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A novel technique using machine learning (ML) to reduce the computational cost of evaluating
lattice QCD observables is presented. The ML is trained on a subset of background gauge field
configurations, called the labeled set, to predict an observable O from the values of correlated, but less
compute-intensive, observables X calculated on the full sample. By using a second subset, also part
of the labeled set, we estimate the bias in the result predicted by the trained ML algorithm. A reduction in
the computational cost by about 7%–38% is demonstrated for two different lattice QCD calculations using
the Boosted decision tree regression ML algorithm: (1) prediction of the nucleon three-point correlation
functions that yield isovector charges from the two-point correlation functions and (2) prediction of the
phase acquired by the neutron mass when a small CP violating interaction, the quark chromoelectric dipole
moment interaction, is added to QCD, again from the two-point correlation functions calculated without
CP violation.
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I. INTRODUCTION

Simulations of lattice QCD provide values of physical
observables from correlation functions calculated as aver-
ages over gauge field configurations, which are generated
using a Markov chain Monte Carlo method using the action
as the Boltzmann weight [1,2]. Each measurement is
computationally expensive, and a standard technique to
reduce the cost is to replace the “high precision” average of
an observable O by a “low precision” (LP) version of it,
OLP [3,4], and then perform bias correction (BC), i.e.,
hOi ¼ hOLPi þ hO −OLPi. The method works because
the second term can be estimated with sufficient precision
from a smaller number of measurements if the covariance
between O and OLP is positive and comparable to the
variance of O, which is the case if, for example, the
fluctuations in both are controlled by effects common to
both. One can replace OLP in the above formulation with
any quantity; however, improved results are obtained when
a quantity with statistical fluctuations similar to that ofO is
chosen for OLP. Since most underlying gauge dynamics

affect a plethora of observables in a similar way, such
quantities surely exist; the trick, however, is to find suitable
sets of quantities.
Machine learning algorithms (ML) build predictive

models from data. In contrast to conventional curve-fitting
techniques, ML does not use a “few parameter functional
family” of forms for the prediction. Instead, it searches over
the space of functions approximated using a general form
with a large number of free parameters that require a
correspondingly large amount of training data to avoid
overfitting. ML has been successful for various applications
where such data are available, including exotic particle
searches [5] and Higgs → ττ analyses [6] at the Large
Hadron Collider. It has recently been applied to lattice QCD
studies [7–9]. Here, we introduce a general ML method for
estimating observables calculated using expensive Markov
chain Monte Carlo simulations of lattice QCD that reduce
the computational cost.
Consider M samples of independent measurements of a

set of observables Xi ¼ fo1i ; o2i ; o3i ;…g, i ¼ 1;…;M, but
the target observable Oi is available only on N of these.
These N are called the labeled data, and the remaining
M − N are called the unlabeled data (UD). Our goal is to
build a ML model F that predicts the target observable
Oi ≈OP

i ≡ FðXiÞ by training a ML algorithm on a subset
Nt < N of the labeled data. The bias corrected estimate Ō
of hOi is then obtained as

Ō ¼ 1

M − N

X
i∈fUDg

OP
i þ

1

Nb

X
i∈fBCg

ðOi −OP
i Þ; ð1Þ
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where the second sum is over the Nb ≡ N − Nt remaining
labeled samples that corrects for possible bias. Here, OP

i
depends explicitly on Xi and implicitly on Nt and all
training data fOj;Xjg. For fixed ML model F, the
sampling variance of Ō is then given by

σ2Ō ¼ σ2O
N

�
s2

N
M − N

þ 1

f
½ð1 − sÞ2 þ 2sð1 − rÞ�

�
; ð2Þ

where σ2O is the variance of Oi, s≡ σOP=σO is the ratio of
the standard deviations of the predictor variable OP to the
true observable O, r is the correlation coefficient between
these two, and f ≡ Nb=N is the fraction of observations
held out for bias correction. Equation (2) shows that when
s ≈ 1 ≈ r, this procedure increases the effective sample size
from N, where Oi are available, to about M − N. For
simplicity, in deriving Eq. (2), we have ignored details such
as the statistical independence of the data. In this work, we
account for the full error, including the sampling variance
of the training and the bias correction datasets, by using a
bootstrap procedure [10] that independently selects N
labeled and M − N unlabeled items for each bootstrap
sample.
Two additional remarks regarding bias correction are in

order. First, while the bias correction removes the sys-
tematic shift in the prediction, it can increase the final
error; i.e., the systematic error can get converted to a
statistical error. In practice, for the two examples dis-
cussed below, the BC does not increase the error signifi-
cantly. Second, there are two ways of bootstrapping the
training and BC samples: (i) first partitioning the labeled
data into training and BC sets and bootstrapping these and
(ii) bootstrapping over the full labeled set and then
partitioning the bootstrap sample. We used the latter
approach.

II. EXPERIMENT A: NUCLEON ISOVECTOR
CHARGES

For a first example, we demonstrate that this method
reduces the computing cost for the isovector (u − d)
combination of the axial (A), vector (V), scalar (S), and
tensor (T) charges of the nucleon [11,12]. On the lattice, the
nucleon charges are extracted from the ratio of the three-
point [CA;S;T;V

3pt ðτ; tÞ] to two-point [C2ptðτÞ] correlation
functions of the nucleon. In the three-point function, a
quark bilinear operator q̄Γq is inserted at Euclidean time
t between the nucleon source and sink. The desired
ground-state result is obtained by removing the excited-
state contamination [13,14] using calculations at multiple
source-sink separations, τ, and extrapolating the results to
τ → ∞.
The results presented use correlations functions already

calculated on the a09m310 ensemble generated by
the MILC Collaboration [15,16] at lattice spacing a ≈
0.089 fm and pion massMπ ≈ 313 MeV [11,12]. The data

consist of 144,832 measurements on 2263 gauge con-
figurations. On each configuration, 64 measurements
from randomly chosen and widely separated source
positions were made. The quark propagators were calcu-
lated using the multigrid inverter [17,18], ported in the
CHROMA software suite [19], with a sloppy stopping
criterion. The bias introduced by using a sloppy con-
vergence condition is much smaller than the statistical
uncertainty for nucleon observables [12,20] and is there-
fore neglected in this study. If necessary, however, it can
be easily incorporated by modifying Eq. (1).
The correlation coefficients between the various C3pt

measured at t ¼ τ=2 ¼ 5a and the C2pt at various values of
τ are shown in Fig. 1. The strongest correlation is with the
value of C2pt near the sink of C3pt at τ ¼ 10a, and not near
the t ¼ 5a of operator insertion. Our intuitive understand-
ing of why the correlation is strongest with C2ptð10aÞ is as
follows: the spectral decompositions of the two correlation
functions are similar except for the insertion of the operator
at t ¼ 5a in C3ptð10aÞ. If the ground state saturates these
correlation functions, then the extra term in C3pt is the
matrix element of this operator within the ground state of
the proton. This matrix element can be considered as
inserting a number (the charge) at t ¼ 5a in C2pt. If the
configuration to configuration fluctuations in the matrix
element are small, then one expects a strong correlation
between C2ptð10aÞ and C3ptð10aÞ. In addition, there are
strong correlations between successive time slices of C2pt;
thus, one expects the correlation of C3ptð10aÞ with C2pt to
be spread over a few time slices about t ¼ 10a as also
indicated by the data in Fig. 1. In the more realistic case, in
which the nucleon wave function at t ¼ 5a has significant
contributions from a tower of excited states, the operator
can also cause transitions between these states, and its
insertion can no longer be approximated by just one
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FIG. 1. Absolute value of the correlation coefficients between
the proton C3ptðτ ¼ 10a; t ¼ 5aÞ and the C2pt at various sink time
slices τ=a ¼ 5; 6;…; 13. The data are for the a09m310 ensemble.
The source points of C2pt and C3pt are fixed at t ¼ 0. The operator
insertion in C3pt is at t ¼ 5a and the sink is at τ ¼ 10a.
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number. One can still expect that operators for which these
transition matrix elements are small will have stronger
correlations. Based on the observed pattern of excited
states, discussed in Ref. [11], we expect the ordering of
correlations V > T > A > S, whereas the observed pattern
shown in Fig. 1 is V > S > T > A.
It is the existence of such correlations that allows the

prediction of C3pt from C2pt using a boosted decision tree
(BDT) regression algorithm available in SCIKIT-LEARN
PYTHON ML library [21]. BDT is a ML algorithm that
builds an ensemble (tower) of simple decision trees such
that each successive decision tree corrects the prediction
error of the previous decision tree. The result is a powerful
regression algorithm with small number of tuning param-
eters and a low risk of overfitting. It is also fast; for the
data sizes we are considering, it only takes a couple of
minutes on a laptop to find an appropriate predictor and
evaluate it on the unlabeled samples. The SCIKIT-LEARN
implementation of the BDT we used in this study is based
on the Classification and Regression Trees algorithm [22]
with gradient boosting [23,24]. For the prediction of C3pt,
we use 100 boosting stages of depth-3 trees with learning
rate of 0.1 and a subsampling of 0.7. Note that, in this
example, the pattern of correlation is such that a linear
regression algorithm (such as LASSO [25,26] or RIDGE

[27]) gives predictions with reasonable precision. Such a
simplification does not occur for the second example
described later.
The outline of the calculation is as follows:
(1) For each ðτ; tÞ, the BDT is trained using the set of

C2pt data (input) and CA;S;T;V
3pt ðτ; tÞ (output). This

trained BDT can now take as input the unseen C2pt

data and output the predicted CA;S;T;V
3pt ðτ; tÞ. To

predict C3pt at a given ðτ; tÞ, one can use the data
for C2pt on all time slices. The essence of a trained
BDT is that it gives larger weight to the input C2pt

element with higher correlation with the target
observable.

(2) The trained BDT is first used on the dataset
designated for BC data to predict CA;S;T;V

3pt ðτ; tÞ.
The bias correction factor is then determined by
comparing this prediction with the corresponding
directly measured value on the same BC set.

(3) The trained BDT is next used on the unlabeled C2pt

dataset to give the predicted CA;S;T;V
3pt ðτ; tÞ.

(4) To the average of this predicted CA;S;T;V
3pt ðτ; tÞ set, the

bias correction factor is added to give the BC
prediction we call P1.

(5) The statistical precision can be improved by con-
structing the weighted average of the BC prediction
P1 and the direct measured (DM) results on the
labeled dataset. We call this estimate P2. Note that
the direct measurements on the labeled data and the
predictions on the unlabeled data are not identically

distributed because the prediction is not exact;
however, the bias-corrected mean is the same.
Therefore, when performing excited-state fits dis-
cussed below, we simultaneously fit the two datasets
with common fit parameters.

The training and prediction steps treat data from each
source position as independent, whereas the bias-corrected
estimates for each bootstrap sample are obtained using
configuration averages in Eq. (1). In this case, the errors are
obtained using 500 bootstrap samples.
For the first example, we choose 680 of the 2263

configurations, separated by three configurations in trajec-
tory order, as the labeled data. To determine the number of
configurations to use for training, we varied the number
between 30 and 180. We found that the variance of the
prediction on the unlabeled dataset was the smallest and
roughly constant between 60 and 120. We, therefore,
picked 60 configurations from the labeled set for training
and 620 for bias correction. The 1583 unlabeled configu-
rations were used for prediction. The BDT regression
algorithm was trained to predict CA;S;T;V

3pt ðτ; tÞ=N for all
τ and t with fC2ptðτÞ=N for τ=a ¼ 0; 1; 2;…; 20g as
input. The normalization N ≡ hC2ptðτÞi was needed to
make numbers of Oð1Þ for numerical stability of the BDT
in the SCIKIT-LEARN library.
Data in Table I show that the statistical errors in the bias

correction term are large; however, the error in the BC
estimate is essentially identical to that in the DM estimates.
This implies strong correlations between the two terms,
uncorrected and the BC factor. Figure 2 shows that the
statistical fluctuations in the DM data are larger than the
prediction error (PE≡ CDM

3pt − CPred
3pt ) of the ML algorithm.

The ratios of the standard deviations, σPE=σDM, of the PE
and DM data are given in Table II. This pattern of smaller
variance leads us to believe that, with further optimization,
the reduction in computation cost given in Table IV can be
increased significantly.
We have carried out two kinds of tests of the efficacy of

the method. In Table III, we show data for CΓ
3ptð10a; 5aÞ=

hC2ptð10aÞi for different numbers of labeled data, keeping

TABLE I. Average of CΓ
3ptð10a; 5aÞ=hC2ptð10aÞi on the un-

labeled dataset. DM is the directly measured result, P1 is the BC
prediction defined in the text, with the bias correction factor given
in column 4. For the prediction without BC, we used the full 680
labeled configurations for training of the BDT. Note that for this
large dataset, the bias correction and the increase in the error in
the prediction with BC are negligible.

Γ DM P1 Bias
Prediction
without BC

S 0.936(10) 0.933(15) þ0.002ð46Þ 0.934(14)
A 1.2011(41) 1.1997(48) −0.0003ð105Þ 1.1999(46)
T 1.0627(34) 1.0638(39) −0.0004ð78Þ 1.0636(38)
V 1.0462(36) 1.0455(36) þ0.0002ð20Þ 1.0456(36)
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(i) the full 2263 configurations and (ii) 500 configurations.
We find that the results are consistent for different numbers,
PredictionðN;NtÞ, of labeled data in both cases. Even when
only ten configurations (640 measurements) are used for
the training dataset, one gets reasonable estimates. The
errors scale roughly as the total number of configurations as
can be seen by comparing the upper and lower tables.
In Fig. 3, we compare the prediction P2 of CA;S;T;V

3pt at all
τ and t [column (c)] with the DM on labeled and full data

shown in columns (a) and (b), respectively. The observed
dependence on τ and t is due to contributions from excited
states of the nucleon, and the desired ground-state result is
given by the limit τ → ∞. This can be obtained by fitting
the data at various t and τ using the spectral decomposition
of CA;S;T;V

3pt . Figure 3 shows such a fit assuming only the
lowest two states contribute to the spectral decomposition,
i.e., the two-state fit described in Refs. [11,12,28]. The lines
show the result of this fit for the various τ, and the gray
band gives the τ → ∞ value. We find that the prediction P2
in column (c) is consistent with the DM results on the full
dataset.
We can further improve the prediction if data for a single

value of τ, say CA;S;T;V
3pt ðτ=a ¼ 12Þ, are available on the full

dataset. Then, in the training stage, we use as input both
C2pt and CA;S;T;V

3pt ðτ=a ¼ 12Þ. Having trained the BDT on

the labeled data, we now use C2pt and CA;S;T;V
3pt ðτ=a ¼ 12Þ

as input to predict C3ptðτ=a ¼ 8; 10; 14Þ, which we label
VP2. These results are shown in Fig. 3 column (d).
Including CA;S;T;V

3pt ðτ=a ¼ 12Þ in the training and the
prediction stages increases the computational cost relative
to P2 but reduces the errors. For a fixed size of error, VP2
is more efficient than P2, as shown in Table IV.
A comparison of the predictions fromC2pt (P2) and from

C2pt and CA;S;T;V
3pt ðτ=a ¼ 12Þ (VP2) vs DM is shown in

Table IV for the charges gA;S;T;V obtained after the
extrapolation τ → ∞ using the four values of τ. While
both estimates, P2 and VP2, are consistent with the DM,
VP2 is closer to DM with respect to both the central value
and the error. Taking into account the increase in the
statistical uncertainty (scaling the cost by the square of the
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FIG. 2. Statistical distribution of C3ptð10a; 5aÞ (light gold) and
the prediction error (dark red). The ratios of the standard
deviations of the prediction error (PE) and DM data at t ¼ τ=2 ¼
5a are σPE=σDM ¼ 0.79, 0.49, 0.44, and 0.12 for S, A, T, and V,
respectively.

TABLE II. Ratio σPE=σDM representing quality of the predic-
tion P2 (upper) and VP2 (lower) at t ¼ τ=2. Smaller values
indicate better prediction.

σPE=σDM of P2

Γ τ ¼ 8 τ ¼ 10 τ ¼ 12 τ ¼ 14

S 0.791(16) 0.793(15) 0.791(14) 0.785(14)
A 0.394(9) 0.493(12) 0.601(13) 0.721(14)
T 0.334(9) 0.439(11) 0.571(13) 0.705(14)
V 0.089(4) 0.115(8) 0.134(7) 0.159(6)

σPE=σDM of VP2

Γ τ ¼ 8 τ ¼ 10 τ ¼ 12 τ ¼ 14

S 0.696(14) 0.535(12) input 0.546(12)
A 0.357(9) 0.355(9) input 0.501(12)
T 0.304(8) 0.329(9) input 0.498(12)
V 0.089(5) 0.105(10) input 0.143(7)

TABLE III. Average of CΓ
3ptð10a; 5aÞ=hC2ptð10aÞi on the full

dataset of 2263 (upper) and 500 (lower) configurations.
PredictionðN;NtÞ denotes predictions made using N labeled
configurations of which Nt are used for training.

Total number of configurations: 2263

Γ DM Prediction Prediction Prediction

(680,60) (450,40) (225,20)

S 0.930(09) 0.925(14) 0.937(19) 0.959(26)
A 1.1984(33) 1.1967(42) 1.1991(52) 1.2046(69)
T 1.0611(27) 1.0615(35) 1.0637(40) 1.0659(51)
V 1.0437(28) 1.0427(28) 1.0437(31) 1.0434(32)

Total number of configurations: 500

Γ DM Prediction Prediction Prediction

(150,20) (100,20) (50,10)

S 0.935(19) 0.904(29) 0.909(32) 0.988(40)
A 1.1940(77) 1.1848(99) 1.188(11) 1.191(17)
T 1.0588(62) 1.0663(78) 1.0555(88) 1.0495(112)
V 1.0437(64) 1.0429(64) 1.0417(63) 1.0443(70)
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number of measurements) in the predicted results, the ML
analysis VP2 provides between a 7% and 26% reduction in
the computational cost. The amount of gain is observable
dependent.

III. EXPERIMENT B: CP VIOLATING PHASE
IN THE NEUTRON STATE

The second example is taken from the calculation of the
matrix element of the chromoelectric dipole moment
(cEDM) operator, OcEDM ≡ iq̄ðσμνGμνÞγ5q, where Gμν is
the gluon field strength tensor, within the neutron state. It
arises in theories beyond the standard model and violates

parity P and time-reversal T symmetries, or equiva-
lently, charge C and CP symmetries in theories invariant
under CPT. Since any CP violating (CPV) operator gives a
contribution to the neutron electric dipole moment
(nEDM), a bound or a nonzero value for nEDM in coming
experiments will constrain novel CP violation [29–31]. So
far, only preliminary lattice QCD calculations exist, and
cost-effectively improving the statistical signal is essential
[32–34]. We have proposed a Schwinger source method
approach (SSM) [35,36] that exploits the fact that the
cEDM operator is a quark bilinear. In the SSM, effects of
the cEDM interaction are incorporated into the two- and
three-point functions by modifying the Dirac clover fer-
mion action:

Dclov → Dclov þ iεσμνγ5Gμν

Dclov → Dclov þ iε5γ5: ð3Þ

The second equation is for the pseudoscalar operator
Oγ5 ≡ iq̄γ5q that mixes with cEDM due to quantum
effects [37].
With CP violation, the Dirac equation for the neutron

spinor u becomes ðipμγμ þme−i2αγ5Þu ¼ 0; i.e., the neu-
tron spinor acquires a CP-odd phase α (α5), which is
expected to be linear in ε (ε5) for small ε (ε5). At leading
order, these phases can be obtained from the four two-point
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FIG. 3. Removing excited-state contamination using the two-state fit for (a) DM on the labeled data, (b) DM on full data, (c) DM on
labeled data combined with ML predictions from C2pt on unlabeled data (P2), and (d) DM on labeled data combined with ML
predictions from C2pt and C3ptðτ ¼ 12aÞ on unlabeled data (VP2).

TABLE IV. Comparison of τ → ∞ extrapolated nucleon
charges calculated from the ML predictions P2 and VP2 and
the relative computational cost vs the DM. The cost includes the
factor required to make the errors the same, assuming they scale
as M2.

P2ðτ → ∞Þ Cost (%) VP2ðτ → ∞Þ Cost (%)

DM [C2pt] [C2pt,C3pt (12)]

gS 0.989(18) 0.973(29) 138 0.981(20) 80
gA 1.2303(51) 1.2289(83) 141 1.2304(61) 93
gT 1.0311(51) 1.0347(68) 97 1.0326(54) 74
gV 1.0443(19) 1.0439(22) 74 1.0440(21) 78
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functions, C2pt, CP
2pt, C

P;ε
2pt , and CP;ε5

2pt , where the superscript
P indicates an additional factor of γ5 is included in the spin
projection [34,38].1 The correlator CP;ε

2pt (CP;ε5
2pt ) is con-

structed using quark propagators with theOcEDM (Oγ5) term
and is expected to be imaginary and vanish as ε → 0
(ε5 → 0). In a first step, we show predictions of the BDT
regression algorithm for these two using only C2pt and CP

2pt.
For the training and prediction, we use the C2pt, CP

2pt,
CP;ε
2pt , and CP;ε5

2pt measured in Refs. [35,36] on 400 MILC
highly improved staggered quarks lattices at a ¼ 0.12 fm
and Mπ ¼ 310 MeV (the a12m310 ensemble) with clover
fermions. On each configuration, these correlators are
constructed using 64 randomly chosen widely separated
sources with a sloppy stopping condition, the effects of
which are again ignored. Out of the 400 configurations,
120 configurations, separated by three configurations in
trajectory order, are chosen as the labeled data, and the
remaining 280 configurations are used as the unlabeled
data. From the labeled data, 70 randomly chosen con-
figurations are used for training. Only 50 configurations
sufficed for bias correction in this case because the ratio of
standard deviations of the prediction error vs the DM
(σPE=σDM) is small, as shown in Fig. 4. Errors are obtained
using 200 bootstrap samples.
The BDT regression algorithm is trained to predict the

imaginary parts of CP;ε
2pt and CP;ε5

2pt using both the real and
imaginary parts of C2pt and CP

2pt. Note that in the absence of
the CPV terms, CP

2pt and the imaginary part of C2pt average
to zero, but they have nonzero correlations with the target
imaginary parts of CP;ε

2pt and CP;ε5
2pt . The BDT regression

algorithm with 500 boosting stages of depth-3 trees with
learning rate of 0.1 and subsampling of 0.7 gives a good
prediction as shown in Fig. 4. Because of nonlinear
correlations, the BDT works better than linear regression
algorithms in this case; the prediction error is about 50%

larger with linear models at t ¼ 1 and decreases to less than
10% by t ¼ 8. Again, for numerical stability, all data fed
into the BDT algorithm are normalized by hC2ptðτÞi.
Using the predicted CP;ε

2pt and CP;ε5
2pt on all time slices, we

calculate the CPV phases α and α5 by taking their ratio
with C2pt because C

ε;ε5
2pt differ from C2pt at Oðε2Þ. Figure 5

shows the comparison between the CPV phase calculated
from DM on the full and labeled data and the ML
predicted data. The horizontal lines give the averages
over the plateau region where the excited-state contami-
nation is small. Results for α and α5 are summarized in
Table V. To get the improved ML predictions, we combine
the prediction on the 280 unlabeled configurations with
the DM data on the 120 labeled configurations. These
combined data are analyzed following the same bootstrap
resampling procedure used in the first example discussed
earlier.
The prediction uses 30% of the data for CP;ε

2pt and CP;ε5
2pt

and 100% for CP
2pt and C2pt. This reduces the total number

of propagator calculations by 47% compared to the direct
measurement. Taking into account the increase of the
statistical uncertainty, the computational cost reduction is
about 30% as shown in Table V.

IV. CONCLUSION

In conclusion, the proposed ML algorithm used to
predict compute-intensive observables from simpler mea-
surements gives a modest computational cost reduction of
7%–38% depending on the observables analyzed here, as
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FIG. 5. CPV phase α calculated from the DM CP
2pt on the full

data (red squares), improved ML prediction (blue circles), and the
labeled data (green triangles).

TABLE V. Comparison of the ML prediction of the CPV
phases α and α5 and the relative cost vs the DM results.

DM P2 Cost

α 0.0527(17) 0.0525(18) 62%
α5 −0.1463ð14Þ −0.1460ð17Þ 77%

1CP
2pt has a zero mean but fluctuations correlated with CP;ε

2pt and
CP;ε5
2pt . It can, therefore, be used for variance reduction [34].
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summarized in Tables IV (VP2) and V (P2). The technique
is, however, general, provided one can find inexpensive
measurements that correlate well with the observable of
interest. The computational cost reduction depends on the
degree of correlations. We are investigating other ML
methods to further improve the quality of the prediction
and reduce computational cost.
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APPENDIX: EXAMPLE PYTHON CODE FOR
MACHINE LEARNING REGRESSION

A simplified example of the python code used for ML
training and prediction, using a BDT regression algorithm
provided by the SCIKIT-LEARN library [21], is given in
Fig. 6. The code shows the calls for importing the SCIKIT-
LEARN module, defining and training the BDT regressor,
making predictions using the trained regressor, and imple-
menting the BC procedure. Here, we assumed that the
required training, BC, and unlabeled data are given by a
LOAD_DATA() function. The bootstrap procedure, needed to
estimate uncertainty of the final BC prediction, is implicitly
wrapped around the various calls in the code in Fig. 6 as
described in Sec. I.

FIG. 6. Python example code for calculating bias-corrected predictions using BDT in SCIKIT-LEARN library. In the code, we assume
that the data are given by the LOAD_DATA() function.
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