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In order to reduce the current hadronic uncertainties in the theory prediction for the anomalous magnetic
moment of the muon, lattice calculations need to reach subpercent accuracy on the hadronic-vacuum-
polarization contribution. This requires the inclusion of O(a) electromagnetic corrections. The inclusion of
electromagnetic interactions in lattice simulations is known to generate potentially large finite-size effects
suppressed only by powers of the inverse spatial extent. In this paper we derive an analytic expression for
the QED; finite-volume corrections to the two-pion contribution to the hadronic vacuum polarization at
next-to-leading order in the electromagnetic coupling in scalar QED. The leading term is found to be of
order 1/L3 where L is the spatial extent. A 1/L? term is absent since the current is neutral and a photon far
away thus sees no charge and we show that this result is universal. Our analytical results agree with results
from the numerical evaluation of loop integrals as well as simulations of lattice scalar U(1) gauge theory
with stochastically generated photon fields. In the latter case the agreement is up to exponentially
suppressed finite-volume effects. For completeness we also calculate the hadronic vacuum polarization in

infinite volume using a basis of 2-loop master integrals.
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I. INTRODUCTION

One of the most precisely measured quantities in particle
physics is the anomalous magnetic moment of the muon

a, = %2

" >— Where g, describes the ratio of couplings of the
muon spin and orbital angular momentum to an external
magnetic field. Historically, Dirac’s original tree-level
prediction g = 2 was in good agreement with experimental
results, but the discrepancy which eventually arose became
very strong evidence in support of quantum electrodynam-
ics (QED). Both experimental measurement and Standard
Model predictions for a, have by now reached a precision
of about 0.5 ppm where a tension of 3.5 — 4 is observed
[1-4]. Efforts are therefore under way to increase the
accuracy of both measurements and theoretical predictions.
To address the former, two new experiments have been
planned, E989 at Fermilab [5] and E34 at J-PARC [6]. The
Fermilab experiment is expected to lead to first new results
in 2019 and the J-PARC experiment is expected to begin in
2020. Both experiments aim at increasing the experimental
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accuracy by a factor of 4 to 0.14 ppm. To address the latter,
we note that the main challenge on the theoretical side
comes from nonperturbative contributions, namely the
hadronic vacuum polarization (HVP) and hadronic light-
by-light scattering (HLbL), of which the HVP constitutes
the dominant contribution to the theoretical uncertainty.
The traditional approach to estimating the HVP uses
dispersion relations together with the optical theorem to
relate it to the measured cross section of e™e™ to hadrons
[3,4,7,8]. More recently, there has been significant progress
in calculation of the HVP from first principles using lattice
QCD [9-23].

Based on simple power counting we expect strong and
electromagnetic isospin breaking effects to contribute at the
percent level. Given that this corresponds to the level of
precision state-of-the-art lattice simulations are able to
achieve, these effects need to be included in future
calculations. Here we concentrate on electromagnetic
effects which can be computed in the lattice-discretized
finite-volume theory in several ways. Common to all
approaches is the difficulty of defining charged states in
a finite volume with periodic boundary conditions and the
resulting singularities from photon zero modes which need
to be dealt with. In QEDyy, [24-30] the global zero mode is
removed by hand while in QED; [21,27,31-42] the photon
zero mode is subtracted individually on every time slice.
An alternative avenue is to perform simulations with a
massive photon [43] followed by an extrapolation to zero
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photon mass to obtain physical results [43,44]. In yet
another approach one introduces charge-conjugation boun-
dary conditions [45-50] which allow for constructing
gauge-invariant charged states in a finite volume. QED cor-
rections have been performed in [21,26,30,34,35,51-54].
Isospin-breaking corrections to the HVP have been explic-
itly considered in [21,38,39,55,56].

A recurring systematic in QCD + QED calculations is
the presence of large finite volume (FV) effects, which
scale as 1/L" with the box size L for some exponent n. This
is the result of the photon being a massless particle and
the long-ranged nature of electromagnetic interactions. The
finite-volume corrections have been studied in effective
field theories for the meson masses in [31,32,42,43,49,51]
and decay rates in [57]. The finite-volume correction to the
HVP at order @ however has not been previously calculated
and this is the subject of this paper. We will extend the
methodology for computing finite volume effects described
in [42] to the electromagnetic correction to the HVP.

This paper is organized as follows. Section II describes
the preliminaries of the HVP function, which are relevant in
both finite and infinite volumes. Section III describes
the analytic derivation of the finite-volume correction of
the HVP with O(a) electromagnetic correction. This is the
main result of this paper. Finally, Sec. IV contains numeri-
cal tests of the analytic expressions derived in Sec. III. In
Appendix A we present a calculation of the NLO HVP in
continuum Minkowski space.

II. THE HADRONIC VACUUM POLARIZATION

The main object of interest is the Euclidean 2-point
function

M (q) = / et (OT[j, (<) ))10), (1)

where j,(x) is a charged or neutral vector current and q*is
the external, Euclidean photon momentum. We start by

(A) (B)

presenting the calculation for neutral currents relevant
for the HVP and then, since the calculation is equivalent
up to numerical factors in the summation of diagrams,
briefly present the result for charged ones. Note that
for neutral currents Ward-Takahashi identities imply
that 1, (¢) = (4,9, = ¢°6,,)T1(¢*). The quantity I1(¢*)
is ultraviolet divergent and it is conventional to calculate
the finite, subtracted quantity

11(¢?) = T(¢?) ~ 11(0). (2)

This may be expanded in powers of the electric charge as
(g?) = NO(g?) + 11V (g?) + - --, where 19(4?) and
1V (4?) are the leading order (LO) and next-to leading
order (NLO) terms, i.e., O(1) and O(«), respectively.

Although the two-pion contribution to the HVP is small
compared to the vector resonance one, it is the lightest
contribution and dominates finite-volume effects [S8]. Here
we consider the electromagnetic corrections to this con-
tribution, and use scalar QED as an effective theory of
elementary pions. The scalar QED Lagrangian in Euclidean
space is given by

. ES . * 1
L=(0,0"+ieA,d*)(0,p—ieA,p) +m?e ¢+ZFWFW,

(3)

for a scalar field ¢, a photon field A, and the electromag-
netic tensor F,, = d,A, —d,A,. We only consider the

leading order scalar interactions, higher-order O(1a?)
contributions, where 1 is the four-scalar vertex coupling,
which enter at the three-loop order. The connected dia-
grams needed at NLO for the HVP are therefore those in
Fig. 1. Seeing that some of these diagrams are equal up to
relabeling of momenta in the loops, we only need to
calculate seven topologies, namely (A), (B), (E;), (C)),
(Ty), (S) and (X). Diagrams (A) and (B) do not depend on

-

(E1) (E2)

A A (g

(C1) (C2)

FIG. 1.

(Cs) (C1)

The 12 connected diagrams contributing at NLO.
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FIG. 2. Diagrams (F) and (G) are the LO connected contribu-
tions to the HVP, whereas (D) is the NLO disconnected con-
tribution consisting of four diagrams.

the external momentum and thus cancel in the subtraction,
so only (E), (C), (T), (S) and (X) contribute. The topology
subscripts have here been suppressed and will remain so in
the rest of the paper. The labeling refers to embedded
sunrise (E), contact (C), embedded tadpole (T), sunset (S)
and photon exchange (X). It should be noted that also the
diagrams in (D) in Fig. 2 are in general needed at NLO, but
they are excluded for ¢ = 0 in QEDy and are in infinite
volume simply related to the square of the LO contribution,
given by diagrams (F) and (G), as will be discussed in more
detail later. The specific choice of the photon rest frame is
elaborated on in Sec. III.

For completeness, we also calculated the NLO HVP in
infinite volume. We considered both a Euclidean lattice
using lattice perturbation theory, as well as continuum
Minkowski space. The Minkowski space calculation is
presented in Appendix A.

Using the Feynman rules from the continuum Euclidean
space Lagrangian yields the momentum-space integrands
of the diagrams

(F): ;f’;;z 1 (4)

O T O

W) g ©)

B): T iiﬂ)é((z(i i ?)22 ) M

E): w7 522_((??:2;2_43 %é; —k )qz)z e BC)
(©): -2(29 -20-k),(q —20),

(2 +m?)((k+ ¢ = q)* + m*)((£ = q)* + m*)’

()3 (4 m?)((k+£)* + m?

where k is the photon loop momentum, # is the pion-loop
momentum and d is the number of dimensions. Similar
expressions for Minkowski space are given in Appendix A 1.

III. FINITE-SIZE EFFECTS TO THE SCALAR
VACUUM POLARIZATION

We can express the renormalized HVP function I1(¢?)
through the following trace of the subtracted vector two-
point function

;0 (13)

13

= 3_%21 Jj qO’

=

where the photon rest frame has been specifically chosen.
There are two main reasons for choosing this frame.
First and foremost, this is typically the frame used
in current lattice calculations. Moreover, it simplifies the
finite-volume calculation immensely, in particular as the

W& =qP +m?)((k+¢—q)*+m?)

©)
—d(2¢ - 20 —q),
o k%ﬂimz)f&'}(— q)zqi e (10
46,,
(S): (2 +m)(k+6—q) +md) (11)
|
—(q—2¢),(q =20 =2k),(2qg =2 — k) - (2 + k) )

coefficients c; defined below then are independent of the
photon momentum.

Note that diagrams (A) and (B) automatically vanish in
the subtraction in (13), as they are independent of the
external momentum. Moreover, the disconnected contri-
bution (D) is zero in QED; because the photon propagator
vanishes in the rest frame. We are thus left with diagrams
(E), (©), (T), (S) and (X), so that, including all permutations
of the diagrams, the O(«) contribution to the HVP can be
written as

M (g%) = 2T (¢?) + 4T1c(q 2) + 207 (q?)
HIIs(q7) +Tx(q) = 3 aully(e?). (14

where I (¢?) denotes the contribution from diagram (U).
Next we define the corresponding integrand (excluding the
factors of 2z in the measure) as 7y (k, 2, qq).

In finite volume, we assume space to be periodic with
spatial extent L and time to remain infinite. We now present
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the procedure followed to determine the finite-size effects
to 11V (¢?) which decay like powers of 1/L. This strategy
is a direct generalization of the procedure for one-loop
integrals in Ref. [42]. The remaining part of this section is a
formal description of our approach to compute the large
volume expansion. Although the final result presented in
Sec. III A is quite compact, intermediate expressions can be
quite cumbersome. It is therefore desirable to implement the
whole strategy in a computer algebra system. The calcu-
lations presented here were performed using FORM [59] and
Mathematica [60], and the associated Mathematica note-
book is provided as a Supplemental Material [61] under the
General Public License version 3. Intermediate products
of the derivation are provided for future reference in
Appendix D.

For a given diagram, we start by computing the two
energy integrals in k, and £, using contour integration.
Feynman integrands are rational functions and this
integration is systematically feasible analytically. We thus
obtain

dko dt
v(k. €. q) /—O—OFUU@ £, qp)- (15)

In analogy with (13), we also define the subtracted

quantities py. The finite volume effects on I1(g?) for
diagram (U) in QED; can then be written as

3
Ally(q3) = <L62 Z / Tk & f)ﬂU(k ?.q0),
(16)

where finite-volume sums are on quantized momenta of the
form k = ZL—”n with n a vector with integer components,
and a primed sum means that the origin is excluded, which
here comes from the QED; prescription. One important
aspect here is that we are only considering the g> > 0 case.
This means that pions in diagrams are purely virtual and
cannot generate powerlike finite-volume effects through
on-shell singularities. Using the Poisson summation for-
mula for the pion part yields

3 3
Ally(q3) = (%Zk:’—/%)/é igpu(k 2.qp)+
(17)

where the omitted terms denoted by ellipsis are the
exponentially suppressed contributions from the virtual
pions.

To determine powerlike finite-size effects in the five
diagrams (E), (C), (T), (S) and (X), we closely follow the
strategy laid out in [42]. One starts by isolating the
singularities in the photon momentum k in p(k, €, q,),

pu(k. €. q0) = i(ﬁﬁ) J(K. 2, q0) + Pu(k. 2. q0),
(18)

where n; is an integer that depends on the diagram in
question, k =k/|k|, and py(k,#,q,) is an analytic
function in the norm |k| such that (0, %, go) = 0. The
analytical structure of all five diagrams is such that ny; < 1.
If we now substitute k = 7 n and expand in 1/L, the finite
volume effects for dlagram U can be written as a power
series in 1/L (up to exponentially small corrections),

D, 8@ oL

ALy () ). )

The coefficients §§] (g3) are given by

YU(g2) = Al : @’ n,? 20
&7 (q5) = An np W“/’(n’ . 4q0) (20)
where A} is, as in Ref. [42], the QED; sum-integral
difference operator

A = zﬂ:' —/d3n. (21)

Although py(Kk, ?, q¢) is an analytic function in the norm
|k|, the norm itself in not analytic in the components of k at
the origin, which generates the O(1/L*) effects in (19). We
will now present the full expressions for the finite-size
effects to each of the five diagram topologies (S), (T), (C),
(E) and (X).

A. The full finite-size effects

To find the finite-size effect to a diagram (U), the last
step to perform is the calculation of the aij coefficients in
(20). For the specific kinematics chosen here, i.e., spatial
momenta equal to zero [cf. (13)], the integrand u;(fi, €, q,)
is independent of the photon momentum direction h. The
function £¥(gg) then has the form

E%(q3) = c;;(4) (22)

where identically to Ref. [42], we define the coefficients
¢j = Ay[n|~/. These can be calculated numerically in
several ways, and one possibility is presented in [42]. The
first three coefficients are ¢y = —1, ¢y = —2.83729748...
and Cy = TICq.

The functions ¢;(g) in (22) can be written as linear
combinations of integrals of the form

1

Q =—
a.ﬁ(z) 277,'2

/0 dxx*w, g(x, 2), (23)
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where z = ¢3/m?, and

1
(x> + 1)z +4(x*+ 1))

Wqp(x.2) = (24)

They arise after integrating the angular dependence of
the integrals over momentum & for which |£€| = mx. There
are several useful recursion relations and properties
for these integrals, which we summarize in Appendix B.
For instance, for a + 2§ > 3 in d =4, it is possible to
write any €, 5 as a linear combination of the six simple
functions 92,1, 93,1, 94’1, 95’1, 90,2 and QI,Z as well as
their respective derivatives. The complete list of expres-
sions that lead to these integrals, in particular, the expan-
sion (18), are given explicitly for all diagram topologies in
Appendix D.

Finally, we summarize here the final expressions for the
finite-volume effects to each diagram, where every €, 4
term implicitly depends on z = ¢3/m?

N c 4 1 4 1
Allg(z) = W;Lz <—§Q—1,3 +591,2 +§91.3 —193,1>
C 8 32 1 10
m3—(])43 <—§Qo,3 + ?90,4 + 1—692,2 + ?92,3
32 23 5 2
—?92,4 —@94.1 +EQ4’2 —594,3) (25)
A Cq 1 Co
Allele) = g =
8 1 8 1 1
X 590,3 +692.2 —§92,3 +§Q4.1 —694.2
(26)
Afly(z) =~ @7)
Ly W
A Cl 1
AHS(Z) = _nm2L24 31T 33 3L3 2922"'494]
(28)
. c 8 8 1
Ally(z) = ﬂmzle <§Q—1 3= Q0 5913 —193 1)
C 128 16
s (-5 90 - 51000+ 400,
11 20 64
- ﬁngz + ?92.3 - ?92.4
17 29 4
- agm + ﬁgzl,z - 594,3> ) (29)
and where all the expressions are given up to O(- 7 e k)

corrections. We can sum these terms according to (14).
The resulting series in 1/L for the HVP at NLO is

ATl(g?) =

co (16 5 40 0

m3L3 \ 3 03 +3802 - 9

3 7 8
+—Q41——Q42——Q4,3>, (30)

8 7 6 9

where one notices the important cancellation of the 1/L?
terms. This result can be understood from the underlying
physics since the current is neutral and a photon far away
thus sees no charge. This cancellation has potentially
important consequences regarding the prediction of the
contribution ay;/"* from the HVP to a, using lattice
simulations. Indeed, for typical physical simulations with
mL >4, one has 1/(mL)*> <1.5%. Under the safe
assumption that the QED corrections to aj, " are O(1%),
the electromagnetic finite-size effects discussed here would
represent a contribution smaller than 0.02%, well below the
0.1% level required to reduce by a factor of 4 the current
theoretical uncertainties on a;;"*. Finally, for mL > 4 one
has e~ < 1.8%, which means that in this regime the new,
powerlike finite-size corrections introduced by QED are in
principle not dominant compared to the exponential QCD
effects. In the following sections, we demonstrate that this
cancellation does not occur for charged currents, and that it
is universal in full QCD + QED and therefore directly
applicable to lattice results.

B. Charged currents

For the neutral currents only charged pions are consid-
ered. If also #° is included, the current Ju in (1) can be
charged and the current-current correlator can therefore be
rewritten as

heed ) — / et (O[T]j, ()], (0)]10)

= ﬂuqzl—[l(qz) - LI;;QVHZ(QZ)’ (31)
for two functions I1;(g?) and I1,(g?) that are equal for
neutral currents. We are again interested in the case
9, = (40.0) and calculate the subtracted quantity

Fjcharge 1 & char ed charged
(g 3722 : = I15;75(0)]
j=1
=I(¢5) — I1,(0). (32)

The function IT; (¢?) can be expanded in the electromag-
netic coupling just as before, and we here denote the NLO

contribution by Hi”(qz). The possible topologies of the
NLO diagrams are the same also here, but having charged
currents implies that some of them may be forbidden and
the overall numerical factors can be different compared to
the neutral case for those that are not. In order to find these
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differences, we include the neutral pion by defining the meson matrix M and the current matrix J,, as

1.0 + 2 . .
N ” 3J J+

14:( - 1 o)’ ‘]ﬂ:<.” lﬂ. . (33)
4 —nT Jou T3Ju

The covariant derivative of M can then be put in the form

0" +intj, —inTjy,  Ount —in'j,+ivV220),,
DM =3d,M—ilJ, M| = : (34)
Oun™ +injy + V220, =50’ —int o, in
and the kinetic part of the Lagrangian is given by
1 1 . A - -
Liin = 5u[D,M(D,M)] = 5 (0,2°) + O, O,n™ + iv2j,,(7°0,n — 7~9,2°)
+ i\/ij_”(ﬂ+aﬂﬂ0 - n0,x") +ij,(n0n" =t Om) - \/Ejﬂj_”ﬂ+ﬂ0
+ —\/Ej_wjﬂﬂoﬂ'_ F T = jjemn T = oo mtat + 2) ), (T + 77%). (35)

Using this, we find that diagram (X), one of the permutations of diagram (T), two of the permutations of (C) and one of the
permutations of diagram (E) are forbidden. Moreover, the overall numerical factors change such that the relevant NLO

contribution becomes

(%) =2+ (E) 42+ (C) +2(T) +5(5). (36)

This yields the NLO FV effects as

A char c 8 8 1
AHCha ged(qZ) — ﬂmQILZ (—gg_m + Q],Z +§Ql,3 +§Q3,]>
Co 13 20 15 7 4
T AL3 (_QQZ,Z + 5 s - an + ﬂgm + 594,3 , (37)

up to O(f.e™™) corrections. The 1/L? part does not
vanish here. This is expected, since the current no longer is
neutral and the physical argument used for the neutral case

no longer applies.

C. Universality of the finite-size corrections

In the above we showed that in one-loop scalar QED the
leading contribution to the FV effects on the subtracted
vacuum polarization function 1(¢?) is of order 1/L% in
QED; . We will now show that this conclusion is indepen-
dent of the effective-field-theory formulation chosen for the
finite volume calculation.

The O(a) corrections to the current-current correlator

I1,,(q), which we denote H,(}D) (g), can be written as

) = [ 55 [ OMLWLO)i010)

) .0
X e’q'(x_y)e’k'zﬁ, (38)

where the symbol | y.; Is an abbreviation for the integra-

tion over the three space-time positions x, y, and z. This
amplitude is identical to the amputated light-by-light
scattering Green’s function with two legs contracted with
the photon propagator. We will argue below that the light-
by-light matrix element at our choice of kinematics is free
of singularities and therefore expected to have only
exponential finite volume corrections. As a consequence,
the only source of powerlike corrections will necessarily
have to come from the photon propagator pole.
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A useful form-factor decomposition of the light-by-light
amplitude is given in equation (3.14) of [62]. It is of the
form

54

Myp0(91-92.93) = > T (41,92 03) Fila?. 63 43,
i=1

(g1 +43). (g1 +a3)*. (a2 +q3)]. (39)

where the tensor structures 7'; and the form factors F'; were
chosen in such a way that the form factors are free from
kinematic singularities and zeros. These expressions were
derived for the infinite volume light-by-light scattering and
are expected to hold up to rotational, O(3) symmetry
breaking terms, which we will comment on below. We
note that all tensor structures have at least one factor of each
of the ¢, ¢, and g5. In our formula, we need to replace two
of those external momenta with k& and the remaining two
with ¢ and —g¢, respectively. Therefore all the tensor
structures will be proportional to either k* or k,k, for
some Lorentz indices y and v, which in turn can be replaced
with k% using the d-dimensional integral (or sum in finite-
volume) formula:

d d
[ bt ) =% [ i), (a0)

This means that each of the tensor structures contribute a
factor of k%, which cancels the pole in the photon propa-
gator. Since the light-by-light form factors F(k2, g%, k - q)
are free of kinematic singularities, and we work with
Euclidean momenta which cannot give rise to any on-shell
singularities, they do not have any poles in k. This means
that the leading FV correction will come from a term which
is constant in k, which has the contribution proportional
to co/L? = —1/L>.

We have thus shown that the rotationally symmetric part
of the amplitude is O(1/L?) for large volumes. We now
return to the possible O(3)-violating terms which arise in
the finite volume. If the photon pole does not cancel, it will
generate an O(1/L?) effect, as we have shown explicitly
for individual diagrams in the previous sections. However,
any term in the light-by-light form factor decomposition
breaking the rotational symmetry has to go to zero in the
infinite-volume limit. Considering this system is infrared
finite, in the worst case these extra terms will have an extra
1/L factor, still giving an overall O(1/L?) contribution,
which does not affect the conclusion made above.

The above argument can be simplified by considering the
scalar HVP form factor

8,11 (q) = (d - 1)g*nV (g?). (41)

The function IT then has the form

d
(e = (d —11)q2 (;iﬂ];d Ko (k. q) %, (42)
K)ok, Q) = / (01j,(x)J, ()7, (2) 5 (0)]0) el =) gk

(43)

where the kernel K,, satisfies the Ward identities
k,K,, = k,K,, = 0. The kernel function K ,, is a momen-
tum space amplitude and any singularities must correspond
to physical states. In Euclidean space with external
momenta being real, the function can not have any poles
corresponding to physical states, which would have to
satisfy p> +m? =0 where p is the momentum going
through any cut in the diagram. We can decompose K ,,
in a series of tensor structures multiplying form factors,
which can generally be written as

Kpa<k7 Q) = 5/)0F0(k2’ q2’ k- Q)

+ Z PoloFoe(K* . q* k- q) +r1v., (44)
ptetkal

where r.v. stands for O(3)-violating terms which are present
in a finite volume. As discussed above, these contributions
will give FV corrections which scale no worse than 1/L3.
Moreover, periodic boundary conditions preserve local
gauge invariance and the argument above based on Ward
identities is identical in a finite volume. Since K ,, is free of
singularities and the tensor structures are linearly indepen-
dent, the form factors must be free of singularities as well.
The Ward identities k,K ,, = k,K,, = 0 impose a relation
on the form factors simplifying the expression to

Kpo‘(kv q) - (kpko - kzépa)Fkk(k27 q2’ k- q)

4,9,k
k-q
X Fi (k. ¢* k- q). (45)

+ _(k : q)5[m + k/)Qo‘ + ko’qp -

As noted before, the form factors Fy, and Fy, are free of
singularities; however, F, must have a zero at k- ¢ = 0 to
cancel the pole originating from the tensor structure it is
multiplying. We conclude that F;, must be proportional to
k - g. Finally, the form factor decomposition of K consistent
with Lorentz symmetry, parity, and Ward identities is

K/w(k7 Q) = [quykz - kﬂQu<k : (’I> - qﬂkl/(k : q)
+ 8, (k- q)’)F (K. ¢% k- q)
+ (kyky, — K28,,)F5 (K, ¢* k - q). (46)

As before, we note that the form factors Fy = —F,,/(k - q)
and F, = F;; do not have poles in k> and the tensor
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structure has two factors of k which become k? under the
integral, which cancels the photon propagator pole. As
before, this results in the leading contribution to the FV
correction to be proportional to cq/L>.

IV. NUMERICAL VALIDATION

In this section we provide two different numerical checks
of the finite-volume corrections derived in Sec. III A. Scalar
QED is ideally suited for numerical simulations. Indeed, as
we will now explain in detail, the theory can be written on a
discrete space-time simply by replacing derivatives with
finite differences. In the two following subsections, we
describe two different Monte Carlo strategies to compute
the volume dependence of the scalar vacuum polarization.
First, the master formula (17) is evaluated directly using a
Monte Carlo integrator. Second, the finite-volume vacuum
polarization is calculated at O(a) using lattice -scalar-QED
simulations, following the strategy described in [42].
Finally, we discuss the comparison of these results with
analytical predictions.

A. Scalar QED on a lattice

In this section we explain our definition of the lattice
discretized theory. The conventions and notations are
identical to [42]. We consider space-time to be an
Euclidean four-dimensional lattice with spatial extent L,
time extent 7', and lattice spacing a. Lattice QED is then
defined by the action

S, A] = Syl Al + SalAl, (47)

with scalar and gauge actions

A= 5| S0, + il
=5 D4 (@WAh()
SalA] = %Z [Z%Fﬂy(xf

XU v

vy <x>12]
ZA )&A, (x (48)

respectively, with A = m? — ZﬂD;Dﬂ The summation is
over all the sites of the lattice. The covariant derivative is
defined in terms of the U(1) gauge link U, (x) = e/,

where ¢ is the electric charge of the scalar particle, as

Dy(x) = - ()],

U't(x = aft)p(x — aft)]. (49)

[Uu(x)p(x + aft)

Dy =—o(x) -

QIHQI'—‘

We also introduce the forward derivative 6,A4,(x) =
a '[A,(x + ajt) — A,(x)], which appears in the Feynman
gauge-fixing term. The electromagnetic tensor is defined as

F;w(x) =9 Av(x)

y - 8,A,(x). (50)

Expectation values in this theory are expressed in terms of
the path integral

:ZLL / DADGDY* O, p*le=SleAl (51)

where the integral measures represent integrations over the
field variable at each lattice site. The subscript L indicates
that we are working within the QED; prescription where
the spatial zero mode is set to zero on each time slice,

S A, (1. x) = 0. (52)
; ’

Below we will expand the path integral to NLO in a. To this
end it is instructive to first integrate out the scalar fields
analytically,

1
0) =7 / DAOi[A™"] det(8) e =5l (53)
L

where Owy;io represents the observable after the Wick
contraction. The action is symmetric under A, — —A,
and therefore, contributions odd in ¢ do not contribute
to expectation values. To NLO we can therefore set
det(A) = 1.

We rewrite the operator A with the help of the translation
operator 7, f(x) = f(x + aji), as

A=a2(2-eg, —1_e7 1)+ m?. (54)
The expansion of A in the electric charge ¢ takes the form,

A:A0+qA1+q2A2+..., (55)

where

1
Aozmz—;2(1ﬂ+1_ﬂ—2),
u

:_—Z 7_,A,) Azz—z A2T —I—T_ﬂAﬁ
(56)

Inserting the kernel A expanded in g into the scalar-QED
action,
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x)(Ag + g + ¢* Ay + .. )p(x),

(57)

-5y

allows us to identify the Feynman rules for the inverse free
propagator, the scalar-photon-vertex and the scalar tadpole,
respectively. In particular, the scalar propagator in the
background field A, is then readily given by

ATV = AT = gAGTA AT + PAFTA AT A A
— A AN + O(gP). (58)

From this expansion it is a simple exercise to derive the
associated Feynman rules for lattice perturbation theory.

B. Lattice perturbation theory Monte Carlo strategy

In order to numerically check the analytic results we
numerically calculate the finite-size corrections AﬁU for
each diagram U in scalar QED using lattice perturbation
theory (LPT). We present below the analytic expressions
for the diagrams (E), (C), (T), (S) and (X) in lattice
perturbation theory, which are the discrete version of (8)
MA0)(A1)(12).

, (26-4q),(26—q),(20 k)
R m)(k+ ) +m?

€ (G

(Ly) (L2)
(Ls) (L)

FIG. 3. Additional scalar vacuum polarization diagrams spe-
cific to lattice perturbation theory.

s R+ m) ((k+¢) +m?

where k = —sm(a;C ).

On the lattice, there is potentially an infinity of new
scalar-photon vertices because of the compactification of
the gauge field in (49). These vertices are classically
discretization effects, but at the quantum level they can
generate finite contributions when multiplying power
divergences, and ignoring them can potentially break
Ward-Takahashi identities. If one consistently keeps con-
tributions which do not vanish in the continuum limit, four
new diagrams appear in lattice perturbation theory, repre-
sented in Fig. 3. Both diagrams (L) and (L) are inde-
pendent of the external momentum and therefore vanish in
the subtracted vacuum polarization function (13). The
integrand for diagrams (L) and (L,) is given by

~la2(20 - ¢),(2¢ - q),
R +m)((f-q) +m?)

(L): (64)

(£ =q)’ +m?

| =2(2q =27 —k),(g=2¢),cos (4(qg - k—27)),
()i o -
R +m)((k+7-q) +m)(£=q) +m?)
(60)
—(2¢ = q),(27 = q),%, cos (427)
2 — (61
(2 +m?)?((€ - q)” +m?)
(s): 45, cos (5(q — k- 21,”)) cos (5(q —k—27)),
(59) ' B +m®)((k+£=q)" +m?) ’
)(£=q)* +m?) (62)
|
—(q—20),(q =20 = 2k),(2g =27 — k) - (27 + k) ()

W(k+£—q) +m?)

We integrate these expressions using the VEGAS algorithm
[63], and more specifically its C++ implementation in the
Cuba library [64]. This integration algorithm builds upon
Monte Carlo techniques and creates histograms approxi-
mating the shape of the function which are then used as
probability distributions for importance sampling. This is
particularly useful for the integrals considered here, which
are eight-dimensional, and have a complicated sawtooth-
like structure, as we discuss now. In finite volume, the
lattice momentum is discretized and the corresponding
sums can be dealt with in VEGAS by realising that for a
function f(k)

=z

f(k) = / " akf (k). (65)

=~
Il
=}
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where |k| is the floor operator rounding k down to the
nearest integer. This is extendable to any number of
dimensions. As for the analytic results, we assume an
infinite time extent and pions are in infinite volume,
cf. (17), so that only three of the eight integrals are sums
in the finite-volume calculation. The implementation of the
calculation is distributed as a C++ source code under the
General Public License v3 in the Supplemental Material
[61], and it features an option to also have the pions
in a finite volume as instructed in the comments. This is
particularly useful when comparing to lattice data, as
discussed later.

Each diagram depends on the lattice spacing a. We
introduce a scaling parameter ¢ such that the lattice spacing
is varied according to a — a/c and calculate the diagrams
for four different values of o, namely ¢ € {1, 1.5,2,3},
from which a continuum extrapolation is made by fitting
against some polynomial in a. We find, using a pion mass
such that am = 0.2, that the a dependence is mild. We find
the best description of the data in terms of a leading O(a?)
correction, as expected from the Z, symmetry of scalar
QED.

Rewriting the sums as in (65) yields sawtooth-like
behavior since the integrands of the finite-size effects then
are of the form f(k) — f(|k]). The number of disconti-
nuities in this function is on the order of (cL/a)?
[or (6L/a)® if also the pions are put in finite volume]
which means that it can be hard to sample the integrand
efficiently and thus get reliable values and errors from
Cuba. The reliability can be checked by comparing the
results from calculations with a varying number of
Monte Carlo evaluation points for a certain . We find
that using 10" points gives reliable results for ¢ < 4. Our
result are summarized at the end of this section.

C. Lattice scalar QED simulations

An alternative avenue which we also explore is to
evaluate the lattice-discretized path integral in (53) by
means of a Monte Carlo integration for a series of different
spatial extents L. This allows for mapping out the volume
dependence, thereby checking our analytical predictions.
Instead of numerically solving the momentum sums as in
the previous section one directly samples the path integral
in (53). In particular, we compute the vacuum polarization
tensor IT,, (¢) as the discrete Fourier transform of the two-
point function

Cu(x) = (V(x)V,(0)), (66)

with the lattice conserved vector current

V() =14 () U, ()bl -+ aft) = (r+-a) U, (x) " ().

a

(67)

After carrying out the Wick contractions we can write the
expression for the vacuum polarization tensor in terms of
the propagator in (58) acting on a point source 5(x),

C

() = 2R{[AT'S(x)] U, () [7,47'8(x — ad)]US(0)

— [0, A7 ()] Ui (x)[A718(x — aD)]U;(0)}).
(68)

where the expectation value represents the functional
integration on the gauge potential A,. We evaluate this
correlation function numerically using a setup identical to
the one in [42], in fact the data used here are a side-product
of the calculation presented in this previous work. The
covariant Klein-Gordon equation is solved in a stochastic
background field A, to form the interacting scalar propa-
gator A~!'§(x). Using the expansion (58), this can be
achieved using the fast Fourier transform algorithm. As
a consequence, this method has a reasonable numerical
cost, which is independent from the chosen scalar mass
and has a quasilinear complexity in the number of lattice
points. We refer the reader to [42] for more details on the
computational aspects.

In principle, the full O(a) correction to the scalar
vacuum polarization also receives contributions from the
diagrams in Fig. 4, coming from the 1-loop counter-terms
of scalar QED. We assume that these counterterms are
determined through a set of renormalization conditions in
infinite volume, and therefore are independent of the
volume. Because these diagrams do not contain photon
propagators, they clearly do not contribute to (17).
However, the same formula assumes scalar particles to
be in infinite-volume, which is not the case in the lattice
simulation. Although these finite-volume corrections are
exponentially suppressed, they can be greatly enhanced by
the ultraviolet-divergent values of the counterterms. We
therefore included these diagrams to ensure that exponen-
tial finite-volume corrections are negligible for reasonably
large values of mL (the typical threshold for lattice QCD
simulations is ML > 4). The details of the renormalization
prescription used here are given in Appendix C. The cost of
computing the extra counterterm diagrams is negligible,
since they do not depend on the gauge field.

D. Numerical results

In Fig. 5 we compare the analytic results to LPT and
lattice data. We use am = 0.2 and aq, = 8x/128, i.e.,
z= q%/m2 ~ 0.964. The red dashed line is the 1/L? term
and the green solid line is the full expression of the form
1/L? +1/L? in the corresponding analytic expression in
(25). The purple points are the infinite volume pion LPT
points for a finite a, and the crossed blue points are the
continuum extrapolated values. The orange box shaped
points are finite volume pion LPT data. From the infinite
volume pion LPT data we clearly see that the full analytic
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Om P26y
X AA ®X

m?

(P’1) (P’2) (P”1) (P”2)
5\/{ } { }5\/
(V’1) (V?2)

FIG. 4. Counterterm diagrams. The three counterterms §,,, 6z and §y can be determined by elementary methods.

Diagrams 2E+2T, z = 0.964 Diagrams S+X+4C+2L, z = 0.964

T T T T T T T \_"_)X10-6 T T T T T T Y
b LPT
2x10® 1 — 1341/ &
s| - 12 /
4x10°™ LPT, FV Pion il
0 ) | ——i Lattice
% 3x10° | 1
NO_ 6 8] /
<= -2x107° 1 <F
< { 2x10® |
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— LPT 6 |
— 134112 1x10
fffffff 12
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—e—i Lattice 0 |—%t g
0 005 01 015 02 025 03 035 04 0 005 01 015 0.2 025 03 035 04
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Sum of Diagrams, z = 0.964
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fffffff 12
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©
FIG. 5. A comparison between the analytic results, LPT and lattice data for (a) 2E+27, (b) S+ X+4C and

(©2E+4CH+2T + S+ X +2L.
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form is much better than when including only the 1/L?
term and the agreement is excellent up to 1/mL < 0.3 for
all diagrams. Other values of z, including in the region
7 <£0.964, yield a similar level of agreement. We see that
the lattice data starts to deviate from the analytic curve after
1/mL > 0.2, but the finite volume pion calculation repro-
duces precisely this behavior. We thus attribute the dis-
crepancies to the exponential finite-size effects that are
neglected in (17) for the analytic calculation as well as in
the infinite volume pion LPT Monte Carlo. Moreover, for
mL ~4 we found that the difference between the infinite-
volume pion and finite-volume pion data is on the order of
107, an order of magnitude smaller than the naive
suppression from a factor of @ between the LO and the
NLO HVP, viz. IV ~ af1¥ ~ 1073 ~ 1072

V. CONCLUSIONS

We have performed a 2-loop calculation of the O(a)
corrections to the hadronic vacuum polarization in scalar
QED. We presented the infinite volume results in terms of
2-loop master integrals from which we obtained an analytic
expression for the finite volume correction to the HVP at
this order. We found that even though each of the individual
diagrams contributes as 1/L?, these terms all cancel when
combined. We argued that this cancellation is expected on
physical grounds for neutral currents and show that it does
not occur for charged currents. We also argued that this
cancellation is universal, i.e., it occurs regardless of the
effective theory used to derive this result.

All our results were tested numerically using two differ-
ent approaches—direct integration of lattice perturbation
theory integrals using VEGAS and lattice scalar U(1) gauge
theory with stochastically generated photon fields. We find
good agreement between analytic results and results from
both numerical approaches. While absent from our ana-
Iytical expressions, exponentially suppressed finite volume
effects are visible in our results from the lattice simulation.

Finally, an important consequence of this work is that for
the foreseeable future finite-volume effects on the QED
corrections to the hadronic vacuum polarization are likely
to be negligible in lattice simulations. For instance, we
expect this to hold even if lattice computations aimed at
matching experimental projections of a fourfold reduction
in the error on a, by Fermilab [5] and J-PARC [6] down to
0.14 ppm. This assumes a typical lattice simulation where
the pion mass times the spatial extent is larger than four, for
which this work estimates the finite-size effects to be at the
level of only a few percent of the O(a) correction to the
HVP function I1(¢?). Unless these effects come with an
unnaturally large coefficient in the full theory, they should
be negligible compared to the per-mil accuracy required on
the HVP contribution to a,. Of course, large coefficients

cannot be excluded considering how critical it is to properly
estimate the theoretical uncertainty on a,, particularly in
the perspective of confirming or excluding the current
discrepancy between experiment and theory on this quan-
tity. The results of this work together with simulations of
full lattice QCD 4 QED even with a limited number of
volumes, should allow one to constrain the size of these
effects.
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APPENDIX A: IN CONTINUOUS
INFINITE VOLUME

In this section the HVP is considered in continuous
infinite volume Minkowski space. We calculate T1()(4?)
and I1V(4?) in MS and numerically compare their respec-
tive sizes. The corresponding calculation in QED can be
found in [65,66].

In Minkowski space the scalar QED Lagrangian is

L= (00" + ieA,*) (0" — ieA'p) — m2¢* ¢ — %FWF””.
(A1)

The relevant counterterms for the parameters above are
defined in the counterterm Lagrangian
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1
ECT — —i65¢2A (aﬂ¢*¢ - ¢*aﬂ¢)A” + 625¢2A2A”¢*AM¢ - m26m¢*¢ - ZéFFﬂDFﬂy‘ (AZ)

In d = 4 — 2¢ dimensions these are given by

11 11 11
(31::—@;, 5¢:6¢2A:5¢2A2:g;, 5"1:—@;. (A3)
Note that diagrams (A) and (T) identically vanish in dimensional regularization, so that we are left with diagrams (F), (G),
(D), (B), (E), (C), (S) and (X). The two HVP contributions can thus be written [cf. the FV case in (14)]

n%g*) = (F) + (G),
M (¢*) = (B) +2- (E) +4-(C) + (S) + (X) + (D). (A4)
Using the tensor structure of [1**(g?) and the Ward identity it is easy to see that the disconnected part is given by the squared
LO contribution, (D) = (I1”)(¢?))?. The diagrams are given in Appendix A 1.
Using Lorentz invariance identities and integration by parts, the 2-loop integrals can be rewritten in a basis of master

integrals. The program REDUZE2 [67] employs a Laporta algorithm in order to do this, and allows the user to define such a
basis. The master integrals used here are the MS subtracted parts of

1 dit 1
40 = | G

B(m’.q*) = % / (inifd 7 - mz)((fl— q)* —m?))’

S(m?. q*) = ,lz / (;ijd (;er];d k(22— m?)((k i £=a) —m))

T(m* q*) = ,lz/ (;ljjd (j;l;d 12 (% - m2)2<(k1+ £=q) =m?)
M. q) = l/ él;; éﬁ (= m)((k+ ) = m) (¢ : (e e R

All but integral M are divergent and thus require expansion in € in order to isolate the divergent parts from the finite ones,
something which can be done in both Euclidean and Minkowski space. For a Euclidean spacetime the analytic results can be
found in [68]. However, working in Minkowski space, the corresponding expressions are here given in Appendix A 2.
Note that in MS the threshold shift can, and does, induce a sign change of the imaginary part of IT(" (¢?) at some ¢>.
However, this does not occur for an on-shell scheme or with the physical mass. The physical mass mf, , is related to m?
through
2

m2, = m2+‘;m2<7—310g’;12> = m? + 6m?. (A6)

The HVP can therefore also be expanded around this mass,

0
N(g?) = Mg ,pe, + 8m 53 1O ()], + T (@), + -

= Hl—loop + H5m2 + Hdisc + H2—100p + ..., (A7)

where in the last step the disconnected part was separated from the NLO contribution. To simplify the expressions, let us
further define

4m?
=1~ q;’h . (A8)
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The HVP contributions at LO and NLO are thus
4 _ 1, 1 /2 4md,
1-loop __ 2 2 2 2 p
e = ZAm) 5B )+ (558

2 1 - - 1
" = —sm? = (—ZA(mih) - B(m3,, q%) ),

q2 mph B 167[2
Hdisc — (Hl—loop)Z
H2—loop 1 10 Sm%h +A(m%;h) 22 n 10 A( ) )2
- EN S5t 5 Aalm
(16z°)*\3 ¢ 167 3q*  3m2,qg> "

826‘2'22852'22
’ (%‘W)A(’"PM”’M ) g B0 4)

8 /1. _ .
-5 (303 + T 0 ) = 7V 03 )
4 8m2,\ 202 2my, N
+ <—§+ 3 )B(Mih,qz)z—T@z— 7 )M(’"ih"lz)’ (A9)

where the quantities with bars are the finite parts of the integrals in (AS5). These contributions as well as the corresponding
subtracted quantities are plotted in Fig. 6 for m,, = 139.5 MeV, u = 500 MeV and e = 0.303. As can be seen, the NLO
parts are roughly 2 orders of magnitude smaller than LO, this is due to the additional power of & ~ 1072, Moreover, it can be

noted that I195¢ on average is significantly smaller than the other parts, and that I1%¢ and IT>~°°P combine to give the proper
nonsingular threshold behavior.

1. Diagrams in Minkowski space

Using the Feynman rules for the Lagrangian in (A1), the diagrams are

d G FP
(F):/ dzfd 22lg .
(27)¢* —m

L[ i - g2t —q)
O~ | G
di¢ d‘k  2idg"”

()= / 2n)? ) K272 = m?)2

d¢  dlk —2i¢" (2€ + k)2

(B) = / (2r)d 2r)4 k> (2 — mg;i(k + f))z -m?)’
die dlk i(2¢ — (26 — q)* (2£ + k)?

B)= | Gt G E w1 27—~
At dik —2i(2¢ + k(26 - q)

=/ @20 2a) (@ = ) (k + €7 —m)((£ —a) =)’

B dl¢ dk —id(2¢ — q)*(2¢ - q)
0= | G o R = (=

B di¢  dlk 4ig"
(S) - / (277;)‘1 (2ﬂ)d k2(f2 _ m2)((k 4+ - C])2 _ mz) ’
X) — d'¢ dk i(2¢ — g*(2€ + 2k — q)* (2 + k —2q) - (2¢ + k)
@ = / 2r) 2n) (2 = m) (k+ )2 =m2) (£ = q) 2 —m®)((k+ £ — q)F —m?)
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FIG. 6. The various contributions to the scalar vacuum polarization in an infinite volume with Minkowski signature: (a) LO, (b) real
part of NLO, (c) imaginary part of NLO.

2. Master integrals

Below, each Minkowski-space master integral in (A5) has been separated into a finite and an infinite part, the finite one
denoted by a bar. The analytic expressions for these finite integrals are given in [68], and are in terms of Riemann zeta
functions as well as the polylogarithm functions Li, and Lis,

m2

1672¢ +A(m),

A(m?)

1 _
B(m*, ¢*) = 16”28+B(m2,q2),

3m? —q* + 6m? 3 -

S(m?, ¢*) = — A(m?) + 5(m?. ¢?),
(. 0) = =S T stae T i) TS0 a)
T(m* ¢*) = - Lt t 3 _S)A(mz) + T(m2, ¢%)

’ 51272%2  512z% 1672 m? T

1 d-3 2-d (d-2)2m? - ¢°) _
V(m?. %) = B(m?. Alm2 Alm2 V(m2. ¢?).
(. ") l67%¢ [<4m2 - q2> (m®, ) + (4m? = )¢ (m®) + 204m® — P\’ g (m*)| +V(m*. ¢°)

M(m?.q*) = M(m*.q?). (A10)
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APPENDIX B: THE SCALAR
LOOP INTEGRALS Q4

Consider the dimensionless function €, 5 given by

1

1
[z +4(x?

W p(X,2) = (B2)

RIR

@+ 1) N

This function converges if and only if a + 24 > 3. The
relations between m, the external momentum qz, the

L
Qup(2) = 212 /) dxx"@q,p(x,2), (B1) integration variable x and the variable z are z = g*/m?
and x = V&*/m = £/m. 1t is also possible to write Q, 4
where explicitly in terms of hypergeometric functions as
|
8y/7(B—2)(z +4):7 las z
Q(2) = va( : )(z+4) 2F1<_ a’s ﬂ+1>
(5= () 2°2°2 4
+ 4)i +28—-4) - las
L Va4 —dla+ 26— 4) — ag] (_ 9;——ﬂ;5+1>
LCENIN() 2°2°2 4
427rE+p-3) ( a-3 1
-2 X F(f—— +ﬂ;ﬁ—;+1>, (B3)
rEr-1 > 24
where ,F'| is the hypergeometric function defined by
I(c) ®
Fi(a,b;c;z) = dxx~bte-! 1)=(x - 1)@ B4
,Fi(a,b;c;7) F(b)F(c—b)/O XX (x+1)(x—z+1) (B4)
|
However, the form (B3) is complex and might not be the 10
most useful in practice. The Q,; functions are actually Qo pi(2) = _ﬁa_zg"/’ (2). (B7)

related to each other and can be expressed as combinations
of a smaller set of functions. One starts by noticing the
relations

0
a_zwaﬁ(x’ 7) = —Pwgpi1(x,2),

0

awaﬁ()@ 2) = —0xWg 40 5(%, 2) — 8PxW, 511 (%, 2).

The identity (BS5) directly implies that

1 e x?
:ﬁ[) dxx*w,p(x, 2) = [?

Qa,ﬁ(z)

i.e., the index f is decreased by taking derivatives in z. One
can further note that

Qu5(2) = 29511 (2) +4Q4 5 5:41(2), (B8)

which is easily proven by multiplying and dividing the
integrand a factor z + 4(x? + 1). For the case a + 28 > 3 it
is possible to find a recursion relation by using Eq. (B6),
this by partially integrating the definition of €, 4:

o ]

0
wa'ﬁ(X’Z)]o —§A dxx> pe Wap(X. 2)

1 o
— §/ dxx*{aw,25(x. 2) + 8Bw,pi1(x,2)},

0

where in the last step the convergence requirement a + 23 > 3 as well as Eq. (B6) were used. By writing x* =

x%(x% + 1) — x? one then finds the relation

0up() = 5 (a0 ()

or, for a > 0,

—aQy 2 5(x) + 8BQy 5 py1(x)

—8BQu p41(x)}, (B9)
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a-—3

8 8
Qui24(2) :TQa / /

p(x) +;Qa—2,ﬂ+1 (x) ——Qaﬁ+1 (x).
(B10)

Inspired by the recursion relation in (B7), define for
a > 1 the functions

Qa(z) = Qa,l(z>‘ (Bll)

Now, using (B7) for @ > 1 and an integer f > 1

The second identity Eq. (B6), combined with an integration
by parts of (B2)(B7) leads to

3 8
Qu14(2) = <1 —a+2> Qui0(2) + poy 2Q;+2( 2)
8 /
_a+29“(z)’ (B13)

where we used the prime notation for derivatives in z. Using
this last relation and (B12), it is clear that for any positive
integer couple (a, /) such that a4 24 > 3, Q,4(z) is a

Q, 5(2) :# _2 ﬂ_lg (z) (B12) linear combination of the six following functions and their
RS VAN o ivati
z derivatives
|
1
92'](Z):8—7rz(v4+ -2), (B14)
1
QB’I<Z):M{”1+ log{ (z+vz(z+4) +2] } (B15)
1
Q4(2) VZZ(Z_A‘VZ—HH_S)’ (B16)
Qs1(z) = {zz+12\/——6\/z+ log{ (z+Vz(z+4) +2}} (B17)
Q2 (2) 1 (B18)
) =—F—7—,
02T bany/z + 4
1
QI’Z(Z):m{ (z+4)-2yz2(z+4) log[ (z+\/z(z+4)+2)]}. (B19)

APPENDIX C: LATTICE SCALAR QED RENORMALIZATION SCHEME

We start by rewriting the Lagrangian of scalar QED in terms of the renormalized fields and parameters defined by

bo = \/Zpp. Ay =
lattice Lagrangian is given by
L= (Zy—1)5,4]
——

oz O

+ ¢ (222424 - 1) |¢]22A2

At the order O(q?) relevant here, the electric charge ¢ does
not renormalize, i.e., Z, = 1. The discretized action is
gauge invariant and, as it is well known in the continuum,
the theory can be renormalized by removing divergences in

+ (ZnZy = V)m? P> + iq(Z,Zy\/Zs — 1)A
N——— %,_/

VZAAL, m = Z,m, ey = Z,e, where a subscript 0 denotes a bare quantity. The counterterm part of the

W96, = (6,4)" ]

Sy
_12

- 1)) (5,4,

the self-energy function and by using §y = d, as imposed
by the Ward-Takahashi identities. By denoting X(p) the
self-energy function at momentum p, we choose the
following renormalization prescription:
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2(0)=0 and X(gr) =0, (C2)
with g7 = (3£, 0) where 7 is the time extent of the lattice.
This prescription allows one to compute the wave function
renormalization at finite time extent. In all the finite-time
numerical results presented in this paper we used
T = 128a. For T — oo, this prescription gives back the
more traditional conditions, where one assumes that the

self-energy and its derivative vanishes at p> = 0. For
T = 128a and am = 0.2 we found

a*m?s,, = —0.466819(2)> and &, = 0.146054(4)¢>.

(C3)

APPENDIX D: EXPLICIT FORMS
OF ENERGY-INTEGRATED DIAGRAMS

The subtracted functions p;; can be written in the form

pu(k.?.qo) = CY Alaglkp=!, (D)

1 5
i=0 j=0

where CY, AY and afj are functions of k, ¢ and ¢,. The
above factorization is chosen such that the dependence on
k in these functions is different from pure powers of |Kk]|.
This means that they can depend on k in denominators

through the energy w, = \V/p? + m? (which often shows

up in denominators) as well as the combination v(#) - k for
the velocity v(€) = ;‘; and the unit vector k = “':—‘ This
separation is useful since, for a given j, a large volume
expansion of CYA{ af}, which multiplies |k|/~", has leading
power behavior of order |k|/=!. It is therefore only the
j = 0 term in the sum over j which can give a contribution
to bY and thus a 1/L? finite-size correction, where the

coefficients b and b{ are defined through

AEX 1
Py’ (K. 2. q0) = mb? +bg + O([k|).

(D2)

Defining the velocity is particularly useful as any term
with such a factor vanishes when integrating over k. The
velocities can enter also in the small |k| expansion, for
instance through

A

(v(#) - k) -

wpsr = wp + k[V(€) -k — [Kk|? 20,

(D3)

1—l—(’)(|k|3).

In this Appendix, we list the nonvanishing functions CY,
A7, af; and b} separately for each diagram (U).

1. Diagram (S)

First consider (S), whose integrand for the momentum
assignment in Fig. 7 is

4

(€5 + a7) (ko + €0 — 90)° + @i p)
(D4)

”s(k»f, 610) =

The nonvanishing functions entering pg and ﬁ‘;xP are

-1
CS = s
WO (0y 1+ )+ [K|) (g5 + (0 + @y +|K])?)

AS=1,

as, =1,
b= ! ,
20} (g5 +4w7)
g%+ 1202 —v(£) -k (3¢} + 2002)

bS =
0 40} (g3 + 402)?

. (D5)

2. Diagram (T)

Now consider the calculation of diagram (T) with
momenta as in Fig. 8. The integrand is

q—k—1
/
FIG. 7. Diagram (S).

q—1

FIG. 8. Diagram (T).
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q—k—1¢ q—V

/
FIG. 11. Diagram (X).

FIG. 9. Diagram (C).

kil o _ (34 + 2007)[2
g 4 603 + 407
Al =1,
ag = 1.
] bl =CT. (D7)
FIG. 10. Diagram (E). Note that b7 = CT since CT cannot be expanded in small
|k|. Also, since b} = 0 we cannot have any contributions of
3
toa _16lep 06 order 1/L".
r(K,t,q0) = .
kz(f% + w?)z((fo —qo)* + a)ﬁ) 3. Diagram (C)
For diagram (C) with momenta as in Fig. 9, the
The nonvanishing functions here are integrand is
|
—(8|2? + 4w, k|v(?) - k
ﬂC(kv fJJo) = k2 fz P k ( |£ | zfl |2( ) )f 2 o (DS)
(5 + @z)((ko + €0 — q0)° + @iy p—y ) (€0 — q0)° + @7)
This gives
cC — (212 + w/[k|v(£) - k)
6w 3 (q5 + 407)([K| + @i p + @) 2wk r + @0 ) |K| + K[ + g5 + (011 + @)?)
A§ =1,
aly = q(wpir 4 20) + @07, + 407, 0, + Top 07 + 803,
a§y, = g3 + 307, , + 8wy, pwp + T2,
agZ = 3a)k+f + 46()/,
a(% =1,
c_ (3¢5 + 2007) |2
1202 (gd 4 4wk)?
1 N
(o 2 4 2.2 4
b = 4 (G + da)? (w7v(?) - k(3q; + 32g5w; + 80w})
+2[EP[v(€) - k(53 + 54q3w2 + 168w?) — 2(g + 11¢30% + 44w?))). (D9)
4. Diagram (E)
The integrand for diagram (E), with the momentum assignment in Fig. 10, is
24P + 4 + K|+ K + 4oy K |V(E) - k + 4kot
ey gy — 4/EPOIEE 448 1 K+ K 4o [KIv(2) & + dkoto) D10

k(&5 + 03 (ko + £0)> + @7,,) (€0 = o) + @)
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Here we have

E_ 21
 96q50ks e (W sp + @p + |K[)
. S
i1+ g + k[
agy = 4wprw0f (@i p + 3w) + Bap,, + 9wy c0p + 807)[€)),
afy = 3w}, + 907 0, + 13wy, p02 + 3w} + 12204 o + 30) || + 40,30, , + Yo, s, + 802)V(E) - K,
aly = 3(4E)* + 40, 2wy r + 30,)V(E) - k + 3(wpr + p)?),
aly = 3(4w,v(8) -k + 3(w1sr + 7)),

AL =

ag, =3,
160}
(g5 + 402)* (g5 + (W p + 07)* + 204y + 07) K| + [K[?)
afo = 4([q3(CUk+f +2w,) + 460%(30)2% + 12w%+fa)g + 17a)k+fa)§ + Sa)i)

+ @ (@}, , + 40}, 0, + 1504 0% + 1603)]|2|?

AT

+ O 03145 + 43 (0 + b0 00 + 307) + g5 3wy, + 120 00 + 1307)]),
at) = qo0.s + 450k + 24008100 + 4G} 00 + 45007 + 424507, 07 + TOGEOL 0}

+ 120} 0% + 48w}, 0} + 13¢%w} + 104w}, 0} + 1120, s0) + 1205

+ 4(q4 + a5 Bty + 8wy pwp + 150%) + 42 (i, , + 24w 00, + 1T02)) | €]

+ 4w (gi(wpir + 207) + 402 (3w}, , + 1207, ,0, + 11wy, ,0% + 87)

+ i (@] + 40}, p0p + 1504 00F + 1607))V(E) - k,

aty = 2(qowise + 24507 o + Gows + 65w} 00 + 24450 @ + 2407, ,07 + 1dqi0;

+ 207,07} + 80wy, p0} + 24w + 23wy o + 4w,) (] + 120%) €] + 2w/[q
+ @ (3w}, + 8wy pwp + 1502%) + 402 (907, + 24wy s, + 1T02)V(E) - K),
afy = (g} + 1202) (g} + 60, , + 120,y + 602 + A€ + 4w, (3w, 4 + 4w )V(E) - K),
aty, = 4(g§ + 120%) (04 + 0y + 0p¥(€) - k),
E

ats = g} + 1202,
_ —[2P(7(q5 + 10g507 — 8wy) + (5q5 + S4q507 + 16807)[2])
2w} (q5 + 4a7)’

by

o 22
O 48w (g + 4wp)*
+ |22~ (35¢5 + 520q3w? + 2736430} + 537602)v(€) - k + 1545 + 224q3w% + 120030} + 2688wC]). (D11)

(—@2[(25¢5 + 368g3w? + 1872q3w? + 268808)v(€) - k + ¢§ + 163w + 80g3e? + 64008

5. Diagram (X)

Assigning momenta as in Fig. 11, the integrand of diagram (X) is

mx(k. 2. qo) = ((ko +2£0)[—ko + 2(=Co + q0)] — |k|* — 4|£)> — 4w, |k|v(€) - ﬁ)
~4(|2]? + 0/ k|v(£) - k)
x 3 > 3 > ) > 3 N2
((ko +20)" + @i ) ((=ko = €0 + q0)° + @7 ) (€5 + @7) (=0 + q0)° + @7)k

(D12)
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The nonvanishing functions are now

X _ 212 + wk|v(#) - k
12q3w;. 0} (o r + 0y + |K|)
-1
X

(e + 0y + |K|)*

agy = 8(wiy o + (Wj, o + 304,00 + @F)|€]7),

aly = (O + 00 +12(0p1p + 0) [ + 8wp(0} p + 3wy p00, + @F)V(E) - k.

ay = 411> + 3w + @) (0410 + @ + 40,V(E) k),

CZOX3 = 4Cl)fV(f) . lA( + 3(a)k+f + wf)v
X

ap, = 1,

X 16“’%%“’%”

A

(45 + 407, )(q5 + 402) (g5 + (@prr + ) + 2(@psp + o) K| + [K[?)

aty = 2wy, 0, (=3q3 + 4wy p07) + 2(q5 + H0Fp + 3wy, p0p + 02)) €],

afy = 12(wpsp + 02) €] + (0r + 02) (=25 + (0110 + 07)?)

+ wa(q% + 4(a)i+f + 3w 0 + w%))v(f) ‘K,
afy = 3(wi1s + 07) (@414 + 0 + 40,v(€) - k) + 4L,

aty = 3(wpsr + 0p) + 40,V(€) - K,

af, =1,
X _ _|£|2
' 120)(gE + 402)
¥ -1

pX —
" 240)(q5 + 4e7)

T (2 (q] + 12q3w? 4 96w}) + (54§ + 60g3w? + 224w})|£]%).

7 Qo (q§ + 16q¢w? + 144q3w? + 384w8)v(2) - k — 02?)*[~45

— 16g30% — 80q3w? — 6408 + (25¢5 + 400giw% + 2384q30% + 627208)v(¢) - K]

+ [21*[(35¢5 + 560g3w2 + 3312q3w} + 8064wl)v(#) - k — 9¢8 — 144giw? — 848q2w? — 217612)).
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