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In previous works, we have proposed a new formulation of Yang-Mills theory on the lattice so that the
so-called restricted field obtained from the gauge-covariant decomposition plays the dominant role in quark
confinement. This framework improves the Abelian projection in the gauge-independent manner.
For quarks in the fundamental representation, we have demonstrated some numerical evidence for the
restricted field dominance in the string tension, which means that the string tension extracted from the
restricted part of the Wilson loop reproduces the string tension extracted from the original Wilson loop.
However, it is known that the restricted field dominance is not observed for the Wilson loop in higher
representations if the restricted part of the Wilson loop is extracted by adopting the Abelian projection or
the field decomposition naively in the same way as in the fundamental representation. In this paper,
therefore, we focus on the confinement of quarks in higher representations. By virtue of the non-Abelian
Stokes theorem for the Wilson loop operator, we propose suitable gauge-invariant operators constructed
from the restricted field to reproduce the correct behavior of the original Wilson loop averages for higher
representations. Moreover, we perform lattice simulations to measure the static potential for quarks in
higher representations using the proposed operators. We find that the proposed operators well reproduce the
behavior of the original Wilson loop average, namely, the linear part of the static potential with the correct
value of the string tension, which overcomes the problem that occurs in naively applying Abelian
projection to the Wilson loop operator for higher representations.
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I. INTRODUCTION

The dual superconductor picture is one of the most
promising scenarios for quark confinement [1]. According
to this picture, magnetic monopoles causing the dual
superconductivity are regarded as the dominant degrees
of freedom responsible for confinement. However, it is not
so easy to verify this hypothesis. Indeed, even the definition
of magnetic monopoles in the pure Yang-Mills theory is not
obvious. If magnetic charges are naively defined from
electric ones by exchanging the role of the magnetic field

and the electric one according to the electric-magnetic
duality, one needs to introduce singularities to obtain
nonvanishing magnetic charges, as represented by the
Dirac monopole. For such a configuration, however, the
energy becomes divergent.
The most frequently used prescription avoiding this issue

in defining monopoles is the Abelian projection, which is
proposed by ’t Hooft [2]. In this method, the “diagonal
component” of the Yang-Mills gauge field is identified with
the Abelian gauge field and a monopole is defined as the
Dirac monopole. The energy density of this monopole can
be finite everywhere because the contribution from the
singularity of a Dirac monopole can be canceled by that of
the off-diagonal components of the gauge field. In this
method, however, one needs to fix the gauge because
otherwise the “diagonal component” is meaningless.
There is another way to define monopoles, which does

not rely on the gauge fixing. This method is called the field
decomposition that was proposed for the SUð2ÞYang-Mills
gauge field by Cho [3] and Duan and Ge [4] independently,
and later readdressed by Faddeev and Niemi [5], and
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developed by Shabanov [6] and the Chiba University group
[7–9]. In this method, as the name suggests, the gauge field
is decomposed into two parts. A part called the restricted
field transforms under the gauge transformation just like
the original gauge field, while the other part called the
remaining field transforms like an adjoint matter. The key
ingredient in this decomposition is the Lie-algebra valued
field with a unit length that we call the color field. The
decomposition is constructed in such a way that the field
strength of the restricted field is “parallel” to the color field.
Then monopoles can be defined by using the gauge-
invariant part proportional to the color field in the field
strength just as the Abelian field strength in the Abelian
projection. The definition of monopoles in this method is
equivalent to that in the Abelian projection. By this
construction the gauge invariance is manifestly maintained
differently from the Abelian projection. The field decom-
position was extended to SUðNÞ (N ≥ 3) gauge field in
[10–13]. See, e.g., [14] for a review.
While themain advantage of the field decomposition is its

gauge covariance, another advantage is that, through a
version of the non-Abelian Stokes theorem (NAST)
invented originally by Diakonov and Petrov [15,16] and
extended in a unified way in [17–23], the restricted field
naturally appears in the surface-integral representation of the
Wilson loop. By virtue of this method, we understand how
monopoles contribute to theWilson loop at least classically.
It can be numerically examined whether these monop-

oles actually reproduce the expected infrared behavior of
the original Wilson loop average, even if it is impossible to
do so analytically. For quarks in the fundamental repre-
sentation, indeed, such numerical simulations were already
performed within the Abelian projection using the maximal
Abelian (MA) gauge in SUð2Þ and SUð3Þ Yang-Mills
theories on the lattice [24–26]. Then it was confirmed that
(i) the diagonal part extracted from the original gauge field
in theMAgauge reproduces the full string tension calculated
from the original Wilson loop average [24,26], which is
called the Abelian dominance, and that (ii) the monopole
part extracted from the diagonal part of the gauge field by
applying the Toussaint-DeGrand procedure [27] mostly
reproduces the full string tension [25,26], which is called
the monopole dominance.
However, it should be noted that the MA gauge in the

Abelian projection breaks simultaneously the local gauge
symmetry and the global color symmetry. This defect
should be eliminated to obtain the physical result by giving
a procedure to guarantee the gauge invariance. For this
purpose, we have developed the lattice version [28–33] of
the reformulated Yang-Mills theory written in terms of new
variables obtained by the gauge-covariant field decompo-
sition, which enables us to perform the numerical simu-
lations on the lattice in such a way that both the local gauge
symmetry and the global color symmetry remain intact, in
sharp contrast to the Abelian projection, which breaks both

symmetries. In this paper we adopt the gauge-covariant
decomposition method to avoid these defects of the Abelian
projection, although the conventional treatment equivalent
to the Abelian projection and the MA gauge can be
reproduced from the gauge-covariant field decomposition
method as a special case called the maximal option.
Moreover, the MA gauge in the Abelian projection is
not the only way to recover the string tension in the
fundamental representation. By way of the non-Abelian
Stokes theorem [20] for the Wilson loop operator, indeed, it
was found that the different type of decomposition called
the minimal option is available for SUð3Þ and SUðNÞ for
N ≥ 4 [13,29,30]. Even for the minimal option, we have
demonstrated the restricted field dominance and monopole
dominance in the string tension for quarks in the funda-
mental representation [31,32]. See [14] for a review. Thus,
our method enables one to extract various degrees of
freedom to be responsible for quark confinement by
combining the option of gauge-covariant field decompo-
sition and the choice of the reduction condition, which is
not restricted to the Abelian projection and the MA gauge,
respectively. In this paper, indeed, we have adopted three
kinds of reduction conditions to examine the contributions
from magnetic monopoles of different types.
For quarks in higher representations, however, it is

known that, if the Abelian projection is naively applied
to the Wilson loop in higher representations, the resulting
monopole contribution does not reproduce the string
tension extracted from the original Wilson loop average
[34]. This is because, in higher representations, the diago-
nal part of theWilson loop does not behave in the sameway
as the original Wilson loop. For example, in the adjoint
representation of SUð2Þ, the diagonal part of the Wilson
loop average approaches 1=3 for a large loop, which is
obviously different from the behavior of the original
Wilson loop. In the language of the field decomposition,
this means that in higher representations, the Wilson loop
for the restricted field does not behave in the same way as
the original Wilson loop. Poulis [35] heuristically found the
correct way to extend the Abelian projection approach for
the adjoint representation of SUð2Þ. In his approach, the
diagonal part of the Wilson loop is further decomposed into
the “charged term” and the “neutral term,” and then the
charged term is used instead of the diagonal part.
In this paper, we propose a systematic prescription to

extract the “dominant” part of the Wilson loop average,
which can be applied to the Wilson loop operator in an
arbitrary representation of an arbitrary compact gauge
group. Here the dominant part means that the string tension
extracted from this part of the Wilson loop reproduces the
string tension extracted from the original Wilson loop. In
the prescription, we further extract the “highest weight
part” from the diagonal part of the Wilson loop or the
Wilson loop for the restricted field. This prescription comes
from the NAST. In order to test this proposal, we calculate
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numerically the dominant part of the Wilson loop for the
adjoint representation of the SUð2Þ group, and adjoint and
sextet representations of the SUð3Þ group. The results
support our claim.
This paper is organized as follows. In Sec. II, we briefly

review the field decomposition of the gauge field and the
NAST for the Wilson loop operator. In Sec. III, we propose
an operator suggested from the NAST, which is expected to
reproduce the dominant part of the area law falloff of the
original Wilson loop average. In Sec. IV, we perform
the numerical simulations on the lattice to examine whether
the proposed operator exhibits the expected behavior of the
Wilson loop average. In Sec. V, we summarize the results
obtained in this paper. In the Appendixes A and B we give
the derivation of some equations given in Sec. III.

II. FIELD DECOMPOSITION METHOD AND THE
NON-ABELIAN STOKES THEOREM

In this section, we give a brief review of the field
decomposition, the NAST for the Wilson loop operator and
the reduction conditions. First, we introduce the field
decomposition in a continuum theory and then in a lattice
theory. Here we work in the SUðNÞ Yang-Mills theory, but
the field decomposition can be applied to an arbitrary
compact group [23]. Next we introduce the Diakonov-
Petrov version of the non-Abelian Stokes theorem [15] for
the Wilson loop operator, which is used to see the relation-
ship between the field decomposition and the Wilson loop
operator. Finally, we explain the relationship between the
field decomposition and the reduction condition, which
determines the color fields as a functional of the gauge
field. For a more detailed review, see, e.g., [14].

A. Field decomposition

1. Continuum case

In the field decomposition method, we decompose the
gauge field AμðxÞ into two parts as

AμðxÞ ¼ VμðxÞ þ XμðxÞ: ð1Þ
Here the restricted field VμðxÞ is required to transform just
as the gauge field Aμ under the gauge transformation as

VμðxÞ → gðxÞVμðxÞg†ðxÞ þ ig−1YMgðxÞ∂μg†ðxÞ; ð2Þ
where gðxÞ ∈ SUðNÞ and gYM is the Yang-Mills coupling.
Hence the remaining field XμðxÞ must transform like an
adjoint matter field as

XμðxÞ → gðxÞXμðxÞg†ðxÞ: ð3Þ
We wish to regard the restricted field Vμ as the dominant
part of the gauge fieldAμ in the IR region. In this paper, we
focus on the version of maximal option.

In order to determine the decomposition for the gauge
group SUðNÞ, we introduce a set of color fields nðkÞðxÞ
(k ¼ 1;…; N − 1) which are expressed using a common
SUðNÞ-valued field ΘðxÞ as

nðkÞðxÞ ≔ ΘðxÞHkΘ†ðxÞ; ð4Þ

where Hk is a Cartan generator. Notice that the color fields
are not independent. The transformation property of the
color fields under a gauge transformation is given by

nðkÞðxÞ → gðxÞnðkÞðxÞg†ðxÞ: ð5Þ

The color fields are determined as functionals of Aμ by
imposing a condition that we call the reduction condition as
explicitly given shortly.
The decomposition is constructed such that the field

strength of the restricted field, F μν½V� ≔ ∂μVν − ∂νVμ−
ig½Vμ;Vν�, is expressed by a linear combination of the color
fields. This condition can be simply written as

Dμ½V�nðkÞ ¼ 0 ðk ¼ 1;…; N − 1Þ; ð6Þ

where Dμ½V� ≔ ∂μ − igYM½Vμ; •� is the covariant derivative
with the restricted field Vμ. This condition is manifestly
gauge covariant. This determines the component of the
restricted field orthogonal to the Lie subalgebra spanned
by the color fields, but does not determine the component
parallel to it. Therefore we need to impose another
condition. We wish to identify the restricted field with
the dominant part of the original gauge field, and thus it
should be as close as possible to the original gauge field in
the IR region. For this reason we impose the condition that
the component of the restricted field parallel to the color
fields is the same as that of the gauge field as

trðnðkÞVμÞ ¼ trðnðkÞAμÞ ðk ¼ 1;…; N − 1Þ: ð7Þ

The two conditions of Eqs. (6) and (7) uniquely determine
the decomposition as

Vμ ¼
XN−1

k¼1

2trðnðkÞAμÞnðkÞ − ig−1YM
XN−1

k¼1

½nðkÞ; ∂μnðkÞ�;

Xμ ¼ ig−1YM
XN−1

k¼1

½nðkÞ;Dμ½A�nðkÞ�: ð8Þ

In fact, the resulting decomposed fields satisfy the required
transformation properties. As the field strength F μν½V� can
be written as the linear combination of the color fields, we
can define Abelian-like gauge-invariant field strength as

FðkÞ
μν ≔ 2trðnðkÞF μν½V�Þ; ð9Þ
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where the normalization of the Cartan generators is given as
trðHkHlÞ ¼ δkl=2. Then monopoles are defined in the same

manner as the Dirac monopoles for this field strength FðkÞ
μν .

The resulting monopoles are gauge invariant by construction.
The color fields nðkÞ are obtained by imposing a reduction

condition as we said before. If a reduction condition is given
by minimizing a functional

RMA½A; fnðkÞg�

¼
Z

dDx
XN−1

k¼1

trðDμ½A�nðkÞðxÞDμ½A�nðkÞðxÞÞ; ð10Þ

the definition of monopoles is equivalent to that for the
Abelian projection in the MA gauge.

2. Lattice case

In the lattice version of the field decomposition [28–30],
a link variable Ux;μ is decomposed into two variables as

Ux;μ ¼ Xx;μVx;μ; Xx;μ; Vx;μ ∈ SUðNÞ; ð11Þ

where Vx;μ gauge transforms just like a link variable as

Vx;μ → gxVx;μg
†
xþμ; gx ∈ SUðNÞ; ð12Þ

and Xx;μ transforms like an adjoint matter as

Xx;μ → gxXx;μg
†
x: ð13Þ

The decomposition is determined by using the color fields

nðkÞx ¼ ΘxHkΘ
†
x (k ¼ 1;…; N − 1) in a similar way to the

continuum case. The first condition that determines the
decomposition is given by replacing the covariant deriva-
tive Dμ½V� in Eq. (6) with the covariant lattice derivative
Dμ½V� as

Dμ½V�nðkÞx ≔ ε−1ðVx;μn
ðkÞ
xþμ − nðkÞx Vx;μÞ ¼ 0; ð14Þ

where ε is the lattice spacing. This condition does not
determine Vx;μ completely because this equality is main-
tained if we multiply Vx;μ from the left by gx ∈ SUðNÞ,
which satisfies ½nðkÞx ; gx� ¼ 0 for any k. To reproduce the
continuum version of the decomposition Eq. (8) in the
naive continuum limit, the decomposition is chosen as [30]

Vx;μ ¼ K̂x;μUx;μðdetðK̂x;μÞÞ−1=N;
Xx;μ ¼ K̂†

x;μðdetðK̂x;μÞÞ1=N;
K̂x;μ ≔ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kx;μK

†
x;μ

q
Þ−1Kx;μ;

Kx;μ ≔ 1þ 2N
XN−1

k¼1

nðkÞx Ux;μn
ðkÞ
xþμU

†
x;μ: ð15Þ

The color fields are determined by minimizing a reduc-
tion functional as in the continuum case. The lattice version
of Eq. (10) is given by replacing the covariant derivative
with the covariant lattice derivative as

RMA½U;fnðkÞg�≔
X
x;μ

XN−1

k¼1

tr½ðDμ½U�nðkÞx Þ†Dμ½U�nðkÞx �: ð16Þ

B. Non-Abelian Stokes theorem

The Wilson loop operator in a representation R is
defined by

WR½V;C� ≔
1

DR
trRP exp

�
igYM

I
C
A
�
; ð17Þ

where DR is the dimension of R, trR denotes the trace in R,
and P denotes the path ordering. We can relate the
decomposed field variables to a Wilson loop operator
through a version of the NAST that was proposed by
Diakonov and Petrov [15]. In this version of the NAST, a
Wilson loop operator in a representation R is rewritten into
the surface integral form by introducing a functional
integral on the surface S surrounded by the loop C as

WR½A;C�¼
Z

DΩexp

�
igYM

Z
S∶∂S¼C

XN−1

k¼1

ΛkFðkÞ
�
;

FðkÞ≔
1

2
FðkÞ
μν dxμ∧dxν; DΩ≔

Y
x∈S

dΩðxÞ; ð18Þ

where DΩ is the product of the Haar measure dΩðxÞ over
the surface S with the loop C as the boundary, Λk is the kth
component of the highest weight of the representation R,

the color fields are defined by nðkÞ ¼ ΩHkΩ†, and FðkÞ
μν is

the Abelian-like field strength defined by Eq. (9). Thus we
can relate the restricted field to the Wilson loop operator in
the manifestly gauge-invariant way.
The simplified version of the derivation is as follows.

See, e.g., [14,19,20] for a more detailed derivation of
Eq. (18) along the following line. First, we divide the loop
into small pieces and represent the Wilson loop operator as
the product of the parallel transporter for each piece. Next
we insert between parallel transporters the completeness
relation

MATSUDO, SHIBATA, KATO, and KONDO PHYS. REV. D 100, 014505 (2019)

014505-4



1 ¼
Z

dΩΩjΛihΛjΩ†; ð19Þ

where dΩ is the Haar measure and jΛi is the highest weight
state of the representation R, and we rewrite the trace by
using the equality

trO ¼
Z

dΩhΛjΩ†OΩjΛi: ð20Þ

Then, by taking the limit where the length of each piece
of the loop goes to zero, we obtain

WR½A;C� ¼
Z Y

x∈C
dΩðxÞ exp

�
igYM

I
C
hΛjAΩjΛi

�
;

AΩðxÞ ≔ Ω†ðxÞAðxÞΩðxÞ þ ig−1YMΩ†ðxÞdΩðxÞ: ð21Þ

In this expression, the path ordering disappears, and
therefore we can use the usual Stokes theorem as

WR½A;C� ¼
Z Y

x∈S
dΩðxÞ exp

�
igYM

Z
S∶∂S¼C

FΩ
�
;

FΩðxÞ ≔ dhΛjAΩjΛi: ð22Þ

We can show that FΩ
μν is written as the linear combination of

the Abelian-like field strengths Eq. (9) as [22]

FΩ
μν ¼

XN−1

k¼1

ΛkF
ðkÞ
μν ; nðkÞðxÞ ≔ ΩðxÞHkΩ†ðxÞ; ð23Þ

where the color fields nðkÞ are defined by using the
integration variable ΩðxÞ instead of ΘðxÞ.
Clearly, the NAST can be applied not only to the

fundamental representation but also to any representation,
suggesting the correct way for extracting the dominant part
of the Wilson loop in higher representations as we explain
in the next section.

C. The relationship between the NAST and the
reduction condition

Here we consider the relation between the reduction
condition and the NAST. In the NAST Eq. (18), we observe

that the field strength FðkÞ
μν is defined in terms of the

integration variable ΩðxÞ. At this stage, ΩðxÞ is distinct
from ΘðxÞ used to define the field decomposition.
Therefore, there is no clear relationship between the
Wilson loop operator and the field decomposition defined
by using the color field nðkÞðxÞ constructed from ΘðxÞ.
Instead of performing the integration over the measureDΩ,
the color fields defined using ΩðxÞ in Eq. (18) are replaced
by the color fields defined using ΘðxÞ determined by

solving the reduction condition. The validity of this
replacement should be checked by numerical calculations.
In the fundamental representation, if we use Θ determined
by minimizing Eq. (10), the integrand of Eq. (18) with
Ω ¼ Θ is equal to the “Abelian Wilson loop” obtained by
taking the Abelian projection in the MA gauge. This
gauge is chosen so as to maximize the Abelian part of
the gauge field. In this case the validity of this replacement
has already been checked by the Abelian dominance in
the previous studies. In higher representations, we follow
the same strategy as the fundamental representation, and
the validity will be checked by the numerical calculations
in this paper.
The reduction condition is not determined uniquely.

To see the dependence on the reduction condition, in the
present study for the SUð3Þ Yang-Mills theory, we per-
formed numerical simulations under the two additional
reduction conditions that are defined by minimizing the
functionals

Rn3½U; fnðkÞg� ¼
X
x;μ

tr½ðDμ½U�n3xÞ†Dμ½U�n3x�; ð24Þ

Rn8½U; fnðkÞg� ¼
X
x;μ

tr½ðDμ½U�n8xÞ†Dμ½U�n8x�; ð25Þ

where n3x ≔ ΘxT3Θ†
x and n8x ≔ ΘxT8Θ†

x. Note that the
reduction functional Eq. (25) does not determine n3x and
therefore does not determine the decomposition Eq. (15)
completely. However, as we explain in the next section, a
specific part of Eq. (35) of the Wilson loop for the restricted
field is determined.

III. WILSON LOOPS IN HIGHER
REPRESENTATIONS

In the preceding numerical simulations [25,26] by using
the Abelian projection and [28,31–33,36] by using the field
decomposition, it was shown that the area law of the
average of a Wilson loop in the fundamental representation
is reproduced by the monopole contribution. However, this
might be an accidental agreement restricted to the funda-
mental representation. Therefore, we should check the
other quantities. TheWilson loops in higher representations
are appropriate for this purpose because they have a clear
physical meaning. However, it is known that if we apply the
Abelian projection naively to higher representations, the
monopole contributions in the Abelian part do not repro-
duce the correct behavior [34]. For example, in the adjoint
representation of SUð2Þ, the Abelian Wilson loop average
approaches 1=3 as the loop size increases according to the
numerical simulation [35]. In this case, we cannot extract
the static potential VðRÞ from the exponential falloff
behavior e−VðLÞT of the Wilson loop average defined for
the rectangular loop with length T and width L, since
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e−VðLÞT → 0 as T → ∞. In the spin-3=2 representation, the
string tension extracted from the Abelian Wilson loop has
the same value as that for the fundamental representation
[34], which is different from the correct behavior. Thus we
need to find a more appropriate way to extract the
monopole contributions in the Abelian part.
As we mentioned before, the NAST suggests how we

extract the dominant part of the Wilson loop average,
which means that by using an appropriate operator
W̃R½V;C� suggested by the NAST, we can reproduce
the full string tension extracted using the original Wilson
loop WR½A;C�. In the language of the field decompo-
sition, the diagonal part of the Wilson loop is equivalent
to the “restricted Wilson loop” WR½V;C�, the Wilson loop
for the restricted field V. Therefore, the average of
WR½V;C� does not reproduce the string tension extracted
from the original Wilson loop WR½A;C�. On the other
hand, the NAST Eq. (18) suggests the distinct operator
W̃R½V;C� as the dominant part of the Wilson loop in
higher representations.
We now give the explicit expressions for the operators

suggested by the NAST, W̃R½V;C�, and the restricted
Wilson loop operator WR½V;C� to see the difference
between the two operators. The restricted Wilson loop
operator WR½V;C� is rewritten as

WR½V;C� ≔
1

DR
trRP exp

�
igYM

I
C
V
�

¼ 1

DR

X
μ∈ΔR

dμ exp

�
igYM

I
C
hμjAΘjμi

�
;

AΘðxÞ ≔ Θ†ðxÞAðxÞΘðxÞ þ ig−1YMΘ†ðxÞdΘðxÞ; ð26Þ

where DR is the dimension of the representation R, ΔR is
the set of all weights of R, dμ is the multiplicity of a weight
μ, and jμi is a normalized state corresponding to μ. Note
that this operator of Eq. (26) is gauge invariant just as the
original Wilson loop. The derivation of Eq. (26) is given in
Appendix A.
For example, in the adjoint representation of SUð2Þ, the

Wilson loop for the restricted field is written as

WJ¼1½V;C� ¼
1

3
ðeiϕ þ e−iϕ þ 1Þ;

ϕ ≔ gYM

I
2trðAΘT3Þ: ð27Þ

In [35], it was confirmed that the average of this operator
approaches 1=3 as the loop size increases. This behavior is
clearly different from the original Wilson loop.
In the adjoint representation [1, 1] and the sextet

representation [0, 2] of SUð3Þ, the weight diagram is given
in Figs. 1(a) and 1(b), respectively. Then the Wilson loop
for the restricted field is written as

W½1;1�½V;C� ¼
1

8
ðeiϕ3þ

ffiffi
3

p
ϕ8

2 þ e−i
ϕ3þ

ffiffi
3

p
ϕ8

2 þ ei
−ϕ3þ

ffiffi
3

p
ϕ8

2

þ e−i
−ϕ3þ

ffiffi
3

p
ϕ8

2 þ eiϕ3 þ e−iϕ3 þ 2Þ;

W½0;2�½V;C� ¼
1

6
ðei 2ffiffi

3
p ϕ8 þ ei

3ϕ3þ
ffiffi
3

p
ϕ8

3 þ ei
−3ϕ3þ

ffiffi
3

p
ϕ8

3

þ ei
3ϕ3þ

ffiffi
3

p
ϕ8

6 þ ei
−3ϕ3þ

ffiffi
3

p
ϕ8

6 þ e−i
1ffiffi
3

p ϕ8Þ;

ϕ3 ≔ gYM

I
C
2trðAΘT3Þ;

ϕ8 ≔ gYM

I
C
2trðAΘT8Þ: ð28Þ

On the other hand, the operator W̃R½V;C� suggested by
the NAST is the integrand of the NAST using the color
fields satisfying the reduction condition, i.e., the integrand
of Eq. (21) with ΩðxÞ ¼ ΘðxÞ. We include the contribution
of the weights that are equivalent to the highest weight
under the action of the Weyl group. Let the set of such
weights be Δh

R. Thus we propose the operator

W̃R½V;C� ¼
1

Dh
R

X
Λ∈Δh

R

exp ðigYM
I
C
hΛjAΘjΛiÞ; ð29Þ

where Dh
R is the number of elements in Δh

R. We call this
operator the highest weight part of the Abelian Wilson
loop. Note that this operator of Eq. (29) is gauge invariant
because ΘðxÞ transforms as ΘðxÞ → gðxÞΘðxÞ under the
gauge transformation. In the fundamental representation,
the highest weight part of the Abelian Wilson loop,
Eq. (29), is the same as the Abelian Wilson loop because
all weights of the fundamental representation are equivalent
to the highest weight under the action of the Weyl group.
For example, in the adjoint representation of SUð2Þ the

proposed operator is written as

W̃J¼1½V;C� ¼
1

2
ðeiϕ þ e−iϕÞ: ð30Þ

In [35], Poulis heuristically found that this operator
reproduces the full adjoint string tension without giving

(a) (b)

FIG. 1. The weight diagram of (a) the adjoint representation
[1, 1] and (b) the sextet representation [0, 2] of SUð3Þ. A single
dot represents a weight μ with multiplicity one, dμ ¼ 1, and a
circled dot represents a weight μ with multiplicity two, dμ ¼ 2.
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the theoretical justification. In the adjoint representation
[1, 1] and the sextet representation [0, 2] of SUð3Þ it can be
written as

W̃½1;1�½V;C� ¼
1

6
ðeiϕ3þ

ffiffi
3

p
ϕ8

2 þ e−i
ϕ3þ

ffiffi
3

p
ϕ8

2 þ ei
−ϕ3þ

ffiffi
3

p
ϕ8

2

þ e−i
−ϕ3þ

ffiffi
3

p
ϕ8

2 þ eiϕ3 þ e−iϕ3Þ;

W̃½0;2�½V;C� ¼
1

3
ðei 2ffiffi

3
p ϕ8 þ ei

3ϕ3þ
ffiffi
3

p
ϕ8

3 þ ei
−3ϕ3þ

ffiffi
3

p
ϕ8

3 Þ: ð31Þ

For SUð2Þ, the proposed operator of Eq. (29) for the
spin-J representation can be written as

W̃J½V;C� ¼
1

2
trððVCÞ2JÞ; ð32Þ

by using the untraced restricted Wilson loop VC in the
fundamental representation defined as

VC ≔
Y

hx;μi∈C
Vx;μ: ð33Þ

For SUð3Þ, the proposed operator for the representation
with the Dynkin index ½m; n� can be written as

W̃½m;n�½V;C�

¼ 1

6
ðtrððVCÞmÞtrððV†

CÞnÞ − trððVCÞmðV†
CÞnÞÞ; ð34Þ

where ðVCÞ0 ¼ 1. The derivation of Eqs. (32) and (34) is
given in Appendix B. Note that Eqs. (32) and (34) are
gauge invariant because of the gauge-transformation prop-
erty of Vx;μ, Eq. (12). Indeed, Eq. (32) for J ¼ 1=2 in
SUð2Þ and Eq. (34) for ½m; n� ¼ ½1; 0� in SUð3Þ are the
same as the ordinary Abelian Wilson loop in the funda-
mental representation.
Finally, we consider what part of the Abelian Wilson

loop is determined by the reduction condition Eq. (25). The
color field n8x does not change under a transformation
Θx → Θxgx, gx ∈ Uð2Þ, whereUð2Þ is generated by T1, T2,
T3, T8. Under this transformation ϕ8 does not change but
ϕ3 changes. Thus the part of the AbelianWilson loop that is
determined by Eq. (25) is written as

ei
nffiffi
3

p ϕ8 ; n ∈ Z: ð35Þ

This part is contained in the highest weight part of the
Abelian Wilson loop only for representations ½m; 0� and
½0; n�. Therefore, in the numerical simulation, we have not
calculated the highest weight part of the Abelian Wilson
loop in the adjoint representation [1, 1] for the reduction
condition Eq. (25).

IV. NUMERICAL RESULT

In order to support our claim that the dominant part of
the Wilson loops in higher representation is given by the
highest weight part of the Abelian Wilson loop, Eq. (29),
we examine numerically whether the string tension
extracted from Eqs. (32) and (34) reproduce the full string
tension. In this paper we investigate the Wilson loop in the
adjoint representation of SUð2Þ and in the adjoint repre-
sentation [1, 1] and the sextet representation [0, 2] of SUð3Þ.
We set up the gauge configurations for the standard

Wilson action at β ¼ 2.5 on the 244 lattice for SUð2Þ and at
β ¼ 6.2 on the 244 lattice for SUð3Þ. For the SUð2Þ case,
we prepare 500 configurations every 100 sweeps after 3000
thermalization by using the heat bath method. For the
SUð3Þ case, we prepare 1500 configurations every 50
sweeps after 1000 thermalization by using the pseudo–
heat bath method with the overrelaxation algorithm (20
steps per sweep). In the measurement of the Wilson loop
average we apply the HYP smearing [37] for the SUð2Þ
case and the APE smearing technique [38] for the SUð3Þ
case to reduce noises and the exciting modes. In the SUð3Þ
case, the number of the smearing is determined so that the
ground state overlap is enhanced [39]. We have calculated
the Wilson loop average WðL; TÞ for a rectangular loop
with length T and width L to derive the potential VðL; TÞ
through the formula

VðL; TÞ ¼ − log
WðL; T þ 1Þ
WðL; TÞ : ð36Þ

In the case of SUð2Þ, we investigate the Wilson loop
in the adjoint representation 3 (J ¼ 1). The restricted link
variable Vx;μ is obtained by using Eq. (15) for the color
field nx which minimizes the reduction functional of
Eq. (16) (N ¼ 2). Figure 2 shows that the static potentials
from the proposed operator of Eq. (32) for J ¼ 1 and the
full Wilson loop in the adjoint representation are in good
agreement. The string tensions σfull and σrest for the full
Wilson loop and the proposed operator that are extracted
by fitting the data with the Cornel potential are

σfull ¼ 0.1021ð234Þ; σrest ¼ 0.0968ð159Þ;
σrest=σfull ≃ 0.95: ð37Þ

Note that in the fundamental representation 2 (J ¼ 1=2),
we obtain the perfect Abelian dominance in the string
tension in [33].
In the case of SUð3Þ, we investigate theWilson loop in the

fundamental representation ½0; 1� ¼ 3, the adjoint represen-
tation ½1; 1� ¼ 8, and the sextet representation ½0; 2� ¼ 6. For
each representation,wemeasure theWilson loop average for
possible reduction functionals, Eqs. (16), (24), and (25).
Figure 3 shows the static potentials from the proposed
operator of Eq. (34) for ½m; n� ¼ ½0; 1�; ½1; 1�; ½0; 2� and the
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full Wilson loop in the fundamental, adjoint and sextet
representations. Table I shows the string tensions that are
extracted by fitting the data with the linear potential. Note
that the data for the adjoint representation [1, 1] under the
reduction condition n8 is not available, since the highest
weight part of the Abelian Wilson loop in the adjoint
representation [1, 1] is not determined by the reduction
condition n8 of Eq. (25), as explained in the final part of
the previous section. The string tensions extracted from the
proposed operator reproduce nearly equal to or more than
90% of the full string tension for any of the reduction
conditions Eqs. (16), (24), and (25). These results indicate
that the proposed operators actually give the dominant part
of the Wilson loop average.

V. CONCLUSION

In this paper, we have proposed a solution for the
problem that the correct string tension extracted from the
Wilson loop in higher representations cannot be reproduced
if the restricted part of the Wilson loop is naively extracted
by adopting the Abelian projection or the field decom-
position in the same way as in the fundamental represen-
tation. We have given a prescription to construct the gauge
invariant operator of Eq. (29) suitable for this purpose.
We have performed numerical simulations to show that
this prescription works well in the adjoint representation 3
for the SUð2Þ color group, and the adjoint representation
½1; 1� ¼ 8 and the sextet representation ½0; 2� ¼ 6 for the
SUð3Þ color group. In comparison, we have investigated
the Wilson loop for the restricted field in the fundamental
representation of SUð3Þ by using the reduction conditions
Eqs. (16), (24), and (25). It should be compared to the result

FIG. 3. The static potential hVðL; T ¼ 8Þi between the sources in (a) the fundamental [0, 1], (b) the adjoint [1, 1], and (c) the sextet [0,
2] representations of SUð3Þ calculated using Eq. (34), in comparison with the full Wilson loop average. The legends, MA, n3, and n8
represents the measurements by using the corresponding reduction conditions Eqs. (16), (24), and (25), respectively. The straight lines
are obtained by fitting the data with the linear potential. The fit range is indicated by the plotting range of the lines.

FIG. 2. The static potential VðL; T ¼ 6Þ between the sources in
the adjoint representation of SUð2Þ using Eq. (32) for J ¼ 1 and
for comparison the full Wilson loop average in the adjoint
representation. The result is consistent with that of [35,40] where
the same quantity is calculated by the Abelian projection method.
The curves are obtained by fitting the data with the Cornel
potential. The fit range is 1 ≤ L=ε ≤ 8.

TABLE I. The string tensions in the lattice unit in the SUð3Þ
case: the string tensions obtained under reduction conditions MA
Eq. (16), n3 Eq. (24) and n8 Eq. (25), in comparison with the full
string tension. The second line of each cell indicates the ratio of
the string tensions which are extracted from the proposed
operator and the full Wilson loop for each reduction condition.
Note that the data in the slot [1, 1]-n8 is not available, because the
highest weight part of the Abelian Wilson loop in the adjoint
representation [1, 1] is not determined by the reduction condition
n8 Eq. (25).

Full MA n3 n8

[0, 1] 0.02776(2) 0.02458(1) 0.02884(3) 0.02544(3)
89% 104% 91%

[1, 1] 0.0576(1) 0.0522(1) 0.062(1) …
91% 108%

[0, 2] 0.0647(1) 0.05691(9) 0.0635(2) 0.0641(6)
91% 98% 99%

MATSUDO, SHIBATA, KATO, and KONDO PHYS. REV. D 100, 014505 (2019)

014505-8



of [31] calculated by using the minimal option, which is a
different option of the field decomposition where Vx;μ and
Xx;μ are determined by using only n8x.
Further studies are needed in order to establish the

magnetic monopole dominance in the Wilson loop average
for higher representations, supplementary to the funda-
mental representation for which the magnetic monopole
dominance was established. In addition, we should inves-
tigate on a lattice with a larger physical spatial size because
it was stated in [41] that for the sufficiently large spatial
size, the Abelian part of the string tension perfectly
reproduced the full string tension in the fundamental
representation of SUð3Þ. It should also be checked whether
the string breaking occurs for the highest weight part of the
AbelianWilson loop in the adjoint representation of SUð3Þ,
similar to the SUð2Þ case [40].
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APPENDIX A: THE DERIVATION OF EQ. (26)

The following derivation can be applied to an arbitrary
compact gauge group. The two conditions that determine
the decomposition, Eqs. (6) and (7), are common to all
compact gauge groups.
By gauge transforming Vμ by Θ in Eq. (6) and using

Eq. (4), we obtain

½VΘ
μ ; Hk� ¼ 0; k ¼ 1;…; r; ðA1Þ

where VΘ
μ ≔ Θ†VμΘþ ig−1YMΘ†∂μΘ. This means that VΘ

μ

belongs to the Cartan subalgebra, and thus it is commutable
with itself, ½VΘ

μ ðxÞ;VΘ
ν ðyÞ� ¼ 0. Therefore by transforming

Vμ by Θ in Eq. (26), we obtain

1

DR
trRP exp

�
igYM

I
V
�

¼ 1

DR
trR exp

�
igYM

I
VΘ

�
; ðA2Þ

where we can omit the path ordering because VΘ
μ is

commutable. The trace of an element expðiϕkHkÞ of the
Cartan subgroup in R is calculated as

trR expðϕkHkÞ ¼
X
μ∈ΔR

dμhμj expðiϕkHkÞjμi

¼
X
μ∈ΔR

dμ expðiϕkμkÞ

¼
X
μ∈ΔR

dμ expðihμjϕkHkjμiÞ; ðA3Þ

where we have usedHkjμi ¼ μkjμi. Therefore, by perform-
ing the trace in Eq. (A2), we obtain

ðA2Þ ¼ 1

DR

X
μ∈ΔR

dμ exp

�
igYM

I
hμjVΘjμi

�
: ðA4Þ

Now Eq. (7) implies

trðVΘ
μHkÞ ¼ trðAΘ

μHkÞ
⇒ VΘ

μ ¼ κtrðAΘ
μHkÞHk; ðA5Þ

where κ is the normalization of the trace and the second line
follows from the fact that VΘ

μ belongs to the Cartan
subalgebra. Because for an element E of the Lie algebra,

hμjtrðEHkÞHkjμi ¼ hμjEjμi; ðA6Þ
we obtain

ðA4Þ ¼ 1

DR

X
μ∈ΔR

dμ exp

�
igYM

I
hμjAΘjμi

�
: ðA7Þ

This completes the derivation of Eq. (26).

APPENDIX B: THE DERIVATION
OF EQS. (32) and (34)

First we show Eq. (32) in SUð2Þ Yang-Mills theory. The
Wilson loop for the restricted field can be written by using
Abelian link variables ux;μ that are defined by

ux;μ ≔ Θ†
xVx;μΘxþμ: ðB1Þ

Here it should be noted that an Abelian link variable ux;μ
belongs to the Cartan subgroup Uð1ÞN−1 because of
Eq. (14). The (normalized) trace of the product of the
Abelian link variables along a closed loop C is equal to the
Wilson loop for the restricted link variables Vx;μ as

WR½V;C� ≔
1

DR
trR

Y
hx;μi∈C

Vx;μ

¼ 1

DR
trR

Y
hx;μi∈C

ux;μ; ðB2Þ

where DR is the dimension of a representation R and
trR denotes the trace in R. Now we define the untraced
Abelian Wilson loop wC, which belongs to Uð1Þ, by using
Eq. (B1) as
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wC ≔
Y
l∈C

ul ¼ Θ†
xVCΘx; ðB3Þ

where x is the starting point of C. Let us parametrize the
untraced Abelian Wilson loop as

Θ†
xVCΘx ¼ diagðeiθ; e−iθÞ: ðB4Þ

Then the proposed operator of Eq. (29) in the spin-J
representation is written as

W̃J½V;C� ¼
1

2
ðei2Jθ þ e−i2JθÞ: ðB5Þ

Therefore we obtain

1

2
trððVCÞ2JÞ ¼

1

2
trðΘ†

xVCΘxÞ2J ¼ W̃J½V;C�: ðB6Þ

This completes the derivation of Eq. (32).
In the SUð3Þ Yang-Mills theory, let us parametrize the

untraced Abelian Wilson loop as

wC ≔ Θ†
xVCΘx ¼ diagðeiθ1 ; eiθ2 ; eiθ3Þ; ðB7Þ

where θ1 þ θ2 þ θ3 ¼ 0 mod 2π. Then the proposed oper-
ator of Eq. (29) in the ½m; n� representation is written as

W̃½m;n�½V;C� ¼
1

6
ðeiðmθ1−nθ3Þ þ eiðmθ3−nθ1Þ

þ eiðmθ3−nθ2Þ þ eiðmθ2−nθ3Þ

þ eiðmθ2−nθ1Þ þ eiðmθ1−nθ2ÞÞ: ðB8Þ
Therefore we obtain

trððVCÞmÞtrððV†
CÞnÞ ¼ trððwCÞmÞtrððw†

CÞnÞ
¼ ðeimθ1 þ eimθ2 þ eimθ3Þ
× ðe−inθ1 þ e−inθ2 þ e−inθ3Þ

¼ 6W̃½m;n�½V;C�
þ eiðm−nÞθ1 þ eiðm−nÞθ2 þ eiðm−nÞθ3

¼ 6W̃½m;n�½V;C� þ trððwCÞmðw†
CÞnÞ

¼ 6W̃½m;n�½V;C� þ trððVCÞmðV†
CÞnÞ:

ðB9Þ
This completes the derivation of Eq. (34).
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