0 , see below Eq. (14), as the massesmT andmθst increase,
the value of σ0 decreases. As will be seen in Sec. III and in
Table I, the moduli stabilized at a scale close to ΛGUT will
significantly affect the dynamics of the inflation and fit the
cosmological observables well.

B. Supersymmetry breaking and cosmological constant

As discussed before, the supersymmetric local
Minkowski vacuum at ρ ¼ σ0 and ρi ¼ σi is absolutely
stable with respect to the tunneling to the vacuum with a
negative cosmological constant because the Minkowski
minimum is separated from a global AdS minimum by a
high barrier. This vacuum state becomes metastable after
the uplifting of an AdS minimum to the de Sitter (dS)
minimum with Λc ∼ 10−120M4

P. The other supersymmetric
global AdS minimum is defined by

Wðσ0̃; σ ĩÞ ≠ 0

DTWðσ0̃; σ ĩÞ ¼ DTi
Wðσ0̃; σ ĩÞ ¼ 0; ð20Þ

corresponding to the minimum of the potential with
VAdS < 0. And at this AdS minimum, one can set the
value of the superpotential ΔW ≡ hWiAdS by tuning W0 at
values of finite σ0̃, σ ĩ. The existence of FI terms ξFIi for the
corresponding Uð1ÞXi

implies the existence of the uplifting
potential, which makes a nearly vanishing cosmological
constant and induces SUSY breaking. A small perturbation
ΔW to the superpotential [31,32] is introduced in order to
determine SUSY-breaking scale. Then, the minimum of the
potential is shifted from zero to a slightly negative value at
σ0̃ ¼ σ0 þ δρ and σ ĩ ¼ σi þ δρi by the small constant ΔW.
The resulting F-term potential has a supersymmetric AdS
minimum, and consequently the depth of this minimum is

given by VAdS ¼ −3eK̃=M2
P
jWj2
M2

P
, which can be approximated

in terms of Wðσ0 þ δρ; σi þ δρiÞ ≃ ΔW þOðΔWÞ2 as

VAdSðΔWÞ ≃ −
3

M2
P

ðΔWÞ2
8σ0σ1σ2

¼ −
3

8M2
P

�
a − b

ln aA0

bB0

�
2

ðΔWÞ2:

ð21Þ

TABLE I. Five independent input parameters mT , γs, αs, jg̃7j, and μΨðtIÞ ¼ φc=
ffiffiffi
2

p
, in the inflationary potential of Eq. (49) provide

predictions on Ne and Treh=GeV with the constraints ΔRðk0Þ=10−9 in Eq. (66) and ns in Eq. (75), where cos θ ¼ −1 and m3=2 ¼
560 TeV in Eq. (27) are taken.

mT

1016 GeV
αs γs

jg̃7j
10−3

HI
1010 GeV

φl

1015 GeV
φc

1015 GeV
ns

ΔRðk0Þ
10−9

Ne
Treh
GeV

5.87238 0.85492 1.76989 3.22039 0.90076 8.28466 4.85231 0.96639 2.12745 51.42363 1.21034 × 107

1.72083 1.07814 −6.75512 3.78371 1.26228 9.78007 5.29929 0.96821 2.16809 50.55386 6.35558 × 105

5.51975 1.06936 2.63451 3.59549 1.26311 9.69460 5.43800 0.97050 2.12643 50.06988 1.48699 × 105

8.04311 0.90832 5.88591 3.25965 1.09422 8.84520 5.31575 0.96929 2.16518 48.41274 1.19008 × 103

9These values ensure mT ∼ 1016−17 GeV and jg̃7j ¼ Oð1Þ ×
10−3 through g̃27 ¼ g27=ð2σ0Þ3 in Eq. (33), satisfying the two
observables, i.e., the scalar spectral index ns and the power
spectrum of the curvature perturbations Δ2

Rðk0Þ in Table I.
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At the shifted minimum, SUSY is preserved, i.e.,
DTWðσ0 þ δρÞ ¼ 0 and DTi

Wðσi þ δρiÞ ¼ 0, leading to
WTðσ0 þ δρÞ ¼ WTi

ðσ0 þ δρiÞ ≃ 3ΔW=2σ0. At this new
minimum, the displacements δρ ¼ δρi are obtained as

δρðiÞ ≃
3ΔW

2σ0WTTðσ0Þ

¼ 3ða − bÞΔW
2 lnðaA0

bB0
Þ
n
A0a2ðaA0

bB0
Þ−3aa−b þ B0b2ðaA0

bB0
Þ−3ba−b

o : ð22Þ

After adding the uplifting potentials, SUSY is broken, and
then the gravitino in the uplifted minimum acquires a mass
m2

3=2 ¼ heK̃=M2
PijWj2=M4

P:

m3=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVAdSj
3M2

P

s
≃
jΔWj
M2

P

�
a − b

2 ln aA0

bB0

�3
2

: ð23Þ

The important point is that the masses mT and mθst in
Eq. (18) as well as the height of barrier from the runaway
direction do not have any relation to the gravitino mass,
i.e., mT ∼mθst ≫ m3=2. Thus, we will consider the F-term
hybrid inflation for HI ≫ m3=2 in the Sec. III.
The uplifting of the AdS minimum to the dS minimum

can be achieved by considering nontrivial fluxes for the
gauge fields living on the D7-branes [33], which can be
identified as field-dependent FI D terms in the N ¼ 1, 4D
effective action [34]. As shown in Refs. [33], the uplifting
of the AdS minimum induces SUSY breaking and is
achieved by adding to the potential two terms ΔVi ≈
jVAdSjσ3ĩ =ρ3 if the uplifting term occurs due to a D term.
Similarly, we can parametrize the uplifting terms as

ΔVi ¼
1

2
ðξFIi Þ2g2Xi

≃
1

2
jVAdSj

�
σ ĩ
ρi

�
3

ð24Þ

such that the value of the potential at the new minimum
becomes equal to the observed value of the cosmological
constant. So, the anomalous FI terms cannot be canceled
and act as the uplifting potential. And expanding the Kahler
potential K in components, the term linear in VXi

produces
the FI factors ξFIi ¼ ∂K

∂VXi
jVXi

¼0Δρi as

ξFIi ¼ M2
P

δGSi
8π2σ ĩ

Δρi: ð25Þ

Here, the displacements Δρi ≡ ρi − σ ĩ in the moduli fields
are induced by the uplifting terms,

Δρi ≃
3M2

PjVAdSj
W2

TTðσ0Þ
σ ĩ
ρi
; ð26Þ

which are achieved by ∂ρiðVF þ ΔViÞ ¼ 0. Since the
uplifting terms by Δρi making the dS induce SUSY

breaking, all particles of which the mass is protected
from supersymmetry become massive. With the choice
of parameters above Eq. (19), the gravitino mass in Eq. (23)
corresponds to

m3=2 ≃ 560 TeV; ð27Þ

implying jΔWj ≃ 10−11M3
P, which in turn means that the

FI terms proportional to jVAdSj=m2
T are expected to be

strongly suppressed.
The cosmological constant Λc has the same effect as an

intrinsic energy density of the vacuum ρvac ¼ ΛcM2
P. The

dark energy density of the Universe, ΩΛ ¼ ρvac=ρc, is
expressed in terms of the critical density required to
keep the Universe spatially flat ρc ¼ 3H2

0M
2
P, where H0 ¼

67.74� 0.46 kms−1 Mpc−1 is the present Hubble expan-
sion rate [9]. Using the dark energy density of the Universe
ΩΛ ¼ 0.6911� 0.0062 of Planck 2015 results [9], then one
finds the cosmological constant Λc ∼ 7.51 × 10−121M2

P.
From Eqs. (21) and (24), one can fine tune the value of
the potential in its minimum, Vmin, to be equal to the
observed tiny values 7.51 × 10−121M4

P,

Vmin ¼ jVAdSj
�
−1þ 1

2

�
σ1̃
ρ1

�
3

þ 1

2

�
σ2̃
ρ2

�
3
�
: ð28Þ

The positive vacuum energy density resulting from a
cosmological constant implies a negative pressure, which
drives an accelerated expansion of the Universe, as
observed.

C. Moduli backreaction on inflation

Since, in general, the interference between the moduli
and inflaton sectors generates a correction to the infla-
tionary potential, we consider the effect of string moduli
backreaction on the inflation model which is linked to the
SUSY-breaking scale.10 In small-field inflation, such as
hybrid inflation, this produces a linear term in the inflaton
at leading order as in Ref. [35]. This is analogous to the
effect of supersymmetry breaking, which induces a linear
term proportional to the gravitino mass. Depending on its
size, such a linear term can have a significant effect on
inflationary observables well fitted in cosmic microwave
background (CMB) data, in particular, the spectral index of
scalar fluctuations.
At TðiÞ ¼ T̄ðiÞ ¼ σ0 due to Wðσ0Þ ¼ 0 ¼ WTðσ0Þ, one

can obtain

VFjσ0 ¼
V inf

ð2σ0Þ3
þ 3eK̃=M

2
P

ð2σ0Þ3M2
P
jWinf j2; ð29Þ

10There are many studies [35,36] on the moduli backreaction
effect on the inflation and its link to SUSY breaking.
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where V inf is the inflation potential in the absence of
moduli sectors

V inf ¼ eK̃=M
2
P

�
Kjj̄jDjWinf j2 −

3

M2
P
jWinf j2

�
: ð30Þ

Since all powers of 2σ0 in Eq. (29) can be absorbed by a
redefinition of Winf , the potential is rescaled as VFjσ0 →
V inf þ 3eK̃=M

2
P

M2
P

jWinf j2, indicating that there is no backreac-

tion to the inflation on the moduli sector. However, due to
the effect of the inflationary large positive energy density,
see Eq. (37), the minima of the moduli are shifted by δT
and δTi, and at this new shifted position, the potential is
minimized. The displacements are obtained by imposing
∂TVjσ0þδT ¼ 0 and ∂Ti

Vjσ0þδTi
¼ 0, and the expression for

δT and δTi can be expanded in powers of HI=mT ,

δTðiÞ ≃
Winf

ffiffiffi
3

p

2
ffiffiffiffiffi
σ0

p
mTM2

P

þ 1

2ð2σ0Þ2m2
TM

2
P
fKjj̄DjWinf∂ j̄W̄inf −

3

M2
P
jWinf j2

−
W2

inf

M2
P

�
3

2
þ ð3σ0Þ3=2WTTTðσ0Þ

M2
PmT

��
þO

�
H3

I

m3
T

�
:

ð31Þ

This implies that there is a supersymmetry breakdown by
the inflaton sector during inflation

DTðiÞWjσ0þδTðiÞ ¼
1ffiffiffi

6
p ð2σ0Þ52mT

Kjj̄DjWinf∂ j̄W̄infþO
�
H2

I

m2
T

�
;

ð32Þ

i.e., DTðiÞWjσ0þδTðiÞ suppressed by one power of mT vanish

in the limit of infinitely heavy moduli.
Since the moduli are very heavy, they stabilize quickly to

their minima, and the inflationary potential gets corrected
after setting T and Ti to their minima as follows:

VFjσ0þδTðiÞ ¼
V inf

ð2σ0Þ3
−

5

2ð2σ0Þ5WTTðσ0Þ

×

�
Winf

�
V inf þ

e
K̃
M2
P

5
Kjj̄∂jWinfDj̄W̄inf

�

þ H:c:

�
þO

�
H3

I

m3
T

�
: ð33Þ

Using jWTTðσ0Þj ¼
ffiffi
2
3

q
M2

Pffiffiffiffiffi
2σ0

p mT , and rescaling as

V inf=ð2σ0Þ3 → V0ðtIÞ and Winf=ð2σ0Þ3=2 → WinfðtIÞ, it is
evident that the inflationary potential due to the moduli
backreaction induces a linear term in the inflaton potential

VFjσ0þδTðiÞ ¼ V0ðtIÞ
�
1 −

5
ffiffiffi
3

p

2
ffiffiffi
2

p 1

mTM2
P
ðWinf þ H:c:Þ

�

þO
�jΨ0j3

m3
T

�
: ð34Þ

Clearly, as we can see here, in the limit mT → ∞, the
interference term between string moduli and inflaton
sectors disappears.

D. Scale of PQ-symmetry breakdown
during inflation

In the following, let us consider the PQ phase transition
scale during inflation. Because of Eq. (1) during inflation,
we have

vΘðtIÞ ¼ vSðtIÞ ¼ vTðtIÞ ¼ 0: ð35Þ

And the Kahler moduli fields we consider are stabilized
during inflation, and their potential has a local mini-
mum at finite moduli field values separated by a high
barrier from the runaway direction. Since the moduli
masses are much larger than the inflaton mass and
accordingly will be frozen quickly during inflation
without perturbing the inflaton dynamics, the height
of the barrier protecting metastable Minkowski (≃dS)
space are independent of the gravitino mass; hence, the
inflationary Hubble constant is also independent of the
gravitino mass [32].
We consider the PQ symmetry-breaking scale, μΨðtIÞ,

during inflation. In the global SUSY minima where
VSUSY ¼ 0, all the flavon and driving fields have trivial
VEVs, while the waterfall fields ΨðΨ̃Þ can have nonzero
VEVs. The FI D terms must then be zero, i.e.,
ξFI1 ¼ ξFI2 ¼ 0. During inflation, if jΨ0j takes a large value,
the waterfall fields stay at the origin of the field space (the
local minimum appears at hΨi ¼ hΨ̃i ¼ 0), and the super-
potential is effectively reduced to

WinfðtIÞ ¼ −g̃7Ψ0μ
2
ΨðtIÞ; ð36Þ

with g̃27 ≡ g27=ð2σ0Þ3 and g̃7 < 0, which gives a positive
contribution to the inflation energy

V0ðtIÞ ¼ 3H2
IM

2
P ≃

				 ∂WinfðtIÞ
∂Ψ0

				2 ¼ g̃27μ
4
ΨðtIÞ ð37Þ

and in turn drives inflation. Since the potential for jΨ0j ≫
jΨc

0j≡ μΨðtIÞ with hΨi ¼ hΨ̃i ¼ 0 is flat before the water-
fall behavior occurs, inflation takes place there. And the
waterfall behavior is triggered, when the inflaton Ψ0

reaches the critical value jΨc
0j. Once jΨ0j rolls down from

a large scale and approaches its critical value jΨc
0j, the
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inflaton and waterfall fields get almost maximally mixed to
form mass eigenstates,

Ψ0
0 ≃

1ffiffiffi
2

p ðΨ0 � Ψ̃Þ; Ψ0 ≃
1ffiffiffi
2

p ðΨ − Ψ0⊥Þ;

Ψ̃0 ≃ −
1ffiffiffi
2

p ðΨþΨ0⊥Þ; ð38Þ

where Ψ0⊥ ≃ ð�Ψ0 − Ψ̃Þ= ffiffiffi
2

p
is orthogonal to Ψ0

0. And
their corresponding mass eigenvalues are given by

mΨ0
0
≃ jg̃7jμΨðtIÞ; mΨ̃0 ≃ jg̃7jμΨðtIÞ; mΨ0 ≃0: ð39Þ

Let us schematically see this is the case. The potential at
the global SUSY limit

Vglobal
inf ¼ g̃27jΨΨ̃ − μ2ΨðtIÞj2 þ g̃27jΨ0j2ðjΨj2 þ jΨ̃j2Þ

¼ ðΨ0� Ψ̃0 Þ
�
g̃27ðjΨ0j2 − μ2ΨðtIÞÞ 0

0 g̃27ðjΨ0j2 þ μ2ΨðtIÞÞ

�� Ψ0

Ψ̃0�

�
þ � � � ð40Þ

implies the following:
(i) When jΨ0j < μΨðtIÞ, one of the mass eigenstates,

Ψ0, becomes tachyonic; the waterfall fields fixed at
hΨi ¼ hΨ̃i ¼ 0 are not stable since ΨðΨ̃Þ have an
opposite sign of Uð1ÞX2

charges. As can be seen
from Eq. (4), since the Kahler moduli superfields
putting the GS mechanism into practice are not
separated from the SUSY breaking by the inflaton
sector during inflation, by taking tachyonic SUSY-
breaking scalar masses m2

Ψ ∼ −H2
I induced domi-

nantly by the Uð1ÞX2
D term, the waterfall field Ψ0

rolls down its true minimum from a large scale.
(ii) The other Ψ̃0 stays positive definite throughout

the inflationary trajectory up to a critical value
jΨc

0j ≈ μΨðtIÞ.
(iii) After inflation, the Universe is dominated by both

the inflaton Ψ0
0 and one of waterfall fields, Ψ̃

0, while
the other waterfall field Ψ0 gives a negligible
contribution to the total energy of the Universe.

(iv) After inflation and the waterfall transition mecha-
nism has been completed, Ψ0

0 approaches to zero,
and Ψ0ðΨ̃0Þ relax to the flat direction of the field
space given by Ψ0Ψ̃0 ¼ μ2ΨðtIÞ; the positive false
vacuum of the inflaton field breaking the global
SUSY spontaneously gets restored once inflation
has been completed.

Now, we discuss how the inflation could be realized
explicitly. The F-term scalar potential, the first term on the
right-hand side of Eq. (2), can be expressed as

VðϕαÞ ¼ eK̃=M
2
P

�X
α

KαᾱDαWinfDα�W�
inf − 3

jWinf j2
M2

P

�

ð41Þ

with α being the bosonic components of the superfields

ϕ̂α ∈ fΨ̂0; Φ̂T
0 ; Φ̂S

0; Θ̂0; Ψ̂;
ˆ̃Ψ; Φ̂S; Θ̂; ˆ̃Θ; Φ̂Tg and where the

Kahler covariant derivative and Kahler metric are defined as

DαWinf ≡ ∂Winf

∂ϕα
þM−2

P
∂K
∂ϕα

Winf ; Kαβ̄ ≡ ∂2K
∂ϕα∂ϕ�

β

ð42Þ

and Dα�W�
inf ¼ðDαWinfÞ� with K̃αβ̄ ≡ ðK̃αβ̄Þ−1. The lowest-

order (i.e., global supersymmetric) inflationary F-term
potential Vglobal

inf receives corrections for jϕαj≪MP.
During inflation, working along the direction jΨj ¼
jΨ̃j ¼ 0, from Eqs. (8) and (41), a small curvature needed
for the slow roll can be represented by the inflationary
potential V inf ,

V inf ¼ V tree
inf þ Vsugra þ ΔV1−loop

inf : ð43Þ

The leading-order potential corrected by the interference
term induced by the moduli backreaction, including soft
SUSY–breaking terms associated with Ψ0, can be written in
Eq. (34) as

V tree
inf ¼ V0ðtIÞ

�
1þ 5

ffiffiffi
3

p

2
ffiffiffi
2

p
ffiffiffiffiffiffi
V0

p
mTM2

P
ðΨ0 þΨ�

0Þ
�

þm2
Ψ0
jΨ0j2 − ðg̃7aΨ0

μ2ΨΨ0 þ H:c:Þ; ð44Þ

where V0ðtIÞ is the rescaled vacuum energy during inflation,
see Eq. (34), and aΨ0

is the soft SUSY–breaking mass
parameter of order approximatelym3=2. In Eq. (44), we only
have included the tadpole term since all other soft SUSY–
breaking terms are negligible during inflation. Substituting
Kinf andWinf in Eq. (8) into V inf

F in Eq. (30) and minimizing
with respect to Ψ and Ψ̃ for jΨ0j > μΨðtIÞ give

V inf
F ¼ g̃27μ

4
ΨðtIÞ

�
1 − ks

jΨ0j2
M2

P
þ γs

jΨ0j4
2M4

P
þO

�jΨ0j6
M6

P

��
;

ð45Þ

where γs ≡ 1 − 7ks=2 − 3k3. Such a supergravity-induced
mass squared is expected to have the same form as
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the Ψ0 mass squared, namely, g̃27μ
4
ΨðtIÞ=M2

P ¼ V0ðtIÞ=M2
P,

which is the order of the Hubble constant squared
H2

I ¼ V0ðtIÞ=3M2
P. Then, the SUGRA contribution Vsugra

to V inf leads to

Vsugra ¼ −c2HH2
I jΨ0j2 þ V0γs

jΨ0j4
2M4

P
þO

�jΨ0j6
M6

P

�
: ð46Þ

The inflaton Ψ0 also receives the one-loop radiative correc-
tion in the potential [37] due to the mismatch between
masses of the scalar and fermion components of ΨðΨ̃Þ,
which are nonvanishing since SUSY is broken by
∂Winf=∂Ψ0 ≠ 0. The corresponding one-loop correction
to the scalar potential is analytically calculated as

ΔV1−loop ¼
X
i

ð−1Þf m4
i

64π2
ln
m2

i

Q2
¼ g̃47μ

4
ΨðtIÞ
8π2

FðxÞ; ð47Þ

where FðxÞ¼ 1
4
fðx2þ1Þ lnx4−1

x4
þ2x2 lnx2þ1

x2−1þ2 ln
g2
7
μ2Ψx

2

Q2 −3g
and the sum is taken over the field d.o.f. and f ¼ 0 for the
scalar and f ¼ 1 for the fermion. Here, the Q is a
renormalizable scale, and x is defined as x≡ jΨ0j=μΨðtIÞ ¼
φ=ð ffiffiffi

2
p

μΨðtIÞÞ, where φ is the normalized real scalar field. In
the limit x ≫ 1, i.e., φ ≫

ffiffiffi
2

p
μΨðtIÞ, this is approximated as

ΔV1−loop ≃
g̃47μ

4
ΨðtIÞ

16π2
ln
g̃27φ

2

2Q2
: ð48Þ

If we let the inflaton field Ψ0 ≡ φeiθ=
ffiffiffi
2

p
and during the

inflation period, taking into account the radiative correc-
tion, supergravity effects, soft SUSY–breaking terms, and
moduli backerction effects, the inflationary potential is of
the form

V infðφÞ ¼ V0ðtIÞ
�
1þ 5

ffiffiffi
3

p

2

ffiffiffiffiffiffi
V0

p
mTM2

P
φ cos θ þ γs

φ4

8M4
P

þ g̃27
8π2

FðxÞ
�
þ g̃7αsm3=2μ

2
Ψφ cos θ

þ φ2

2

�
m2

Ψ0
− ks

V0

M2
P

�
; ð49Þ

where αsm3=2 ¼ −
ffiffiffi
2

p
aΨ0

. The moduli-induced slope par-
tially cancels the slope of the Coleman-Weinberg potential,
which flattens the inflationary trajectory and reduces
the distance in field space corresponding to the Ne ∼ 50
e-folds of inflation. And the inflaton mass mΨ0

is assumed
for ks ¼ 1 as

mΨ0
¼ jg̃7j

μ2ΨðtIÞ
MP

; ð50Þ

since the inflaton acquires a mass of order the Hubble
constant, mΨ0

¼ HI

ffiffiffi
3

p
, agreement of the theory’s predic-

tion for spectral index ns with observation strongly sug-
gests the presence of a negative Hubble-induced mass
term, and the ks parameter term vanishes identically. This
inflaton mass (≫ m3=2) can directly be obtained from
Eqs. (7) and (8) as

mΨ0
¼ jM4

PheG∇Ψ0
GΨ0

ij12 ¼
ffiffiffi
3

p
HI; ð51Þ

where ∇kGα ¼ ∂kGα − Γj
kαGj with the Christoffel symbol

Γj
kα ¼ Gjl�Gkαl� [38], and ∇Ψ0

GΨ0
≃ −ðWΨ0

=WÞ2 is used.
This inflaton mass is in agreement with the above pre-
diction in Eq. (50).
Inflation stops at jΨc

0j ≃ μΨðtIÞ, where the mass of Ψ
becomes negative and the field acquires a nonvanishing
expectation value. To develop the VEVof the waterfall field
Ψ, we destabilize the waterfall field Ψ by taking tachyonic
Hubble-induced masses of the PQ-breaking waterfall
field, i.e., m2

Ψ ∼ −H2
I < 0. Then, the VEV of the waterfall

field could be determined by considering both the SUSY-
breaking effect and a supersymmetric next-leading-order
term. The next-leading Planck-suppressed operator invari-
ant under A4 ×Uð1ÞX is given by

ΔWv ≃
α̂

M2
P
Ψ0Ψ2Ψ̃2; ð52Þ

where we set the VEVs of all other matter fields to zero
except the waterfall field and neglect their corresponding
trivial operators. Note that the constant α̂ ¼ Oðα=8πÞ with
a constant α being of order unity. Since the soft SUSY-
breaking terms are already present at the scale relevant to
inflation dynamics, the scalar potential for the waterfall
field Ψ at leading order reads

VΨðtIÞ ≃
1

2
D2

X2
þ α̂Ψm̃2

ΨjΨj2 þ α̂Ψ̃m̃
2
Ψ̃jΨ̃j2

þ jα̂j2 jΨj
4jΨ̃j4
M4

P
þ � � � ; ð53Þ

where jα̂Ψm̃2
Ψj, jα̂Ψ̃m̃2

Ψ̃j ≪ jDX2
ðtIÞj with jα̂Ψ;Ψ̃j ≪ 1 are

taken. Here, m̃Ψ;Ψ̃ ≃ jΨc
0j ∼OðjFΨ0 j=MPÞ with FΨ0 ¼

KΨ0Ψ̄0DΨ0
Winf ≃

ffiffiffi
3

p
HIMP represents the Hubble-induced

soft scalar masses generated by the F-term SUSY breaking,
during inflation. If the tachyonic SUSY-breaking scalar
masses are dominantly induced by the Uð1ÞX2

D term,
DX2

ðtIÞ ∼OðH2
I Þ, compared to the Hubble-induced soft

masses generated by the F-term SUSY breaking, the
soft SUSY-breaking mass of Ψ during inflation is approxi-
mated by
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m2
ΨðtIÞ ¼ α̂Ψm̃2

Ψ þDX2
ðtIÞ ≃ −β̂ΨH2

I ; with β̂Ψ > 0:

ð54Þ

Then, the scalar potential in Eq. (53) for the waterfall field
Ψ is approximated well as

VΨðtIÞ ≃ −β̂ΨH2
I jΨj2 þ jα̂j2 jΨj

4jΨ̃j4
M4

P
: ð55Þ

Here, the constant β̂Ψ is of order unity, while α̂ ¼ α=ð8πÞ
with α being of order unity. We find the minimum as

vΨðtIÞ ¼
ffiffiffiffiffiffiffiffi
2β̂Ψ
jα̂j2

s
HI

�
MP

vΨ̃

�
2

; ð56Þ

leading to MP ≫ μΨðtIÞ ≫ HI and the PQ-breaking scales
during inflation,

μ2ΨðtIÞ≡ vΨðtIÞvΨ̃ðtIÞ
2

¼
ffiffiffiffiffiffiffiffiffiffi
β̂Ψ
2jα̂j2

s �
HI

vΨ̃ðtIÞ
M2

P

�
: ð57Þ

In supersymmetric theories based on SUGRA, since SUSY
breaking is transmitted by gravity, all scalar fields acquire
an effective mass of the order of the expansion rate during
inflation. So, we expect that the inflaton acquires a mass of
order the Hubble constant, which, in turn, indicates that the
soft SUSY–breaking mass (the inflaton mass mΨ0

) during
inflation strongly depends on the scale of waterfall (or PQ)
fields by the Eq. (57); for example, for μΨðtIÞ ∼ 1016 GeV,
one obtains

HI ∼ 2 × 1010 GeV ð58Þ

for β̂i ∼ 1 and α̂ ∼ 1=ð8πÞ (see Table I).
After the inflation ends, for simplicity, we treat the mixed

mass eigenstates in Eq. (38) as the single-field eigenstates,

Ψ0
0 → Ψ0; Ψ0 → Ψ; Ψ̃0 → Ψ̃: ð59Þ

Then, we express the superpotential (7) relevantly,

W ⊃ WðzÞ þ g̃7Ψ0ðΨ̃Ψ − μ2ΨÞ; ð60Þ

where WðzÞ is introduced to determine the SUSY-breaking
scale, see Sec. III B, and g̃27 ¼ g27=ð2σ0Þ3 corrected by the
string moduli backreaction. Then, the scalar potential in
Eq. (2) is extremized in the true vacuum if h∂iVi ¼ 0, and
the resulting cosmological constant should vanish if
hVi ¼ 0. Together, these conditions are satisfied if

hGαGαi ¼ 3; hGα∇kGα þ Gki ¼ 0: ð61Þ

Then, the condition of the potential minimum reads

hM2
PfGΨ0Ψ0

GΨ̄0
þGΨΨ0

GΨ̄ þ GΨ̃Ψ0
G ¯̃Ψ þ GzΨ0

Gz̄g
þ GΨ0

i ¼ 0; ð62Þ

hM2
PfGΨΨGΨ̄ þGΨ0ΨGΨ̄0

þ GΨ̃ΨG ¯̃Ψ þ GzΨGz̄g
þ GΨi ¼ 0; ð63Þ

and the minimization condition for Ψ̃ is the same as for Ψ.
The inflaton mass (≫ m3=2), after inflation, is given by

mΨ0
≃ jM4

PheG∇Ψ0
GΨ̃∇Ψ0

GΨ̃ij12 ≃ jg̃7jμΨðtIÞ; ð64Þ

where ∇Ψ0
GΨ̃ ≃WΨ̃Ψ0

=W is used, which is almost equal

to the mass of waterfall field Ψ̃. This inflaton mass is in
agreement with Eq. (39). Since the z field is responsible
for the SUSY breaking, one obtains jGzj ≃

ffiffiffi
3

p
=MP, and,

in turn, the gravitino mass m3=2 ≡ hMPeG=2i ≃ jWj=M2
P≃

jWzj=
ffiffiffi
3

p
MP. Assuming jGΨj≃ jGΨ̃j≲ jΨj=M2

P, one obtains
GΨ ≃WΨ=W, leading to WΨ=W ≃ Ψ=M2

P and WΨ̃=W≃
Ψ̃=M2

P. Using WΨ ¼ g̃7Ψ0Ψ̃ in Eq. (60), we obtain

hΨ0i ≃
m3=2

jg̃7j
: ð65Þ

E. Cosmological observables

The inflaton as a source of inflation is displaced from its
minimum, and its slow-roll dynamics leads to an accel-
erated expansion of the early Universe. During inflation,
the Universe experiences an approximately dS phase with
the Hubble parameterHI. Quantum fluctuations during this
phase can lead to observable signatures in CMB radiation
temperature fluctuation, as the form of density perturbation,
in several ways [39], when the quantum fluctuations are
crossing back inside the Hubble radius long after inflation
has been completed. When interpreted in this way, inflation
provides a causal mechanism to explain the observed nearly
scale-invariant CMB spectrum:

(i) Quantum fluctuations of the inflaton field during
inflation give rise to fluctuations in the scalar
curvature and lead to the adiabatic fluctuations11

that grew into our cosmologically observed large-
scale structure much bigger than the Hubble radius
and then eventually got frozen. Adiabatic density
perturbations seeded by the quantum fluctuations of
the inflaton have a nearly scale-invariant spectrum,

11These correspond to fluctuations in the total energy density,
δρ ≠ 0, with no fluctuation in the local equation of state,
δðni=sÞ ¼ 0. On the other hand, isocurvature perturbations
correspond to fluctuations in the local equation of state of some
species, δðni=sÞ ≠ 0, with no fluctuation in the total energy
density, δρ ¼ 0 [39].

INFLATION AND LEPTOGENESIS IN A Uð1Þ-ENHANCED … PHYS. REV. D 100, 015002 (2019)

015002-11



Δ2
Rðk0Þ, which is a cosmological observable of the

curvature perturbations. The power spectrum of
the curvature perturbations, Δ2

Rðk0Þ, reads in the
Planck 2015 result at 68% C.L. (for the base ΛCDM
model) [9]

Δ2
Rðk0Þ ¼ ð2.141þ0.050

−0.049Þ × 10−9; ð66Þ

at the pivot scale k0 ¼ 0.002 Mpc−1 (wave number),
which is compatible with the one suggested for the
COBE normalization [40].

(ii) Fluctuations of the metric lead to tensor-B mode
fluctuations in the CMB radiation. Primordial gravi-
tational waves are generated with a nearly scale-
invariant spectrum, Δ2

hðk0Þ, which reads in the
Planck 2015 result [9] Δ2

hðk0Þ < 1.97 × 10−10.

(iii) Quantum fluctuations are imprinted into every
massless scalar field in dS space during inflation,
with an approximately scale-invariant spectrum,
hjδϕðkÞj2i ¼ ðHI=2πÞ2=ðk3=2π2Þ for a canonically
normalized scalar field ϕ, which is essentially a
thermal spectrum at Gibbons-Hawking tempera-
ture TGH ¼ HI=2π. The other important cosmo-
logical observables imprinted in the CMB
spectrum are the following: the BAU (which will
be discussed in Sec. IV), the fractions of relic
abundance ΩDM (see Ref. [3]), and dark energy ΩΛ
(see Sec. III B).

The slow-roll condition [41] is well satisfied up to the
critical point φc ¼ ffiffiffi

2
p

μΨðtIÞ, beyond which the waterfall
mechanism takes place. Here, the slow-roll parameters, ϵ
and η, are approximately derived from Eq. (49) as

ϵ≡M2
P

2

�
Vφ

V

�
2

ð67Þ

≃
1

2

�
g̃27
8π2

MP

φ

�
2
�
1þ 5

ffiffiffi
3

p

2

8π2

jg̃7j
μΨ
mT

μΨ
MP

φ

MP
cos θ

�
1 −

αsm3=2φ cos θ

g̃7μ2Ψ

�
þ 8π2αs

g̃37

�
m3=2

μΨ

��
φ

μΨ

�
cos θ

�
2

≪ 1; ð68Þ

η≡M2
P

Vφφ

V
ð69Þ

≃
g̃27
8π2

�
MP

φ

�
2
�
3γs
2

8π2

g̃27

�
φ

MP

�
2

− 1

��
1 −

αsm3=2φ cos θ

g̃7μ2Ψ

�
; jηj ≪ 1; ð70Þ

where Vφ denotes a derivative with respect to the inflaton
field φ ¼ ffiffiffi

2
p

ReΨ0 and MP ≫ jΨ0j ≫ jΨc
0j (or MP ≫

jφj ≫ jφcj) is assumed. Recall that g̃27 ¼ g27=ð2σ0Þ3. The
above equations clearly show that the curvature of the
inflationary potential is dominantly affected by the moduli
backreaction in Eq. (34), the one-loop radiative correction
in Eq. (47), and soft SUSY–breaking term in Eq. (44). In
the slow-roll approximation, the number of e-foldings after
a comoving scale l has crossed the horizon is given by the
inflationary potential through

NðφÞ ¼
Z

tl

tðφcÞ
HIdt ¼

1

M2
P

Z
φl

φc

VðφÞ
VφðφÞ

dφ; ð71Þ

where φl is the value of the field at the comoving scale l and
φc is the one at the end of inflation. The field value φc is
determined from the condition MaxfϵðφcÞ; jηðφcÞjg ¼ 1
[42]. The power spectrum Δ2

Rðk0Þ sensitively depends on
the theoretical parameters of the inflationary potential,

Δ2
Rðk0Þ ≃

1

12π2M6
P

V3ðφlÞ
jVφðφlÞj2

; ð72Þ

where the potential VðφlÞ and its derivative VφðφlÞ are
evaluated at the epoch of the horizon exit for the comoving
scale k0. It should be compared with the Planck 2015 result
(66). With the definition of the number of e-folds after a
comoving scale k0 leaves the horizon, we can obtain the
corresponding inflaton value φl=MP from Eq. (71). And
the number of e-folds Ne corresponding to the comoving
scale k0 is around 50, depending on the energy scales HI
and Treh,

Ne ¼ 49.1þ ln

�
0.002 Mpc−1

k0

�
þ 1

3
ln

�
Treh

104 GeV

�

þ 1

3
ln

�
HI

1010 GeV

�
; ð73Þ

where Treh represents the maximal temperature of the last
radiation-dominated era, called the reheating temperature.
The tensor and scalar modes have spectra At ¼
2H2

I =ðπ2M2
PÞ and As ≡ Δ2

Rðk0Þ [9], respectively. In the
supergravity F-term inflation we consider, the tensor-to-
scalar ratio r ¼ At=As ≃ 16ϵðφlÞ is much lower than the
Planck 2015 bound (r0.002 < 0.09), i.e., well bellow 10−2,
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and the running of the spectral index dns=d ln g̃7 is always
smaller than 10−3 and so is unobservable. And the scalar
spectral index ns is approximated as

ns ≃ 1 − 6ϵðφlÞ þ 2ηðφlÞ ≃ 2ηðφlÞ: ð74Þ

We can compare this quantity with the results of the Planck
2015 observation [9]:

ns ¼ 0.967� 0.004: ð75Þ

For the power spectrum of the curvature perturbation in
Eq. (72) and the spectral index in Eq. (74) with Eqs. (67)
and (69) to be well fitted with the Planck 2015 observation,
the five independent parameters mT , μΨðtIÞ, γs, αs, and jg̃7j

in Eq. (49) are needed, and those parameters with the
conditions (66) and (75) have predictions, mT ¼
Oð1016−17Þ ≫ μΨðtIÞ ¼ φc=

ffiffiffi
2

p ¼ Oð1015Þ GeV, γs ¼
Oð1 − 10Þ, jαsj ¼ Oð1Þ, and jg̃7j ¼ Oð1Þ × 10−3 as in
Table I, in which we have set cos θ ¼ −1 and m3=2 ¼
560 TeV [see Eq. (27)]. This table shows that the cosmo-
logical observables can be fitted well at the moduli
stabilizing scale close to ΛGUT and the PQ symmetry-
breaking scale induced at μΨðtIÞ ≃ 0.3 × 1016 GeV < mT .
Figure 1 shows the behavior of the number of e-folds Ne in
Eq. (73) in terms of the five independent parameters of the
inflationary potential in Eq. (49), mT , μΨðtIÞ, αs, γs, and
jg̃7j, where each red band curve and cyan vertical band
stands for the allowed regions of the constraints Δ2

Rðk0Þ
and ns in Eqs. (66) and (75), respectively. Each of the

FIG. 1. Contour plot for Ne as a function of mT and jg̃7j with the given values of αs, γs, φl, and φc in Table I, in which each red band
curve and cyan vertical band stands for the allowed regions of the constraints Δ2

Rðk0Þ and ns in Eqs. (66) and (75), respectively. Each
intersection point among the white curve (Δ2

Rðk0Þ), black solid curve (Ne), and black vertical line (ns) corresponds to each input value
with high accuracies in Table I.
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contour plots in the clockwise direction corresponds to the
value of Table I in sequence from top to bottom. In the plots
showing contour lines for Ne in terms of the parameter set
fmT; jg̃7jg with the given input values of the parameter
set fαs; γs; μΨg in Table I, each of the regions of red band
curve overlapped by the cyan vertical band represents each
of the regions allowed by the constraints Δ2

Rðk0Þ and ns in
Eqs. (66) and (75), leading to large uncertainties of
reheating temperature Treh corresponding to the allowed
range of Ne: 42.12≲ Ne ≲ 48.79 (left upper panel),
42.61≲ Ne ≲ 51.14 (right upper panel), 44.94≲ Ne ≲
53.84 (right lower panel), and 47.80≲ Ne ≲ 52.33 (left
lower panel) with an assumption of mT ≤ 1017 GeV.
In the plots, especially, each intersection point among the

white curve [Δ2
Rðk0Þ], red solid curve (Ne), and red vertical

line (ns) corresponds to each input value mT , jg̃7j, αs, γs,
and μΨ with such high accuracies in Table I. For the given
values of reheating temperature and parameter set
fμΨ; αs; γsg in Table I, we obtain theoretical uncertainties
of ΔRðk0Þ and ns, corresponding to the theoretical uncer-
tainties of the parameter set fmT; jg̃7jg:

ΔRðk0Þ=10−9 ¼ 2.16518þ0.02582
−0.07318 ;

ns ¼ 0.96929þ0.00009
−0.00017 ; for left upper panel;

ΔRðk0Þ=10−9 ¼ 2.12643þ0.06457
−0.03443 ;

ns ¼ 0.97050þ0.00022
−0.00040 ; for right upper panel;

ΔRðk0Þ=10−9 ¼ 2.16809þ0.02291
−0.07609 ;

ns ¼ 0.96821þ0.00049
−0.00014 ; for right lower panel;

ΔRðk0Þ=10−9 ¼ 2.12745þ0.06355
−0.03545 ;

ns ¼ 0.96639þ0.00024
−0.00041 ; for left lower panel;

ð76Þ

where an assumption of mT ≤ 1017 GeV is considered
for the case of the left upper panel. Note that the high
accuracies in Eq. (76) are due to the fact that the slow-roll
parameter η given in Eq. (70) governing the spectral index
ns is very sensitive to values of the parameter jg̃7j. As
shown in Table I, the number of e-foldings in Eq. (73)
depends on the reheating temperature, which in turn
depends on the decay rate of the inflaton Ψ0 and waterfall
field Ψ̃ into relativistic particles. In the following section,
we will see how the amount of reheating, Treh, could be
strongly correlated with both baryogenesis via leptogenesis
and the yield of gravitinos.

IV. LEPTOGENESIS

Let us discuss how the matter-antimatter asymmetry of
the Universe could be realized in the context of the present
model. To account for a successful leptogenesis, we
introduce the AD mechanism for baryogenesis [10] and

its subsequent leptonic version, called AD leptogenesis
[11]. In the global SUSY limit, i.e.,MP → ∞, as well as in
the energy scale where A4 ×Uð1ÞX is broken (see Ref. [3]),
some combinations of scalar fields do not enter the
potential, composing flat directions of the scalar potential.
So, taking the flat directions Hu ¼ Li ¼ ζi=

ffiffiffi
2

p
(a gener-

ation index i ¼ 1, 2, 3), then the AD flat directions for
leptogenesis [11] are ζi ¼ ð2L̃iHuÞ1=2, where L̃i are scalar
components of the chiral multiplets Li of SUð2ÞL-doublet
leptons. After integrating out the heavy Majorana neutri-
nos, NR, the effective operator is induced at low energies,

Weff ⊃
1

2Mi
ðL̃iHuÞ2; with Mi ≡ v2u

ðM̂ννÞi
; ð77Þ

where ðM̂ννÞi ¼ ðUT
PMNSMννUPMNSÞii ≃ δi in Eq. (B10).

Recalling that the 3 × 3 mixing matrix UL ¼ UPMNS

diagonalizing the mass matrix Mνν ¼ −mT
DM

−1
R mD partic-

ipates in the charged weak interaction, the active neutrino
mixing angles ðθ12; θ13; θ23; δCPÞ and the pseudo-Dirac
mass splittings δk responsible for new wavelength oscil-
lations characterized by the Δm2

k could be obtained from
the mass matrix Mνν formed by seesawing. Then, from
Eqs. (B6) and (B7), we obtain the μ − τ powered mass
matrix as in Refs. [2,43],

Mνν¼m0eiπ

0
BB@

1þ2F ð1−FÞy2 ð1−FÞy3
ð1−FÞy2 ð1þFþ3G

2
Þy22 ð1þF−3G

2
Þy2y3

ð1−FÞy3 ð1þF−3G
2

Þy2y3 ð1þFþ3G
2

Þy23

1
CCA

¼U�
PMNSM̂ννU

†
PMNS; ð78Þ

where

m0≡
				 ŷν21 υ2u
3M

				
�

vTffiffiffi
2

p
Λ

�
2
�

vΨffiffiffi
2

p
Λ

�
18

;

F ¼ ðκ̃eiϕ þ 1Þ−1; G ¼ ðκ̃eiϕ − 1Þ−1: ð79Þ

In the limit yν1 ¼ yν2 ¼ yν3 (y2, y3 → 1), the mass matrix (78)
gives the tribimaximal mixing (TBM) angles [44] and their
corresponding mass eigenvalues jδkj:

sin2θ12 ¼
1

3
; sin2θ23 ¼

1

2
; sin θ13 ¼ 0;

jδ1j ¼
Δm2

1

2m1

¼ 3m0jFj; jδ2j ¼
Δm2

2

2m2

¼ 3m0;

jδ3j ¼
Δm2

3

2m3

¼ 3m0jGj: ð80Þ

These jδkj are disconnected from the TBM mixing angles.
It is in general expected that deviations of y2, y3 from unity,
leading to the nonzero reactor mixing angle [45,46],
i.e., θ13 ≃ 8.5° at 1σ best fit [47], and in turn opening
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the possibility of searching for CP violation in neutrino
oscillation experiments. These deviations generate relations
between mixing angles and eigenvalues jδkj. Therefore,
Eq. (78) directly indicates that there could be deviations
from the exact TBM if the Dirac neutrino Yukawa
couplings in mD of Eq. (B6) do not have the same
magnitude, and the pseudo-Dirac mass splittings are all
of the same order

jδ1j ≃ jδ2j ≃ jδ3j ≃Oðm0Þ: ð81Þ
As shown in Ref. [3] by numerical analysis, together with
well-fitted θ12 and θ13, the values of the atmospheric (θ23)
and Dirac CP phase (δCP) have a remarkable coincidence
with the recent data by the NOνA [48] and/or T2K [49]
experiments. From the overall scale of the mass matrix
in Eq. (79), the pseudo-Dirac mass splitting, δ2, is expected
to be

jδ2j ≃ 2.94 × 10−11
�
4.24 × 109 GeV

M

�				ŷν1 vTffiffiffi
2

p
Λ

				2sin2βeV;
ð82Þ

in which the scale of the heavy neutrino, M, can be
estimated from Eq. (B8) through the astrophysical con-
straints as M ¼ jŷΘj × 2.75þ1.50

−1.25 × 109 GeV, which is con-
nected to the PQ symmetry-breaking scale via the axion
decay constant in Ref. [3]. Equation (82) shows that the
value of δ2 depends on the magnitude ŷν1vT=Λ since M is
constrained by the axion decay constraints; the smaller the
ratio vT=Λ, the smaller jδkj, responsible for the pseudo-
Dirac mass splittings, becomes.12 However, the value of jδkj
is constrained from Eq. (B12); for example, using tan β ¼ 2

and vT=Λ ≃ λ2=
ffiffiffi
2

p
, we obtain

jδ2j ≃ 1.50 × 10−14jŷν1j2 eV: ð83Þ

Since the potential is (almost) flat in these directions ζi,
they have large initial VEVs in the early Universe; see
Eq. (88). Such flat directions are lifted by some effective
operators in a later epoch, receiving soft masses in the
SUSY-breaking vacuum. Then, the potential of the flat
directions, ζi, is directly written as

V0ðζiÞ ¼ m2
ζi
jζij2 þ

m3=2

8Mi
ðamζ4i þ H:c:Þ þ jζij6

4M2
i
: ð84Þ

Here, in the mass terms m2
ζi
, we have included soft scalar

masses generated by the F-term SUSY breaking, that is, the

contribution from the effective μ term, W ⊃ μeffHuHd,
which gives mass terms μ2eff jζij2=2. Since our model lies in
the gravity-mediated SUSY-breaking mechanism, it is
expected that mζi ∼m3=2 and jamj ∼Oð1Þ in the A term.13

The potential for ζi in Eq. (84) isD flat, jζij ¼ 0, and also F
flat in the limit of δiðorΔm2

i Þ → 0. So, the AD fields ζi can
develop large VEVs during inflation. As discussed before,
during inflation, the energy density of the Universe is
dominated by the inflaton Ψ0, that is, V0ðtIÞ ¼ 3H2

IM
2
P.

The potential for the D-flat direction is generated from the
coupling between the AD fields ζi and the inflaton Ψ0,
which generically takes the form

K ⊃ KAD ¼ jΨ0j2 þ jζij2 þ
�
kζi

jΨ0j2
MP

ζi þ H:c:

�

þ γζi
jΨ0j2jζij2

M2
P

þ � � � ; ð85Þ

where kζi and γζi are complex and real constants, respec-
tively, and the dots represent higher-order terms which are
irrelevant for our discussion. Then, due to the finite energy
density of the inflaton Ψ0 during inflation, the AD fields ζi
receive additional SUSY-breaking effects. And such a
SUGRA contribution reads

VsugraðζiÞ ¼ −c̃HH2
I jζij2 þ

HI

8Mi
ðaHζ4i þ H:c:Þ: ð86Þ

Here, by taking c̃H > 0 with c̃H being of order unity, we
assume that the AD fields ζi can obtain negative Hubble-
induced mass terms. From Eqs. (84) and (86), the total
effective potential for the AD fields ζi relevant to the
leptogenesis reads

VðζiÞ ¼ V0ðζiÞ þ VsugraðζiÞ: ð87Þ

Then, the minima of the potential are given by

hjζiji ≃
�
4

3
c̃H

�1
4

�
mi

Δm2
i
HIv2 sin2 β

�1
2 ≲MP; ð88Þ

and argðaHÞ þ 4 argðζiÞ ≃ πð2nþ 1Þ=2 with n ¼ 0, 1, in
which we have used mζi , m3=2jamj ≪ HI. The AD fields ζi
at the origin are unstable due to the negative Hubble mass
terms in Eq. (86) and so roll down toward their global
SUSY minima of the potential in Eq. (87) during inflation.
Thus, the AD fields ζi have large scales of approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2uHI=jδij

p ≲MP in Eq. (88) during inflation. This is

12Moreover, the overall scale of the heavy neutrino mass M is
closely related to a successful leptogenesis (see the details in
Sec. IV), constraints of the mass-squared differences in Eq. (B11),
and the Cabbibo-Kobayashi-Maskawa mixing parameters; there-
fore, it is very important to fit the parameters vT=Λ and M.

13In the context of Kallosh-Linde–type models, the dominant
contributions to the A term arise from loop corrections [50]
because at tree level A terms are strongly suppressed bym3=2=mT ;
hence, one needs a relatively largeOð100Þ TeV gravitino mass in
order to get properly large A terms [51].
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compatible with the fact that the Planck scale, MP, sets the
Universe’s minimum limit, beyond which the laws of
physics break. If we set the initial minima of the AD fields
to the (almost) Planck scale, the ratiosmi=Δm2

i responsible
for the neutrino mass splittings δi (relevant to the low-
energy neutrino oscillation as well as the high-energy
neutrino at the IceCube telescope) could be restricted as

1

δi
¼ 2mi

Δm2
i
≲ M2

P

HIv2sin2β

�
3

c̃H

�
1=2

: ð89Þ

Using HI ≃ 1010 GeV, v ¼ 246 GeV, sin β ≃ 1, and
1=

ffiffiffiffiffi
10

p ≲ c̃H ≲ ffiffiffiffiffi
10

p
, a lower bound can be roughly esti-

mated as

δi ≳ ð2 − 5Þ × 10−14 eV; ð90Þ

which is very compatible with the constraints from the
neutrino data in Eq. (B12) as well as a successful lepto-
genesis in Eq. (98).
After inflation ends, the inflatonΨ0 and waterfall field Ψ̃

[see Eqs. (38) and (59)] begin to oscillate around their
VEVs, hΨ̃i ¼ μΨ and hΨ0i ≃ 0 [the VEV of Ψ0 deviates
from zero because of the supergravity effect: hΨ0i ∼
m3=2=jg̃7j at the true minimum [see Eq. (65)], and their
decays produce a dilute thermal plasma formed by colli-
sions of relativistic decay products. Since the energy
density of the Universe is still dominated by the inflaton
Ψ0 and waterfall field Ψ̃ during the inflaton and waterfall
field oscillations epoch, the AD fields potential is still
governed by the Hubble-induced mass terms in Eq. (86)
together with V0ðζiÞ in Eq. (84) at the first stage of
oscillation. Thus, the AD fields ζi are trapped in the
minima determined mainly by the Hubble A term as in
Eq. (88) because the curvatures around the minima along
both the radial and angular directions are of the order ofHI
also in this period. However, after inflation, the values of ζi
in Eq. (88) gradually decrease to the order of ζi masses as
the Hubble parameter HðTÞ decreases; then, the negative
Hubble-induced mass terms are eventually exceeded by
the Hubble parameter, i.e., c̃HHðTÞ2 ≲m2

ζi
in the potential

(87). And the AD fields begin to oscillate around the
potential minima hζii ≃ 0 (actually,mζi ) withHðTÞ ¼ Hosc

when the Hubble parameterHðTÞ of the Universe becomes
comparable to the SUSY-breaking mass mζi . (Hereafter,
“osc” labels the epoch when the coherent oscillations
commence.) Then, the interactions of dimension-5 oper-
ators create lepton number.
Now, we see how the lepton number is created. At the

beginning of the oscillation, the AD fields have the initial
values

jζiðtoscÞj ≃
�
4

3
c̃H

�
1=4

�
mζimi

Δm2
i
v2sin2β

�
1=2

≪ MP; ð91Þ

in whichmζi ≃Hosc is used. The evolution of the AD fields
ζi after H ≃Hosc is described in a Friedmann-Robertson-
Walker universe by the equation of motion with the
potential VðζiÞ as

ζ̈i þ 3HðTÞ _ζi þ
∂VðζiÞ
∂ζ�i ≃ 0; ð92Þ

where HðTÞ¼ðπ2g�ðTÞ=90M2
PÞ1=2T2≈1.66

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πg�ðTÞ

p
T2=

MP is the Hubble rate for a radiation-dominated era with
the total number of effective d.o.f. g�ðTÞ at a temperature T
[52], ∂VðζiÞ=∂ζ�i ≃m2

ζi
ζi, and a dot indicates the time

derivative. It is clear that the AD fields ζi oscillate around
the origin (hζii ≃ 0, the VEVs of ζi deviate from zero due to
the SUGRA effect) and the amplitude of the oscillation
damps as jζij ∝ H ∝ t−1.
Since the AD fields ζi carry lepton number, the baryon

number asymmetry will be created during coherent oscil-
lation of the AD fields. The number density of the AD
fields is related to the lepton number density nLi

as

nLi
¼ i

2
ð∂ζ�i∂t ζi − ζ�i

∂ζi∂t Þ; then, from Eq. (92), the evolution
of nLi

is given by

∂nLi

∂t þ 3HnLi
−
m3=2

2Mi
Imðamζ4i Þ −

H
2Mi

ImðaHζ4i Þ ≃ 0:

ð93Þ

Since the Hubble parameter HðTÞ decreases as the temper-
ature decreases, the relative phase between am and aH
changes with time when the AD fields ζi trace the valleys
determined mainly by the Hubble A term.14 And during
their rolling towards the true minima, the contribution of
ImðaHζ4i Þ is suppressed compared with Imðamζ4i Þ. Then,
the motion of ζi in the angular direction generating lepton
number is expressed as

∂nLi

∂t þ 3HnLi
≃
m3=2

2Mi
Imðamζ4i Þ; ð94Þ

where H ¼ _RðtÞ=RðtÞ and RðtÞ stands for the scale
factor of the expansion universe with cosmic time t. The
produced lepton number asymmetry at a time t can be
obtained by integrating the above equation ∂ðR3nLi

Þ=
∂t ≃ m3=2

2Mi
R3Imðamζ4i Þ, where R ¼ RðtÞ. After the end of

inflation, the inflaton fieldΨ0 and waterfall field Ψ̃ begin to
oscillate around the potential minimum such that the
Universe is effectively matter dominated, which scales as
R3 ∝ H−2 ∝ t2. And before the beginning of the ζi

14If there are no true minima, i.e., m3=2 ¼ 0, the AD fields get
eternally trapped in the minima (89), and there is no motion of ζi
changing with time along the angular direction, leading to no
lepton number production.
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oscillation, due to jζij ∝ H1=2 ∝ t−1=2, the net lepton
number generated keeps constant for the period t < tosc.
During the matter-dominated epoch, the Hubble parameter
is related to the expansion time by Hosc ¼ ð2=3Þt−1osc. Then,
using Eq. (91), the generated lepton number at this stage
ðt ¼ toscÞ is given approximately by

nLi
ðtoscÞ ≃

c̃H
9

miv2 sin2 β
Δm2

i
ðm3=2jamjÞHoscδeff ; ð95Þ

where δeff ≃ sinð4 arg ζi þ arg amÞ represents an effective
CP-violating phase. It is expected that the production of net
lepton asymmetry occurs before the reheating process is
completed, i.e., Γall ¼ ΓΨ0

þ ΓΨ̃ < Hosc, cf. Eq. (108); the
production of lepton number is strongly suppressed after
the AD fields ζi start their oscillations because Imðamζ4i Þ
change their sign rapidly due to the oscillation of ζi, and
the amplitude of ζi oscillation is damped with expansion
[see below Eq. (92)]. Thus, after inflation, R3nLi

jt¼tosc ¼
R3nLi

jt¼tR ∼ nLi
ðtRÞ=ρradðtRÞ stays constant until the infla-

tonΨ0 and waterfall field Ψ̃ decay into light particles. Here,
ρradðtRÞ ¼ 3M2

PΓ2
all is the energy density of the inflaton.

Then, the generated lepton number when the reheating
process is completed ðt ¼ tR; H ≃ ΓallÞ is given by

nLi
ðtRÞ ¼ nLi

ðtoscÞ
�
Γall

Hosc

�
2

: ð96Þ

The inflaton decays reheats the Universe, producing
entropy s of radiation such that ρradðtRÞ ¼ 3TrehsðtRÞ=4.
Then, the lepton number asymmetry is approximately
expressed as

nLi
ðtRÞ
s

¼ c̃H
36

miv2 sin2 β
M2

PΔm2
i

Treh

�
m3=2jamj
Hosc

�
δeff ð97Þ

when the reheating process of the inflaton is completed.
Later, we will discuss the reheating temperature (see
Sec. IV B) and its related gravitino problem (see
Sec. IVA). Recall that the Hosc depends on Mi as
Hosc ≃mζi . Since Mi is directly related to the pseudo-
Dirac mass splittings δi as Mi ¼ hHui2=δi in Eq. (B10) in
addition to Oðδ1Þ ≃Oðδ2Þ ≃Oðδ3Þ ¼ Oðm0Þ in Eq. (81),
there are three flat directions corresponding to the almost
degenerate neutrino pairs, i.e., the three generation AD
fields ζi=

ffiffiffi
2

p ¼ L̃i ¼ Hu with i ¼ 1, 2, 3. The lepton
asymmetries in Eq. (97) are converted into the baryon
asymmetry through nonperturbative sphaleron processes.
We are in the energy scale in which A4 ×Uð1ÞX × SUSY is
broken but the SM gauge group remains unbroken. So, the
baryon number produced is thermalized in a hot plasma
into real baryons at a relatively low temperature. Therefore,
the present baryon asymmetry can be expressed by

nB
s
≃ 0.35

X
i¼1;2;3

nLi

s

≃ 8.67 × 10−11 ×

P
3
i¼1

mi
Δm2

i

1.75 × 1010 eV−1

�
Treh

103 TeV

�

×

�
δeff
0.1

��
c̃H
0.5

��
m3=2jamj
Hosc

�
; ð98Þ

where nB is the baryon number density and s is the entropy
density, and we have used sin β ≃ 1. Considering
1=

ffiffiffiffiffi
10

p ≲ jamj, c̃H ≲ ffiffiffiffiffi
10

p
(being order of unity) andHosc ≃

m3=2 ≃mζi
15 and, for convenience, defining xreh≡

ðm3=2jamj=HoscÞδeff c̃H, the resultant baryon asymmetry
only depends on the neutrino parameters mi and Δm2

i ,
Treh, and xreh. Once the values of Treh and xreh are fixed,
quantitatively, the value of the BAU is inferred from the two
observations, mi (≃mνi) and Δm2

i , independently: from
Eqs. (B12), (B13), and (89), the following quantity could
be extracted as

1010 eV−1 ≲X
i

mνi

Δm2
i
¼ 1

2

�
1

δ1
þ 1

δ2
þ 1

δ3

�

≲ 5 × 1013 eV−1; ð99Þ

in which the upper bound is derived from an initial
condition of the AD fields in Eq. (89); the lower bound
comes from the neutrino data in Eqs. (B12) and (B13).
In terms of YΔB ≡ ðnB − nB̄Þ=sjtoday (which is conserved
throughout the thermal evolution of the Universe), the BBN
results [53] and the CMB measurement [9] read at
95% C.L.

YBBN
ΔB ¼ ð8.10� 0.85Þ × 10−11;

YCMB
ΔB ¼ ð8.67� 0.05Þ × 10−11: ð100Þ

As shown in Fig. 2, taking into account δeff ≥ 0.01 [see below
Eq. (95)], 1=

ffiffiffiffiffi
10

p ≲ c̃H, jamj≲
ffiffiffiffiffi
10

p
[see below Eqs. (86)

and (84)], and 1010 eV−1≲P
i
mνi
Δm2

i
≲5×1013 eV−1 in

Eq. (99), for the baryon asymmetry in Eq. (98) to satisfy
the BBN results and CMBmeasurement, a range of plausible
reheating temperature could be obtained as

Oð100Þ GeV≲ Treh ≲ 3 × 103 TeV; ð101Þ

where the lower bound is due to the electroweak scale. Later,
we will show that the bound of Eq. (101) could be consistent
with the bound from Eq. (130).

15Recall that our scenario lies in the gravity-mediated SUSY-
breaking mechanism; see below Eq. (84).
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A. Gravitino production

It is well known that thermal leptogensis in the super-
symmetric framework, which is one of the attractive
mechanisms for the origin of matter, requires a large
reheating temperature in the early Universe, Treh ∼M1 >
109 GeV, where M1 is a lightest heavy neutrino mass. The
gravitino, which appears in all models with local super-
symmetry, is the superpartner of the graviton. Gravitino is
produced thermally [54] or nonthermally [55–59] in the
cosmological history. The excessive production of grav-
itinos in the early Universe may destroy the nucleosyn-
thesis of the light elements for unstable gravitinos or
overclose the Universe for the stable gravitinos [60].
Since the gravitino is present in the supersymmetric model,
we are going to address the (unstable) gravitino overabun-
dance problem.
As mentioned in Sec. II, there are two secluded

SUSY-breaking sectors, i.e., SUSY¼SUSYinf ×SUSYvis.
Gravitational interactions explicitly break the SUSY down
to true SUSYinf × SUSYvis, where SUSYinf corresponds to
the genuine SUGRA symmetry, while the orthogonal
SUSYvis is approximate global symmetry. In each sector,
spontaneous breakdown of the F term occurs at a scale Fi
(i ¼ inf, vis) independently, producing a corresponding
Goldstino. Hence, in the presence of SUGRA, the SUSYinf
is gauged, and thus its corresponding Goldstino is eaten
by the gravitino via the super-Higgs mechanism, leaving
behind the approximate global symmetry SUSYvis, which is

explicitly broken by SUGRA and thus its corresponding
uneaten Goldstino as a propagating d.o.f.
During inflation and the beginning of reheating (pre-

heating) when SUSY is spontaneously broken, there are
possible productions of fermonic quanta which are strongly
coupled to the inflaton field. During this stage, the SUSYinf
is mainly broken by the inflaton, implying that the
Goldstino produced is mainly the inflatino (instead of
the gravitino in the low energy); the gravitino produced
nonthermally16 is effectively massless as long as the
Hubble parameter is larger than the gravitino mass,
H > m3=2 [58]. However, this correspondence does not
necessarily hold at late times, since the SUSYvis is broken
by other fields in the true vacuum.
After the inflation ends, the inflatonΨ0 and waterfall field

Ψ̃ release their energy into a thermal plasma by the decays,
and the Universe is reheated. Since all the particles including
photons and baryons in the present Universe are ultimately
originated from the decays, it is crucial to reveal how the
reheating proceeds. In SUGRA framework, with the linear
Kahler potential in Eq. (8), the inflaton field Ψ0 has a
nonvanishing auxiliary field GΨ0

. Such a nonvanishing
auxiliary field allows the inflaton decay into a pair of the
gravitinos, the decay process of which is crucial in the
reheating process [56]. The constraint on the inflaton
potential GΨ0

depending on the gravitino mass must be
satisfied to avoid an overproduction of the gravitino keeping
the success of the standard cosmology. In the unitary gauge
in the Einstein frame, the Goldstino (the longitudinal
component of the gravitino) can be gauged away through
the super-Higgs mechanism, leading to the vanishing of the
gravitino-Goldstino mixing. Then, the relevant interactions
for the inflaton decay into a pair of gravitinos reads [38]

−e−1L¼1

8
ϵμνρσðGΨ0

∂ρΨ0−GΨ̄0
∂ρΨ�

0Þψ̄μγνψσ

þeG=2

8
MPðGΨ0

Ψ0þGΨ̄0
Ψ�

0Þψ̄μ½γμ;γν�ψν; ð102Þ

where ψμ is the gravitino field. The real and imaginary
components of the inflaton field have the same decay rate at
leading order [57],

Γ3=2 ≡ ΓðΨ0 → ψ3=2 þ ψ3=2Þ

≃
1

288π

M2
P

KΨ0Ψ̄0

jhGΨ0
ij2

�
mΨ0

MP

�
2
�
mΨ0

m3=2

�
2

mΨ0
; ð103Þ
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FIG. 2. Region plot for the successful leptogenesis YΔB
¼

8.67 × 10−11 (cyan region) as a function of Treh=TeV and
xreh ≡ ðm3=2jamj=HoscÞδeff c̃H , where the regions 1010 eV−1 ≲P

i
mνi

Δm2
i
≲ 5 × 1013 eV−1 in Eq. (99) are used. Especially, for the

case of m3=2 ≃Hosc, 1=
ffiffiffiffiffi
10

p ≲ c̃H , jamj ≲
ffiffiffiffiffi
10

p
, and δeff ≤ 1, the

horizontal line represents a lower bound of xreh.

16The inflatinos produced during inflation and preheating may
be partially converted to the gravitinos in the low energy, since
GΨ0

is generically nonzero in the true minimum [61]. At this
stage, since the inflationary sector and the sector responsible for
the low-energy effective SUSY breaking are distinct, the grav-
itinos generated nonthermally are produced with a sufficiently
low abundance.
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in the limit of mΨ0
≫ m3=2 after canonical normalization

Ψ̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
KΨ0Ψ̄0

p
Ψ0. The decay rate is enhanced by the

gravitino mass in the denominator, which comes from the
Goldstino (mainly as the inflatino) in the massless limit.
The decay into the gravitinos only proceeds at the stage
H < m3=2, when the SUSY-breaking contribution of the
inflaton is subdominant [56]. Thus, the gravitinos produced
at the reheating epoch by the inflaton decay through the
interaction (102) should coincide with those in the low
energy.
Now, we estimate how much the gravitinos are pro-

duced at the reheating epoch. After the inflation ends, both
the inflaton Ψ0 and waterfall field Ψ̃ oscillate around the
potential minimum and dominate the Universe until the
reheating. Using jGΨ0

j≲ jΨ0j=M2
P, one obtains WΨ0

=W ≃
Ψ0=M2

P. Inserting GΨ0Ψ0
¼ −W2

Ψ0
=W2, GΨΨ0

≃ −ΨWΨ0
=

ðWM2
PÞ � g̃7Ψ̃=ðm3=2M2

PÞ, and GzΨ0
≃

ffiffiffi
3

p
WΨ0

=ðWMPÞ
into Eqs. (62) and (63), we obtain

hGΨ0
i ∼ 3hΨ0i

M2
P

≃ 3
m3=2

jg̃7jM2
P
; hGΨi ∼

3

2

m2
3=2

jg̃7j2
hΨi
M4

P
; ð104Þ

which indicates hGΨ0
i is much larger than hGΨi. Then,

from Eqs. (103) and (64), the inflaton decay width is
roughly given by

Γ3=2 ≃
1

32π

�
mΨ0

MP

�
4
�
μΨðtIÞ
MP

�
2

mΨ0
: ð105Þ

At the reheating epoch, gravitinos are produced by the
nonthermal inflaton decay process (YΨ0

3=2, the yield of the
gravitinos by the inflaton decay) as well as by the thermal
scattering (Y th

3=2, the yield of the gravitinos produced by
thermal scatterings); the ratio of gravitino-to-entropy den-
sity is given by Y3=2 ¼ YΨ0

3=2 þ Y th
3=2, which remains con-

stant as the Universe expands as long as there is no
additional entropy production. Gravitinos17 thermally pro-
duced in the early Universe, predominantly via 2 → 2
inelastic scatterings of gluons and gluinos by the QCD
process, have a potential problem for the thermal history
of the Universe. However, since their relic density,
Ωth

3=2h
2, and contribution to the energy density, Y th

3=2,
grow with the reheating temperature after inflation, the
yield of the gravitinos thermally produced is estimated
as Y th

3=2 ∼ 10−16ðTreh=103 TeVÞ [54,63], which is harmless
with the gravitino mass m3=2 ∼ 100 TeV in Eq. (27)
with the reheating temperature satisfying the successful

leptogenesis in Eq. (101). On the other hand, the gravitino
yield produced by the inflaton decay process Ψ0 → Ψ3=2 þ
Ψ3=2 via the interaction (102) is

YΨ0

3=2 ≡
nΨ0

3=2

s
≃ 2

Γ3=2

ΓΨ0

3

4

Treh

mΨ0

; ð106Þ

where nΨ0

3=2 is the number density of gravitinos by the

inflaton decay and s ¼ ð2π2=45Þg�sðTÞT3 is the entropy
density with g�sðTÞ being the effective number of the
massless d.o.f. at the temperature T.
The gravitino yield is severely constrained by BBN,

Y3=2 < YBBN
3=2 , in order to keep the success of the standard

scenario of BBN [62]. Otherwise, the decay products of the
gravitino would change the abundances of primordial light
elements too much and consequently conflict with the
observational data. Reference [64,65] shows that, when
the hadronic branching ratio of the gravitino decay is of
order unity, YBBN

3=2 ∼ 10−16 for m3=2 ∼ 1 TeV and YBBN
3=2 ∼

10−15−13 for m3=2 ∼ 10 TeV; for m3=2 ≳ 100 TeV, the
constraint disappears. On the other hand, in the context
of supersymmetric moduli stabilization in which moduli
are strongly stabilized, at tree level, the gaugino masses
and A terms are strongly suppressed by m3=2=mT and as
such effectively vanish [51], while the dominant contribu-
tions to the gaugino masses and A terms arise from
loop corrections [50]: m1=2 ¼ bag2a=ð16π2ÞðFC=C0Þ and
Aijk ¼ −ðγijk=16π2ÞðFC=C0Þ, where ba ¼ 11; 1;−3 for
a ¼ 1, 2, 3 are the one-loop beta function coefficients,
γijk are the anomalous dimensions of the matter fields, and
FC=C0 ∼m3=2. Thus, to have suitably large gaugino
masses, relatively largeOð100Þ TeV gravitino masses must
be considered [51].

B. Reheating temperature

To estimate YΨ0

3=2, we have to calculate the decay width of
the inflaton and waterfall fields, Γall, at the reheating epoch.
Since inflation leaves the early Universe cold and

empty, the inflaton Ψ0 and waterfall field Ψ̃ in which all
energy resides in must transfer their energy to a
radiation-dominated plasma in local thermodynamic
equilibrium at a temperature sufficient to allow standard
nucleosynthesis Treh > TðBBNÞ. So, the Universe must
be reheated after inflation. The energy of the inflaton
Ψ0 and waterfall field Ψ̃ is transferred to the SM sector
through their gravitational and/or nongravitational
decays once their fields acquire finite VEVs, which
in turn produce SM matter. Their decay products
thermalize.
We are in the case in which the inflaton Ψ0 and waterfall

field Ψ̃ dominate the energy of the Universe when they
decay. The reheating temperature Treh resulting from the

17The production of gravitinos after inflation has been studied
in some detail [62].
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perturbative decays of the inflaton Ψ0 and waterfall field
Ψ̃18 may be estimated by using the relation

Γall ¼ 3HðTrehÞ ð107Þ

at the end of the reheating process, where the Hubble
parameter HðTÞ is given in the radiation-dominated era of
the Universe. Inflaton Ψ0 and waterfall field Ψ̃ decays
reheat the Universe, when Γall ≳ 3HðTrehÞ,

Treh ¼
�

10

π2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΓallMP

p
; with

Γall ¼ Γsugra
Ψ0

þ Γsugra
Ψ̃ þ Γvis

Ψ0
þ Γvis

Ψ̃ ; ð108Þ

where g�ðTÞ is the number of the relativistic d.o.f.
in the plasma19 and Γsugra

Ψ0
þ Γsugra

Ψ̃ and Γvis
Ψ0

þ Γvis
Ψ̃

stand for gravitational and nongravitational decay widths,
respectively.
As in Ref. [3], in the supersymmetric visible sector, the

inflaton Ψ0 and waterfall field Ψ̃ couple to the SM particles
via the following interactions dominantly,

W ⊃ gΨ0
Ψ0HuHd þ ŷc

�
Ψ̃
Λ

�
2

Q2ccHu; ð109Þ

where gΨ0
is a real and positive coupling constant, while the

hat Yukawa coupling ŷc is of order unity complex number.
Here, Q2 is the second-generation left-handed quark
doublet, which transforms as 100 under A4 symmetry; the
right-handed charm quark cc ∼ 10 under A4. The first term
is also associated with the μ term since the VEV of Ψ0 is
given by hΨ0i ∼m3=2=jg̃7j. And so, the inflaton with a
nonzero VEV can decay into the visible sector through the
nongravitational coupling of the inflaton to matter with the
decay rate

Γvis
Ψ0

¼ ΓðΨ0 → 2HiggsinosÞ þ ΓðΨ0 → 2HiggsesÞ

≃ 2 ×
jgΨ0

j2
16π

mΨ0
; ð110Þ

where the masses of the final states compared to that of the
inflaton are neglected. For the second term in Eq. (109),

expanding the waterfall field Ψ̃ and the Higgs field Hu,
without loss of generality, as

Ψ̃ ¼ 1ffiffiffi
2

p
�
vΨ̃ þ hΨ̃ffiffiffi

2
p − i

ϕΨffiffiffi
2

p
�
; Hu ¼

�
vu þ huffiffi

2
p

0

�
;

ð111Þ

the second term in Eq. (109) is expressed in terms of the
Lagrangian form as

−L ¼ ŷc

�
vΨ̃ffiffiffi
2

p
Λ

�
2

vu

�
1þ huffiffiffi

2
p

vu
þ

ffiffiffi
2

p

vΨ̃
ðhΨ̃ − iϕΨÞ

�
c̄LcR

þ H:c: ð112Þ

Here, the waterfall field Ψ̃ with a nonzero VEV can decay
into the visible sector through the nongravitational coupling
of the waterfall field Ψ̃ to matter with the decay rate

Γvis
Ψ̃ ≃ ΓðΨ̃ → cc̄Þ ≃ jŷcj2

8π

�
vΨ̃ffiffiffi
2

p
Λ

�
4
�
vu
vΨ̃

�
2

mΨ̃

¼ jgΨ̃j2
8π

mΨ̃; ð113Þ

where gΨ̃ ≡ ŷcðvΨ̃=
ffiffiffi
2

p
ΛÞ2ðvu=vΨ̃Þ, and themass of the final

state compared to that of the waterfall field Ψ̃ is neglected.
Using jŷcj ≃ 1, vΨ̃=

ffiffiffi
2

p
Λ ¼ λ=

ffiffiffi
2

p
, and vu=vΨ̃ ≃ 10−8,

where λ ≈ 0.225, sin β ≃ 1, and vΨ̃ ≈ 1.7 × 1010 GeV [3],
we obtain

jgΨ̃j ≃ 2.5 × 10−10: ð114Þ

Next, we consider the gravitational effects on the
reheating temperature. The inflaton Ψ0 and waterfall field
Ψ̃ with nonzero VEVs can also decay into the visible sector
through the SUGRA effects [55]. Then, the reheating can
be induced by the inflaton and waterfall fields decay
through nonrenormalizable interactions. The relevant inter-
actions for the matter-fermion production are provided in
the Einstein frame as [38]

e−1L ¼ i
2
Kij� χ̄

jγμ∂μχ
i

þ i
8M2

P
Kij� ðKσ∂μϕ

σ − Kσ�∂μϕ
�σÞχ̄jγμχi

−
i

2MP
Kij�Γi

σρð∂μϕσÞχ̄jγμχσ

þ 1

2
eK=2M

2
PðDiDjWÞχiχj þ H:c:; ð115Þ

where DiDjW ¼ Wij þ Kij

M2
P
W þ Ki

M2
P
DjW þ Kj

M2
P
DiW−

KiKj

M4
P
W −

Γk
ij

MP
DkW. Here, ϕi and χi stand for the matter

18The energy transfer from the inflaton and waterfall field to
the SM fields in general proceeds both through nonperturbative
effects and perturbative decays [66].

19We estimate the total number of effectively massless d.o.f.
of the radiation, g�ðTÞ, at temperature of the order of the
decay rate of the inflaton and waterfall field Γall; i.e., there
are 17 bosons and 48 Weyl fermions for TEW < T < m3=2:
g�ðTÞ ¼ P

j¼bosonsgjðTj=TÞ4 þ ð7=8ÞPj¼fermionsgjðTj=TÞ4 ¼
34 þ ð7=8Þ96 ¼ 118, where Tj denotes the effective temper-
ature of any species j.
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fields, and ϕi collectively denotes on arbitrary fields
including the inflaton Ψ0 and waterfall field Ψ̃. And the
matter-scalar production is represented by the kinetic term
and the scalar potential

−e−1L ¼ iKij�∂μϕ
i∂μϕ�j

þ eK=M
2
P

�
Kij� ðDiWÞðDj̄W̄Þ − 3

M2
P
jWj2

�
:

ð116Þ

In the model superpotential, the supersymmetric visible
sector contains the renormalizable interactions

W ⊃ ytQ3tcHu þ
1

2
MRNcNc; ð117Þ

where the first term is the top quark operator as in Ref. [2],
and the second term comes from Eq. (B1) after theUð1ÞX is
spontaneously broken. First, we consider the partial decay
width of the inflaton. The partial decay width of the inflaton
through the neutrino Yukawa coupling is [55]

ΓNðsugraÞ
Ψ0

¼ ΓðΨ0 → NcNcÞ þ ΓðΨ0 → ÑcÑcÞ

≃ 2 ×
cNΨ0

32π
mΨ0

�
1 −

4M2

m2
Ψ0

�
1=2

; ð118Þ

where cNΨ0
≃ eK=M

2
P

			 KΨ0
M2

P
WNcNc − 2Γk

Ψ0Nc
WNck
MP

			2; (sum over

k) andM is the heavy neutrino mass given in Eq. (B8). For
the minimal Kahler potential, for simplicity, using Eq. (65),
the parameter cNΨ0

can be approximately given by

cNΨ0
≃
�hΨ0i
MP

�
2
�
M
MP

�
2

¼
�
m3=2

mΨ0

�
2
�
μΨðtIÞ
MP

�
2
�
M
MP

�
2

;

ð119Þ

where in the last equality the inflaton mass mΨ0
in Eq. (39)

or Eq. (64) is used. And the partial decay width of the
inflaton through the top quark Yukawa coupling is [55]

ΓtðsugraÞ
Ψ0

¼ ΓðΨ0 → 3 scalarsÞ
þ ΓðΨ0 → 1 scalar þ 2 fermionsÞ

≃
ctΨ0

6

256π3

�
mΨ0

MP

�
2

mΨ0
; ð120Þ

where the masses of the final-state particles are neglected,
the additional numerical factor comes from SUð3Þ×SUð2Þ,
and ctΨ0

≃ eK=M
2
P

			 KΨ0
MP

WtcQ3Hu
− 3Γl

Ψ0Hu
WtcQ3l

			2 (sum over

l). Similarly, the parameter ctΨ0
is approximately given by

ctΨ0
≃
�hΨ0i
MP

�
2

jytj2 ¼
�
m3=2

mΨ0

�
2
�
μΨðtIÞ
MP

�
2

jytj2: ð121Þ

In addition, the decay rate into the visible sector through the
top and neutrino Yukawa couplings is much larger than that
into the gluons and gluinos via the anomalies of SUGRA
[55]. Then, from Eqs. (118) and (120), the inflaton decay
rate through the gravitational coupling of the inflaton to
matter is approximately given by

Γsugra
Ψ0

≃ ΓtðsugraÞ
Ψ0

þ ΓNðsugraÞ
Ψ0

≃
mΨ0

16π

�
m3=2

mΨ0

�
2
�
μΨðtIÞ
MP

�
2
�
2jytj2
8π2

�
mΨ0

MP

�
2

þ
�
M
MP

�
2
�
1 −

4M2

m2
Ψ0

�1
2

�
: ð122Þ

Second, similar to the above case of the inflaton field, the
waterfall field decay rate through the gravitational coupling
of the waterfall field to matter is approximately given by

Γsugra
Ψ̃ ≃ ΓtðsugraÞ

Ψ̃ þ ΓNðsugraÞ
Ψ̃

≃
mΨ̃
16π

�
μΨðtIÞ
MP

�
2
�
2jytj2
8π2

�
mΨ̃
MP

�
2

þ
�
M
MP

�
2
�
1 −

4M2

m2
Ψ̃

�1
2

�
: ð123Þ

Then, from Eqs. (122) and (123), the decay rate of inflaton
through gravitational effects is much smaller than that of
the waterfall field, i.e., Γsugra

Ψ̃ ≫ Γsugra
Ψ0

, for mΨ0
≫ m3=2.

And the waterfall field decay rate through the gravitational
coupling of the waterfall field to matter is approximately
given by

Γsugra
Ψ̃ ≃ ΓtðsugraÞ

Ψ̃ þ ΓNðsugraÞ
Ψ̃ ¼ jgsugraΨ̃ j2

8π
mΨ̃; ð124Þ

where

gsugraΨ̃ ≡ μΨðtIÞ
MP

�jytj2
8π2

�
mΨ̃
MP

�
2

þ 1

2

�
M
MP

�
2
�
1 −

4M2

m2
Ψ̃

�1
2

�1
2

:

ð125Þ

Given that mΨ̃ ∼ 1013 GeV, μΨðtIÞ ∼ 1016 GeV, M ∼
109 GeV, yt ∼ 1, andm3=2 ∼Oð100Þ TeV, we clearly have
Γvis
Ψ0

þ Γsugra
Ψ̃ ≫ Γsugra

Ψ0
þ Γvis

Ψ̃ for gΨ0
∼ gsugraΨ̃ , and

gsugraΨ̃ ∼ 10−9: ð126Þ

Then, the total decay rate of the inflaton and waterfall fields
in Eq. (107) is approximately given by
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Γall ≃ Γvis
Ψ0

þ Γsugra
Ψ̃ ; ð127Þ

which is much larger than Γ3=2 in Eq. (105). Putting
Eqs. (113) and (124) into Eq. (108), the reheating temper-
ature can be expressed as

Treh ≃
�

10

π2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mΨ0
MPðjgΨ0

j2 þ jgsugraΨ̃ j2Þ
q

; ð128Þ

where mΨ̃ ≃mΨ0
is used. Since there is no information on

the size of the renormalizable superpotential coupling gΨ0

of the inflaton to the Higgses and Higgssinos, first we
consider the case of Γall ≃ Γvis

Ψ0
≫ Γvis

Ψ̃ þ Γsugra
Ψ̃ þ Γsugra

Ψ0
.

In this case, that is, gΨ0
≫ jgsugraΨ̃ j, the size of the Higgs-

inflaton coupling can severely restrict the lower limit on
Treh in Eq. (128) as

Treh ≳ 104 TeV

�
gΨ0

10−8

��
g̃7

0.94 × 10−3

�
1=2

×

�
μΨðtIÞ

6.7 × 1015 GeV

�
1=2

; ð129Þ

where we have used mΨ0
¼ jg̃7jμΨðtIÞ in Eqs. (39) and

(64). This lower limit20 on Treh is in conflict with the limit
for the successful leptogenesis in Eqs. (98) and (101) for
0.01 ≤ δeff ≤ 1. Hence, we can conclude that for jgsugraΨ̃ j ≳
gΨ0

from Eq. (128) the reheating temperature is in a good
approximation given in terms of Eq. (126) by

Treh ∼ 103 TeV ð130Þ

for the successful letogenesis with Eqs. (98)–(101).
Inserting Eqs. (105) and (127) into Eq. (106), the produc-
tion of the gravitinos can depend on the size of the Higgs-
inflaton coupling

YΨ0

3=2 ≃ 3.2 × 10−17
�
8 × 10−10

gΨ0

�
2
�

Treh

103 TeV

�

×

� jg̃7j
0.94 × 10−3

�
3
�

μΨðtIÞ
6.7 × 1015 GeV

�
5

: ð131Þ

Since the yield YΨ0

3=2 is inversely proportional to jgΨ0
j2 and

proportional to Treh (Y th
3=2 is also proportional to Treh), the

total yield Y3=2 ≃ Y th
3=2 þ YΨ0

3=2 can depend on the size of the
Higgs-inflaton coupling, jgΨ0

j, with the given reheating
temperature for the successful leptogenesis. And the con-
straint Y3=2 < YBBN

3=2 disappears as in Ref. [65] for the
gravitino mass m3=2 ∼ 100 TeV in Eq. (27) with the given

reheating temperature. So, we have an upper bound on the
size of the Higgs-inflaton coupling, jgΨ0

j, with the given
reheating temperature for the successful leptogenesis;

jgΨ0
j≲ jgsugraΨ̃ j ≃ 8 × 10−10: ð132Þ

Since the size of Higgs-inflaton coupling can have an upper
bound with the given reheating temperature, the first term
in Eq. (109) can contribute to the sizable μ term.

V. CONCLUSION

The model is based on the SM ×Uð1ÞX × A4 symmetry,
which is essential for the flavored PQ axions at low energy.
Note that the Uð1ÞX-charged Kahler moduli superfields
put the GS anomaly cancellation mechanism into practice.
As the Uð1ÞX-breaking scales according to Ref. [3] are
secluded by the Gibbons-Hawking temperature TGH ¼
HI=2π, the model is designed in a way in which gravita-
tional interactions explicitly break SUSY down to
SUSYinf × SUSYvis, where SUSYinf corresponds to the
supergravity symmetry, while the orthogonal SUSYvis is
approximate global symmetry. Hence, in the presence of
SUGRA, the SUSYinf is gauged, and thus its corresponding
Goldstino is eaten by the gravitino via the super-Higgs
mechanism, leaving behind the approximate global sym-
metry SUSYvis, which is explicitly broken by SUGRA and
thus its corresponding uneaten Goldstino as a physical
d.o.f. giving masses to all the supersymmetric SM
superpartners.
To provide an explanation for inflation, we have con-

sidered a realistic supersymmetric moduli stabilization.
Such moduli stabilization has moduli backreaction effects
on the inflationary potential, in particular, the spectral index
of inflaton fluctuations. During inflation, the Universe
experiences an approximately dS phase with the infla-
tionary Hubble constantHI ≃ 2 × 1010 GeV. In the present
inflation model which provides intriguing links to UV-
complete theories like string theory, the PQ scalar fields
ΨðΨ̃Þ play the role of the waterfall fields; that is, the PQ
phase transition takes place during inflation such that the
PQ scale μΨðtIÞ during inflation is fixed by the amplitude of
the primordial curvature perturbation and turns out to be
roughly 0.3 × 1016 GeV. We have found that such moduli
stabilization with the moduli backreaction effects on the
inflationary potential could lead to the energy scale of
inflation in a way in which the power spectrum of the
curvature perturbation and the scalar spectral index are to
be fitted well with the Planck 2015 observation [9]. And we
have driven that the inflaton mass during inflation is given
by mΨ0

¼ ffiffiffi
3

p
HI, which is much larger than the gravitino

mass, and its mass is in agreement with its theory prediction
for the spectral index with observation.
Through the introduction of Uð1ÞX symmetry in a way

in which the Uð1ÞX − ½gravity�2 anomaly-free condition

20Note that, as seen from Fig. 2, for values of δeff being fine
tuned, i.e., δeff < 0.01, the lower limit (129) could be allowed for
a successful leptogenesis.
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together with the SM flavor structure demands additional
sterile neutrinos as well as no axionic domain-wall problem
[3], the additional neutrinos may play a crucial role as a
bridge between leptogenesis and new neutrino oscillations
along with high-energy cosmic events. We have shown that a
successful leptogenesis scenario could be naturally imple-
mented through the Affleck-Dine mechanism. The pseudo-
Dirac mass splittings, which are suggested from new
neutrino oscillations along with high-energy cosmic events,
strongly indicate the existence of lepton-number violation,
which is a crucial ingredient of the present leptogenesis
scenario. The resultant baryon asymmetry is constrained by
the cosmological observable (i.e., the sum of active neutrino
masses) with the new high-energy neutrino oscillations. In
addition, the resultant baryon asymmetry, which crucially
depends on the reheating temperature, is suppressed for
relatively high reheating temperatures. We have shown that
the right value of the BAU, YΔB ≃ 8 × 10−11, prefers a
relatively low reheating temperature with the well-
constrained pseudo-Dirac mass splittings responsible for
new oscillations Δm2

i . Moreover, we have shown that it is
reasonable for the reheating temperature Treh ∼ 103 TeV
derived from the gravitational decays of the inflaton and
waterfall field to be compatible with the required reheating
temperature for the successful leptogenesis, leading to
Δm2

i ∼ 10−12 eV2. We have stressed that the present model
requiresm3=2 ≃Oð100Þ TeV gravitinomass in order to have
suitable large gaugino masses.
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APPENDIX A: SUPERPOTENTIAL DEPENDENT
ON DRIVING FIELDS

To impose the A4 flavor symmetry [4] on our model
properly, apart from the usual two Higgs doublets Hu;d

responsible for electroweak symmetry breaking, which are
invariant under A4 (i.e., flavor singlets 1 with no T flavor),
the scalar sector is extended by introducing two types of
new scalar multiplets, flavon fieldsΦT ,ΦS, Θ, Θ̃, Ψ, Ψ̃ that
are SUð2Þ singlets and driving fields ΦT

0 , ΦS
0 , Θ0, Ψ0 that

are associated to a nontrivial scalar potential in the
symmetry-breaking sector; we take the flavon fields ΦT ,
ΦS to be A4 triplets and Θ, Θ̃, Ψ, Ψ̃ to be A4 singlets, and
the driving fields ΦT

0 , ΦS
0 to be A4 triplets and Θ0, Ψ0 to be

A4 singlets, that are SUð2Þ-singlets. Under A4 ×Uð1ÞX×
Uð1ÞR, the driving, flavon, and Higgs fields are assigned as

in Table II. The superpotential dependent on the driving
fields, which is invariant under SUð3Þc×SUð2ÞL ×
Uð1ÞY×Uð1ÞX×A4, is given at leading order by

Wv ¼ ΦT
0 ðμ̃ΦT þ g̃ΦTΦTÞ þΦS

0ðg1ΦSΦS þ g2Θ̃ΦSÞ
þ Θ0ðg3ΦSΦS þ g4ΘΘþ g5ΘΘ̃þ g6Θ̃ Θ̃Þ
þ g7Ψ0ðΨΨ̃ − μ2ΨÞ; ðA1Þ

where the fields Ψ and Ψ̃ charged by −q and q, respec-
tively, are ensured by the Uð1ÞX symmetry extended to a
complex Uð1Þ due to the holomorphy of the supepotential.
SUSY hybrid inflation, defined by the last term in the
above superpotential, provides a compelling framework for
the understanding of the early Universe, in which Ψ0 and
ΨðΨ̃Þ are identified as the inflaton and waterfall fields,
respectively. Note, here, that the PQ scale μΨ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vΨvΨ̃=2
p

corresponding to the scale of the spontaneous symmetry-
breaking scale sets the energy scale of inflation during
inflation, see Eq. (57), as well as the energy scale at present
in Ref. [3].

APPENDIX B: A DIRECT LINK BETWEEN LOW
AND HIGH-ENERGY NEUTRINOS

Once the scalar fields ΦS, Θ, Θ̃, Ψ, and Ψ̃ get VEVs, the
flavor symmetry Uð1ÞX × A4 is spontaneously broken, and
at energies below the electroweak scale, all leptons obtain
masses. Since the masses of Majorana neutrino NR are
much larger than those of the Dirac and light Majorana
ones, after integrating out the heavy Majorana neutrinos,
we obtain the following effective Lagrangian for neutrinos:

−Lν
W ≃

1

2
ð νcL SR ÞMν

�
νL

ScR

�
þ 1

2
NRMRNc

R

þ lRMllL þ gffiffiffi
2

p W−
μlLγ

μνL þ H:c: ðB1Þ

with Mν ¼
�
−mT

DM
−1
R mD mT

DS

mDS MS

�
: ðB2Þ

And the charged lepton mass term and the Dirac and
Majorana neutrino mass terms read

TABLE II. Representations of the driving, flavon, and Higgs
fields under A4 × Uð1ÞX. Here, Uð1ÞX ≡ Uð1ÞX1

×Uð1ÞX2
sym-

metries, which are generated by the charges X1 ¼ −2p and
X2 ¼ −q.

Field ΦT
0 ΦS

0 Θ0 Ψ0 ΦS ΦT Θ Θ̃ Ψ Ψ̃ Hd Hu

A4 3 3 1 1 3 3 1 1 1 1 1 1
Uð1ÞX 0 4p 4p 0 −2p 0 −2p−2p −q q 0 0
Uð1ÞR 2 2 2 2 0 0 0 0 0 0 0 0
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Ml ¼

0
B@

ye 0 0

0 yμ 0

0 0 yτ

1
CAvd

¼

0
BB@

ð λffiffi
2

p Þ4ŷe 0 0

0 ð λffiffi
2

p Þ2ŷμ 0

0 0 ŷτ

1
CCA
�

λffiffiffi
2

p
�

2

vd; ðB3Þ

mDS ¼

0
B@

ŷs1 0 0

0 ŷs2 0

0 0 ŷs3

1
CA�

vΨffiffiffi
2

p
Λ

�
16

vu; ðB4Þ

MS ¼

0
B@

ŷss1 0 0

0 0 ŷss2
0 ŷss2 0

1
CA vΨ̃ffiffiffi

2
p

�
vΨffiffiffi
2

p
Λ

�
51 vΘffiffiffi

2
p

Λ
; ðB5Þ

mD ¼

0
B@

ŷν1 0 0

0 0 ŷν2
0 ŷν3 0

1
CA vTffiffiffi

2
p

Λ

�
vΨ̃ffiffiffi
2

p
Λ

�
9

vu

¼ ŷν1

0
B@

1 0 0

0 0 y2
0 y3 0

1
CA vTffiffiffi

2
p

Λ

�
vΨ̃ffiffiffi
2

p
Λ

�
9

vu; ðB6Þ

MR ¼

0
B@

1þ 2
3
κ̃eiϕ − 1

3
κ̃eiϕ − 1

3
κ̃eiϕ

− 1
3
κ̃eiϕ 2

3
κ̃eiϕ 1 − 1

3
κ̃eiϕ

− 1
3
κ̃eiϕ 1 − 1

3
κ̃eiϕ 2

3
κ̃eiϕ

1
CAM; ðB7Þ

where vd≡hHdi¼vcosβ=
ffiffiffi
2

p
and vu≡hHui¼vsinβ=

ffiffiffi
2

p
with v ≃ 246 GeV, and

y2 ≡ ŷν2
ŷν1

; y3 ≡ ŷν3
ŷν1

; κ̃≡
ffiffiffi
3

2

r 				ŷR vSM
				;

ϕ≡ arg

�
ŷR
ŷΘ

�
with M≡

				ŷΘ vΘffiffiffi
2

p
				: ðB8Þ

Here, all the hat Yukawa couplings are of order unity.
In Eq. (B2), the Majorana neutrino mass terms Mνν and

MS and the Dirac mass term mDS are given by

Mνν ¼ U�
LM̂ννU

†
L ¼ −mT

DM
−1
R mD;

MS ¼ U�
RM̂SU

†
R; mDS ¼ U�

RM̂U†
L; ðB9Þ

where the “hat” matrices represent diagonal mass matrices
of their corresponding leptons and ULðRÞ are their diagonal
left- (right-)mixing matrices. Since mDS is dominant over
Mνν and MS due to Eqs. (B4)–(B7), the low-energy
effective light neutrinos become pseudo-Dirac particles.
The pseudo-Dirac mass splitting, δ, can be given by

δ≡ M̂νν þ M̂†
S ≃ M̂νν; ðB10Þ

where the second equality is due to jM̂ννj ≫ jM̂Sj. As is
well known, because of the observed hierarchy jΔm2

Atmj ¼
jm2

ν3 − ðm2
ν1 þm2

ν2Þ=2j ≫ Δm2
Sol ≡m2

ν2 −m2
ν1 > 0 and the

requirement of a Mikheyev-Smirnov-Wolfenstein reso-
nance for solar neutrinos, there are two possible neutrino
mass spectra: (i) the normal mass ordering
m2

ν1 < m2
ν2 < m2

ν3 , m
2
s1 < m2

s2 < m2
s3 and (ii) the inverted

mass ordering m2
ν3 < m2

ν1 < m2
ν2 , m2

s3 < m2
s1 < m2

s2 , in
which the mass-squared differences in the kth pair Δm2

k ≡
m2

νk −m2
sk are small enough that the same mass ordering

applies for both the eigenmasses, that is,

Δm2
k ¼ 2mkjδkj ≪ m2

νk ðB11Þ
for all k ¼ 1, 2, 3. It is anticipated that Δm2

k ≪ Δm2
Sol,

jΔm2
Atmj; otherwise, the effects of the pseudo-Dirac neu-

trinos should have been detected. But in the limit at which
Δm2

k ¼ 0, it is hard to discern the pseudo-Dirac nature
of neutrinos. The pseudo-Dirac mass splittings could be
limited by several constraints, that is, the active neutrino
mass hierarchy, the BBN constraints on the effective
number of species of light particles during nucleosynthesis,
the solar neutrino oscillations; we roughly estimate a bound
for the tiny mass splittings

6 × 10−16 ≲ Δm2
k=eV

2 ≲ 1.8 × 10−12; ðB12Þ

where the upper bound comes form the solar neutrino
oscillations [67] and the lower bound comes from the
inflationary (Sec. III) and leptogenesis (Sec. IV) scenarios
by assuming21 mνi ∼ 0.01 eV.
Letting the mass of active neutrino bemνk ¼ mk, then the

sum of light neutrino masses given by

X
k

mνk ¼
1

2

�
Δm2

1

δ1
þ Δm2

2

δ2
þ Δm2

3

δ3

�
ðB13Þ

is bounded by 0.06≲P
imνi=eV < 0.194; the lower limit

is extracted from the neutrino oscillation measurements,
and the upper limit22 is given by the Planck Collaboration
[7], which is subject to the cosmological bounds

P
imνi <

0.194 eV at 95% CL (the CMB temperature and polariza-
tion power spectrum from Planck 2015 in combination
with the BAO data, assuming a standard ΛCDM cosmo-
logical model).

21In the present model, the lightest effective neutrino mass
cannot be extremely small because the values of δk through the
relation (B11) are constrained by the μ − τ powered mass matrix
in Eq. (78).

22Massive neutrinos could leave distinct signatures on the
CMB and large-scale structure at different epochs of the
Universe’s evolution [68]. To a large extent, these signatures
could be extracted from the available cosmological observations,
from which the total neutrino mass could be constrained.
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