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We analyze models of electroweak symmetry breaking in warped five-dimensional space with gauge
bosons and fermions in the bulk. The Higgs boson is identified with the fifth component of a gauge field.
We dynamically generate the Higgs potential using a competition between the top quark multiplet and
another fermion multiplet to create a little hierarchy characterized by a small parameter s ¼ v=f. Using a
Green’s function method, we compute the properties of the model systematically as a power series in s. We
discuss the constraints on this model from the measured value of the Higgs mass, the masses of top quark
partners, and precision electroweak observables.
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I. INTRODUCTION

The Standard Model of particle physics (SM) gives an
excellent description of elementary particle interactions as
observed today at particle accelerators. But, at the same time,
this model seems manifestly incomplete. The most impor-
tant qualitative phenomenon in this model, the spontaneous
breaking of its gauge symmetry SUð2Þ ×Uð1Þ, is put in by
hand, by the assumption of a fundamental Higgs scalar field
with negativemass parameter. This assumption alsomakes it
impossible, within the model, to compute the Yukawa
couplings that determine the fermion mass spectrum.
There are two strategies to build a more predictive theory

of SUð2Þ ×Uð1Þ symmetry breaking. One is to keep the
assumption that the breaking is due to a fundamental Higgs
field but add a strong symmetry such as supersymmetry
that constrains its behavior. The other is to assume that the
Higgs field is composite, formed from some underlying
strong dynamics. The discussions of these possibilities in
the literature contrast greatly. Since supersymmetry allows
a weak-coupling description, it is possible to work out the
phenomenology in great detail, defining a “minimal super-
symmetric Standard Model” and canonical nonminimal
extensions, and exploring the properties of these models in
every corner of their parameter spaces [1–3].
On the other hand, models with a composite Higgs field

are much more difficult to bring under control. Descriptions
of these models involve strong coupling. Reviews of the
phenomenology of these models are then necessarily

qualitative [4–6] and studies of particular models are done
by large-scale parameter scans [7–9].
In an attempt to improve this situation, we have been

studying the approach to composite Higgs models given by
Randall-Sundrum (RS) theory [10]. In this approach, the
four-dimensional strong-coupling dynamics is taken to be
dual to a weak-coupling five-dimensional dynamics in a
slice of anti-de Sitter space [11]. The boundaries of this
slice define infrared (IR) and ultraviolet (UV) scales for the
action of the new strong forces. It is attractive to link this
idea to that of gauge-Higgs unification, in which the Higgs
field is the fifth component of a five-dimensional gauge
field in the bulk space [12,13]. Electroweak symmetry
breaking can be achieved dynamically from condensation
of five-dimensional fermions [14–16]. We do not need to
introduce any fundamental scalars. In this way, it is
possible to build realistic theories with a minimal number
of free parameters.
Realistic RS models necessarily include hierarchies.

These models require heavy vectorlike partners of the
top quark and heavy resonances with the quantum numbers
of the SM gauge bosons, and these are not yet observed at
the LHC. In RS models, these heavy particles appear as
Kaluza-Klein (KK) recurrences in the fifth dimension and
have masses that are several times the IR scale. The
constraints on these particles, especially from precision
electroweak measurements, are sufficiently strong that their
masses must be well above 1 TeV. Gauge-Higgs unification
models contain nonlinear sigma model fields whose
dynamics is governed by a decay constant f, which is
of the order of the RS IR scale. In this paper, we will
arrange that there is a hierarchy between the Higgs field
vacuum expectation value v and the nonlinear sigma model
scale f: v=f ≪ 1. Ideally, this hierarchy should appear
naturally, but here it will be arranged by fine-tuning.
However, once the hierarchy has been arranged, the KK
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masses are also set to be much larger than v. We can use
v=f as an expansion parameter to organize the corrections
from the new physics present in the RS model. Using this
expansion as a guide, we will be able to present these
effects systematically.
Once this tuning is done, we will be able to focus on the

mass ratios of the heaviest SM particles—the W and Z, the
top quark, and the Higgs boson. In the simplest RS models
with gauge-Higgs unification, the masses of these particles
are all approximately equal. The ratio of these masses can
be corrected by an idea that fits naturally with the picture
that the RS model is a dual description of a strong-coupling
theory in four dimensions. In a complete four-dimensional
model, the electroweak gauge coupling and the top quark
Yukawa coupling will be determined by dynamics at a very
high mass scale, perhaps the grand unification or string
scale. This boundary condition at a high mass scale can be
represented phenomenologically in an RS model by oper-
ators on the UV boundary of the RS interval.
In this paper, we will show how these ideas are realized

in the simplest possible scheme for the bulk gauge group,
the SOð5Þ × Uð1Þ gauge symmetry put forward by Agashe,
Contino, and Pomarol as the basis for the “minimal
composite Higgs model” [7]. We will ignore the dynamics
of light flavors and concentrate on electroweak symmetry
breaking driven by top quark condensation. With this
restriction, the number of parameters of the model is small,
and the parameter space of the model is straightforward to
describe.
The phenomenology of electroweak symmetry breaking,

including the computation of precision electroweak cor-
rections, has been studied previously in similar models
[17–20].
The outline of this paper is the following: Sections II–IV

will describe the construction of the model. In Sec. II, we
will recall some basic formalism of RS models and present
our notation. In Sec. III, we will discuss the coupling of the
top quark to the SOð5Þ gauge field in the bulk of the RS
space. We will introduce the idea of competition between
five-dimensional fermion multiplets as a mechanism for
achieving the v=f hierarchy [21]. This mechanism will give
us a simple tuning parameter and, at the same time, will
provide a robust Higgs quartic term. We will then discuss
the problem of obtaining the correct ratios of theW, Higgs,
and top quark masses. In Sec. IV, we will introduce UV
boundary kinetic terms for the W, Z, and top quark and
explain how to adjust these boundary terms to fit the mass
ratios that are observed in nature.
Section V presents the heart of our analysis. In this

section, we will write the full Higgs potential in our model
and minimize it. We will show that, after applying con-
straints from the W, Z, t and Higgs masses and other
constraints from precision electroweak measurements, we
are left with only three parameters to vary. One of these
controls the v=f hierarchy and the scale of the KK

resonance masses. One controls the degree of composite-
ness of the top quark and its competing vectorlike top
multiplet. The final parameter turns out to be almost
irrelevant, affecting the physics of the model only very
weakly. Thus, the model gives us essentially a two-
parameter space to explore.
The last sections of this paper will analyze the effects of

new physics on precision electroweak observables in this
two-parameter space of models. In Sec. VI, we will
compute the precision electroweak parameters S and T
[22] and explain the constraints on the parameter space that
these imply. To analyze S and T, we will introduce a
systematic expansion of electroweak amplitudes in powers
of v=f. This expansion applies to a broad class of RS
models beyond the specific models constructed in this
paper. In Sec. VII, we will study the effect of new physics
on the partial width for Z → bb̄. Although this observable
provides a strong constraint on some classes of composite
Higgs models [23], we will find that the constraint on our
RS models is relatively weak. Section VIII will give some
conclusions.
In this paper, we will ignore the masses of all SM

fermions except the top quark. There are more issues to
discuss in the quantum number assignments for generating
masses for the lighter quarks and leptons. Most immedi-
ately, this RS model predicts deviations from the SM in
eþe− → ff̄ reactions at higher energy that depend on the
detailed scheme for generating the light fermion masses.
We will present these in the next paper in this series [24].

II. SOð5Þ × Uð1Þ MODEL

This section establishes the basic formalism and notation
for our discussion of RS models with gauge-Higgs uni-
fication. The notation follows that of [21].

A. Overview

We consider a model of gauge and fermion fields living
in the interior of a slice of five-dimensional anti–de Sitter
space

ds2 ¼ 1

ðkzÞ2 ½dx
mdxm − dz2� ð1Þ

with nontrivial boundary conditions at z ¼ z0 and z ¼ zR,
with z0 < zR. Then z0 gives the position of the “UV brane”
and zR gives the position of the “IR brane.” In many
treatments, the finite fifth dimension originates as an S1=Z2

orbifold of a circle. This restricts the possible choices of
boundary conditions. Here we will view the fifth dimension
as a simple interval, and we will allow arbitrary choices of
boundary conditions at each end.
The perhaps more physical metric

ds2 ¼ e−2kx
5

dxmdxm − ðdx5Þ2 ð2Þ
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is related by kz ¼ exp½kx5�. We take the size of the interval
in x5 to be πR. Then

z0 ¼ 1=k; zR ¼ 1=kR ≡ eπkR=k: ð3Þ

The scales k and kR set the ultraviolet and infrared
boundaries of the dynamics described by the 5D fields.
For concreteness, we will be interested in values of kR of

order 1 TeV and values of k of order 100 TeV. Thus, we
imagine that z0 is at a flavor dynamics scale rather than at
the Planck scale.
The bulk action of gauge fields and fermions in RS is

Sbulk ¼
Z

d4xdz
ffiffiffi
g

p �
−
1

4
gMPgNQFa

MNF
a
PQ

þ Ψ̄½ieMA γADM −mΨ�Ψ
�
: ð4Þ

We will notate gauge fields as AA
M, whereM ¼ 0, 1, 2, 3, 5,

with lower case m ¼ 0, 1, 2, 3. Fermion fields are
4-component Dirac fields. We parametrize the 5D Dirac
mass as

mΨ ¼ ck; ð5Þ

defining a dimensionless parameter c for each Dirac
multiplet. In our formalism, the Higgs field is a background
gauge field, so we will quantize in the Feynman-Randall-
Schwartz background field gauge [25].
Green’s functions in RS will be important to our

analysis. Since [21] is devoted to the calculation of the
Coleman-Weinberg potential in RS models, formulas for
Green’s functions are given there for Euclidean momenta.
In this paper, we will work with Green’s functions with
Minkowski momenta. Euclidean Green’s functions, where
they appear, will be denoted GE.
The solutions of field equations in the RS geometry with

Minkowski momenta are given in terms of Bessel functions
in the form [26–28]

Φ ¼ za½AJνðpzÞ þ BYνðpzÞ�e−ip·x: ð6Þ

It is useful to define combinations of the Bessel functions
so that the solutions (6), as a function of z ¼ z1, have
definite boundary conditions at a point z ¼ z2. Thus we set

Gαβðz1; z2Þ ¼
π

2
½Jναðpz1ÞYνβðpz2Þ − Yναðpz1ÞJνβðpz2Þ�;

ð7Þ

where α; β ¼ �1. For solutions to the Dirac equation, the
orders of the Bessel functions depend on the parameter c
according to

for α; β ¼ þ1 ∶ νþ ¼ cþ 1

2
;

for α; β ¼ −1 ∶ ν− ¼ c −
1

2
: ð8Þ

Then Gþþðz; zRÞ, G−−ðz; zRÞ give solutions of the Dirac
equation with Dirichlet boundary conditions on the IR
brane: Φðz; zRÞ ¼ 0 at z ¼ zR. Similarly, Gþ−ðz; zRÞ,
G−þðz; zRÞ will give solutions with Neumann boundary
conditions on the IR brane. The solutions to Maxwell’s
equations are given similarly by these Green’s functions for
c ¼ 1=2. Further properties of these Green’s functions are
given in Appendix A. The Euclidean Green’s functionGEαβ

is analogously defined in (F1).

B. Group structure and boundary conditions

We choose the bulk gauge symmetry to beG ¼ SOð5Þ ×
Uð1ÞX [7]. Boundary conditions break the bulk symmetry
to the SM gauge symmetryGSM ¼ SUð2ÞL ×Uð1ÞY on the
UV brane and to H ¼ SOð4Þ ×Uð1ÞX ¼ SUð2ÞL ×
SUð2ÞR ×Uð1ÞX on the IR brane. This model can be
viewed as a dual description of an approximately conformal
dynamics between the scales kR ¼ 1=zR and k ¼ 1=z0 in
four dimensions. In the dual 4D interpretation, the system
has a global symmetry G, of which the subgroup GSM is
gauged to a local symmetry. The strongly interacting theory
spontaneously breaks G to the subgroup H at the scale kR.
The extra SUð2Þ factor in H is a custodial symmetry that
protects the relation mW ¼ cwmZ from receiving large
corrections [29]. The study of the 5D model gives a
calculable approach to the 4D theory.
We decompose the adjoint representation of the SOð5Þ ×

Uð1Þ gauge group as described in Appendix B. The 10
generators of SOð5Þ are labeled Ta

L, T
a
R, T

a5, T45, with
a ¼ 1, 2, 3. Consider first a pure SOð5Þmodel, with SOð5Þ
broken to an SOð4Þ containing the 4D local gauge group
SUð2ÞL. The boundary conditions for the M ¼ m compo-
nents of the gauge fields would be

AaL
m ∼ ðþ þ Þ;

AaR
m ∼ ð− þÞ;

Aa5
m ; A45

m ∼ ð− − Þ; ð9Þ

with a ¼ 1, 2, 3 and þ (−) indicates Neumann (Dirichlet)
boundary conditions on the left (UV) and right (IR)
boundaries. The zero modes of the AaL

m fields would be
the 4D SUð2ÞL gauge bosons. The components AA

5 have the
opposite boundary conditions to those of the AA

m, so Aa5
5 ,

A45
5 have zero modes that can be identified with the

Goldstone bosons. To set up an SOð5Þ × Uð1Þ model
containing the 4D local gauge group SUð2Þ ×Uð1Þ on
the UV boundary, we introduce a Uð1Þ gauge field AX

M and
mix it with the field A3R

M . We also need to modify the
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boundary condition of A3R
m so that the Uð1Þ gauge sym-

metry coincides with the Uð1Þ symmetry of the Standard
Model. Let g5 and gX be the 5D gauge couplings of SOð5Þ
and Uð1Þ. Introduce an angle β such that

cβ≡ cosβ¼ g5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25þg2X

q ; sβ≡ sinβ¼ gXffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25þg2X

q : ð10Þ

We assign the combinations

�
Z0
m

Bm

�
¼

�
cβ −sβ
sβ cβ

��
A3R
m

AX
m

�
ð11Þ

and modify the boundary conditions of A3R
m in (9) to

Bm ∼ ðþ þ Þ;
Z0
m ∼ ð− þÞ: ð12Þ

The zero mode of the field Bm is the 4D Uð1Þ gauge boson.
In terms of the gauge fields with definite boundary
conditions, the 5D covariant derivative is

DM ¼ ∂M − i

�
g5AbL

M TbL þ g5YBMY þ g5AaR
M TaR

þ g5
cβ

Z0
MðT3R − s2βYÞ þ g5Ac5

MTc5

�
; ð13Þ

summed over a ¼ 1, 2, 3, b ¼ 1, 2, and c ¼ 1, 2, 3, 4. The
5D hypercharge coupling is given by g5Y ¼ g5sβ. The
hypercharge and electric charge are given by

Y ¼ T3
R þ X and Q ¼ T3

L þ T3
R þ X ð14Þ

where X is the Uð1ÞX charge.

C. Identification of the Higgs field

The four zero modes Aa5
5 ; A45

5 transform as a complex
doublet under SUð2ÞL. In the dual picture, they correspond
to massless Goldstone bosons of the broken global sym-
metry G=H. We identify them as the Higgs doublet. Since
AA
5 zero modes are proportional to z, we can represent these

zero modes as

Ac5;0
5 ðz; xmÞ ¼ NhzhcðxmÞ; ð15Þ

with c ¼ 1, 2, 3, 4 and Nh a normalization constant:

Nh ¼ ½ðz2R − z20Þ=2k�−1=2: ð16Þ

Because the Higgs fields appear as components of gauge
fields, we can gauge away their vacuum expectation values
in the central region of z. However, in a 5D system
with boundaries, we cannot gauge away these background
fields completely. Instead, such a gauge transformation

leaves singular fields at z0 or zR. We can parametrize the
gauge-invariant information of the background fields in
terms of a Wilson line element from z0 to zR. The Coleman-
Weinberg potential of the Higgs field will depend on this
variable [21].
We can align the expectation value along the A45

direction, hhci ¼ hhiδc4 ≠ 0 in (15). Then the Wilson line
element becomes

UW¼exp

�
−ig5

Z
zR

z0

dzNhzhhiT45

�
¼exp

�
−

ffiffiffi
2

p
i
hhi
f
T45

�
:

ð17Þ
This equation introduces the Goldstone boson decay
constant f, analogous to the pion decay constant in
QCD. Explicitly,

1

f
¼ g5ffiffiffi

2
p

Z
zR

z0

dzNhz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25k
4

ðz2R − z20Þ
r

≃

ffiffiffiffiffiffiffi
g25k

q
2

zR: ð18Þ

The magnitude of f is determined by the IR scale kR and
the 5D gauge coupling g5. The standard identification of a
dimensionless 4D gauge coupling in RS is [25]

g2 ¼ g25
πR

¼ g25k
log zR=z0

: ð19Þ

Then for our models with the parameter choice k=kR ¼
zR=z0 ¼ 100, we have

f ¼ 0.93
g

kR: ð20Þ

The size of f relative to the IR cutoff depends on the
strength of the 5D coupling g5.
For each type of field, its representation under the bulk

gauge group G will determine the exact form of the T45

matrix. Therefore, the Coleman-Weinberg potential will
depend on the choice of fermion representation. More
details of the needed SOð5Þ group theory can be found in
Appendix B.
From the form ofUW in (17), it is natural to expect that the

potential for h will be minimized either for hhi ¼ 0 or for
hhi ∼ f for most of the parameter space. However, our
vacuum should satisfy 0 < hhi ≪ f. This implies that we
must be near a second-order phase transition in the phase
diagram of the system. To implement this, the field content
of our system should provide competing contributions to the
Coleman-Weinberg potential so that the vacuum is in the
vicinity of the phase transition with a hierarchy hhi ≪ f.

III. W=HIGGS=TOP MASSES IN
REFERENCE MODELS

Before introducing a complete model, we describe some
aspects of our model-building approach and present some
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estimates of the model parameters. Complete RS models
typically invoke some boundary interactions in addition to
interactions in the bulk of 5D AdS. In this section, we will
explain why such boundary interactions are needed in our
models by estimating the RS coupling values in simplified
models in which these terms are absent.

A. Fermion competition and electroweak
symmetry breaking

In this paper, we consider models in which the 5D
multiplet containing the top quark is the main driving
force for the electroweak symmetry breaking (EWSB). In
composite Higgs models, it is well known that the
Coleman-Weinberg potential from gauge fields always
prefer the symmetric point hhi ¼ 0, while fermion fields,
particularly the top quark, can give negative contributions
to the potential and therefore trigger the EWSB. If the
Higgs field pairs up two massless Weyl fermions with
opposite chirality, it is energetically favorable to give an
expectation value to the Higgs and form a massive Dirac
fermion. We call this an “attractive” fermion multiplet.
In models with only gauge fields and the top quark

multiplet Ψt, it is possible to fine-tune the ðmassÞ2 of the
Higgs boson to a small value compared to the scale kR. But
typically this also results in a small value for the Higgs
quartic term, due to cancellations of the contributions to the
quartic from the two sources, and a minimum of the
potential at hhi ∼ f. To achieve hhi ≪ f, we will introduce
a second multiplet of vectorlike fermions ΨT that gives a
positive contribution to the Higgs potential and opposes the
fermion condensation. We call this a “repulsive” fermion
multiplet. In [21], we gave examples of the competition
between fermion multiplets in simple SUð2Þ models and
showed how these can lead to hhi ≪ f. In this more
realistic setting, the multiplet ΨT will include a vectorlike
top partner T that is naturally light compared to the KK
scale kR.
Our analysis in this paper will explore the interplay of

these two fermion mutiplets and their consequences for
precision electroweak observables and the properties of the
top quark and the Higgs boson. We will not discuss here the
inclusion of light fermions and the issues of flavor and
flavor-changing transitions. We believe that it is possible to
build an acceptable theory of flavor based on this model by
introducing additional fermion multiplets with c > 1=2,
peaked near the ultraviolet boundary [30]. However, a full
analysis of the flavor dynamics is beyond the scope of
this paper.

B. Top quark embeddings

Our first task is to embed the top quark into an SOð5Þ
multiplet. This multiplet must contain the ðtL; bLÞ doublet,
so that SUð2Þ gauge bosons can link these states, and the
tR, so that theUW matrix can link this state to the tL. Before
electroweak symmetry breaking, the spectrum of states in

each multiplet depends on the boundary conditions. Our
conventions for fermion boundary conditions are given in
Appendix A. 2.
In our models, the ðtL; bLÞ will be left-handed zero

modes, requiring ðþþÞ boundary conditions. The tR will be
a right-handed zero mode, with ð−−Þ boundary conditions.
If the tL and tR are to be linked by a Higgs field, all three
fields should belong to the same 5D multiplet. In the
models we consider here, we will not include the bR in this
multiplet. This gives the bottom quark zero mass in the
approximation used in this paper. However, it also explic-
itly breaks the SOð4Þ custodial symmetry. We will see later
that this produces a loop-suppressed contribution to the
electroweak T parameter [22].
There is a strong possibility of confusion between the

labels L, R used for the 4D chirality components of a 5D
Dirac field in Appendix A. 2 and the SM labels such as tL
and tR for the 4D zero mode fields. Despite this, we will use
the labels tL, bL, tR to denote the 5D Dirac fields that
contain the 4D tL, bL, tR as zero modes. At points of
possible confusion, we will be explicit about which label
we are applying.
There are several possibilities for the embedding of the

tL, bL, and tR states into SOð5Þ multiplets. The simplest is
to embed these three states in the 4 of SOð5Þ [31],

Ψt ¼

2
66664
tLðþþÞ
bLðþþÞ
tRð−−Þ
b0ð−þÞ

3
77775; ΨT ¼

2
66664
Tðþ−Þ
Bðþ−Þ
T 0ð−þÞ
B0ð−þÞ

3
77775: ð21Þ

Another possibility is to embed these states in the 5 of
SOð5Þ,

Ψt ¼

2
664
�
χfð−þÞ tLðþþÞ
χtð−þÞ bLðþþÞ

�
tRð−−Þ

3
775;

ΨT ¼

2
664
�
χFð−þÞ Tðþ−Þ
χTð−þÞ Bðþ−Þ

�
T 0ð−þÞ

3
775: ð22Þ

The display of the 5 here is as in (B9); the matrix in
parentheses is a bidoublet, with SUð2ÞL acting vertically
and SUð2ÞR acting horizontally. The fields labeled f, F
have charge Q ¼ 5

3
. The embedding of t and b in the 5 was

suggested by Agashe, Contino, Da Rold, and Pomerol to
provide a custodial symmetry constraining the Zbb̄ cou-
pling [32,33]. For each of these choices, we have also put
the competing repulsive multiplet ΨT into an SOð5Þ
representation of the same structure.
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We should note that the boundary condition choices in
(21) and (22) are not compatible with the idea that the fifth
dimension of the RS space is an S1=Z2 orbifold. In
particular, the boundary conditions for b0 in (21) and for
χf ad χT in (22) are not consistent for an S1=Z2 orbifold.
We note, further, that the boundary conditions that we

have chosen for the fields b0, χF, and χT violate the SUð2ÞR
symmetry on the IR brane, where that symmetry is exact in
the gauge sector. We believe that this is a consistent choice
to make. From the point of view of the four-dimensional
dual theory, SUð2ÞR is only a global symmetry, and there is
no difficulty in writing terms in the Lagrangian that
explicitly violate a global symmetry. The treatment of
these states in perturbation theory does not contain any
anomalous terms, and these modes have little effect at low
energies because they are massive at the KK mass
scale. Finally, the SUð2ÞR symmetry breaking could
potentially lead to large contributions to the T parameter
of precision electroweak analysis. Wewill provide evidence
against such a large effect when we analyze the T parameter
in our models in Sec. VI E. The reader who would insist on
exact gauge symmetry on the IR brane can restore the
formal gauge invariance by adding a scalar field on the IR
brane that spontaneously breaks the SUð2ÞR symmetry
there. Our results would then apply to a decoupling limit in
which this scalar, after symmetry breaking, becomes very
massive.
In this schema, the tL and tR fields necessarily belong to

the same SOð5Þ multiplet and have the same value of the
parameter c. We will set up the model in such a way that the
tL and bL zero modes are in the UV, to satisfy precision
electroweak constraints on the bL. This implies c≳ 1=2.
That in turn implies that the tR zero mode is in the IR. Some
observable implications of the composite tR are presented
in [24].

C. Expected mass ratios

We are now in a position to estimate the mass ratios of
W, Higgs, and t. We assume that it is possible to engineer a
v=f hierarchy by competition between the Ψt and ΨT
multiplets, as described above. In this simplified analysis,
we will ignore the contribution of the gauge bosons to the
Coleman-Weinberg potential. We will see later that this will
be a good approximation in our complete model.
Before we compute the mass ratios, we might ask what

values these ratios have in nature. In the calculations of this
paper, we will not strive for high precision. That would
require a renormalization program for loop diagrams in 5D,
which is beyond the scope of this paper. However, we
should take into account SM renormalizations that have a
large influence on the numerical results. The most impor-
tant of these is the QCD renormalization of the top quark
Yukawa coupling from the scalemt;MS to the 1–3 TeV scale
of 5D top quark condensation. A top quark pole mass of
173 GeV gives an MS mass of 163 GeV. From this value,

we can use the two-loop beta functions to estimate the top
quark Yukawa coupling at higher mass scales [34]. We find

yt ¼ 0.94 ðatmt;MSÞ; 0.84 ðat 2 TeVÞ;
mt;MS ¼ 163GeV ðatmt;MSÞ; 147GeV ðat 2 TeVÞ:

ð23Þ

The difference between the one- and two-loop extrapola-
tions is about 1.5%. Other SM corrections are of the order
of the error term. For example, the rescaling of the Higgs
boson mass from 2 TeV to v ¼ 246 GeV due to Higgs field
strength rescaling is

ZðvÞ1=2 ¼ exp

�
−
1

2

Z
2TeV

v

dQ
Q

3y2t ðQÞ
ð4πÞ2

�
¼ 1–1.5%: ð24Þ

Taking mt¼147GeV, mW¼80.4GeV, and mh ¼ 125GeV,
we have in nature

mt=mW ¼ 1.83; mh=mW ¼ 1.55; mt=mh¼ 1.18 ð25Þ

for dynamical electroweak symmetry breaking at the 2 TeV
mass scale.

D. Mass ratios in simple models

How do these mass ratios compare to those in our
models? The W and t masses can be computed without
reference to the form of the potential by solving for the
relevant poles in the 5D Green’s functions. For definiteness,
consider the gauge fields (9) with a ¼ 1. The representation
of T45 on the triplet ðA1L; A1R; A15Þ is given in (B13) and
the corresponding Wilson line element (17) in (B12). Then
the matrix C in (A17) is

C¼

0
BB@
ðð1þcÞ=2ÞG−− ðð1−cÞ=2ÞG−− ð−s= ffiffiffi

2
p ÞG−þ

ðð1−cÞ=2ÞGþ− ðð1þcÞ=2ÞGþ− ðs= ffiffiffi
2

p ÞGþþ
ðs= ffiffiffi

2
p ÞGþ− ð−s= ffiffiffi

2
p ÞGþ− cGþþ

1
CCA;

ð26Þ

where s ¼ sin θ, c ¼ cos θ, and Gαβ ≡Gαβðz0; zR; pÞ,
evaluated with c ¼ 1

2
. The W masses are the zeros of the

determinant of C, given by

detC ¼ Gþ−

�
1þ c2

2
GþþG−− þ s2

2
Gþ−G−þ

�
¼ Gþ−½p2z0zRGþþG−− − s2=2�=p2z0zR: ð27Þ

The second step uses the identity (A3).
We can analyze (27) in the limit p=kR ≪ 1. The function

Gþ− has its first zero at p=kR ¼ 2.41; this is a KK boson.
For hhi ¼ 0, the quantity in brackets has a zero at p2 ¼ 0;

JONGMIN YOON and MICHAEL E. PESKIN PHYS. REV. D 100, 015001 (2019)

015001-6



this is the massless W boson of the theory with unbroken
SUð2ÞL. Turning on a small value of hhi moves this zero to

p2 ¼ s2
1

log zR=z0

1

ðz2R − z20Þ
ð28Þ

where we have evaluated the G functions using (A5). The
Green’s fuctions have a pole at this value that should be
identified with the massive W boson.
Following (17) we set

s ¼ sinhhi=f; also s2 ¼ sinhhi=2f: ð29Þ

We define the parameter v by

v≡ f sin
hhi
f

or v=f ≡ s: ð30Þ

With this identification, vwill correspond closely to the SM
Higgs vacuum expectation value, equal to 246 GeV. For
example, combining (18) and (28), we find, to leading
order in v=f,

m2
W ¼ 1

4

g25k
log zR=z0

v2: ð31Þ

Using the identification of the 4D coupling (19), this gives
the SM formula

m2
W ¼ 1

4
g2v2; ð32Þ

up to corrections of order v2=f2.
The top quark mass can be determined in a similar way.

For the scenario (21), assuming again v=f ≪ 1, the mixing
of tL and tR in (21) gives

m2
t ¼ s22

1

z0zRGþþG−−

¼ ϒðctÞ
g2

8
v2; ð33Þ

where

ϒðctÞ ¼ logðzR=z0Þ
�
1 − ðz0=zRÞ2

2

�

×

�
1þ 2c

1 − ðz0=zRÞ1þ2c

��
1 − 2c

1 − ðz0=zRÞ1−2c
�
: ð34Þ

For the scenario (22), we have a mixing problem that
involves the three fields ðtL; χb; tRÞ. The lowest mass
eigenvalue is

m2
t ¼ ϒðctÞ

g2

4
v2: ð35Þ

For z0=zR ¼ 0.01, ϒðctÞ spans the range 1.75–0.42 as ct is
varied from 0.3 to 0.7.

Thus, we find

ct 4 5
mW − gv=2 gv=2
mt 0.3 0.94gv=2 1.32 gv=2

0.5 0.71gv=2 gv=2
0.7 0.46gv=2 0.65gv=2

ð36Þ

It is not possible to obtain a W=t mass ratio as large as that
seen in nature, even for values of c down to c ¼ 0. If we
ignore the constraint of theW mass, we could adjust g to fit
the top quark mass in any scenario. However, this requires
large values of g, g2=4π ∼ 1, for large ct.
The Higgs boson mass is determined by the curvature of

the Coleman-Weinberg potential at its minimum. As we
have described in Sec. II C, we will obtain a small value of
v=f by setting up a pair of 5D fermions, one with an
attractive channel for condensation and one with a repulsive
channel, that compete with one another. We choose the
values of c for the two fermion representations such that the
quadratic terms in the Coleman-Weinberg potential come
close to cancelling. If ct and cT are the c parameters for Ψt
and ΨT , the condition v=f ≪ 1 is realized in narrow region
near a phase transition in the ðct; cTÞ plane. Just on the phase
transition line, v ¼ 0 and the masses of W, t, and h all
vanish.
In this section, just for the purpose of estimation, we

approximate the potential along this line as having the form

VðvÞ ≈ 1

4
λðctÞv4: ð37Þ

(In the full expression, there are also v4 log 1=v terms [21]).
Then, near the phase transition line, the Higgs mass would
be given by

mh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2λðctÞ

p
v: ð38Þ

In our method of calculation, the potential is more readily
obtained in terms of s or s2 in (29), that is, in the form

VðvÞ ≈ 1

4
λ̄ðctÞ

�
v
f

�
4

z−4R : ð39Þ

The relation between λ and λ̄ is

λ ¼ λ̄ ·
1

ðfzRÞ4
¼ λ̄ ·

�
g25k
4

�
2

; ð40Þ

or, for g as in (19) and zR=z0 ¼ 100,

λ ¼ λ̄ · ðg2Þ2 · ð1.3Þ: ð41Þ
Then

mh¼ 1.6g2
ffiffiffī
λ

p
v: ð42Þ

For each fermion representation, we can compute the
contribution to the Coleman-Weinberg potential in terms of
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a finite-dimensional matrix of RS Green’s functions C
defined in Appendix A. 4. The result, called Falkowski’s
theorem [21,35], is

V ¼ −2 · 3
Z

d4pE

ð2πÞ4 log detC: ð43Þ

The factor 3 is the number of QCD colors. (We assume in
the rest of this paragraph that ΨT , like Ψt, is a color 3.) For
fermions in the 4 of SOð5Þ,

VðΨtÞ¼−6
Z

d4pE

ð2πÞ4 log
�
1þ s22

p2
Ez0zRGEþþGE−−

�
;

VðΨTÞ¼−6
Z

d4pE

ð2πÞ4 log
�
1−

s22
p2
Ez0zRGEþ−GE−þ

�
: ð44Þ

For fermions in the 5 of SOð5Þ,

VðΨtÞ ¼ −6
Z

d4pE

ð2πÞ4 log
�
1þ s2=2

p2
Ez0zRGEþþGE−−

�
;

VðΨTÞ ¼ −6
Z

d4pE

ð2πÞ4 log
�
1 −

s22ð2 − s22Þ
p2
Ez0zRGEþ−GE−þ

�
: ð45Þ

The terms of order s2 in these expressions are identical
between the 4 and 5 up to an overall factor of 2. Since the
vanishing of the s2 term determines the location of the line
of phase transitions in the ðct; cTÞ plane, that location will
be the same for the two systems. On the other hand, the
Higgs quartic term is generally bigger in the 5 than in the 4,
since VðΨtÞ and VðΨTÞ in the 5 have different periods in
hhi=f. This gives a relative advantage in model-building
for fermions in the 5. See Appendix F for more details.
Consider first the situation with Ψt in the 4. For ct ¼ 1

2
,

the phase transition occurs at cT ¼ 0.438 and, at this point,
the sum of the Ψt and ΨT potentials is reasonably
approximated by λ̄ðct ¼ 1

2
Þ ¼ 0.0076. For 0.3 < ct < 0.7,

the value of λ̄ðctÞ varies over the interval 0.019 − 0.0015.
For Ψt in the 5, the location of the phase transition

in cT is the same as for the 4. At this point, the sum of
the Ψt and ΨT potentials is reasonably approximated by
λ̄ðct ¼ 1

2
Þ ¼ 0.043. For 0.3 < ct < 0.7, the value of λ̄ðctÞ

varies over the interval 0.099 − 0.013.
Converting back to λ and expressing these results in

terms of a prediction for the Higgs boson mass, we
find

ct 4 5
mh 0.3 g2 · 55 GeV g2 · 130 GeV

0.5 g2 · 35 GeV g2 · 83 GeV
0.7 g2 · 16 GeV g2 · 45 GeV

ð46Þ

It is possible make these values of mh compatible with
the measured value of 125 GeV, but only by increasing the
coupling constant g. Even in the worst case of ct ¼ 0.7with

Ψt in the 4, we need g2=4π ¼ 0.62, a coupling that is strong
but not prohibitively so. However, across the table, the
value of g required to fit the Higgs boson mass is different
from that required to fit the tmass except at specific (tuned)
values of ct.
In the simple model presented in this section, a single

value of g5 was expected to explain the W, t, and Higgs
masses. We saw that this was overly ambitious. From the
point of view of duality with a strongly coupled 4D theory,
the assumption also seems excessively strong. In a 4D
theory, the values of the SUð2Þ gauge coupling and the top
quark Yukawa coupling would be set at some much larger
energy scale, perhaps at the scale of grand unification. These
settings would appear in the RS model as boundary con-
ditions on the UV brane. In the next section, we will show
that this effect can be modeled by introducing boundary
kinetic terms for the SUð2ÞL bosons and the top quark
multiplets. This will allow us the freedom that we need to fit
the W, t, and Higgs masses and, more generally, represent
the known properties of these particles within our RSmodel.
Though this can be done with either of the choices for the

representation of Ψt, from here on we will concentrate on
the choice of Ψt in the 5 of SOð5Þ, which requires smaller
values of g5 to fit the top quark and Higgs boson masses.

IV. UV BOUNDARY KINETIC TERMS

To model the UV boundary conditions on the 4D gauge
and Yukawa couplings, we introduce boundary kinetic
terms for the SUð2Þ × Uð1Þ bosons and the top quark. In
this section, we will describe the effects of these boundary
terms on the Green’s fuctions for these 5D fields. These
effects are straightforward to understand. The formal
derivation of these results is somewhat involved. We
present it in Appendix C.

A. Boundary gauge kinetic term

For a spin-1 field with zero modes corresponding to a 4D
gauge field, we introduce the boundary kinetic term of
which size is given by a dimensionless parameter a,

SUV ¼
Z

d4xdz

� ffiffiffi
g

p �
−
1

4
az0δðz − z0ÞgmpgnqFmnFpq

��
:

ð47Þ

For the zero modes, which have wave functions constant in
z, this term adds to the dz=kz or dx integral of the standard
kinetic term over the fifth dimension. Through this, it
modifies the formula (19) for the 4D gauge coupling to

g2 ¼ g25
ðπRþ a=kÞ ¼

g25k
ðlog zR=z0 þ aÞ : ð48Þ

To visualize this result, imagine that the vector boson zero
mode, which is constant in z for a ¼ 0, acquires a delta
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function piece proportional to
ffiffiffi
a

p
at z ¼ z0. By increasing

a, we can make this gauge coupling as weak as we need for
those modes AA

m that correspond to weakly coupled 4D
gauge fields. The addition of the boundary term can have a
relatively large effect on the properties of the zero mode
wave functions while giving only small corrections to the
masses and wave functions of the corresponding Kaluza-
Klein states. For the components of AA

m that do not appear
in the boundary kinetic term, the effective strength of the
5D gauge interactions is still given by

g2RS ¼
g25k

log zR=z0
: ð49Þ

As shown in Appendix C, the boundary kinetic term for
Am adds a component with − boundary conditions to the
original component with þ boundary conditions. In terms
of the relevant Gαβ functions, the boundary condition at the
UV brane is changed from (A7) according to

G−;βðz0;zRÞ¼ 0→G−;βðz0;zRÞþapz0Gþ;βðz0;zRÞ¼ 0:

ð50Þ

(Here the subscript β specifies the boundary condition on
the IR brane.) The boundary condition on the A5 compo-
nent, which originally had a − boundary condition in the
UV, is also changed by (50). The boundary kinetic term
does not affect Am fields with − boundary conditions or A5

fields with þ boundary conditions. We will see that taking
a large compared to log zR=z0, as we will require for a small
SUð2Þ gauge coupling, suppresses the influence of the zero
modes on the Coleman-Weinberg potential.
In the models in this paper, we introduce separate

boundary kinetic terms with coefficients aW and aB for
the SUð2ÞL and Uð1ÞY gauge fields, respectively. Other
boundary terms would have no effect, since the corre-
sponding gauge fields have − boundary conditions on the
UV brane. In the following, we abbreviate

LW ¼ log
zR
z0

þ aW; LB ¼ log
zR
z0

þ aB: ð51Þ

B. W� and charged KK bosons

The dynamics of theW� bosons and their KK excitations
is encoded in the Green’s functions of AaL

m , AaR
m , and Aa5

m for
a ¼ 1, 2. The calculation of these Green’s functions is
described in Appendix D. 1.
The mass eigenvalues in this sector are given by the

zeros of the determinant of the C matrix for this problem.
This is

detC¼Gþ−

�
GþþðG−−þaWpz0Gþ−Þ−

s2

2p2z0zR

�
; ð52Þ

a simple generalization of (27). The factor Gþ− has no
zeros near p2 ¼ 0. To leading order in s2, the position of the
first zero in the second factor is

m2
W ¼ s2

LW

1

ðz2R − z20Þ
¼ g2v2

4
; ð53Þ

with g2 given by (48). The low-momentum behavior of the
propagator hAaL

m ðzÞAaL
n ðz0Þi, at leading order in s2, works

out to

g25hAaL
m ðzÞAaL

n ðz0Þi ¼ g2ηmn

p2 −m2
W
; ð54Þ

as it should be. To leading order in s2, the matrix elements
of gauge bosons between fermion zero modes such as
ðνL; eLÞ involve only this Green’s fuction. The expression
for the Green’s function is independent of z and z0, so the
fermion scattering amplitudes are independent of details of
the fermion wave functions in z and depend only on the
overall gauge charges [25]. Then we recover the structure
of the SM weak interactions to this order,

iM ¼ i
g2=2

p2 −m2
W
ðTþLT−L þ T−LTþLÞ: ð55Þ

We will discuss the order s2 corrections to this result
in Sec. VI.
Evaluating detC in Euclidean momentum space and

using the results of [21], we find the contribution to the
Coleman-Weinberg potential of the Higgs boson from the
sector of charged gauge bosons,

VWðhÞ¼þ2×
3

2

Z
d4pE

ð2πÞ4

×log

�
1þ s2=2

p2
Ez0zRGEþþðGE−−þaWpEz0GEþ−Þ

�
:

ð56Þ

The effect of the aW term in this expression is to suppress
the contribution of this sector.

C. Z=γ and neutral KK bosons

In a similar way, the dynamics of the photon and Z boson
and their KK excitations is encoded in the Green’s
functions of A3L

m , A3R
m , AX

m, and A35
m . The calculation of

these Green’s functions is described in Appendix D. 2. In
this discussion, we will use the basis ðA3L

m ; Bm; Z0
m; A35

m Þ
defined in (11).
The mass eigenvalues in this sector are given by the zeros

of the determinant of the C matrix. For this sector,

DISSECTION OF AN SOð5Þ ×Uð1Þ … PHYS. REV. D 100, 015001 (2019)

015001-9



detC¼Gþ−

�
GþþðG−−þaBpz0Gþ−ÞðG−−þaWpz0Gþ−Þ

−
s2

2p2z0zR
ððG−−þaBpz0Gþ−Þ

þ s2βðG−−þaWpz0Gþ−ÞÞ
�
: ð57Þ

The factor Gþ− has no zeros near p2 ¼ 0. The extra factors
of the form ðG−− þ apz0Gþ−Þ lead to a pole in the Green’s
functions at p2 ¼ 0 in addition to the pole at a position of
order s2=z2R that we saw in the charged vector boson
Green’s functions. These poles represent the photon and the
Z boson. The Z pole is located at the first zero of the second
factor in (57), given to leading order in s2 by

m2
Z ¼ s2ðLB þ s2βLWÞ

LBLW

1

ðz2R − z20Þ
: ð58Þ

The photon pole at p2 ¼ 0 appears only in the Green’s
functions hA3L

m A3L
n i, hA3L

m Bni, and hBmBni. The Z pole
appears in all 2-point functions of the four vector fields, but
the contributions in the Z0 and A35 Green’s functions are
subleading in s2. To leading order in s2, we find

g25hA3L
m ðzÞA3L

n ðz0Þi¼ kg25ηmn

p2ðp2−m2
ZÞðLBþ s2βLWÞ

× ½−m2
Zs

2
βþðm2

Z=s
2Þp2z2RLB�

g5g5YhA3L
m ðzÞBnðz0Þi¼

kg5g5Yηmn

p2ðp2−m2
ZÞðLBþ s2βLWÞ

× ½−m2
Zsβ�

g25YhBmðzÞBnðz0Þi¼
kg25Yηmn

p2ðp2−m2
ZÞðLBþ s2βLWÞ

× ½−m2
Zþðm2

Z=s
2Þp2z2RLW �: ð59Þ

Again, the expressions are independent of z and z0, and so
fermion matrix elements built with these Green’s functions
depend only on the global gauge charges. Putting these
expressions together with the interaction (13), the pole at
p2 ¼ 0 has the form

k
LB þ s2βLW

ðg5sβT3L þ g5YYÞ2 ·
1

p2
: ð60Þ

For the pole at p2 ¼ m2
Z, we can evaluate the residue using

(58), to find

k
LB þ s2βLW

ðg5ðLB=LWÞ1=2T3L − g5Yðs2βLW=LBÞ1=2YÞ2

·
1

p2 −m2
Z
: ð61Þ

Identifying

s2w ¼ s2βLW

LB þ s2βLW
; e2 ¼ g2s2w ¼ kg25s

2
β

LB þ s2βLW
; ð62Þ

everything falls into place, and we find the SM interaction

iM ¼ i

�
e2Q2

p2
þ g2=c2w
p2 −m2

Z
ðT3L − s2wQÞ2

�
; ð63Þ

with Q ¼ T3L þ Y as in (14). We will discuss the order s2

corrections to this result in Sec. VI.
Evaluating detC in Euclidean momentum space and

using the results of [21], we find the contribution to the
Coleman-Weinberg potential of the Higgs boson from the
sector of neutral gauge bosons,

VZðhÞ ¼ þ 3

2

Z
d4pE

ð2πÞ4 log
�
1þ ðs2=2ÞððGE−− þ aBpEz0GEþ−Þ þ s2βðGE−− þ aWpEz0GEþ−ÞÞ

p2
Ez0zRGþþðGE−− þ aBpEz0GEþ−ÞðGE−− þ aWpEz0GEþ−Þ

�
: ð64Þ

Again, the aW term serves to suppress the contribution of
this sector.

D. Boundary top quark kinetic term

We pointed out at the end of Sec. III that, once we
arrange for the little hierarchy between v and the KK scale,
some extra tuning is required to obtain the observed ratio of
massesmt=mh. To allow this freedom in our model, we add
a boundary kinetic term for the top quark.
The formalism for a fermion boundary kinetic term is

presented in Appendix C 3. For each SUð2Þ ×Uð1Þ

multiplet of fermions, we can add a boundary kinetic term
either for the left-handed or for the right-handed compo-
nents of the 5D Dirac fermion. However, this term has a
substantial effect on the dynamics only if we add a left-
handed boundary term to a fermion with a UV-dominated
left-handed zero mode (c≳ 1=2), or, alternatively, if we
add a right-handed boundary term to a fermion with a UV-
dominated right-handed zero mode (c≲ −1=2). As we
have discussed at the end of Sec. II, we choose the Ψt

multiplet to have c≳ 1=2. Then the tR zero mode, which is
also contained in this multiplet, will be IR dominated. With
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this choice, only a left-handed boundary kinetic term forΨt

gives a robust parameter for the model. Similarly, the
multiplet ΨT , which has no zero mode, is not strongly
affected by any choice of a boundary kinetic term. Thus, we
will add only one parameter here, the coefficient at of the
left-handed boundary kinetic term for the components
ðtL; bLÞ in (22).
Adding the parameter at, the determinant of theCmatrix

for the ðtL; χb; tRÞ elements of (22) is

detC ¼ Gþ−

�
GþþðG−− þ atpz0Gþ−Þ −

s2

2p2z0zR

�
: ð65Þ

We must take some further care in expanding this expres-
sion for small p, since now the G functions are evaluated at
a general value of ct. Define

Lt ¼ ðG−− þ atpz0Gþ−Þjp¼0

¼ 1

2ct − 1

��
zR
z0

�
ct−1=2

−
�
z0
zR

�
ct−1=2

�
þ at

�
zR
z0

�
ct−1=2

ð66Þ

and note that

Gþþðz0;zR;p¼ 0Þ¼ 1

2ctþ1

��
zR
z0

�
ctþ1=2

−
�
z0
zR

�
ctþ1=2

�
ð67Þ

is well approximated by

Gþþðz0; zR;p ¼ 0Þ ¼ 1

2ct þ 1

zR
z0

�
zR
z0

�
ct−1=2 ð68Þ

for ct > 0, z0=zR ∼ 0.01. Then, to leading order in s2, mt
takes the form

m2
t ¼

2ct þ 1

2

s2z−2R
Lt

�
z0
zR

�
ct−1=2

: ð69Þ

With the effect of at, the contribution to the Coleman-
Weinberg potential from the Ψt multiplet is altered from
(45) to

VtðhÞ¼−6
Z

d4pE

ð2πÞ4

×log

�
1þ s2=2

p2
Ez0zRGEþþðGE−−þatpEz0Gþ−Þ

�
:

ð70Þ

The contribution of the multiplet ΨT remains

VTðhÞ ¼ −6
Z

d4pE

ð2πÞ4 log
�
1 −

s22ð2 − s22Þ
p2
Ez0zRGEþ−GE−þ

�
: ð71Þ

E. UV and IR gauges

Up to this point in our discussion, we have quoted all
Green’s functions in the gauge in which the Wilson line
(17) is represented as a boundary condition at the UV
boundary. However, it is equally well possible to change
the gauge and move the Wilson line onto the IR boundary.
We will refer to these two gauges as the “UV gauge” and
the “IR gauge,” respectively.
For the purpose of calculation, it is typically easier to use

the UV gauge. In the UV gauge, the boundary conditions in
the IR are simple. For a gauge field, for example, the
Green’s functions are naturally expressed as linear combi-
nations of the elements Gþ−ðz; zRÞ and Gþþðz; zRÞ with
definite boundary conditions in the IR. Physical quantities
computed from the Green’s functions will have an explicit
dependence on zR, but this is a good thing, since zR sets the
scale of the RS dynamics, as we have seen already in this
section. In the IR gauge, the Green’s functions are more
naturally written in terms of elements with definite boun-
dary conditions in the UV, such as Gþ−ðz; z0Þ. Then they
will contain explicit dependence on z0 which typically
cancels out to a great extent.
However, there are some advantages to working in the IR

gauge. As we explained at the end of Sec. III of [21],
mixing of fields on the boundary has no effect if these fields
have the same boundary conditions. In our discussion of
precision electroweak corrections, we will find some
mixing effects that seem to magically cancel in the UV
gauge. These cancellations are easier to see in the IR gauge.
The fermions that mix in the UV gauge have identical
boundary conditions in the IR, so that the mixing terms
have no effect [21]. The fields Aa5

m have vanishing boundary
values on the IR brane, so the mixing of these fields with
the other gauge fields is also substantially reduced.
Often, the simplest analysis combines these two

approaches, by representing the IR gauge Green’s functions
in terms of the elements used in the UV gauge. This is
achieved by writing the relation between the Green’s
functions in the two gauges as

hAA
MðzÞAB

Mðz0ÞiIR ¼ ðUWÞAChAC
MðzÞAD

Mðz0ÞiUVðU†
WÞDB:

ð72Þ

For those who do not consider this equation obvious, we
provide an explicit proof in Appendix E.
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V. COMPLETE MODEL AND ITS
PARAMETER SPACE

We are now in a position to find the ground state of the
SOð5Þ model and understand the dependence of the
spectrum of the model on its parameters.

A. The complete Coleman-Weinberg
potential and its implication

The full Higgs potential can be obtained by summing up
the Coleman-Weinberg potentials (56), (64), (70), and (71).
Our final results will be obtained from a full numerical
evaluation of these integrals. However, we can obtain
insight into these result by first examining the expansion
of the potential in powers of s. Up to Oðs4Þ, the Higgs
potential can be written as

VðhÞ¼ k4R
8π2

�
−As2þ1

2
Bs4þ1

2
Cs4 log

1

s2
þOðs6Þ

�
; ð73Þ

where the full expression for the coefficients ðA;B;CÞ is
given in Appendix F. Their values depend on c parameters
of fermions as well as the boundary kinetic terms a. The
coefficients B and C are always positive. The line of phase
transition is determined by the condition A ¼ 0. Figure 1
shows the phase diagram in the ðct; cTÞ plane for
zR=z0 ¼ 100, aW ¼ aB ¼ 40, and at ¼ 10. In realistic
models, ct and cT should be tuned to be near the line
A ¼ 0 in order to make v=f ≪ 1.

Now we compute the mass of the Higgs boson. By
differentiating VðhÞ twice, we find

�
mh

v

�
2

¼ g45k
2

32π2

�
Bþ

�
− log

v2

f2
−
3

2

�
C

�
: ð74Þ

The quartic term in the Higgs potential originates from the
box diagrams of the top quark and the top partner, so we
naturally have a factor of g45 in this expression. Composite
Higgs models typically predict a quartic term smaller than
what is required for the observedHiggsmass; however, from
(74), we can see how ourmodel can overcome the challenge.
First, the quadratic terms of the Higgs potential fromΨt and
ΨT cancels each other, but their quartic terms add. Therefore,
we can tune A near zero without sacrificing the quartic term
B andC. Second, we can push g5 to a larger value. As shown
in (48), the gauge boundary kinetic term gives us freedom to
fit the correct SUð2Þ coupling even with a large g5. Third,
some choices of the SOð5Þ representation forΨT canmake a
relatively large contribution to B. This is indeed the case for
the ΨT in the 5 of SOð5Þ. See Appendix F for details.
We can obtain a further insight of the parameter space of

our model by studying the relationship between the Higgs
mass and the top quark mass. In Appendix F, we argue that
near the phase transition line A ¼ 0, the coefficients B and
C can be estimated as

B ∼
3

4
Atðct; atÞ; C ∼ 0; ð75Þ

where At is the quadratic term of the top quark contribution
to the Higgs potential, defined in (F9). Then, from (69) and
(74), we have

�
mh

mt

�
2

∼
g25k
4π2

·

�
Ltðct; atÞ
1þ 2ct

ðz0
zRÞ

1=2−ct
�
·
3

4
Atðct; atÞ: ð76Þ

The term in brackets and 3
4
Atðct; atÞ depend strongly on ct

and at, but their product turns out almost constant across a
wide range of ct and at. Numerically, for 0.3 < ct < 0.7
and 0 < at < 20, the product stays within the interval 1.2–
1.5. This is actually to be expected, since there is a positive
correlation between the top quark Yukawa coupling and its
contribution to the Higgs potential.
Then the mass ratio (76) gives a rough estimate of the

required value of RS coupling g5 in our model. With this
determined, we choose the size of the gauge boundary
kinetic term LW which fits theW boson mass. Using 1.3 for
the value of the product in (76), we have

g25k ∼ 22 and LW ∼ 51: ð77Þ

This shows that g5 and LW are pushed to large values in our
model. The full numerical study agrees well with this
result. It gives LW between 35 and 55 for 0.4 < ct < 0.7
and 1.5 TeV < kR < 3 TeV.

FIG. 1. Phase diagram of the potential (73) in the ðct; cTÞ plane,
with zR=z0 ¼ 100, aW ¼ aB ¼ 40, and at ¼ 10. The solid blue
line corresponds to A ¼ 0. It should be noted that in realistic
models, aW , aB, and at will be determined by the mass relations
(53), (58), and (69).
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The large value of g5 results from the relatively small
quartic term B of the Higgs potential. It is possible to
increase B by decreasing ct, but this also decreases the term
in brackets in (76), so that the value of g5 stays large across
the entire parameter space. This tension can be relaxed if
there is an additional, large source of the Higgs quartic
term. This will also relieve the degree of fine-tuning in our
model. In [21], we showed that there are fermion gauge
multiplets that can provide a positive contribution to the
quartic term in the potential without affecting the quadratic
term. Perhaps adding such a multiplet here will provide a
more attractive set of model parameters.

B. Allowed region of parameter space

Now we study our parameter space with a full numerical
treatment. There are nine parameters in our theory,

z0; zR; ct; cT; g5; gX; aW; aB; at; ð78Þ

or, keeping kR ¼ 1=zR as the only dimensionful parameter,
we have

kR and zR=z0; ct; cT; g25k; g2Xk; aW; aB; at: ð79Þ

These parameters should produce correct values of the five
independent observables,

GF ¼1.166×10−5 GeV−2; mt¼ 147GeV;

mW ¼80.4GeV; mZ ¼ 91.2GeV; mh¼ 125GeV: ð80Þ

We can also consider these quantities as one dimensionful
observable v and four dimensionless number, e; g; yt,
and mh=v.
It is easiest to think of this parameter space as para-

metrized by the KK scale (a few times kR) and the ratio
zR=z0. This latter ratio is constrained by flavor physics,
since light flavors will couple to the Higgs sector at the UV
boundary. Flavor structure is beyond the scope of this
paper, so for the moment we propose zR=z0 ¼ 100.
Furthermore, we can expect from the small hypercharge

coupling that aB should have little effect on the Higgs
potential. This is indeed numerically observed. Therefore,
we will assume aB ¼ aW throughout the rest of our
analysis. This leaves us effectively a two-dimensional
parameter space.
Our strategy to find the available parameter space is as

follows. We first choose values of ðct; atÞ. Then, mW=mt
determines aW by (53) and (69), and ðg; eÞ determines
ðg25k; g2XkÞ by (48) and (62). With those parameters fixed,
the potential minimum is now determined by cT. We search
for the value of cT which gives the observed value of mh.
Although in the analysis above we have used the small s
expansion of the Higgs potential, our numerical analysis
is conducted with the full potential before the expansion.

The minimum of the full potential differs by about
10% compared to that obtained from the approximate
formulas (73).
Figure 2 shows the allowed region of parameter space in

the ðct; atÞ plane for different values of kR. Note that
parameters do not depend strongly on kR. This implies that
kR can be seen as one of the orthogonal directions of
our two-dimensional parameter space and we can consider
its effect on observables separately from other parameters.
In the following analysis, we choose ct, which represents
the degree of compositeness of the top quark, as the
other main variable of our parameter space. We show
how physical quantities change as we vary ct at values
of kR ¼ 1.5–3 TeV.

C. Mass spectrum of the top partner

The masses of new particles beyond the SM are
determined by kR. Before looking at the masses of new
states in our theory, it is instructive to study masses of
generic KK states in RS models. For zR=z0 ¼ 100, the first
KK masses of a gauge field (or a fermion with c ¼ 1=2)
with different boundary conditions are

b:c: ðþþÞ ðþ−Þ ð−þÞ ð−−Þ
m=kR 2.8 0.72 2.4 3.8 ð81Þ

The UV boundary kinetic term suppresses the masses of
ðþþÞ and ðþ−Þ states, but only slightly. It has no effect on
ð−þÞ and ð−−Þ states. Therefore, except for the ðþ−Þ state,
the masses of new states will be a few times kR. In our
model, those heavy states correspond to Z0 and KK states of
W, B and the top quark. For kR > 1.5 TeV, these particles
have masses above 4 TeV. At the lower end of this range,
we must still consider the observability of these states in
LHC Drell-Yan measurements. However, the KK vector
bosons are IR dominated and have suppressed couplings to
light fermions associated with UV zero modes. Compared

FIG. 2. Allowed region of parameter space in the ðct; atÞ plane.
Here ΨT is not charged under SUð3ÞC.
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to a sequentialW0 and Z0, the suppression is a factor of 4 in
the couplings, or more when the KK boson has a UV
boundary kinetic term, and this suppression factor is squared
in the cross section formula. Therefore, theseKK resonances
are not yet constrained by LHC searches [36,37].
On the other hand, the ðþ−Þ states in the top partner

multiplet ΨT can have a mass lower than kR. The dashed
lines in Fig. 3 show the masses of the top partner for
different values of ct and kR. Searches for a vectorlike top
partner at the LHC currently put the mass of this particle
above 1.37 TeV [38] and thus constrains our model
for kR < 3 TeV.
The LHC search assumes that the top partner is charged

under SUð3ÞC and can decay into the top or bottom
quark. However, whether the ΨT in our model is colored
or not is a model-building choice and we can proceed in
either way, as long as ΨT can compete with the top quark
and generate the correct Higgs potential. In terms of the
experimental constraints, it is much more attractive to
assume that ΨT is a singlet under SUð3ÞC and its states
are heavy leptons: The strongest current experimental
bound on a new heavy lepton is 560 GeV, in a particularly
optimistic scenario [39].
The hypothesis that ΨT is a color-singlet has much in

common with the idea of “neutral naturalness” put forward
in [40,41]. In both cases, the Higgs potential obtains
competing contributions from the top quark multiplet and
from color-singlet mirror states at the TeV scale. However,
conventionally in this framework, a discrete symmetry
between these multiplets is used to make the one-loop
contributions to the Higgs potential finite, and then further
fine-tuning is needed to achieve a small value of v=f. Here,
the finiteness of the Higgs potential is insured by the RS
structure, so there is no need for mirror symmetry; however,
we still need to tune v=f to a small value.
The solid lines in Fig. 3 show the mass of the lightest KK

state from ΨT in the case where ΨT is a color singlet.
Without the multiplicity from color in VT , we need to lower

the value of cT for the correct tuning of ΨT against Ψt to
come close to A ∼ 0 in the Higgs potential. This
leads to larger values of mT . We find mT > 820 GeV for
kR ≥ 1.5 TeV, so that in this case kR is unconstrained by
LHC searches. In the rest of our analysis, we will use the
parameter space of the uncolored ΨT .

D. Measure of fine-tuning

In the composite Higgs literature, it is customary to use
ϵ ¼ v2=f2 to quantify the degree of fine-tuning. However,
at least in the class of theories where the Higgs potential is
generated dynamically, v=f is only a derived quantity
which is determined by more fundamental parameters in
the theory. In our model, those parameters are ct and cT .
The little hierarchy v=f ≪ 1 requires ct and cT to be fine-
tuned near the line of phase transition, as illustrated in
Fig. 1. Therefore, we propose to use ΔcT ¼ cT − cT;critical
as the measure of fine-tuning, where cT;critical is the value of
cT on the phase transition line A ¼ 0. Figure 4 shows the
value of ΔcT for varying ct and kR. It should be noted that
this choice does not soften the fine-tuning. For complete-
ness, we also include a plot of v2=f2 in Fig. 5.

FIG. 4. Values of the fine-tuning measure ΔcT ¼ cT − cT;critical
for varying ct and kR.FIG. 3. Masses of lightest top partner from the multiplet ΨT .

Dashed lines correspond to color triplet ΨT , and solid lines
correspond to color singlet ΨT .

FIG. 5. Values of v2=f2 for varying ct and kR.
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VI. PRECISION ELECTROWEAK OBSERVABLES

One of the constraints on the parameter space of RS
models is that from precision electroweak measurements.
The strongest of these are represented by constraints on the
values of the oblique parameters S and T [22]. We have
already invoked the small size of the T parameter to require
a symmetry-breaking pattern with a custodial SUð2Þ
symmetry. Beyond this, the S parameter, which is a
measure of the total size of the new physics correction
to W and Z vacuum polarization functions, places a lower
bound on the KK scale kR ¼ z−1R .

A. Simplified S and T

Our discussion of the oblique parameters will be
simplified in several respects. We will concentrate on
observables involving either no external fermions or only
external light leptons. In this analysis, we will ignore all
masses of light leptons and assign these particles to
appropriate zero modes in the 5 of SOð5Þ. We will assume
that all of these zero modes are UV dominated, that is,
c > 1=2 for left-handed leptons and c < −1=2 for right-
handed leptons. Realistic models might have different
assignments, especially for the right-handed components
of the quarks and leptons. We will discuss other possibil-
ities in [24].
RS models contain additional vector bosons beyond the

SM gauge bosons γ, W�, and Z. Thus, strictly, an analysis
in terms of the two parameters S and T does not capture the
full complexity of the new physics corrections to precision
electroweak formulas, even to leading order. Here, we use
simplified formulas for S and T that capture the constraints
from the five best measured observables: αðm2

ZÞ, GF, mZ,
mW , and s2�, the effective value of s2w at the Z pole. It is
shown in [42] that such an approach can put meaningful
constraints on new physics even in models with additional
heavy vector bosons.
In this discussion, we define ΔA to be the new physics

contribution to an observable A. We define δA to be the
fractional deviation from the SM prediction: δA ¼ ΔA=A.
The S, T formalism defines a reference weak mixing

angle θ0 by

sin2 2θ0 ¼ 4s20c
2
0 ¼

4παðm2
ZÞffiffiffi

2
p

GFm2
Z

ð82Þ

and then expresses the values of additional electroweak
observables in terms of s20 and the oblique parameters. In
this approach,

m2
W=m

2
Z − c20 ¼

αc20
c20 − s20

�
−
1

2
Sþ c20T

�
;

s2� − s20 ¼
α

c20 − s20

�
1

4
S − s20c

2
0T

�
: ð83Þ

In the current situation, values of S and T are mainly
determined by the five observables [43]. Then we can find
convenient formulas representing the measured values of
the oblique parameters by solving (83) for S and T. Choose
a reference set of parameters which, in zeroth order,
satisfies the SM relations and let ΔA (and δA ¼ ΔA=A)
represent the deviation of observables from the predictions
at this parameter set. Then

αS ¼ 4½Δs2� þ s20ðδm2
W þ δGF − δαÞ�;

αT ¼ ½ðδm2
W þ s20δGFÞ=c20 − δm2

Z þ ð2Δs2� − s20δαÞ=c20�:
ð84Þ

As a check, note that, if the only corrections to precision
electroweak quantities come in a q2-independent correction
to the W mass (which also affects GF), then these formulas
predict αS ¼ 0 and αT ¼ δm2

W − δm2
Z, as desired.

In the next few subsections, we compute the tree-level
Oðs2Þ corrections to the five observables within our model.
We will discuss the most important loop-level corrections
in Sec. VI E.

B. αðmZÞ, mW , mZ

We take (62) to provide the reference values of coupling
constants and express dimensionful parameters in terms of
the mass scale s2=z2R. We then expand the expressions for
observables in powers of s2 around this reference point. We
have seen in Sec. IV that, in zeroth order, the observables
satisfy the SM relations. Then S, T computed from (84) will
be of order s2. In the discussion of this section, we will keep
terms only to order s2 and we will also ignore terms of
order z20=z

2
R.

For the electromagnetic coupling, the reference formula
in (62) gives the exact value at the tree level; there are no
Oðs2Þ corrections. So

δα ¼ 0: ð85Þ

Solving for zeros of the expressions (52), (57) to one
higher order in s2, we find the corrections to (53), (58)

δm2
W ¼ þ s2

8L2
W
ð3LW − 2Þ ¼ m2

Wz
2
R

4

�
3

2
−

1

LW

�
;

δm2
Z ¼ þ s2

8L2
BL

2
W
ð3LBLWðLB þ s2βLWÞ − 2ðL2

B þ s2βL
2
WÞÞ

¼ m2
Zz

2
R

4

�
3

2
−
�
c2w
LW

þ s2w
LB

��
: ð86Þ

These shifts in m2
W and m2

Z imply that their contributions
to the T parameter largely cancel. The residue is
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αTjm2
W;m

2
Z
¼ −

s2wm2
Zz

2
R

4

�
1

LW
−

1

LB

�
ð87Þ

and this entirely vanishes if LW ¼ LB or aW ¼ aB.

C. GF

To compute GF, we consider the matrix element for
muon decay μ → νμeν̄e. This is computed from matrix
elements of the AA

m propagators between zero mode wave
functions. At first sight, it seems that the only contribution
comes from the matrix element of hA1L

m ðzÞA1L
n ðz0Þi taken

between simple left-handed zero modes for μL, νμL, eL, νeL.
The Green’s function in ðz; z0Þ is integrated over the two
sets of fermion zero mode wave functions in z and z0. This
Green’s function is given by the result (D8) derived in
Appendix D. 1,

hA1L
m ðzÞA1L

n ðz0Þi ¼ −ηmn
kz2R
s2

�
1 −

s2

2

�
1 −

z2<
z2R

��
; ð88Þ

where z< is the smaller of z, z0 under the integrals. We
would find GF as the matrix element of this expression
multiplied by the coupling constant g25=2. Note that the
Oðs2Þ corrections depend on the form of the zero mode
wave functions and not simply on the total normalizations
times global charges.
However, there is a subtlety here. We might assign a left-

handed lepton multiplet to a 5 according to

Ψe ¼

2
664
�
Eð−þÞ νeðþþÞ
Nð−þÞ eLðþþÞ

�
N0ð−þÞ

3
775; ð89Þ

as in (22). Here we have chosen the N and N0 to have ð−þÞ
boundary conditions so that neither has a right-handed zero
mode that can combine with the νe zero mode to give a
massive fermion. Nevertheless, theUW matrix generated by
top quark condensation will have the form (B12) in
Appendix B, and this will mix the νe and N0 fields on
the UV boundary. As a result, the zero mode will be a
mixture

ð1þ cÞ
2

jνei þ
ð1 − cÞ

2
jNi − sffiffiffi

2
p jN0i: ð90Þ

The matrices Ta5 in (B7), for a ¼ 1, 2 have matrix
elements between jνei and jN0i. The gauge field Green’s
functions that can take advantage of these matrix elements
are, at p ¼ 0 and to the leading order in s,

hA1L
m ðzÞA15

n ðz0Þi ¼ ηmn
kz2R
s2

sffiffiffi
2

p
�
1 −

z02

z2R

�
;

hA15
m ðzÞA1L

n ðz0Þi ¼ ηmn
kz2R
s2

sffiffiffi
2

p
�
1 −

z2

z2R

�
: ð91Þ

The piece of the matrix element hA15ðzÞA15ðz0Þi containing
the W boson pole is proportional to p2=ðp2 −m2

WÞ. It
vanishes at p2 ¼ 0 and so does not contribute to GF.
Assembling the pieces, including for each the square of the
coefficient in (90), we find that there is a cancellation, so
that GF is finally given by

4GFffiffiffi
2

p ¼ g25
2

kz2R
s2

�
1 −

s2

2

�
z2>
z2R

��
: ð92Þ

Then

δGF ¼ −
s2

2

�
z2>
z2R

�
: ð93Þ

The evaluation of hz2>=z2Ri is discussed in Appendix C. 3. It
is less than 0.2 for zero modes with c ¼ 1=2 and exponen-
tially suppressed for c > 1=2. Therefore, for UV-dominated
light leptons, δGF is negligible.
There is an easier way to obtain this result. Since all of

the fields in Ψe have the same boundary conditions in the
IR, the Wilson line UW has no effect on the state when it is
applied at the IR boundary. Then, in the IR gauge, the
neutrino zero mode is purely jνei. So, in this gauge, only
the hA1L

m ðzÞA1L
n ðz0Þi matrix element contributes. Using

(72), we find

hA1L
m ðzÞA1L

n ðz0ÞiIR ¼ −ηmn
kz2R
s2

�
1 −

s2

2

z2>
z2R

�
; ð94Þ

and the result (93) follows immediately.

D. s2�
The parameter s2� appears in the ratio of the amplitudes

for eþe− → μþμ− in the different helicity states. We now
calculate s2�, defined by the formula

gZðe−RÞ
gZðe−LÞ

¼ −2s2�
1 − 2s2�

; ð95Þ

which corresponds to the tree-level SM relation.
The Z couplings to the e−L and e−R zero modes

are computed by taking the matrix element of the Z
propagator—or, rather, the Z boson pole terms in the
ðA3L;B;Z0;A35Þ propagators—between fermion zeromodes.
As in our discussion ofGF, it avoids some difficulty towork
in the IR gaugewhere the zeromodes are unmixed. Then the
zero modes have matrix elements only with ðA3L; B; Z0Þ,
proportional to the T3L, Y, and T3R charges as they appear in
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the covariant derivative (13). Furthermore, it should be noted
that UV-dominated fermions have suppressed coupling to
the Z0, since this field has a − UV boundary condition. This
implies that the leading corrections to s2� should have no
explicit dependence on T3R. We will see this explicitly
below. Since s2� depends only on the T3L and Y charges, our
result for s2� actually holds for any assignments of e−L and e−R
to SOð5Þ representations.
We construct the propagators in the UV gauge and then

apply (72). The three fields ðA3L; B; Z0Þ, have þ boundary
conditions in the IR brane. Then, following the general
formula (A8), all of their Green’s functions take the form

hAA
mðzÞAB

n ðz0Þi
¼ ηmnkpzRzz0½AABGþ−ðz;zRÞGþ−ðz0;zRÞþ �� ��: ð96Þ

The Z boson pole ðp2 −m2
ZÞ is contained in the matrixAAB,

and so the terms omitted in (96) contain Z pole terms that
include the factor Gþþðz; zRÞ. This factor will appear in the
matrix elements of ðA3L; B; Z0Þ when we convert to the IR
gauge using (72), however, always with a coefficient of
order s2. Thenwewill needGþþðz; zRÞ only to leading order

Gþþðz; zRÞ ¼
zR
2z

�
1 −

z2

z2R

�
; ð97Þ

while we will need Gþ−ðz; zRÞ to the next order,

Gþ−ðz;zRÞ¼
1

pz
·

�
1þðpzRÞ2

4

�
−1þ z2

z2R
þ2

z2

z2R
log

zR
z

��
:

ð98Þ
The calculation of the matrix AAB is described in

Appendix D. 2. The expression for this matrix contains
an overall factor

½detC�−1 ¼ 2p3z20zRm
2
Z=s

2

ðLB þ LWs2βÞ
1

p2 −m2
Z
· ZZðp2Þ ð99Þ

up to corrections of higher order in s2. The factors of m2
Z in

(99) include the order s2 corrections shown in (86).
The terms of order p2, evaluated at the Z pole, contribute

corrections of order s2 to the residue. However, ZZ gives a
correction to normalization factor that is common to all of
the Green’s functions we will discuss, and one that cancels
out of the ratio of couplings. The ð−1Þ term in (98) also
contributes to the common overall factor. The z-dependent
terms are very small for fermion zero modes that are peaked
in the UV and therefore we omit this correction here.
Similarly, we ignore z2=z2R in Gþþ. We will return to
consider those terms in Sec. VII. Aside from these factors,
we keep below all corrections of Oðs2Þ.
With this understanding, we can write the poles at p2 ¼

m2
Z in the vector field Green’s functions. Up to terms of

order s2, we find

hA3L
m A3L

n i ¼ kηmn

ðp2 −m2
ZÞðLB þ s2βLWÞ

�
LB

LW
−
s2

4

ðLB þ s2βLWÞ
LBL3

W
ðLB − LW þ 2LBL2

WÞ
�
;

hA3L
m Bni ¼

kηmnsβ
ðp2 −m2

ZÞðLB þ s2βLWÞ
�
−1þ s2

4

ðLB þ s2βLWÞ
LBLW

ðLB þ LWÞ
�
;

hBmBni ¼
kηmns2β

ðp2 −m2
ZÞðLB þ s2βLWÞ

�
LW

LB
−
s2

4

ðLB þ s2βLWÞ
L3
BLW

ðLW − LB þ 2L2
BLWÞ

�
;

hA3L
m Z0

ni ¼
kηmncβ

ðp2 −m2
ZÞðLB þ s2βLWÞ

�
þ s2

4

ðLB þ s2βLWÞ
LW

�
;

hBmZ0
ni ¼

kηmnsβcβ
ðp2 −m2

ZÞðLB þ s2βLWÞ
�
−
s2

4

ðLB þ s2βLWÞ
LB

�
;

hZ0
mZ0

ni ¼ 0;

hA3L
m A35

n i ¼ kηmn

ðp2 −m2
ZÞðLB þ s2βLWÞ

�
−

sffiffiffi
2

p ðLB þ s2βLWÞ
LW

�
;

hBmA35
n i ¼ kηmnsβ

ðp2 −m2
ZÞðLB þ s2βLWÞ

�
þ sffiffiffi

2
p ðLB þ s2βLWÞ

LB

�
;

hZ0
mA35

n i ¼ 0;

hA35
m A35

n i ¼ kηmn

ðp2 −m2
ZÞðLB þ s2βLWÞ

�
þ s2

2

ðLB þ s2βLWÞ2
LWLB

�
: ð100Þ
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The expressions factorize onto the pole of a single vector meson, as required, giving the coupling between lepton zero
modes 1 and 2

gZð1ÞgZð2Þ
p2 −m2

Z
: ð101Þ

From these expressions, and using (62) to make some simplifications, we can write the Z wave function in the UV gauge
(for z ≪ zR) as

jZi ¼
�

k
LWc2w

�
1=2

×

	
c2w

�
1 −

s2

8

ðLB þ s2βLWÞ
L2
BL

2
W

ðLB − LW þ 2LBL2
WÞ

�
jA3Li

−
s2w
sβ

�
1 −

s2

8

ðLB þ s2βLWÞ
L2
BL

2
W

ðLW − LB þ 2L2
BLWÞ

�
jBi þ cβ

s2

4
jZ0i − sffiffiffi

2
p jA35i



: ð102Þ

To obtain the Z wave function in the IR gauge, apply UW to this wave function as indicated in (72). There is a nice
cancellation, and we find

jZiIR¼
�

k
LWc2w

�
1=2

×

	
c2w

�
1−

s2

8

ðLBþ s2βLWÞ
L2
BL

2
W

ðLB−LWÞ
�
jA3Li− s2w

sβ

�
1þ s2

8

ðLBþ s2βLWÞ
L2
BL

2
W

ðLB−LWÞ
�
jBi



: ð103Þ

with no Z0 or A35 components. Then we can read off the Z coupling to a massless fermion as

gZ ¼ gcw

�
T3L

	
1 −

s2

8

ðLB þ LWs2βÞ
L2
BL

2
W

ðLB − LWÞ


−
s2w
c2w

Y

	
1þ s2

8

ðLB þ LWs2βÞ
L2
BL

2
W

ðLB − LWÞ

�

: ð104Þ

This formula applies to any zero-mode fermion that is
unmixed in the IR gauge and strongly localized in the
UV. Note that it contains no separate dependence on T3R.
It is an interesting exercise to collect the extra terms that
appear in the UV gauge for ðν; eÞL in the 5 and also in
the 4 and see how the T3R terms cancel in all of these
cases.
Finally, as in (87), the precision electroweak correction is

proportional to ðLW − LBÞ. Computing (95), we find

Δs2� ¼ ðs2� − s2wÞ ¼
s2s2wc2w
4L2

BL
2
W
ðLB þ s2βLWÞ

¼ m2
Zz

2
Rs

2
wc2w

4

�
1

LW
−

1

LB

�
: ð105Þ

E. Loop corrections to T

The formulas that we have derived so far represent the
formally leading new physics corrections to S and T.
However, it has been shown in other investigations of
precision electroweak corrections to composite Higgs
models, that loop effects on T from the top quark and
top partners can also make significant contributions
[22,44,45]. In this section, we will make an estimate of
the contribution to T from fermion loop effects, dealing as
best we can with the nonrenormalizability of this 5D theory.

We will work from the original formula for T [22],

αT ¼ e2

s2wc2wm2
Z
ðΠ1L;1Lð0Þ − Π3L;3Lð0ÞÞ; ð106Þ

where ΠaL;aL is the vacuum polarization amplitude for the
currents of the a component of weak isospin. The expres-
sion for T in (84) involves contributions at q2 ¼ 0 and at
q2 ¼ m2

W;m
2
Z. In this section, we will simplify the calcu-

lation of the loop integral by working at q2 ¼ 0 only. We
will calculate in the IR gauge, in which the contribution of
Aa5 to the W and Z wave functions is, if not completely
zero, at least highly suppressed.
The vacuum polarization amplitudes in (106) involve

loops with the tL and bL field in Ψt and the corresponding
fields in ΨT . The currents involve only the 4D left-handed
components of these fields. Then the propagators, in
Euclidean space, can be written as

hðtLÞLðz; pÞðtLÞ†Lðz0; pÞi ¼ σ · pStðz; z0; pÞ;
hðbLÞLðz; pÞðbLÞ†Lðz0; pÞi ¼ σ · pSbðz; z0; pÞ: ð107Þ

Here the L inside the parentheses labels the species in (22)
while the L outside the parentheses indicates a projection
onto the 2-component fermion with left-handed chirality.
Using (107) to evaluate the Ψt contribution to T, we find
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αT ¼ 3e2

s2wc2wm2
Z

Z
dz

ðkzÞ4
dz0

ðkz0Þ4
Z

d4p
ð2πÞ4

1

4
p2ðSt − SbÞ2:

ð108Þ

The integral d4p is over Euclidean momentum space. Note
that ðSt − SbÞ is of order s2, so this contribution to T is of
order s4.
We proceed, then, to evaluate T from the formula (108).

A complete evaluation of this expression (108) is beyond
the scope of this paper. Instead, wewill estimate the integral
from its low-momentum behavior of the integrand. The tL
and bL propagators are given by their SM formulas, plus
corrections of order mtzR and pzR. We can write these as

St¼fLðcÞ2ðzz0Þ2−c ·
1

p2þm2
t
½1þAðmtzRÞ2þBðpzRÞ2þ����;

Sb¼fLðcÞ2ðzz0Þ2−c ·
1

p2
½1þCðpzRÞ2þ����: ð109Þ

The first factor is the form of the zero mode wave functions
as functions of z and z0; see (C43). The correction terms are
summarized in coefficients A, B, C. These coefficients may
contain additional dependence on z, z0. To linear order in
the coefficients, this is treated by taking the expectation
values of the z, z0-dependent terms as indicated by the dz
integrals.
Using (109), the d4p integral in (108) becomes

Z
d4p
ð2πÞ4 p

2

�
m4

t

p4ðp2 þm2
t Þ2

− 2A
m4

t z2R
p2ðp2 þm2

t Þ2

− 2B
m2

t z2R
ðp2 þm2

t Þ2
þ 2C

m2
t z2R

p2ðp2 þm2
t Þ

þ � � �
�
: ð110Þ

The integral of the first term is convergent. This is propor-
tional tom4

t =m2
t and so actually of order s2 due to the infrared

behavior of the integral. The integrals of the correction
terms give cutoff-dependent contributions of order m4

t z2R.
Higher-order terms in p2 in (109) also contribute at this
order, and we expect that the sum leads to an expression that
is at worst log divergent in the ultraviolet. But these terms in
the integral also contain infrared-enhanced terms of order
m4

t z2R logð1=m2
t Þ. Using either dimensional regularization or

an explicit cutoff on the integral, we find

αT¼ α ·
3m2

t

16πs2wc2wm2
Z

× ½1þ2ð2B−A−CÞm2
t z2R logðΛ2=m2

t ÞþOðm2
t z2RÞ�;
ð111Þ

whereΛ is an ultraviolet scale. There is also a contribution to
T from the vacuum polarization of ΨT , but this contains no
light fermions and so contributes only the hard, nonlogar-
ithmic, term in (111). The leading term is the usual SM

contribution to T from the ðt; bÞ doublet. The usual con-
vention is thatT parametrizes a deviation from theSM, sowe
will now drop this term.We claim that the RS contribution to
T can be estimated from the expression

αT ¼ α ·
3m2

t

16πs2wc2wm2
Z
· 2ð2B − A − CÞm2

t z2R logðΛ2=m2
t Þ

ð112Þ

by ignoring the hard corrections and varying Λ over the
interval 1=zR to 1=z0.
The complete expressions for the coefficients A, B, C in

the IR gauge are given in Appendix G. In the parameter
discussion in Sec. V, we found that the top quark boundary
kinetic term at and the related value Lt ¼ Gt−−ðz0; zRÞ
must be large. Then we can simplify the full expression for
our estimate by keeping only the terms leading in at. This
gives the relatively simple estimate

T≈
3m4

t z2R
16πs2wc2wm2

Z
s2
��

z
zR

�
2ctþ1

þ
�
z0

zR

�
2ctþ1

�
logðΛ2=m2

t Þ;

ð113Þ

where the indicated expectation value is taken in the zero
mode wave function using the measure (C48). However,
because the indicated expectation values of z and z0 are
small, this parametrically dominant term is not actually
larger than the other pieces, so we quote it here mainly for
illustration. The full result for our estimate of T is given in
Appendix G in (G16).

F. Phenomenological implications

We must now sum all of these contributions as indicated
in (84). We may omit the small correction δGF. Then, for S

αS ¼ m2
Zz

2
Rs

2
wc2w

�
3

2
−

1

LB

�
: ð114Þ

For large LB as is found in the parameter space of Sec. V, a
limit of S < 0.135 gives the constraint

kR > 1.5 TeV: ð115Þ
For T, we find the tree-level RS correction

αT ¼ m2
Zz

2
Rs

2
w

4

�
1

LW
−

1

LB

�
ð116Þ

plus the loop correction estimated by (113).
Figure 6 shows the mapping of our parameter space onto

the region of S and T allowed by experiment [43]. In view
of the uncertainties in our estimate of the T parameter, we
regard the parameter region of our model with kR >
1.5 TeV to be in reasonable agreement with the current
values of the precision electroweak observables.
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VII. Z → bb̄

In the analysis of the coupling of the Z to fermions, we
assumed that all of the relevant quarks and leptons are
associatedwith fermion zeromodes that are highly peaked in
theUV.However, this is not the case for theb quark. ThebL is
the SUð2Þ partner of the tL, and so it must share the same
value of c. For bR, the story is somewhat more involved. The
bR zeromode is not included in either of themultipletsΨt,ΨT

that we have considered so far in our analysis. However,
models for generating the b quark mass typically require bR
to have a positive value of c, pushing the zero mode wave
function to the IR and potentially giving large effects [24]. In
this section, we provide general formulas for the special
influence of the b quark zeromodes on the relevant precision
electroweak observables. As in our discussion of Δs2�, we
will not need to assume theparticularmodel studied inSec.V,
becausewewillwork from the simple, general formulas forZ
boson couplings derived in Sec. VI D.
The b quark couplings to the Z boson are tested with

precision by the ratio of yields

Rb ¼
ΓðZ → bb̄Þ

ΓðZ → hadronsÞ ð117Þ

and the polarization asymmetry

Ab ¼
ΓðZ → bLb̄RÞ − ΓðZ → bRb̄LÞ
ΓðZ → bLb̄RÞ þ ΓðZ → bRb̄LÞ

: ð118Þ

Looking back at the discussion following (99), we see that
the factor ZZ cancels out of both ratios, while z-dependent
terms in Gþ−ðz; zRÞ and z2=z2R in Gþþðz; zRÞ will make a
contribution if the zero mode wave function extends into
the IR. Including those factors, the Z wave function in the
IR gauge can be written as

jZiIR ¼
�

k
LWc2w

�
1=2

×

	
c2w

�
1þm2

Zz
2
R

4

�
−

1

2LW
þ 1

2LB
þ ð1 − 2LWÞ

z2

z2R
þ 2

z2

z2R
log

zR
z

��
jA3Li

−
s2w
sβ

�
1þm2

Zz
2
R

4

�
1

2LW
−

1

2LB
þ ð1 − 2LBÞ

z2

z2R
þ 2

z2

z2R
log

zR
z

��
jBi

þ c2wcβ
m2

Zz
2
R

4
· 2LW

z2

z2R
jZ0i þ cw

mZzR
2

·
ffiffiffiffiffiffiffiffiffi
2LW

p z2

z2R
jA35i



: ð119Þ

The A35 contribution will be ultimately suppressed by m2
bz

2
R. Then the correction to the coupling of Z boson to the bottom

quark is given by

ΔgZb ¼ gcw ·
m2

Zz
2
R

4
×

	�
T3L −

s2w
c2w

Y

��
2
z2

z2R
log

zR
z
þ z2

z2R

�
þ
�
T3L þ s2w

c2w
Y

��
1

2LB
−

1

2LW

�
þ 2LW

�
z2

z2R

�
ð−T3L þ T3RÞ




¼ gZb ·
m2

Zz
2
R

4

��
2
z2

z2R
log

zR
z
þ z2

z2R

�
þ 2LW

�
z2

z2R

�
−T3L þ T3R

T3L − ðs2w=c2wÞY
�
; ð120Þ

where gZb is the SM Z coupling to bL or bR and the
expectation value of z must be computed in the appropriate
zero mode wave function. Note that in the final line we
omitted the terms suppressed by 1=LW;B.
The second term in (120) is enhanced by a large LW

and can cause a large deviation in gZb. However,
specifically for Ψt in the 5 representation of SOð5Þ,
we have T3L¼T3R¼−1=2 for bL, and the LW-enhanced

term in (120) vanishes identically. This shows that the
custodial symmetry proposed in [33] to protect the Zbb
vertex is working correctly. Although the formula (120)
is a general result which applies to any assignment of b
quark in SOð5Þ, we focus on the 5 representation in the
remainder of this section and study whether the remain-
ing correction in gZb gives constraints on the param-
eter space.

FIG. 6. Corrections to S, T parameters of our model. The inner
and outer contours are for 68% and 95% confidence level,
respectively, from [43]. The black error bar at the origin
corresponds to current top quark mass uncertainty. Each colored
line represents the estimated range of T parameter by varying the
cutoff Λ from kR to k.
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For the case of a ðtL; bLÞ doublet in 4 as in (21), the
LW-enhanced term will give a dominant correction to gZb.
Such models can still be viable for higher values of kR or
for assignments of both bL and bR to UV-dominated zero
modes [24].
For the evaluation of (120), the computation of the z

expectation values is discussed in Appendix C. 3. For a left-
handed zero mode with positive c, taking a ¼ 0 for
reference,

�
2
z2

z2R
log

zR
z
þ z2

z2R

�
¼ ð0.36; 0.11; 0.047Þ ð121Þ

for c ¼ ð0.3; 0.5; 0.7Þ and z0=zR ¼ 0.01. The value is
exponentially decreasing with increasing c. For a right-
handed zero mode with positive c, we find

�
2
z2

z2R
log

zR
z
þ z2

z2R

�
¼ð1þ2cÞð5þ2cÞ

ð3þ2cÞ2 ¼ð0.69;0.75;0.79Þ

ð122Þ

for c ¼ ð0.3; 0.5; 0.7Þ.
The bL and bR Z couplings have different effects on Rb

and Ab due to the very different sizes of these couplings,

g2ZbR
g2ZbL

¼ 0.0331: ð123Þ

The correction to Rb is dominated by the shift of gZbL,

ΔRb ≈ 2Rbð1 − RbÞ
�
δgZbL þ g2ZbR

g2ZbL
δgZbR

�
: ð124Þ

Then

ΔRb ≈
1

2
Rbð1 − RbÞ ·m2

Zz
2
R

�
2
z2

z2R
log

zR
z
þ z2

z2R

�
L

¼ ð3.7 × 10−4Þ
�
2
z2

z2R
log

zR
z
þ z2

z2R

�
L
: ð125Þ

The last line here is evaluated using the limit in (115) for zR.
The expectation value is to be taken in the bL zero mode
wave function.
On the other hand, the correction to Ab comes equally

from gZbL and gZbR,

ΔAb ≈ 4
g2ZbR
g2ZbL

ðδgZbL − δgZbRÞ: ð126Þ

Then

ΔAb ≈
g2ZbR
g2ZbL

m2
Zz

2
R

��
2
z2

z2R
log

zR
z
þ z2

z2R

�
L

−
�
2
z2

z2R
log

zR
z
þ z2

z2R

�
R

�

≈ −ð1.4 × 10−4Þ
�
2
z2

z2R
log

zR
z
þ z2

z2R

�
R
; ð127Þ

where again we used (115) for zR. The expectation value in
the last line is to be taken in the bR zero mode wave
function, which, to obtain as large as possible a value of
ΔAb, would be larger than the corresponding expectation
value for bL.
The experimental measurements of these quantities

are [46]

Rb ¼ 0.216� 0.00066; Ab ¼ 0.923� 0.020 ð128Þ

so the predicted deviations from this class of RS models are
well within the errors. Although it is typical in composite
Higgs models that the experimental measurement of Rb
places a very strong constraint, that is not true with the
custodial symmetry protecting the Zbb vertex.

VIII. CONCLUSIONS

In this paper, we developed and examined a realistic
model of a composite Higgs boson based on the gauge-
Higgs unification framework and SOð5Þ ×Uð1Þ gauge
symmetry. The top quark multiplet Ψt triggers electroweak
symmetry breaking. A new Dirac fermion ΨT competes
with the top quark and allows us to tune the value of the
Higgs boson ðmassÞ2 term. We can achieve the hierarchy
v=f ≪ 1 by arranging the 5D mass parameters of the top
quark and top partner to be close to the second-order phase
transition in the plane of these parameters. We also
introduced UV boundary kinetic terms for the gauge fields
and top quark, which give us the freedom to fit the SUð2Þ
gauge coupling and the top quark Yukawa coupling.
After applying constraints from the W, Z, t, and Higgs

masses, our model has an effectively two-dimensional
parameter space. We computed the full Higgs potential
and studied the allowed region in this space. It turns out
that our minimal model requires large values for the UV
boundary terms. An additional source of the quartic term in
the Higgs potential could relax the tension that leads to these
large terms.
Our model is not strongly constrained by current exper-

imental results. Although the mass of the top partner ΨT is
significantly smaller than the scale of the new composite
sector, we can avoid constraints from LHC searches ifΨT is
color neutral. This solution is similar to the idea of neutral
naturalness but is distinct in important respects. The main
constraint on our parameter space comes from precision
electroweak measurements. To analyze this constraint, we
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use the small value of v=f required in our model as an
expansion parameter. This strategy allows us towrite general
formulas for the precision electroweak corrections due to the
new composite sector. A lower limit on the RS scale of
1.5 TeV allows our model to be consistent with current
electroweak data.
In this paper, we left open the question of how the lighter

quarks and leptons receive their masses. A particularly
interesting question is that of how we can generate the
bottom quark mass in this framework. In a forthcoming
paper, we will study possible scenarios of light flavor mass
generation and their implication for observable effects in
eþe− → ff̄ processes [24].
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APPENDIX A: PROPERTIES OF
MINKOWSKI-SPACE GREEN’S FUNCTIONS

The computations done in this paper make use of
Green’s functions for spin 1=2 and spin 1 fields in the
RS background with Dirichlet or Neumann boundary
conditions on the IR brane. The formalism for computing
these Green’s functions was reviewed in [21]. However,
since [21] was mainly devoted to the computation of the
Coleman-Weinberg potential, the equations for Green’s
functions were given for Euclidean time, and the full
expressions for the Green’s functions were not needed.
In this Appendix, we present the formulas for Minkowski-
space Green’s functions in a notation consistent with the
conventions of [21]. In this section, and in the rest of the
Appendix, we will work in the UV gauge defined in
Sec. IV E unless it is explicitly noted otherwise.

1. Building blocks

Green’s functions for fields in the RS background are
built up from Bessel functions with definite boundary
conditions at the UV and IR branes. In Minkowski space,
we will choose as out basic building blocks the combina-
tionsGðcÞ

αβ ðz1; z2; pÞ, defined in (7). These functions depend
on two 5th-dimension coordinates z1, z2, the parameter c,
and α; β ¼ �. For a massive spin 1=2 field in RS, c ¼ m=k.
The 4-vector p is the 4D momentum. When combined with
a prefactor za, where a ¼ 1 for spin 1 field and a ¼ 5=2 for
spin 1=2 fields, Gαβðz; zRÞ satisfies Dirichlet or Neumann
boundary conditions on the IR brane at z ¼ zR. Typically,
we will keep the dependence on c and p implicit. In this
paper, we will work with the G functions for Minkowski

pμ, that is p2 > 0, p ¼ ðp2Þ1=2. Analogous formulas for the
G functions at Euclidean p, p2 < 0, which we will denote
GEαβðz1; z2Þ, are given in [21].
The G functions (at fixed c and p) manifestly satisfy

Gabðz1; z2Þ ¼ −Gbaðz2; z1Þ: ðA1Þ
Less trivially, they satisfy the Wronskian identity

Gαþðz1; z3ÞGβ−ðz2; z3Þ −Gα−ðz1; z3ÞGβþðz2; z3Þ

¼ 1

pz3
Gαβðz1; z2Þ: ðA2Þ

An important special case is

Gþþðz1;z2ÞG−−ðz1;z2Þ−Gþ−ðz1;z2ÞG−þðz1;z2Þ¼
1

p2z1z2
:

ðA3Þ

To explore the properties of particles with masses much
less than the KK scale kR, we will need the expansions of
Gαβðz1; z2Þ for small p. For general c in the range
−1 < c < 1,

GþþðpÞ ≈ ðz1z2Þ−c−1=2ðz2cþ1
2 − z2cþ1

1 Þ=ð2cþ 1Þ
Gþ−ðpÞ ≈ zc−1=22 z−c−1=21 =p

G−þðpÞ ≈ −zc−1=21 z−c−1=22 =p

G−−ðpÞ ≈ ðz1z2Þ−cþ1=2ðz2c−12 − z2c−11 Þ=ð2c − 1Þ: ðA4Þ

For the special case of c ¼ 1
2
,

GþþðpÞ ≈ ðz1z2Þ−1ðz22 − z21Þ=2
Gþ−ðpÞ ≈ z−11 =p

G−þðpÞ ≈ −z−12 =p

G−−ðpÞ ≈ logðz2=z1Þ: ðA5Þ

2. Spin 1 fields

For spin 1 fields, c ¼ 1=2. The solutions of the gauge-
fixed Maxwell equations in z are zGαβðz; z0Þ, with α ¼ þ
for AA

m, m ¼ 0, 1, 2, 3, and α ¼ − for AA
5 . The solutions for

the ghost fields also have α ¼ þ.
We will construct solutions with definite Neumann (þ)

or Dirichlet (−) boundary conditions on the IR brane at
z ¼ zR. The solutions to the Maxwell equation satisfying
these boundary conditions contains

þb:c:at zR −b:c:at zR
AA
m Gþ−ðz; zRÞ Gþþðz; zRÞ

AA
5 G−þðz; zRÞ G−−ðz; zRÞ

ðA6Þ
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For a consistent definition of FA
m5 on the boundary, A

A
5 must

satisfy − boundary conditions if AA
m satisfies þ boundary

conditions, and vice versa. We will also need to impose the
condition that our solution satisfies Neumann (þ) or
Dirichlet (−) boundary conditions on the UV brane at
z ¼ z0. These conditions are

þb:c:at z0 −b:c:at z0
AA
m G−;βðz0; zRÞ ¼ 0 Gþ;βðz0; zRÞ ¼ 0

AA
5 Gþ;βðz0; zRÞ ¼ 0 G−;βðz0; zRÞ ¼ 0

ðA7Þ

That is, the first index of G should be appropriately raised
or lowered to apply the Neumann condition.
Then the Green’s functions of spin 1

2
fields are given by

the following formula: For the Green’s functions of fields
AA
m; AB

n obeying β, γ boundary conditions on the IR brane

hAA
mðzÞAB

n ðz0Þi¼ηmnkpzRzz0
�
AABGþ;−βðz;zRÞGþ;−γðz0;zRÞ

−δAB
	
G̃þ;−βðz;zRÞGþ;−γðz0;zRÞ z<z0

Gþ;−βðz;zRÞG̃þ;−γðz0;zRÞ z>z0

�
;

ðA8Þ

where the G̃ are defined by

G̃þþðz;zRÞ¼þGþ−ðz;zRÞ G̃þ−ðz;zRÞ¼−Gþþðz;zRÞ;
G̃−þðz;zRÞ¼þG−−ðz;zRÞ G̃−−ðz;zRÞ¼−G−þðz;zRÞ:

ðA9Þ

The term in the second line of (A8) satisfies the disconti-
nuity of the Green’s function at z ¼ z0. It is present only in
the diagonal correlation function. The Green’s functions of
AA
5 fields are constructed similarly, with Gþ;−β → G−;−β.
The choice of starting from definite þ or − boundary

conditions on the IR brane comes from our convention of
choosing the UV gauge, in which the Wilson line UW is
implemented as a boundary condition on the UV brane.
There is an equivalent formalism forGreen’s functions in the
IR gauge, in which the Wilson line is moved to the IR brane
and implemented there as an IR boundary condition. In that
case, we would choose definiteþ or − boundary conditions
on the UV brane. The solution for the Green’s function in
this case is completely analogous, starting from the formula

hAA
mðzÞAB

n ðz0ÞiIR

¼−ηmnkpz0zz0
"
AABGþ;−βðz;z0ÞGþ;−γðz0;z0Þ

−δAB

(
Gþ;−βðz;z0ÞG̃þ;−γðz0;z0Þ z< z0

G̃þ;−βðz;z0ÞGþ;−γðz0;z0Þ z> z0

#
; ðA10Þ

with zR ↔ z0 in (A6), (A7), and (A9).

3. Spin 1=2 fields

Wave functions of spin 1=2 fields depend on the
parameter c ¼ m=k, where m is the 5D Dirac mass. We
will decompose 4-component Dirac fields into 2-compo-
nent 4D chirality eigenstates,

Ψ ¼
�
ψL

ψR

�
: ðA11Þ

The Dirac equation couples these components. The sol-

ution of the Dirac equation contains GðcÞ
α;βðz; z0Þ with α ¼ þ

for ψL, ψ
†
L and α ¼ − for ψR, ψ

†
R.

Canonical boundary conditions for the spin 1=2 fields
have ψR ¼ 0 on the boundary (þ b.c.) or ψL ¼ 0 on the
boundary (− b.c.). We will construct solutions with definite
þ or − boundary conditions on the IR brane at z ¼ zR.
These solutions are

þb:c:at zR −b:c:at zR
ψL Gþ−ðz; zRÞ Gþþðz; zRÞ
ψR G−−ðz; zRÞ G−þðz; zRÞ

ðA12Þ

We will also need to impose the condition that our solution
satisfies þ or − boundary conditions on the UV brane at
z ¼ z0. These conditions are

þb:c:at z0 −b:c:at z0
ψL;R G−;βðz0; zRÞ ¼ 0 Gþ;βðz0; zRÞ ¼ 0

ðA13Þ

Then the Green’s functions of spin 1
2
fields are given

by the following formula: For the Green’s functions of
fields ψA

L;ψ
†B
L obeying α, β boundary conditions on the IR

brane

hψA
LðzÞψ†B

L ðz0Þi

¼ ðσ ·pÞk4pzRðzz0Þ5=2
�
AABGþ;−αðz; zRÞGþ;−βðz0; zRÞ

− δAB

(
G̃þ;−αðz; zRÞGþ;−βðz0; zRÞ z < z0

Gþ;−αðz; zRÞG̃þ;−βðz0; zRÞ z > z0

�
; ðA14Þ

where the G̃ are defined in (A9). The term in the second line
satisfies the discontinuity of the Green’s function at z ¼ z0.
It is present only in the diagonal correlation function. The
Green’s functions hψA

LðzÞψ†B
R ðz0Þi, hψA

RðzÞψ†B
L ðz0Þi, and

hψA
RðzÞψ†B

R ðz0Þi are constructed similarly, with Gþ;−α →
G−;−α for each ψR.

4. Solution for AAB

To complete the solution for Green’s functions, we need
to solve for the matrix AAB. With the boundary conditions
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at z ¼ zR and z ¼ z0 already imposed, we determine AAB

by imposing the boundary condition at z ¼ z0.
If a field AA

5 obtains an expectation value, the corre-
sponding Wilson line element, a unitary matrix U defined
by (17), is applied to the multiplet of Green’s functions
before imposing this boundary condition. We then find a
linear equation for the elements of AAB that has the form

UAC½ACBG−α;−γðz0; zRÞ − δCBG̃−α;−γðz0; zRÞ� ¼ 0 ðA15Þ

where α; γ ¼ � are the boundary conditions of the A field
at z ¼ z0 and the C field at z ¼ zR, respectively. If fields of
different c are involved, the Green’s functions are evaluated
at the value corresponding to the field C. Let

CAC ¼ UACG−α;−γðz0; zRÞ;
DAC ¼ UACG̃−α;−γðz0; zRÞ: ðA16Þ

Then ACB is the solution of the equation

CACACB ¼ DAB: ðA17Þ

The matrix CACðpÞ defined here is the analytic continu-
ation of the similar matrix defined in [21] to Minkowski
momenta p. The zeros of detCðpÞ give the mass spectrum
associated with the fields.
From its use in representing the Green’s function, we see

that the matrix A must be Hermitian. This is certainly not
obvious from (A17), and actually it is a nice check that A
has been computed correctly from this formula. We sketch
a proof of the Hermitian nature of A in Appendix E.

APPENDIX B: SOð5Þ GENERATORS

In this appendix, we provide our choice of basis for the
generators of SOð5Þ. We will choose representations in
which the decomposition

SUð2ÞL × SUð2ÞR ¼ SOð4Þ ⊂ SOð5Þ ðB1Þ

is explicit. We will identify SUð2ÞL with the weak
interaction SUð2Þ gauge group and SOð4Þ with the
custodial symmetry group. For this purpose, we write

TaL ¼ 1

2
ðϵabcTbcþTa4Þ TaR ¼ 1

2
ðϵabcTbc−Ta4Þ; ðB2Þ

with a, b, c ¼ 1, 2, 3. Then the SOð5Þ generators are
labeled TaL, TaR, Ta5, and T45. It will be convenient to
rescale Ta5 and T45 such that all generators have a uniform
normalization, so that tr½ðFA

MNT
AÞ2� ¼ cðFA

MNÞ2.
The 4 spinor representation decomposes under SUð2ÞL×

SUð2ÞR
4 → ð2; 1Þ ⊕ ð2; 1Þ: ðB3Þ

The corresponding representation matrices are

TaL ¼
�
τa 0

0 0

�
; TaR ¼

�
0 0

0 τa

�
;

Ta5 ¼ 1ffiffiffi
2

p
�

0 τa

τa 0

�
; T45¼ 1

2
ffiffiffi
2

p
�
0 −i
i 0

�
; ðB4Þ

where τa ¼ σa=2. In the 4 representation, we have
trðTAÞ2 ¼ 1

2
.

The 5 fundamental representation decomposes under
SUð2ÞL × SUð2ÞR

5 → ð2; 2Þ ⊕ ð1; 1Þ: ðB5Þ

The corresponding representation matrices are

TaL ¼
�
τa ⊗ 1 0

0 0

�
TaR ¼

�
1 ⊗ τa 0

0 0

�
ðB6Þ

and

T15 ¼ 1

2

0
BBBBBBB@

0

0
BBB@

−1
0

0

1

1
CCCA

ð−1 0 0 1 Þ 0

1
CCCCCCCA

T25 ¼ 1

2

0
BBBBBBB@

0

0
BBB@

i

0

0

i

1
CCCA

ð−i 0 0 −i Þ 0

1
CCCCCCCA

T35 ¼ 1

2

0
BBBBBBB@

0

0
BBB@

0

1

1

0

1
CCCA

ð 0 1 1 0 Þ 0

1
CCCCCCCA

T45 ¼ 1

2

0
BBBBBBB@

0

0
BBB@

0

i

−i
0

1
CCCA

ð 0 −i i 0 Þ 0

1
CCCCCCCA

ðB7Þ

with the normalization trðTAÞ2 ¼ 1. In this basis, the
elements of the 5 multiplet are
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0
BBBBBBB@

ξþþ
ξ−þ
ξþ−

ξ−−

ξ00

1
CCCCCCCA
; ðB8Þ

with the subscripts indicating the T3
L and T3

R quantum
numbers þ 1

2
, − 1

2
, or 0. We will also write this multiplet as

0
B@

�
ξþþ
ξ−þ

� �
ξþ−

ξ−−

�
ξ00

1
CA: ðB9Þ

We will find it useful to have explicit representations of

U ¼ exp ð−
ffiffiffi
2

p
iθT45Þ; ðB10Þ

in the 4 and 5 representations. In the 4,

Uð4Þ ¼
�
c2 −s2
s2 c2

�
; ðB11Þ

where s2 ¼ sin θ=2, c2 ¼ cos θ=2. In the 5, U mixes three
rows of the 5-vector. The 3 × 3 mixing matrix acting on
ðξþ−; ξ−þ; ξ00Þ [the third, second, and fifth entries, respec-
tively, of (B8)] is

Uð5Þ ¼

0
BB@

ð1þ cÞ=2 ð1 − cÞ=2 −s=
ffiffiffi
2

p

ð1 − cÞ=2 ð1þ cÞ=2 s=
ffiffiffi
2

p

s=
ffiffiffi
2

p
−s=

ffiffiffi
2

p
c

1
CCA; ðB12Þ

where s ¼ sin θ, c ¼ cos θ.
Finally, we consider the adjoint (15) representation. The

elements of TA in the adjoint representation are computed
as the commutators of the TA matrices above. In particular,
it is straightforward to show that

T45
Adj

0
BB@

TaL

TaR

Ta5

1
CCA ¼ 1

2

0
BB@

0 −i
0 i

i −i 0

1
CCA
0
BB@

TaL

TaR

Ta5

1
CCA ðB13Þ

The corresponding mixing matrix is again the 3 × 3
matrix (B12).

APPENDIX C: FORMALISM FOR BOUNDARY
KINETIC TERMS

In this appendix, we describe how the boundary kinetic
terms for gauge fields and fermion fields modify the
Green’s functions for these fields. Our discussion general-
izes the presentation of Green’s functions in Appendix A.

1. Boundary kinetic term for gauge fields

For the description of gauge fields, we begin with the
gauge-invariant bulk action in RS,

Sbulk ¼
Z

d4xdz

� ffiffiffi
g

p �
−
1

4
gMPgNQFa

MNF
a
PQ

�
− JMAM

�
:

ðC1Þ
The quantization of this action is described in Appendix B
of [21]. Now add a UV localized boundary kinetic term,

SUV ¼
Z

d4xdz

� ffiffiffi
g

p �
−
1

4
az0δðz − z0ÞgmpgnqFa

mnFa
pq

��
:

ðC2Þ
Note that we parametrize the coefficient of the boundary
term in units of z0 ¼ 1=k.
In our formalism, the Higgs field is a background gauge

field, so we will quantize in the Feynman-Randall-
Schwartz background field gauge [25]. Expand

Aa
M → Aa

MðzÞ þAa
M; ðC3Þ

where, on the right, Aa
M is a fixed background field,

Aa
MðzÞ ¼ ð0; 0; 0; 0; Aa

5ðzÞÞ ðC4Þ

and Aa
M is a fluctuating field. Let AM ¼ Aa

Mt
a and

FMN ¼ Fa
MNt

a, where ta are the generators of the gauge
group. Let DM be the covariant derivative containing the
background field only. Then the linearized form for the field
strength is FMN ¼ DMAN −DNAM. In the backgrounds
we consider in this paper, FMN ¼ DMAN −DNAM ¼ 0 and
½DM;DN � ¼ 0. Inserting the metric (1), the action becomes

SbulkþSUV

¼
Z

d4xdz

	
1

kz

�
−
1

4
ðð1þaz0δðz−z0ÞÞðDmAn−DnAmÞ2

−
1

2
ðDmA5−D5AmÞ2

�
−J mAmþJ 5A5



: ðC5Þ

In the 5D bulk, following [25], we introduce the gauge-
fixing term

SGF ¼
Z

d4xdz
1

kz

�
−
1

2

�
DmAm−kzD5

1

kz
A5

�
2
�
; ðC6Þ

where we set the gauge parameter ξ ¼ 1 for simplicity. On
the UV boundary, the gauge fixing term must be changed in
accord with the addition of the surface term. The presence
of the delta function in (C5) requires some regularization.
One possible way to do this, which we will follow here, is
to expand the boundary to an interval ½z0; z0 þ ϵ� in which
the coefficient of the first term in (C5) is (1þ az0=ϵ). A
compatible gauge-fixing term on this interval is
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SUVGF ¼
Z

d4x
Z

z0þϵ

z0

dz
1

kz

�
−
ð1þ az0=ϵÞ

2

�
DmAm −

1

ð1þ az0=ϵÞ
kzD5

1

kz
A5

�
2
�
: ðC7Þ

After some integrations by parts, the action in the boundary region comes into the form

Sbulk þ SUV þ SUVGF ¼
Z

d4x
Z

z0þϵ

z0

dz

	
1

kz

�
1

2
Amη

mn

�
ð1þ az0=ϵÞD2 − kzD5

1

kz
D5

�
An

−
1

2
A5

�
D2 −D5

kz
ð1þ az0=ϵÞ

D5

1

kz

�
A5

�
− J mAm þ J 5A5



ðC8Þ

and the action in the bulk has the same form with the az0=ϵ terms removed. Here and in the following, raised and
lowered indices are contracted with the Lorentz metric ηmn and D2 ¼ DmDm. It is convenient to define
D5 ¼ kzD5ð1=kzÞ.
The surface terms from integration by parts should not be ignored. They are

Ssurface ¼
Z

d4x
1

2

	
1

kz

�
AmD5Am þ 2DnAnA5 −

1

ð1þ az0=ϵÞ
A5D5A5

�����ϵ−
0

þ
�
AmD5Am þ 2DnAnA5 −A5D5A5

�����R
ϵþ



;

ðC9Þ

with 0, ϵ−, ϵþ, R denoting the boundaries at z0, ðz0 þ ϵÞ in the boundary region, (z0 þ ϵ) in the bulk region, and zR,
respectively. Requiring these expressions to vanish, we learn that Am, A5 obey the boundary conditions:

at z0∶ D5Amj0 ¼ 0;A5j0 ¼ 0 or Amj0 ¼ 0;D5A5j0 ¼ 0

at zR∶ D5AmjR ¼ 0;A5jR ¼ 0 or AmjR ¼ 0;D5A5j0 ¼ 0

atðz0 þ ϵÞ∶ Amjϵ− ¼ Amjϵþ and D5Amjϵ− ¼ D5Amjϵþ
A5jϵ− ¼ A5jϵþ and ð1þ az0=ϵÞ−1D5A5jϵ− ¼ D5A5jϵþ: ðC10Þ

The first two lines are the now-familiar þ and − boundary conditions for the spin 1 field.
In the boundary region, Am and A5 obey the equations

�
ð1þ az0=ϵÞp2 þ kzD5

1

kz
D5

�
Amðz; pÞ ¼ 0:

�
p2 þD5

kz
ð1þ az0=ϵÞ

D5

1

kz

�
A5ðz; pÞ ¼ 0: ðC11Þ

Since the region is very narrow, both equations can be approximated by

�
az0
ϵ

p2 þ ∂2
5

�
Aðz; pÞ ¼ 0: ðC12Þ

Then a solution satisfying A=D5A ¼ 0 at z0 has

ðA=D5AÞjϵ− ¼ ϵ ðC13Þ

and a solution satisfying D5A=A ¼ 0 at z0 has

ðD5A=AÞjϵ− ¼ −az0p2: ðC14Þ

Then the boundary conditions at ϵþ for the solutions in bulk are (with ϵ → 0)

þb:c: at z0 −b:c:at z0
Am D5Am=Am ¼ −az0p2 Am=D5Am ¼ 0

A5 D5A5=A5 ¼ 0 A5=D5A5 ¼ az0

ðC15Þ

JONGMIN YOON and MICHAEL E. PESKIN PHYS. REV. D 100, 015001 (2019)

015001-26



Using the property of the G functions

∂zðzGþ;βÞ ¼ pzG−;β; ∂zG−;β ¼ −pGþ;β; ðC16Þ

these boundary conditions are implemented by imposing

þb:c: −b:c:
Aa

m G−;βðz0; zRÞ þ az0pGþ;βðz0; zRÞ ¼ 0 Gþ;βðz0; zRÞ ¼ 0

Aa
5 Gþ;βðz0; zRÞ ¼ 0 G−;βðz0; zRÞ þ az0pGþ;βðz0; zRÞ ¼ 0

ðC17Þ

instead of (A7). þ boundary conditions for Am require −
boundary conditions for A5, and vice versa. Since the
boundary conditions on the Green’s functions are the same
for these cases, the Laplacians for compatible Am and A5

will have the same spectrum, just as in the case of a ¼ 0. The
ghosts c have the same spectrum as Am. It is necessary for
theA5 fields to have the same spectrum as the ghosts so that

the determinant of the A5 Laplacian can cancel the deter-
minant of the ghost Laplacian. This allows the complete
functional integral over A to be gauge independent.
It is illuminating to compute the Green’s function forAm

in the case of þþ boundary conditions. Before imposing
the UV boundary condition, the Green’s function takes the
form in (A8). For z < z0,

hAmðzÞAnðz0Þi ¼ ηmnkpzRzz0½AGþ−ðz; zRÞGþ−ðz0; zRÞ þGþþðz; zRÞGþ−ðz0; zRÞ�: ðC18Þ
Imposing the þ boundary condition on the UV brane with the modification due to the boundary kinetic term, we find

AðG−− þ az0pGþ−Þ þ ðG−þ þ az0pGþþÞ ¼ 0: ðC19Þ
This is easy to solve for A. Using (A2), the Green’s function for z < z0 can be rewritten as

hAmðzÞAnðz0Þi ¼ ηmnkzz0
�
Gþ−ðz; z0Þ þ az0pGþþðz; z0Þ

G−− þ az0pGþ−

�
Gþ−ðz0; zRÞ: ðC20Þ

Taking the p → 0 limit using (A5)

hAmðzÞAnðz0Þi → ηmn
k
p2

1

ðlog zR=z0 þ aÞ : ðC21Þ

This equation shows exactly that the 4D coupling of Am is modified according to (49).
To compute the Coleman-Weinberg potential, we need to redo this analysis for Euclidean momenta. For p2

E ¼ −p2, there
are minus sign changes in the formulas (C11) and in (C16). At the end of the analysis, we find, þ and − boundary
conditions for the Euclidean Green’s functions are implemented by

þb:c: at z0 −b:c: at z0
Aa

m GE−;βðz0; zRÞ þ az0pEGEþ;βðz0; zRÞ ¼ 0 GEþ;βðz0; zRÞ ¼ 0
Aa

5 GEþ;βðz0; zRÞ ¼ 0 GE−;βðz0; zRÞ þ az0pEGEþ;βðz0; zRÞ ¼ 0:
ðC22Þ

This result makes it straightforward to derive the expres-
sions for the W and Z boson Coleman-Weinberg potentials
in (56) and (64).

2. Boundary kinetic term for fermion fields

For the description of fermion fields, we begin with the
gauge-invariant bulk action in RS,

Sbulk ¼
Z

d4xdzð ffiffiffi
g

p
Ψ̄½ieMA γADM −m�Ψ − K̄Ψ − Ψ̄KÞ:

ðC23Þ

The quantization of this action is described in Appendix A
of [21]. After specializing to the metric (1) and dividing Ψ
into its 4D chiral components, this action becomes

Sbulk ¼
Z

d4xdz
�

1

ðkzÞ4 ½ψ
†
Liσ̄

mDmψL þ ψ†
Riσ

mDmψR

þ ψ†
LDψR − ψ†

RD̄ψL� − K̄Ψ − Ψ̄K
�
; ðC24Þ

where
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D ¼ D5 −
2þ c
z

D̄ ¼ D5 −
2 − c
z

: ðC25Þ

The fermion fields in (C24) obey equivalent Laplace
equations

ðp2 þDD̄ÞψLðz; pÞ ¼ 0;

ðp2 þ D̄DÞψRðz; pÞ ¼ 0 ðC26Þ
and are linked by the equations of motion

σ · pψR ¼ D̄ψL;

σ̄ · pψL ¼ −DψR: ðC27Þ
There are two ways to add a boundary kinetic term to
(C24). We can add either a kinetic term for ψL or a kinetic
term for ψR. (Adding both terms leads to unnecessary
complexity.) We will describe the first alternative in detail
and then quote the results for the second.
Then, add to (C24) the UV boundary term

SUV ¼
Z

d4xdz
1

ðkzÞ4 az0δðz − z0Þψ†
Liσ̄

mDmψL: ðC28Þ

The delta function requires regularization, and again we
will regularize it by spreading its influence over a small
interval of size ϵ at the UV brane. The equations of motion
in the boundary region become

σ · pψR ¼ D̄ψL;

ð1þ az0=ϵÞσ̄ · pψL ¼ −DψR: ðC29Þ
In the narrow boundary region, the Laplace equations for
ψL and ψR are both well approximated by�

az0
ϵ

p2 þ ∂2
5

�
ψL;R ¼ 0: ðC30Þ

Deriving the equations of motion for ψ†
L, ψ

†
R requires an

integration by parts. The boundary term in z is

Z
d4x

1

ðkzÞ4 ½ψ
†
LψR − ψ†

RψL� ðC31Þ

and is not altered by the addition of (C28). So the boundary
conditions on ψL, ψR are the standard ones,

at z0∶ ψR¼ 0 or ψL ¼ 0

at zR∶ ψR¼ 0 or ψL ¼ 0

atðz0þ ϵÞ∶ ψRjϵ−¼ψRjϵþ and ψLjϵ−¼ψLjϵþ: ðC32Þ

Consider first the þ boundary condition ψR ¼ 0 at
z ¼ z0. Then, in the boundary region,

ψR¼Csin

��
az0
ϵ

�
1=2

pðz− z0Þ
�

ψL ¼−
ϵ

az0

σ ·p
p

·C

�
az0
ϵ

�
1=2

cos

��
az0
ϵ

�
1=2

pðz− z0Þ
�
ðC33Þ

At z ¼ ðz0 þ ϵÞ−,

ψR=ψL ¼ −apz0
σ̄ · p
p

: ðC34Þ

This condition is very similar to that in the þ case for Am
above. The boundary condition is imposed on the Green’s
functions by requiring

G−;βðz0; zRÞ þ az0pGþ;βðz0; zRÞ ¼ 0: ðC35Þ
In the case of − boundary conditions, ψL ¼ 0 at z ¼ z0,

ψL=ψR ¼ OðϵÞ ðC36Þ
at z ¼ ðz0 þ ϵÞ−, and so the boundary condition is
unchanged. In all, the boundary conditions for fermion
fields with the boundary kinetic term (C28) are

þb:c: at z0 −b:c: at z0
ψL;R G−;βðz0; zRÞ þ az0pGþ;βðz0; zRÞ ¼ 0 Gþ;βðz0; zRÞ ¼ 0

ðC37Þ

instead of (A13).
Similarly, we can modify (C24) by adding the UV boundary term

SUV ¼
Z

d4xdz
1

ðkzÞ4 az0δðz − z0Þψ†
Riσ

mDmψR: ðC38Þ

In this case, the UV boundary conditions become

þb:c: at z0 −b:c: at z0
ψL;R G−;βðz0; zRÞ ¼ 0 Gþ;βðz0; zRÞ − az0pG−;βðz0; zRÞ ¼ 0: ðC39Þ
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To illustrate the effect of the UV boundary kinetic term,
we can work out the Green’s function hψLðz; pÞψ†

Lðz0; pÞi
for the case of þþ boundary conditions and the modifi-
cation (C37). This is the Green’s function that contains the
zero mode for a 4D left-handed chiral fermion. Before
imposing the UV boundary condition, the Green’s function
takes the form in (A14). For z < z0,

hψLðzÞψ†
Lðz0Þi

¼ ðσ · pÞk4pzRðzz0Þ5=2½AGþ;−ðz; zRÞGþ;−ðz0; zRÞ
þ Gþ;þðz; zRÞGþ;−ðz0; zRÞ�: ðC40Þ

Imposing the þ boundary condition on the UV brane,
including the effect of the boundary term, we find

AðG−− þ az0pGþ−Þ þ ðG−þ þ az0pGþþÞ ¼ 0: ðC41Þ

This is easy to solve for A. Using (A2), the Green’s
function for z < z0 can be rewritten as

hψLðzÞψ†
Lðz0Þi

¼ ðσ · pÞk4ðzz0Þ5=2
�
Gþ−ðz; z0Þ þ az0pGþþðz; z0Þ

ðG−− þ az0pGþ−Þ
�

× Gþ−ðz0; zRÞ: ðC42Þ

Taking the p → 0 limit using (A4)

hψLðzÞψ†
Lðz0Þi →

σ · p
p2

f2LðaÞk4ðzz0Þ2−c: ðC43Þ

Here f2LðaÞ is the normalization factor for the zero mode,
which is altered from its standard form by the inclusion of a
term involving the boundary factor a. The new expression
for the zero mode is

fLðaÞz2−c ¼
�
z1−2cR − z1−2c0

1 − 2c
þ az1−2c0

�
−1=2

z2−c: ðC44Þ

The a term is always a suppression for a > 0. This
suppression is small if the zero mode is dominantly in
the IR (c < 1

2
), but it becomes significant when the zero

mode is dominantly in the UV (c > 1
2
).

The Green’s function that contains the right-handed 4D
chiral fermion is hψRðzÞψ†

Rðz0Þi, for a fermion field with
−− boundary conditions. In a similar way, we can compute
this Green’s function and take the p → 0 limit. The result is

hψRðzÞψ†
Rðz0Þi →

σ̄ · p
p2

f2RðaÞk4ðzz0Þ2þc: ðC45Þ

Here f2RðaÞ is the normalization factor for the right-handed
zero mode, which is also altered from its standard form.
The new expression for the zero mode is

fRðaÞz2þc ¼
�
z1þ2c
R − z1þ2c

0

1þ 2c
þ az1þ2c

0

�
−1=2

z2þc: ðC46Þ

Again, the a term suppresses the normalization of the zero
mode. Again, this suppression is large only when the zero
mode is dominantly in the UV, which occurs for c < − 1

2
in

this case.
To compute the Coleman-Weinberg potential, we need to

redo this analysis for Euclidean momenta. For p2
E ¼ −p2,

there are minus sign changes in the formulas (C30) and in
the formulas for derivatives of the G functions. At the end
of the analysis, we find, the þ and − boundary conditions
for the Euclidean Green’s functions, with boundary kinetic
terms for ψL, are implemented by

þb:c: at z0 −b:c: at z0
ψL;R∶ GE−;βðz0; zRÞ þ az0pEGEþ;βðz0; zRÞ ¼ 0 GEþ;βðz0; zRÞ ¼ 0

ðC47Þ

This result makes it straightforward to derive the expression
for the top quark Coleman-Weinberg potential in (70).

3. Moments of fermion zero modes

To compute some corrections we consider in this paper,
it is necessary to evaluate moments of z2=z2R in fermion
zero modes. For a single left-handed fermion zero mode,
and for a ¼ 0, this is straightforward to evaluate using the z
wave function of the zero mode

hAðzÞi ¼
Z

dz
ðkzÞ4 jψðzÞj

2AðzÞ ¼ f2Lð0Þ
Z

zR

z0

dz z−2cAðzÞ

ðC48Þ

with f2LðaÞ given by (C44). Then

��
z
zR

�
β
�

¼ ð1 − 2cÞ
ð1þ β − 2cÞ

ðz1þβ−2c
R − z1þβ−2c

0 Þ
zβRðz1−2cR − z1−2c0 Þ : ðC49Þ

For a > 0, part of the zero mode is concentrated at z ¼ z0.
Then moments would be evaluated with the measure

Z
dz

ðkzÞ4 jψðzÞj
2 ¼ f2LðaÞ

Z
zR

z0

dz ½z−2c þ az1−2c0 δðz − z0Þ�;

ðC50Þ

adding an extra term to (C49),
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��
z
zR

�
β
�
¼ðz1þβ−2c

R − z1þβ−2c
0 Þ=ð1þβ−2cÞþaz1þβ−2c

0

zβR½ðz1−2cR − z1−2c0 Þ=ð1−2cÞþaz1−2c0 � :

ðC51Þ

Note that these moments go to zero exponentially when the
zero modes are UV-localized, that is, when c > 1=2.
In the evaluation of matrix elements that involve Green’s

functions, we encounter these moments for pairs of
coordinates ðz; z0Þ. For example,

�
z2<
z2R

�
¼
Z

dz
ðkzÞ4 jψ1ðzÞj2

Z
dz0

ðkz0Þ4 jψ2ðz0Þj2
�
z2<
z2R

�
ðC52Þ

where z<=z> the smaller/larger of z and z0. To get a feel for
this, we quote the values of the expectation values of these
constrained at c ¼ 1=2, a ¼ 0,

��
z2<
z2R

�
;

�
z2

z2R

�
;

�
z2>
z2R

��
¼ ð0.024; 0.109; 0.194Þ; ðC53Þ

for z0=zR ¼ 0.01. These values decrease with a and
decrease steeply with c. So typically, for left-handed zero
modes, terms with z< will be negligible while terms with z>
might make a noticeable correction. In Fig. 7, we plot
values of hz2=z2Ri as a function of c for a ¼ 0 and a ¼ 5.
Note that the boundary term has effects only when c≳ 0.
For right-handed zero modes, the situation can be

different. The formulas for the evaluation of hzβi are
changed by the substitution c → −c. Thus, if c > 0, the
zero modes are strongly shifted to the IR, and so hzβi can
take large values. For right-handed zero modes with c > 0
and z0=zR ≪ 0.1, it is a good approximation to ignore the
factors with z0. Then

hz2=z2Ri ¼
1þ 2c
3þ 2c

;

hz2 logðzR=zÞ=z2Ri ¼
1þ 2c

ð3þ 2cÞ2 : ðC54Þ

We will need these formulas in Sec. VII.

APPENDIX D: CONSTRUCTION OF
THE W, Z, AND t PROPAGATORS

Using the formalism of Appendices A and C, it is almost
automatic to construct the gauge boson and top quark
propagators. We present the essential formulas here.

1. W propagator

The 5DW boson is a mixture of the three fields AaL
m , AaR

m ,
Aa5
m , a ¼ 1, 2, with boundary conditions shown in (9). The

5D propagator for these fields is given by (A8). In this
equation, AAB is a 3 × 3 matrix given by

A ¼ C−1D; ðD1Þ

with

C ¼

0
BBB@

ð1þcÞ
2

GW−−
ð1−cÞ
2

GW−− − sffiffi
2

p GW−þ
ð1−cÞ
2

Gþ−
ð1þcÞ

2
Gþ−

sffiffi
2

p Gþþ
sffiffi
2

p Gþ− − sffiffi
2

p Gþ− cGþþ

1
CCCA ðD2Þ

and

D¼

0
BBB@
− ð1þcÞ

2
GW−þ − ð1−cÞ

2
GW−þ − sffiffi

2
p GW−−

− ð1−cÞ
2

Gþþ − ð1þcÞ
2

Gþþ sffiffi
2

p Gþ−

− sffiffi
2

p Gþþ sffiffi
2

p Gþþ cGþ−

1
CCCA; ðD3Þ

where

GW−− ¼ G−− þ aWpz0Gþ−

GW−þ ¼ G−þ þ aWpz0Gþþ: ðD4Þ

Below, we will also need a similar modification for the
Uð1Þ gauge field,

GB−− ¼ G−− þ aBpz0Gþ−

GB−þ ¼ G−þ þ aBpz0Gþþ: ðD5Þ

The mass eigenvalues in this sector and the contribution
to the Coleman-Weinberg potential are controlled by the
determinant of C, which has the form

FIG. 7. Values of hz2=z2Ri for left-handed fermion zero mode
wave functions, plotted as functions of c, for (bottom to top) z<,
z, and z>. Solid lines: a ¼ 0; dashed lines: a ¼ 5.
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det C ¼ Gþ−

�
GþþGW−− −

s2

2p2z0zR

�
: ðD6Þ

For our discussion of precision electroweak constraints,
we will need the expansion of A including terms
of order s0 for the leading term in p in each matrix element
as p → 0. It will suffice to ignore terms of order z20=z

2
R.

Then

A ¼ −
2pzR
s2

0
BB@

1=2 s2=8 −s=
ffiffiffi
2

p
pzR

s2=8 s2=4 0

−s=
ffiffiffi
2

p
pzR 0 ðlog zR=z0 þ aWÞ

1
CCA:

ðD7Þ

From the definition (A8),A must be symmetric. This is not
obvious from (D1), but it is true, and this is reflected in
(D7). The general proof of the Hermitian nature of A is
given in Appendix E.
Now we find

hA1L
m ðzÞA1L

n ðz0Þi→ηmnkz2Rp
2zz0

�
−
1

s2
Gþ−ðz;zRÞGþ−ðz0;zRÞ

þ 1

pzR
Gþþðz<;zRÞGþ−ðz>;zRÞ

�

→−ηmn
kz2R
s2

�
1−

s2

2

�
1−

z2<
z2R

��
ðD8Þ

in the limit p → 0, where z<, z> are the smaller and larger
of z, z0. Similarly,

hA1L
m ðzÞA15

n ðz0Þi

→ ηmnkz2Rp
2zz0

�
2sffiffiffi

2
p

s2pzR
Gþ−ðz; zRÞGþþðz0; zRÞ

�

→ ηmn
kz2R
s2

�
sffiffiffi
2

p
�
1 −

z02

z2R

��
: ðD9Þ

2. Z propagator

The Z propagator is derived in a similar way. In the basis
ðA3L; B; Z0; A35Þ defined in (11) and (13), the matrix UW
has the form

UW ¼

0
BBBBB@

ð1þ cÞ=2 sβð1 − cÞ=2 cβð1 − cÞ=2 −s=
ffiffiffi
2

p

sβð1 − cÞ=2 c2β þ s2βð1þ cÞ=2 −cβsβð1 − cÞ=2 sβs=
ffiffiffi
2

p

cβð1 − cÞ=2 −cβsβð1 − cÞ=2 s2β þ c2βð1þ cÞ=2 cβs=
ffiffiffi
2

p

s=
ffiffiffi
2

p
−sβs=

ffiffiffi
2

p
−cβs=

ffiffiffi
2

p
c

1
CCCCCA: ðD10Þ

Then the C and D matrices are

C ¼

0
BBBBBBBBB@

ð1þcÞ
2

GW−− sβ
ð1−cÞ
2

GW−− cβ
ð1−cÞ
2

GW−− − sffiffi
2

p GW−þ

sβ
ð1−cÞ
2

GB−−

�
c2β þ s2β

ð1þcÞ
2

�
GB−− −cβsβ

ð1−cÞ
2

GB−− sβ sffiffi
2

p GB−þ

cβ
ð1−cÞ
2

Gþ− −cβsβ
ð1−cÞ
2

Gþ−

�
s2β þ c2β

ð1þcÞ
2

�
Gþ− cβ

sffiffi
2

p Gþþ

sffiffi
2

p Gþ− −sβ sffiffi
2

p Gþ− −cβ sffiffi
2

p Gþ− cGþþ

1
CCCCCCCCCA

ðD11Þ

and

D ¼

0
BBBBBBBBB@

− ð1þcÞ
2

GW−þ −sβ
ð1−cÞ
2

GW−þ −cβ
ð1−cÞ
2

GW−þ − sffiffi
2

p GW−−

−sβ
ð1−cÞ
2

GB−þ −
�
c2β þ s2β

ð1þcÞ
2

�
GB−þ cβsβ

ð1−cÞ
2

GB−þ sβ sffiffi
2

p GB−−

−cβ
ð1−cÞ
2

Gþþ cβsβ
ð1−cÞ
2

Gþþ −
�
s2β þ c2β

ð1þcÞ
2

�
Gþþ cβ

sffiffi
2

p Gþ−

− sffiffi
2

p Gþþ sβ sffiffi
2

p Gþþ cβ sffiffi
2

p Gþþ cGþ−

1
CCCCCCCCCA

ðD12Þ
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The mass eigenvalues in this sector and the contribution
to the Coleman-Weinberg potential are controlled by the
determinant of C. This is given by

det C ¼ Gþ−

�
GþþGW−−GB−−

−
s2

2p2z0zR
ðGB−− þ s2βGW−−Þ

�
: ðD13Þ

3. t propagator

The 5D t quark is a mixture of the three fields tL, χb, tR in
(22). The 5D propagator for these fields is given by (A14).
In the basis ðtL; χb; tRÞ used in (B12), the C and Dmatrices
take the form

C ¼

0
BBB@

ð1þcÞ
2

Gt−−
ð1−cÞ
2

Gt−− − sffiffi
2

p Gt−þ
ð1−cÞ
2

Gþ−
ð1þcÞ

2
Gþ−

sffiffi
2

p Gþþ
sffiffi
2

p Gþ− − sffiffi
2

p Gþ− cGþþ

1
CCCA; ðD14Þ

and

D ¼

0
BBB@

− ð1þcÞ
2

Gt−þ − ð1−cÞ
2

Gt−þ − sffiffi
2

p Gt−−

− ð1−cÞ
2

Gþþ − ð1þcÞ
2

Gþþ sffiffi
2

p Gþ−

− sffiffi
2

p Gþþ sffiffi
2

p Gþþ cGþ−

1
CCCA; ðD15Þ

where

Gt−� ¼ G−� þ atpz0Gþ�: ðD16Þ

The mass eigenvalues in this sector and the contribution to
the Coleman-Weinberg potential are controlled by the
determinant of C, which has the form

det C ¼ Gþ−

�
GþþGt−− −

s2

2p2z0zR

�
: ðD17Þ

APPENDIX E: RELATION OF THE
UV AND IR GAUGES

In Sec. IV E, we claimed that Green’s functions in the
UV and IR gauges are related by the formula

ðU†
WÞAChAC

mðzÞAB
n ðz0ÞiIR ¼ hAA

mðzÞAC
n ðz0ÞiUVðU†

WÞCB:
ðE1Þ

In this section, we prove this relation from the representa-
tions for the UV and IR gauge Green’s functions given in
Appendix A. The idea of the proof is to use the identity

(A2) to relate Gabðz; z0Þ and Gabðz; zRÞ. For definiteness,
we consider the representations of the Green’s functions of
the 4d components of a spin 1 field given in (A8) and
(A10). It will be clear from the derivation that the result for
all other RS Green’s functions can be carried out with the
same logic.
We need to be very explicit about the boundary con-

ditions on the various fields. We assign the field with gauge
index A the boundary conditions aUV ¼ � and aIR ¼ � in
the UV and IR, respectively.
It suffices to consider the case z > z0. In this case, the

Green’s function on the right-hand side of (E1) takes the
form

hAA
mðzÞAB

n ðz0ÞiUV
¼ ηmnkpzRzz0½Gþ;−aIRðz; zRÞAAB

UVGþ;−bIRðz0; zRÞ
− Gþ;−aIRðz; zRÞδABG̃þ;−bIRðz0; zRÞ�: ðE2Þ

From (A9), the G̃ functions are given by

G̃c;−bIR ¼ ð−bIRÞGc;þbIR : ðE3Þ

In the second line of (E2), we can put aIR ¼ bIR.
In the UV gauge, the matrix A is computed as

AUV ¼ C−1
UVDUV; ðE4Þ

The matrix elements of C and D are

CAB
UV ¼ UABG−aUV;−bIRðz0; zRÞ

DAB
UV ¼ UABð−bIRÞG−aUV;þbIRðz0; zRÞ: ðE5Þ

The formula (E2) then factorizes as

hAA
mðzÞAB

n ðz0ÞiUV
¼ ηmnkpzRzz0½Gþ;−aIRðz;zRÞC−1

UV
AC

·fDCB
UVGþ;−bIRðz0;zRÞ−CCB

UVð−bIRÞGþ;þbIRðz0;zRÞg�
ðE6Þ

The term in braces is

fGþ;−bIRðz0; zRÞð−bIRÞG−cUV;þbIRðz0; zRÞ
−Gþ;þbIRðz0; zRÞð−bIRÞG−cUV;−bIRðz0; zRÞgUCB

¼ fGþ;þðz0; zRÞG−cUV;−ðz0; zRÞ
− Gþ;−ðz0; zRÞG−cUV;þðz0; zRÞgUCB

¼ 1

pzR
Gþ;−cUVðz; z0ÞUCB; ðE7Þ

where, in the last line, we have used (A2).
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The UV gauge Green’s function then reassembles into

hAA
mðzÞAB

n ðz0ÞiUV
¼ ηmnkzz0½Gþ;−aIRðz;zRÞC−1

UV
ACGþ;−cUVðz0;z0Þ�UCB:

ðE8Þ

The IR gauge Green’s function can be rearranged in a
similar way.

hAA
mðzÞAB

n ðz0ÞiIR
¼ −ηmnkpz0zz0½Gþ;−aUVðz; z0ÞAAB

IR Gþ;−bUVðz0; z0Þ
− G̃þ;−aUVðz; z0ÞδABGþ;−bUVðz0; z0Þ�: ðE9Þ

The G̃ functions are given by

G̃c;−aUV ¼ ð−aUVÞGc;þaUV : ðE10Þ

In the IR gauge, the matrix A is computed as

AIR ¼ DIRC−1
IR ; ðE11Þ

The matrix elements of C and D are

CAB
IR ¼ UABG−bIR;−aUVðzR; z0Þ

DAB
IR ¼ UABð−aUVÞG−bIR;þaUVðzR; z0Þ: ðE12Þ

The formula (E9) then factorizes as

hAA
mðzÞAB

n ðz0ÞiIR ¼ −ηmnkpz0zz0 · ½fGþ;−aUVðz; z0ÞDAC
IR −Gþ;þaUVðz; z0Þð−aUVÞCAC

IR g · ðC−1
IR ÞCBGþ;−bUVðz0; z0Þ�: ðE13Þ

The term in braces is

UACfGþ;−aUVðz; z0Þð−aUVÞG−cIR;þaUVðzR; z0Þ −Gþ;þaUVðz; z0Þð−aUVÞG−cIR;−aUVðzR; z0Þg
¼ UACfGþ;þðz; z0ÞG−cIR;−ðzR; z0Þ −Gþ;−ðz; z0ÞG−cIR;þðzR; z0Þg

¼ UAC 1

pz0
Gþ;−cIRðz; zRÞ; ðE14Þ

and again, in the last line, we have used (A2).
The IR gauge Green’s function then reassembles into

hAA
mðzÞAB

n ðz0ÞiIR ¼ −UACηmnkzz0½Gþ;−cIRðz; zRÞC−1
IR

CBGþ;−bUVðz0; z0Þ�: ðE15Þ

To compare (E8) and (E15), note that (A1) implies, using
the explicit formulas above,

CIR ¼ −CUV: ðE16Þ

Then (E8) and (E15) have the same form, except that, in the
latter, the matrix U is moved to the right. This proves (E1).
Notice that, in this calculation, the first index þ on the G

functions for the A fields, the IR boundary condition of AA
m,

and the UV boundary condition of AB
n play no role in the

cancellation. The parallel calculation for z < z0 depends on
the IR boundary condition of AB

n and the UV boundary
condition of AA

m and also goes through for any values of
these. The G functions in the cancellation are linked by U
matrices and therefore have the same value of c. Thus, the
same argument goes through for any Green’s function of
RS fields.
Using the same method, one can prove the identity

DC† −CD† ¼ 0 ðE17Þ

for both the UV and IR forms of these matrices. After the
use of the identity (A2), one finds that the G functions
combine into

Ga;aðzR; zRÞ or Ga;aðz0; z0Þ: ðE18Þ

These expressions are zero by (A1). This identity implies
the Hermitian property for the A matrices discussed at the
end of Appendix A.

APPENDIX F: SMALL s EXPANSION OF THE
COLEMAN-WEINBERG POTENTIALS

In this appendix, we discuss the expansion of the
Coleman-Weinberg potentials (56), (64), (70), and (71)
for small values of s. Here we generalize the discussion on
the Coleman-Weinberg potentials in [21] and include the
effect of the boundary kinetic terms.
Analogously to the definition ofGαβ in (7), we define the

Green’s functions GEαβ in Euclidean momentum:
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GEαβðz1; z2Þ ¼ KαðpEz1ÞIβðpEz2Þ
− ð−1ÞδIαðpEz1ÞKβðpEz2Þ; ðF1Þ

where ð−1Þδ ¼ 1 for α ¼ β and −1 for α ≠ β. The Green’s
functions are positive definite. For large pE, we have

GEαβðz0; zRÞ ∼ epEðzR−z0Þ: ðF2Þ

First we consider the potential VT in (71). Note that

s22ð2 − s22Þ ¼
1

2
s2 þ 1

16
s4 þOðs6Þ: ðF3Þ

Then the integrand can be expanded about s2 ¼ 0 under the
integral sign. After the expansion, we get

VTðhÞ ¼
NTk4R
4π2

�
ATðcTÞ

�
1

2
s2 þ 1

16
s4
�

þ 1

8
BTðcTÞs4 þOðs6Þ

�
; ðF4Þ

where NT is the number of QCD colors of ΨT . Whether
NT ¼ 3 or 1 is a model-building choice. The coefficients
AT and BT are given by

ATðcÞ ¼
Z

∞

0

dpEp3
E

z4R
p2
Ez0zRGE−þGEþ−

BTðcÞ ¼
Z

∞

0

dpEp3
E

z4R
ðp2

Ez0zRGE−þGEþ−Þ2
; ðF5Þ

and both are positive definite for all values of c. ForpE → 0,

GE−þGEþ− ¼ 1

p2
Ez0zR

ð1þOðp2
EÞÞ; ðF6Þ

and therefore together with (F2), the integrals are conver-
gent. Rescaling p → pzR in (F5) shows that AT and BT
depend only on the ratio zR=z0, not on z0 or zR individually.
For the representative case zR=z0 ¼ 100, the values of these
coefficients at c ¼ 0 are

ATð0Þ ¼ 1.4078; BTð0Þ ¼ 0.21694; ðF7Þ

and they decrease as c increases. Note that BT is much
smaller than AT .
We can similarly proceed for the top quark contribution

Vt in (70), but for this case more care is necessary due to IR
divergence of the integrand. Following the prescription
given in [21], we get

VtðhÞ ¼
3k4R
4π2

�
−
1

2
AtðctÞs2 þ

1

8
BtðctÞs4 þ

1

8
CtðctÞs4 log

1

s2=2
þOðs6Þ

�
ðF8Þ

where we define

AtðcÞ ¼
Z

∞

0

dpEp3
E

z4R
p2
EGtðpEÞ

BtðcÞ ¼ z4R

�
1

Gtð0Þ2
�
1

4
−
γ

2

�
þ
Z

∞

0

dpE

pE

	
1

GtðpEÞ2
−

1

Gtð0Þ2
e−Gtð0Þp2

E


�

CtðcÞ ¼
z4R

2Gtð0Þ2
ðF9Þ

and

GtðpEÞ ¼ z0zRGEþþðGE−− þ atpEz0GEþ−Þ: ðF10Þ
For zR=z0 ¼ 100 and at ¼ 0, the values of these coefficients at c ¼ 0 are

Atð0Þ ¼ 1.8771; Btð0Þ ¼ 0.19585; Ctð0Þ ¼ 0.52051; ðF11Þ

and they decrease as c increases. Here we can also see that a large boundary kinetic term at will suppress the potential. Note
that Bt and Ct are much smaller than At.
Finally, for VW (56) and VZ (64), we have

VWðhÞ ¼
3k4R
8π2

�
1

2
AWs2 −

1

8
BWs4 −

1

8
CWs4 log

1

s2=2
þOðs6Þ

�
;

VZðhÞ ¼
3k4R
16π2

�
1

2
AZs2 −

1

8
BZs4 −

1

8
CZs4 log

1

s2=2
þOðs6Þ

�
; ðF12Þ
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where the coefficients can be obtained from (F9) by replacing Gt with

GWðpEÞ ¼ z0zRGEþþðGE−− þ aWpEz0GEþ−Þ

GZðpEÞ ¼
z0zRGEþþðGE−− þ aBpEz0GEþ−Þ

ðGE−− þ aBpEz0GEþ−Þ þ s2βðGE−− þ aWpEz0GEþ−Þ
ðF13Þ

where c ¼ 1=2. It is instructive to note that because of the
factor of 3 from SUð3ÞC color, the fermion contribution to
the Higgs potential is usually larger than that of gauge
bosons. In realistic models, the gauge boson boundary
kinetic term further suppresses VW and VZ and therefore
makes them almost negligible compared to the potential by
fermions, especially when ct and cT are small.
Summing up, we get the expansion of the full Higgs

potential (73)

VðhÞ ¼ k4R
8π2

�
−As2 þ 1

2
Bs4 þ 1

2
Cs4 log

1

s2
þOðs6Þ

�
;

ðF14Þ
where

A ¼ 3AtðctÞ − NTATðcTÞ −
3

2
AW −

3

4
AZ

B ¼ 3

2
ðBtðctÞ þ CtðctÞ log 2Þ þ

NT

4
ATðcTÞ þ

NT

2
BTðcTÞ

−
3

4
ðBW þ CW log 2Þ − 3

8
ðBZ þ CZ log 2Þ

C ¼ 3

2
CtðctÞ −

3

4
CW −

3

8
CZ: ðF15Þ

We can make further approximations on the potential, using
that BT;t and CT;t are much smaller than AT;t. Furthermore,
the gauge boson terms are suppressed if it includes large
UV boundary kinetic terms, which indeed is the case for
our model. Then, we have

A ∼ 3AtðctÞ − NTATðcTÞ

B ∼
NT

4
ATðcTÞ

C ∼ 0: ðF16Þ
If we tune ct and cT so that A ∼ 0, we can realize v ≪ f. In
this case, we have B ∼ 3

4
AtðctÞ. With this crude approxi-

mation, we can get a simple relationship between the Higgs
mass to the top quark mass, which is independent on ct
and at.
It should be noted that 3

4
AT in B gives a large contri-

bution to the Higgs quartic potential. This term appears as
we embed ΨT in 5 of SOð5Þ, as in (22). With the 4
representaion in (21), we do not have such term and it
makes the parameter space of the 4model more constrained
than that of the 5.

APPENDIX G: COEFFICIENTS IN THE
FERMION LOOP CORRECTION

TO T PARAMETER

In this appendix, we calculate the coefficients A, B, and
C needed in the calculation of the RS correction to the T
parameter from (108). For this, we need to compute the LL
components of the tL and bL propagators in Euclidean
space, as indicated in (107). These coefficients depend on
the arguments of the Green’s functions z and z0 as well as
on the Euclidean momentum p and mt.
In (A14), we showed that the fermion Green’s functions

in the UV gauge are a sum of two terms, the first of which
contains the matrix A ¼ C−1D and the second of which
contains the unit matrix and is independent of boundary
mixing. This latter term is identical for tL and bL, since
both have þ boundary conditions on the IR brane. So we
will ignore this second term, since it does not contribute to
the difference of the propagators.
We now need to compute theA coefficients for tL and bL.

For bL, an unmixed fermion withþþ boundary conditions,
we did this calculation already in (C41) and found

A ¼ −
Gt−þ
Gt−−

; ðG1Þ

where Gt−� are defined in (D16). The same result carries
over to Euclidean space, with G replaced by GE. In the
analysis below, we will abbreviate GEαβðz0; zRÞ by GEαβ.
It will be useful to adopt a compact notation for the

expansions of the G functions. We will write

GEþþðz;zR;pÞ
¼GEþþðz;zR;p¼ 0Þ½1þðpzRÞ2ZþþðzÞþ �� ��; ðG2Þ

and similarly for the other GE functions, putting the
appropriate subscript on the Z coefficient. Using this
notation, it follows from (G1) and the Euclidean version
of (A14) that

C ¼ Zt−þðz0Þ − Zt−−ðz0Þ þ Zþ−ðzÞ þ Zþ−ðz0Þ: ðG3Þ

To evaluate the tL propagator, we need to compute the
3 × 3 matrix A for this case. We find

A11 ¼ −GEþþ

�
1

p2z0zR
þ GEþþGEt−− þOðs4Þ

�
= det C:

ðG4Þ
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Using the Euclidean space form of the Wronskian identity

GEþþðz1; z2ÞGE−−ðz1; z2Þ

−GEþ−ðz1; z2ÞGE−þðz1; z2Þ ¼ −
1

p2z1z2
; ðG5Þ

this becomes

A11 ¼ −GEþþGEþ−GEt−þ= det C: ðG6Þ

Further,

1

detC
¼ 1

GEþþGEþ−GEt−−

p2

p2 þm2
t
ð1þ ðmtzRÞ2ðZþþ þ Zt−−ÞÞ; ðG7Þ

so

A11 ¼ −
GEt−þ
GEt−−

p2

p2 þm2
t
ð1þ ðmtzRÞ2ðZþþ þ Zt−−ÞÞ; ðG8Þ

in parallel with (G1). Similarly,

A13 ¼ A31 ¼
s=

ffiffiffi
2

p

p2z0zRGEþþGEt−−

p2

p2 þm2
t
; ðG9Þ

up to Oðs2Þ.
We now transform to the IR gauge using (72). Up to Oðs2Þ, the relevant terms are

hðtLÞLðtLÞ†LiIR;11 ¼
�
1 −

s2

2

�
hðtLÞLðtLÞ†LiUV;11 þ

�
−

sffiffiffi
2

p
�
hðtLÞLðtLÞ†LiUV;13 þ

�
−

sffiffiffi
2

p
�
hðtLÞLðtLÞ†LiUV;31: ðG10Þ

We must now expand this expression and set the result into the form (109). The terms explicitly proportional to s2 are
contributions to the A coefficient, since, from (69)

m2
t z2R ¼ s2

2ct þ 1

2Lt

�
z0
zR

�
ct−1=2

: ðG11Þ

We then find for the A coefficient

A ¼ Lt

ð2ct þ 1Þ
�
zR
z0

�
ct−1=2

	
−1þ ð2ct þ 1Þ

��
z
zR

�
ctþ1=2

RðzÞ þ
�
z0

zR

�
ctþ1=2

Rðz0Þ
�


þ Zþþðz0Þ þ Zt−−ðz0Þ; ðG12Þ

where RðzÞ ¼ GEþþðz; zR;p ¼ 0Þ. The B coefficient is

B ¼ C ¼ Zt−þðz0Þ − Zt−−ðz0Þ þ Zþ−ðzÞ þ Zþ−ðz0Þ: ðG13Þ

To evaluate the expressions for A, B, and C, we need the expansions

RðzÞ ¼ 1

2cþ 1

��
zR
z

�
cþ1=2

−
�
z
zR

�
cþ1=2

�

Zþþðz0Þ ¼
1

2ð2cþ 3Þ

Zt−−ðz0Þ ¼
1

2ð2cþ 1ÞLt

�
1

ð2c − 3Þ
	��

zR
z0

�
c−1=2

þ
�
z0
zR

�
c−1=2

�
−

2

2c − 1

��
zR
z0

�
c−1=2

−
�
z0
zR

�
c−1=2

�

þ at

�
zR
z0

�
c−1=2

�

Zt−þðz0Þ ¼ −
1

2ð2cþ 1Þ
�
1þ 2

2c − 1

�
1 −

�
zR
z0

�
2c−1

��
þ at
2cþ 1

�
zR
z0

�
2c−1

Zþ−ðzÞ ¼
1

2ð2cþ 1Þ
�
1 −

z2

z2R

�
1þ 2

2c − 1

�
1 −

�
z
zR

�
2c−1

���
: ðG14Þ

JONGMIN YOON and MICHAEL E. PESKIN PHYS. REV. D 100, 015001 (2019)

015001-36



We have made the above formulas somewhat
simpler by ignoring factors of ðz0=zRÞ and ðz0=zRÞcþ1=2

(but not ðz0=zRÞc−1=2) for the relevant values c > 0.3.
Also note that there is an identity between the expressions
above,

z0
zR

Rðz0ÞLt ¼ Zþ−ðz0Þ þ Zt−þðz0Þ ðG15Þ

which follows from the Wronskian identity (G5).
Using these formulas, our estimate of the correction to T

can be written as

T≈
3m2

t

16πs2wc2wm2
Z
f2ðmtzRÞ2½hZþ−ðzÞþZþ−ðz0Þi

−2Zt−−ðz0Þ−Zþþðz0Þ−Zþ−ðz0Þ�

þs2
��

z
zR

�
1þ2ctþ

�
z0

zR

�
1þ2ct

�

· logðΛ2=m2

t Þ: ðG16Þ

In our discussion of parameters, we saw that at has a
large value, of order 10. Then it makes sense to extract the
terms in (G16) that are enhanced by a power of at. These
come from the term with s2, which is proportional to Lt
through (G11). Keeping only this term, we find a much
simpler expression, which is quoted in (113). However, the
small values of the expectation values of z and z0 counter-
balance the large value of at, so this parametrically large
contribution is not actually dominant. The values of T in
Fig. 6 are evaluated with the full expression (G16).
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