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We consider the tensor formulation of the nonlinear O(2) sigma model and its gauged version (the
compact Abelian Higgs model), on a D-dimensional cubic lattice, and show that tensorial truncations are
compatible with the general identities derived from the symmetries of these models. This means that the
universal properties of these models can be reproduced with highly simplified formulations desirable for
implementations with quantum computers or for quantum simulations experiments. We discuss the
extensions to global non-Abelian symmetries, discrete symmetries and pure gauge Abelian models.
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I. INTRODUCTION

There has been a lot interest for tensorial formulations of
lattice models in the context of the renormalization group
method [1–21]. Tensor formulations provide a new
approach of lattice models that we call tensor field theory
(TFT). TFT should not be confused with theories involving
fields that in the continuum have more than one Lorentz
index, for instance the Kalb-Ramond field [22], and are
often called “tensor fields.” For theories with compact
fields like the nonlinear sigma models and Wilson lattice
gauge theories, the tensor reformulation relies on character
expansions and is always discretized [7]. This is suitable for
quantum computations or quantum simulations [23–25]. In
practical situations such as tensor renormalization group
(TRG) calculations, truncations of infinite sums appearing
in the TFT formulation of models with continuous sym-
metries are necessary. This can be achieved by discarding
contributions to the partition function or observable aver-
ages that involve tensor indices larger than some cutoff
value nmax. Concrete examples will be given in Secs. III
and IV.
A truncation procedure can be understood as a regulari-

zation and we need to ask if the regularization is compatible
with the symmetries of the theory or if it generates what we
call anomalies. As far as the universal behavior is con-
cerned, we expect that if truncations preserve the sym-
metries, one should be able to obtain the properties
associated with the universality classes by taking the
continuum limit using a considerably simplified micro-
scopic formulation. In other words, we could use drastic

truncations of the sums such that at each site, link or
plaquettes only a few values of the indices are kept. This is
very important when the computational units available to
represent the local degrees of freedom, such as qubits or
trapped atoms, are in limited supply.
In the following, we discuss identities associated with

global and local symmetries in the Lagrangian approach of
lattice models and examine their compatibility with trun-
cations. We focus on two related examples with a con-
tinuous Abelian symmetry: the O(2) nonlinear sigma model
and the compact Abelian Higgs model. We also connect
with the Hamiltonian formulation by taking the time
continuum limit. In the Hamiltonian approach, it is suffi-
cient to check that the generators of symmetry groups
commute with the Hamiltonian. We want to emphasize that
the Lagrangian approach used in the TRG and followed
here is more general and that we will not rely on
infinitesimal transformations as in the traditional
Noether’s approach. The compatibility of the symmetries
with truncations in TFT is a frequently asked question and
we think that it is important to collect basic results about
this question in situations where compact field integrations
are replaced by discrete sums.
The article is organized as follows. In Sec. II, we

introduce simple identities that are valid for global or local
symmetries appearing in generic lattice models. In Sec. III,
we discuss the nonlinear O(2) sigma model in arbitrary
dimension. This is an example of a model with a continu-
ous global Abelian symmetry. In Sec. IV, we consider the
gauged version of the O(2) model, the compact Abelian
Higgs model. In both cases, we find conclusive evidence
that truncations fully preserve the symmetries of the model.
Extensions to discrete symmetries, global non-Abelian
symmetries and pure gauge Abelian theories are discussed
in Sec. V. In the conclusions, we summarize the results,
provide an intuitive picture and emphasize the practical
implications of the results.
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II. IMPLICATIONS OF SYMMETRIES
FOR LATTICE MODELS

In this section, we consider a generic lattice model with
action S½Φ�, where Φ denotes a field configuration of fields
ϕl attached to locations l which can be sites, links,
plaquettes or higher-dimensional objects. Additional indi-
ces possibly attached to the fields are kept implicit. The
partition function reads

Z ¼
Z

DΦe−S½Φ�; ð1Þ

with DΦ the measure of integration over the fields. The
average value of a function of the fields fðΦÞ is defined as

hfðΦÞi ¼
Z

DΦfðΦÞe−S½Φ�=Z: ð2Þ

We define symmetries as field transformations

ϕl → ϕ0
l ¼ ϕl þ δϕl½Φ�; ð3Þ

that preserve the action and the integration measure:

DΦ0 ¼ DΦ and S½Φ0� ¼ S½Φ�: ð4Þ

These symmetries can be global or local. In all the
examples we know, these symmetries form a group and
the invariance is valid for any group element and not only
for infinitesimal transformations. Changing variable from
Φ to Φ0 and using the symmetry properties of Eq. (2), we
find the intuitively clear result:

hfðΦÞi ¼ hfðΦþ δΦÞi: ð5Þ

Can this simple expression of the symmetries be used to
derive the existence of conserved quantities for global
continuous symmetries as in Noether’s theorem? In
classical mechanics, if a transformation δqi of generalized
coordinates qi leaves the action invariant, then after using
the equation of motion, we obtain conservation law:

d
dt

�∂L
∂ _qi

δqi

�
¼ 0: ð6Þ

The use of the equations of motion guarantees that the
variation δqi has no effect except at the initial and final
times where unlike what is done in the variational pro-
cedure δqi are not required to vanish. Consequently, the
two individual surface terms do not vanish and are equal to
the conserved quantity.
In field theory, a similar procedure leads to a relativis-

tically invariant current conservation

∂μJμðxÞ ¼ ∇⃗:J⃗ þ ∂ρ=∂t ¼ 0; ð7Þ

which has the form of a continuity equation. By considering
its integration between two time sliceswith spatial boundary
conditions such that the spatial current does not flow outside
the region of integration, one obtains that the integral of the
charge density over a time slice is a constant of motion.
In the following, wewill show that Eq. (5) can actually be

obtained as a global consequence of a continuity equation
encoded in the local tensors used in the reformulation. We
will not need to use the equations of motion explicitly. In the
generic formulation used above, the equations of motions
are obtained by varying a single local variable ϕl:

ϕl → ϕ0
l ¼ ϕl þ α: ð8Þ

Assuming that the DΦ is invariant under this shift and that
the action changes by an amount Δl;αS, we obtain that

he−Δl;αSi ¼ 1: ð9Þ

Taking the derivativewith respect to α and setting α ¼ 0, we
obtain the lattice equation of motion

h∂S=∂ϕli ¼ 0: ð10Þ

III. EXAMPLE 1: THE O(2) MODEL

A. The model and its symmetry

As a first example we consider a lattice model with a
global continuous Abelian symmetry: the nonlinear O(2)
sigma model. This is a generalization of the Ising model
where the spins are two-dimensional vectors of length
one. We parametrize them with an angle φ where 0 and 2π
are identified. We use a D-dimensional (hyper) cubic
Euclidean space-time lattice. For instance, for D ¼ 2,
we use a square lattice. The sites are denoted x ¼
ðx1; x2;…xDÞ, with xD ¼ τ the Euclidean time direction.
The total number of sites is denoted V and we assume
periodic or open boundary conditions. If we take the time
continuum limit, we obtain a quantum Hamiltonian for-
mulation in D − 1 spatial dimensions.
In terms of the generic notations introduced in Sec. II, the

field configurations are Φ ¼ fφxgx. The integration mea-
sure is normalized to one and readsZ

DΦ ¼
Y
x

Z
π

−π

dφx

2π
; ð11Þ

and the action

S½Φ� ¼ −β
X
x;i

cosðφxþî − φxÞ; ð12Þ

where î denotes a unit vector in the positive ith direction.
The invariance requirements for the action and measure of
Eq. (2) are satisfied for the global shift
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φx
0 ¼ φx þ α: ð13Þ

This implies that for a function f of N variables

hfðφx1 ;…;φxN Þi ¼ hfðφx1 þ α;…;φxN þ αÞi: ð14Þ

Since f is 2π periodic in its variables and can be expressed
in terms Fourier modes, this can be reduced to

hexpðiðn1φx1 þ���nNφxN ÞÞi
¼ expððn1þ���nNÞαÞhexpðiðn1φx1 þ���nNφxN ÞÞi: ð15Þ

This implies that if

XN
n¼1

ni ≠ 0; ð16Þ

then

hexpðiðn1φx1 þ � � � þ nNφxN ÞÞi ¼ 0: ð17Þ

We will show that this selection rule can be explained by a
microscopic continuity equation that is manifest in the
tensor formulation that we proceed to discuss.

B. The tensor formulation

The basic aspects of the tensor reformulation of the O(2)
model have been discussed in Refs. [7–9].We briefly review
the main results. It borrows tools from duality constructions
[26]. At each link, we use the Fourier expansion

eβ cosðφxþî−φxÞ ¼
Xþ∞

nx;i¼−∞
einx;iðφxþî−φxÞInx;iðβÞ; ð18Þ

where the In are the modified Bessel functions of the first
kind. This attaches an index nx;i at each link coming out of
x in the positive ith direction. It is then possible to integrate
over the φx and rewrite the partition function as the trace of
a tensor product:

Z ¼ IV0 ðβÞTr
Y
x

Tx
ðnx−1̂;1;nx;1;…;nx;DÞ: ð19Þ

The local tensor Tx has 2D indices. The explicit form is

Tx
ðnx−1̂;1;nx;1;…;nx−D̂;D;nx;DÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tnx−1̂;1tnx;1 ;…; tnx−D̂;D

tnx;D
q

× δnx;out;nx;in ; ð20Þ

with the definitions

tn ≡ InðβÞ=I0ðβÞ;
nx;in ≡

X
i

nx−î;i;

nx;out ≡
X
i

nx;i; ð21Þ

where the sums over i run from 1 toD. The Kronecker delta
in Eq. (20), X

i

ðnx;i − nx−î;iÞ ¼ 0; ð22Þ

is a discrete version of Noether current conservation
Eq. (7) if we interpret the nx;i with i < D as spatial current
densities and nx;D as a charge density.
The insertion of various einQφx is required in order to

calculate the averages function of Eq. (15). This can be
done by inserting an “impure” tensor instead of the usual
one at the location x. This tensor only differs from the
“pure” tensor of Eq. (20) by the Kronecker symbol
replacement

δnx;out;nx;in → δnx;out;nx;inþnQ: ð23Þ

In Eq. (19), the trace is a sum over all the link indices. We
need to specify the boundary conditions. Periodic boundary
conditions (PBCs) allow us to keep a discrete translational
invariance. As a consequence the tensors themselves are
translation invariant and assembled in the same way at
every site. Open boundary conditions (OBCs) can also be
implemented by introducing new tensors that can be placed
at the boundary. Their construction is similar to the tensors
in the bulk. The only difference is that there are some links
which could be attached at sites on the boundary and are
missing. With the normalization introduced in Eq. (20) the
indices carrying a zero index carry a unit weight and we can
take into account the missing links at the boundary by
setting their corresponding indices to zero.
At finite β, the ratios of Bessel functions tn defined in

Eq. (21) decay rapidly with n and it is justified to introduce
a truncation. If any of the indices in a tensor element is
larger in magnitude than a certain value nmax, we approxi-
mate the tensor by zero. The main question addressed here
is to decide if this type of truncation is compatible with the
symmetries.

C. Microscopic explanation of the selection rule

In this subsection, we provide a microscopic derivation
of the selection rule Eq. (16). In the absence of insertions of
einQφx , the Kronecker delta at the sites can be interpreted as
a divergence-free condition. If we enclose a site x in a small
D-dimensional cube, the sum of indices corresponding to
positive directions (nx;out) is the same as the sum of indices
corresponding to negative directions (nx;in). For instance in
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two dimensions, the sum of the left and bottom indices
equals the sum of the right and top indices. We can
“assemble” such elementary objects by tracing over indices
corresponding to their interface and construct an arbitrary
domain. Each tracing automatically cancels an in index
with an out index and consequently, at the boundary of the
domain, the sum of the in indices remains the same as the
sum of the out indices.
We can now repeat this procedure with insertions of

einQφx . Each insertion adds nQ, which can be positive or
negative, to the sum of the out indices. We can apply this
bookkeeping on an existing tensor configuration until we
have gathered all the insertions and we reach the boundary
of the system. For PBCs, this means that all the in and out
indices get traced in pairs at the boundary. This is only
possible if the sum of the inserted charges is zero.
Equation (16) tells us that when it is not the case, the
average is zero. For OBCs, all the boundary indices are zero
and the same conclusions apply.
In summary we have shown that the selection rule in

Eq. (16) is a consequence of the Kronecker delta appearing
in the tensor and is independent of the particular values
taken by the tensors. So if we set some of the tensor
elements to zero as we do in a truncation, this does not
affect the selection rule.

D. Hamiltonian formulation

The transition from the Lagrangian formulation consid-
ered above to the quantum Hamiltonian formulation can be
achieved by using the transfer matrix. As shown in
Ref. [23], the transfer matrix can be constructed by taking
all the tensors on a time slice and tracing over the spatial
indices. With either PBCs or OBCs, there is no flow of
indices in the spatial directions. Consequently the sum
of the time indices going in the time slice equals the sum of
the indices going out. This conserved quantity can be
identified as the charge of the initial or final state and the
transfer matrix commutes with the charge operator which
counts the sum of the in or out indices. Consequently,
setting some matrix elements to zero if some of the local
indices exceed some value nmax in absolute value will not
affect this property. The transfer matrix can be used to
define an Hamiltonian by taking an anisotropic limit where
β becomes large on time links and the Hamiltonian will
inherit the properties of the transfer matrix.
In the rest of this subsection, we restrict the discussion to

D ¼ 1 where the operator formalism is transparent. In
addition we impose periodic boundary conditions in the
Euclidean time direction. The tensor reads

Tnx;nx−1 ¼ tnxðβÞδnx;nx−1 ð24Þ

and represents the diagonal transfer matrix. In the limit of
large β, tnðβÞ ≃ 1 − n2=2β and if we identify the time
lattice spacing with 1=β, we find the rotor spectrum with

energies En ¼ n2=2. The value of the conserved charge n is
often called the angular momentum of the rotor. For
periodic boundary conditions, the partition function is
the trace of the Nτ power of the transfer matrix. If we
insert eiφx in the functional integral, the charge n increases
by 1 and the trace is zero unless we insert e−iφxþy or a
product having the same effect. So for D ¼ 1, the selection
rule Eq. (16) is immediate. For visualization purpose, the
transfer matrix evolves an initial state which is placed on
the right of the operator as a ket vector and the left indices
refer to the future.
In the Hamiltonian formalism, we introduce the angular

momentum eigenstates which are also energy eigenstates:

L̂jni ¼ njni;

Ĥjni ¼ n2

2
jni: ð25Þ

We assume that n can take any integer value from −∞ to
þ∞. As Ĥ ¼ ð1=2ÞL̂2, it is obvious that

½L̂; Ĥ� ¼ 0: ð26Þ

The insertion of eiφx in the path integral translates into an

operator ceiφ which raises the charge as in Eq. (23):

ceiφjni ¼ jnþ 1i; ð27Þ

while its Hermitian conjugate lowers it:

ðceiφÞ†jni ¼ jn − 1i: ð28Þ

This implies the commutation relations

½L;ceiφ� ¼ ceiφ; ½L;ceiφ†� ¼ −ceiφ†; ð29Þ

and

½ceiφ;ceiφ†� ¼ 0: ð30Þ

We now discuss the effect of a truncation on these
algebraic results. By truncation we mean that there exists
some nmax for which

ceiφjnmaxi ¼ 0 and ðceiφÞ†j − nmaxi ¼ 0: ð31Þ

If we now study the commutation relation with this
restriction, we see that the only changes are

hnmaxj½ceiφ;ceiφ†�jnmaxi ¼ 1;

h−nmaxj½ceiφ;ceiφ†�j − nmaxi ¼ −1; ð32Þ
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instead of 0. The important point is that the truncation does
not affect the basic expression of the symmetry in Eq. (26).

It only affects matrix elements involving the ceiφ operators
but not in a way that contradicts charge conservation. For a
related discussion of the algebra for the O(3) model see
Ref. [27]. Related deformations of the original Hamiltonian
algebra appear in the quantum link formulation of lattice
gauge theories [28]. It should also be noticed that Eqs. (29)
and (30) correspond to the Mð2Þ algebra, the rotations and
translations in a plane. Its representations are infinite
dimensional with matrix elements given in terms of
Bessel functions [29].

IV. EXAMPLE 2: THE COMPACT
ABELIAN HIGGS MODEL

A. The model and its symmetries

Having shown that the truncation preserve the sym-
metries of the O(2) model, we now proceed to discuss the
question in its gauged version, the “compact Abelian Higgs
model.” By “compact” we mean that both the gauge field
and the matter field are compact fields. On the matter side,
the Brout-Englert-Higgs mode has been decoupled and the
Nambu-Goldstone mode is φx as in the O(2) model. For
more details about the decoupling of the Brout-Englert-
Higgs field see Ref. [24]. The gauge fields are located on
the links and are denoted Ax;î. The integration measure
becomes Z

DΦ ¼
Y
x

Z
π

−π

dφx

2π

Y
x;i

Z
π

−π

dAx;i

2π
: ð33Þ

The action splits into a matter part

Smatter½Φ� ¼ −β
X
x;i

cosðφxþî − φx þ Ax;iÞ ð34Þ

and a gauge part

Sgauge¼−βp
X
x;i<j

cosðAx;iþAxþî;j−Axþîþĵ;i−Ax;jÞ: ð35Þ

The symmetry of the Oð2Þ model becomes local

φx
0 ¼ φx þ αx; ð36Þ

and these local changes in Smatter are compensated by the
gauge field changes

Ax;i
0 ¼ Ax;i − ðαxþî − αxÞ; ð37Þ

which also leave Sgauge invariant. The measure in Eq. (33) is
invariant under these local shifts.
The general consequence of symmetries expressed by

Eq. (5) can again be applied to Fourier modes. We find that
for every site x, if we have indices such that

nþ
X
i

mi −
X
i

m̃i ≠ 0; ð38Þ

then�
exp

�
i

�
nφx þ

X
i

miAx;i þ
X
i

m̃iAx−î;i

���
¼ 0: ð39Þ

This is nothing but the statement that non-gauge-invariant
observables have a zero expectation value. By applying this
restriction to every site, we end up with observables such as
Wilson loops or Wilson lines attached to suitable powers of
eiφx . Even though we might not want to calculate the
average of non-gauge-invariant observable, it is legitimate
to ask if truncations could generate nonzero average values
for gauge-variant observables.

B. Tensor formulation

The tensor formulation of this model has been discussed
extensively in Ref. [24] and used to propose cold atom
simulations for the model [25]. In the following we focus
on aspects relevant to a possible symmetry breaking. In
order to calculate the partition function, we expand all the
Boltzmann weights using Eq. (18) and keeping the fields
with exactly the same signs as in the cosine functions in the
action. This introduces discrete quantum numbers nx;i for
the links, just the same as for O(2), and additional quantum
numbers mx;i;j associated with the plaquette with corners
(x; xþ î; xþ îþ ĵ; xþ ĵ) and i < j. Comparing with
Eq. (35), we see that the gauge fields on the lowest
numbered positive direction coming out of x come with
a positive sign and those with the largest numbered positive
direction with a minus sign. We now integrate over the
gauge fields. If we use the convention

mx;i;j ¼ −mx;j;i; ð40Þ

when i > j and in addition mx;i;i ¼ 0, then it is clear thatX
i;j

¼ mx;i;j ¼ 0: ð41Þ

We can write the selection rules in a very compact way:

nx;i ¼
X
j

ðmx;j;i −mx−ĵ;j;iÞ: ð42Þ

If we plug this relation in
P

iðnx;i − nx−î;iÞ, it is automati-
cally zero because of Eq. (41) and we recover the discrete
version of Noether current conservation for the O(2) model.
This is a discrete version of ∂μ∂νFμν ¼ 0.
Equation (42) shows that the quantum numbers asso-

ciated with the links (nx;i) are completely determined by the
quantum numbers of the plaquettes (mx;i;j) which play the
role of dual variables [26] but with additional interactions
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given by Sgauge. The states of the Hilbert space for the
transfer matrix and the associated Hamiltonian when we
take the time continuum limit depend only on the mx;i;j.
So far we have only performed the integration over the

gauge fields. However, the matter field ϕx appears in
exponentials multiplied by

P
iðnx;i − nx−î;iÞ which we just

argued is zero because of Eq. (42). Consequently, the
integration over the matter fields is trivial and produces a
factor 1. Note that we did not fix the gauge and that the
procedure is manifestly gauge invariant. The fact that the
matter fields play no role here can be interpreted as a
consequence of the fact that they can eliminated from
the action by a gauge transformation, but we did not fix
the gauge.

C. Interpretation of the selection rule

In the case of the global symmetry previously discussed,
we found that if the sum of the inserted charges in the full
D-dimensional space-time volume is nonzero, then there is
a flow at the boundary clashing with PBCs or OBCs and the
average can only be zero. In the case of the local symmetry,
the selection rule is microscopic and applies to a unit
D-dimensional cube enclosing any site.
The reason gauge-variant expressions are zero is simple.

For instance, it is easy to show that

heiφxi ¼ 0; ð43Þ

in agreement with Elitzur’s theorem [30]. We proceed as
before and integrate over the gauge fields, and all the φ’s
except for φx. If we now insert eiφx in the functional
integral, this is the only part that contains φx since we just
explained that other dependence on φx disappears and the
integration over φx produces 0 in agreement with Eq. (39).
In order to cancel eiφx , we need to insert another contri-
bution, for instance e−iðAx;1þφxþ1̂Þ, which allows us to
escape the consequences of Eq. (39) at x and xþ 1̂.
This modifies the gauge integration and introduces nonzero
values for

P
iðnx;i − nx−î;iÞ which cancel the insertions of

φx and φxþ1̂.
This mechanism persists after truncation of the Hilbert

space parametrized in terms of the mx;i;j: Eq. (42) and its
consequence that we just discussed remain valid for a
restricted set of mx;i;j. Numerical studies of truncations
in Lagrangian and Hamiltonian forms can be found in
Refs. [25,31].

V. EXTENSIONS OF THE RESULTS

A. Discrete symmetries

The results presented in Secs. III and IV extend easily to
the case of discrete Abelian symmetries like Zn where the
shifts α in Eqs. (13) and (36) are restricted to integer
multiples of 2π=n. With that restriction, some product of

Fourier modes that must have a zero expectation value for
the full Uð1Þ symmetry may become nonzero if the sum of
the Fourier mode vanishes modulo n. In a similar way, the
Kronecker deltas apply modulo n.
More generally, we never used infinitesimal transforma-

tions and, as explained in Sec. II, the measure and the
action are invariant under the entire group of symmetry.
The main difference in the treatment of discrete subgroups
is that the sums are already finite in the original theory.

B. Non-Abelian global symmetries

For the O(3) model, the Fourier modes are replaced by
spherical harmonics. For a specific global rotation R,
Eq. (15) becomes

hYl1m1
ðθx1 ;φx1Þ…YlNmN

ðθxN ;φxN Þi
¼ Dl1

m1m0
1
ðRÞ…DlN

mNm0
N
ðRÞhYl1m0

1
ðθx1 ;φx1Þ…

YlNm0
N
ðθxN ;φxN Þi;

where the Dl
mm0 ðRÞ are the matrices corresponding to the l

representation and the m0
i indices are summed from −li to

li. By using iteratively the Clebsch-Gordan series, the
expectation value can be decomposed into a sum of
irreducible representations, and only the singlets are
allowed to get a nonzero expectation value.
Arbitrary truncations are likely to generate nonzero

expectation values for the nonsinglets. However, if we
keep irreducible representations at each link, in other
words, if we keep all the m’s corresponding to a given
l ≤ lmax, Eq. (3.12) of Ref. [7] shows that the truncation in
l respects the global symmetries. This is because

Xl
m¼−l

Y⋆
lmðθ;φÞYlmðθ0;φ0Þ ð44Þ

is invariant under global rotations. It seems possible to
extend the argument beyond this special example.

C. Pure gauge Abelian models

The pure gauge Uð1Þ model can be obtained by taking
the limit β → 0 in Eq. (34). The φx fields disappear from
the action and their integration results in a factor 1. In the
compact Abelian Higgs model, the link indices nx;i
associated with the ϕ interactions are completely deter-
mined by the plaquette indices mx;i;j as shown in Eq. (42).
When we insert eiAx;i in the functional integral, an addi-
tional term is introduced in Eq. (42) and it conflicts withP

iðnx;i − nx−î;iÞ ¼ 0 which is independently enforced by
the φx integration. Consequently, for the compact Abelian
Higgs model we have
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heiAx;ii ¼ 0; ð45Þ

in agreement with Elitzur’s theorem [30].
Extra work is needed in order to show that a similar

equation is true in the pure gauge limit and that it is
respected by truncations. This can be achieved by assem-
bling tensors surrounding a given site x in a way that is
compatible with a selection rule. Following Ref. [7], we use
2D A tensors with 2ðD − 1Þ legs. Each A tensor is
associated with a link coming out of the site x and its
legs are orthogonal to this link. We assemble these A
tensors by connecting them with B tensors in the middle of
the plaquettes attached to x. Geometrically, the A tensors
form the boundaries of a D-dimensional cube. Graphical
representations can be found in Ref. [7]. The A tensors
provide a Kronecker delta that is a discrete version of
∂μFμν ¼ 0. It is expressed with a specific sign convention
in Eq. (42) with nx;i ¼ 0. The weight ImðβplÞ appearing in
the Fourier expansion of the Boltzmann weights of the
plaquette interactions can be moved to the B tensor and
plays no role in the discussion.
We can now imitate the procedure of Sec. III and assign

“in” and “out” qualities to the legs of the A tensors. For a
given pair of directions i and j, there are eight types of legs
for the A tensors that we label ½ðx; iÞ;�ĵ�, ½ðx − î; iÞ;�ĵ�,
½ðx; jÞ;�î�, and ½ðx − ĵ; jÞ;�î�. The pair of indices appear-
ing first refers to the links where the A tensor is attached
and the second index to the direction of the leg which can
be positive or negative. The ½ðx; iÞ; ĵ� with i < j are given
an out assignment. There are three operations that swap in
and out: changing ðx; iÞ into ðx − î; iÞ, changing ĵ into −ĵ
and interchanging i and j. A detailed inspection shows that
this assignment gives consistent in-out assignments at the B
tensors and that the assignment is compatible with the sign
partition used in Eq. (42). Consequently, the Kronecker
delta appearing at any link is independently enforced by the
Kronecker deltas on the 2D − 1 other links attached to x
and, if we insert eiAx;i , the conditions become incompatible
which implies Eq. (45). Again the argument is based on the
selection rules and is independent of the specific values of
the tensors for any set of allowed indices.

VI. CONCLUSIONS

In summary, we have discussed the way symmetries are
implemented in TFT for two models with a continuous
Abelian symmetry. In both cases, we found that the
truncations of the tensorial sums are compatible with the
general identities reflecting the symmetries. By approxi-
mating some of the tensors with high indices by zero, we do
not break these symmetries. The only way to do that would
be to introduce new tensors which explicitly break the
conservations laws at the sites or links. For numerical
calculations, this implies for instance that it is possible to
get a zero magnetization in the symmetric phase when a

symmetry-breaking term is set to zero. This is illustrated in
Fig. 4 of Ref. [8].
For the models considered here, the symmetry is encoded

in Kronecker deltas build in the tensors and located at the
vertices of graphs that either cover the entire space-time
lattice for global symmetries or are enclosed in a D-
dimensional cube for local symmetries. An intuitive picture
of the way the Abelian symmetries are realized can be
obtained by considering the sampling of the tensor con-
figurations that can be performed using the worm algorithm
[23,32–34]. In this sampling algorithm, the worm carries a
discrete charge which is conserved at each vertex following
the Kronecker delta prescription. Restricting options at the
vertices does not conflict with the charge conservation.
Unlike Noether’s standard field theoretical construction,

our construction does not rely on taking infinitesimal
symmetry transformations. The character expansions require
the full group. Consequently everything we did applies to
discrete subgroups. For global non-Abelian symmetries,
the truncation must keep a certain number of irreducible
representations and combine the weights in a way that is
manifestly invariant before the field integrations are per-
formed, as we showed explicitly for the O(3) sigma model.
It seems possible to extend this construction in more general
circumstances.
Fermions are more complicated, because if we try to

derive equations similar to Eq. (42), the indices associated to
the fermions only take a finite number of values. As
fermionic theories are under construction in the tensor
language [11–13,18,19], this is work for the future. The
TFT formulation of the non-Abelian Higgs model has been
recently discussed and used for numerical purposes [21]. It
would be interesting to try to generalize the construction of
Sec. IV for SUð2Þ. Another question of interest would be to
understand the relationship of truncated tensormethodswith
quantum link models [28,35] or matrix product states [36].
The fact symmetries are preserved by truncations means

that it is advantageous to keep these symmetries exactly in
numerical formulations for instance in TRG calculations. A
simple example where it is possible is given in Ref. [6] for
the Ising model where sectors of different charges can be
separated explicitly. In quantum computations and quan-
tum simulations experiments, it is desirable to have for-
mulations with a minimal numbers of local degrees of
freedom compatible with the symmetries. One can than
expect to recover the result characterizing the universality
class in the continuum limit. In noisy quantum computa-
tions, symmetry breaking is expected to occur generically
and mix the energy sectors. If this symmetry breaking
represents a relevant direction of the renormalization group
flows and can be varied, results for different levels of noise
and different size systems could be analyzed using finite
size scaling. Alternatively, one might try to design qubit
assignments such that the mixing of the energy sectors is
impossible.
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