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We propose a supersymmetric gradient flow equation in the four-dimensional Wess-Zumino model.
The flow is constructed in two ways. One is based on the off-shell component fields and the other is based
on the superfield formalism, in which the same result is provided. The obtained flow is supersymmetric
because the flow time derivative and the supersymmetry transformation commute with each other. Solving
the equation, we find that it has a damping oscillation with the flow time for nonzero mass, which is
different from the Yang-Mills flow. The on-shell flow equation is also discussed.

DOI: 10.1103/PhysRevD.100.014501

I. INTRODUCTION

Gradient flow [1,2] has been widely accepted as a new
method in lattice field theory and related research areas
including supersymmetry (SUSY). In a Yang-Mills flow,
any correlation function is ultraviolet (UV) finite at nonzero
flow time once four-dimensional Yang-Mills theory is
renormalized [3]. The UV finiteness holds even for a
QCD flow with an additional renormalization of the
time-dependent quarks [4,5]. This property of the flow
leads to a lot of interesting applications such as a proper
definition of lattice energy momentum tensor [6–14].
The gradient flow approach is also useful in studying
the nonlinear sigma model [15–18], nonperturbative
renormalization group [19–23], and a theory with anti–
de Sitter geometries [24–28]. Other interesting applications
are in the references [29–34].
There have been various attempts to apply the gradient

flow to SUSY theories so far. In super Yang-Mills (SYM),
the most naive approach is to use a non-SUSY flow, which
consists of the Yang-Mills flow and an adjoint matter

flow [4] although SUSY is broken at a nonzero flow time.
From this point of view, a lattice simulation ofN ¼ 1 SYM
has been carried out in [35] and the regularization inde-
pendent definition of the supercurrent in N ¼ 1, 2 SYM
has been given in [36,37].
A different approach can be taken, which uses a flow

keeping SUSY at a nonzero flow time. Such a SUSY flow
has been proposed in the superfield formalism of N ¼ 1
SYM [38].1 The SUSY flow equation is also given for the
component fields of the Wess-Zumino gauge in a gauge
covariant manner [41]. The obtained flow is supersym-
metric in a sense that the flow time derivative and the super
transformations commute up to a gauge transformation.
The flow equation of supersymmetric O(N) nonlinear
sigma model in two dimensions is also studied in [42].
The Wess-Zumino model provides a good testing ground

to study the renormalization property of the SUSY theories.
The gauge symmetry plays a crucial role to prove the UV
finiteness in the Yang-Mills flow. As natural questions,
one might ask how SUSY works in the SUSY flows and
what kind of influence the nonrenormalization theorem has
for the flow theory. Constructing a SUSY flow for the
Wess-Zumino model, a deep understanding of the mecha-
nism that leads to the UV finiteness of the SUSY flows
could be obtained.
In this paper, we derive a SUSY flow of the four-

dimensional Wess-Zumino model, which is referred as
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1In the context of the Langevin equation, a flow equation for
N ¼ 1 SYM was discussed in [39,40].
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Wess-Zumino flow in this paper, and derive its formal
solution. We give two ways of constructing the Wess-
Zumino flow. One way is to use the component fields of the
model directly, and the other way is to use the superfield
formalism. They give the same result. Solving the Wess-
Zumino flow, we find that the solutions behave as damping
oscillations with respect to the flow time for nonzero mass,
which is different from the Yang-Mills flow.
This paper is organized as follows. In Sec. II, we give the

brief review of Wess-Zumino model in four dimensions.
In Sec. III, we present two methods of constructing the
Wess-Zumino flow equation. We first present the results
in Sec. III A. The Wess-Zumino flow is constructed with
the component fields in Sec. III B and with the superfield
formalism in Sec. III C. The on-shell flow is also discussed
in Sec. III D. The formal solutions of the Wess-Zumino
flow are given in Sec. IV. We summarize our results in
Sec. V. The convention used in this paper is shown in
Appendix A.

II. WESS-ZUMINO MODEL

We make a brief review of the Wess-Zumino model,
which is the simplest supersymmetric theory made of a
complex scalar AðxÞ, Weyl spinors ψαðxÞ, ψ̄ _αðxÞ, and a
complex auxiliary field FðxÞ.
The action in Euclidean space is given by

S ¼
Z

d4x

�
j∂μAj2 þ iψσμ∂μψ̄ þ jFj2

− iðFðmAþ gA2Þ þ H:c:Þ þ 1

2
ψψðmþ 2gAÞ

þ 1

2
ψ̄ ψ̄ðmþ 2gAÞ�

�
; ð1Þ

where a real and non-negative mass m ≥ 0 and g ∈ C,
which can be chosen by a phase rotation of the fields
without loss of generality. The off-shell SUSY transforma-
tion that makes the action (1) invariant is defined as

δξAðxÞ ¼ ξψðxÞ;
δξA�ðxÞ ¼ ξ̄ ψ̄ðxÞ;
δξψðxÞ ¼ iσμξ̄∂μAðxÞ þ iξFðxÞ;
δξψ̄ðxÞ ¼ iσ̄μξ∂μA�ðxÞ þ iξ̄F�ðxÞ;
δξFðxÞ ¼ ξ̄σ̄μ∂μψðxÞ;
δξF�ðxÞ ¼ ξσμ∂μψ̄ðxÞ; ð2Þ

where ξα and ξ̄_β are two anticommuting parameters.
The off-shell transformation satisfies

½δξ; δη� ¼ −iðξ̄σ̄μηþ ξσμη̄Þ∂μ; ð3Þ

which is a well-known relation derived from the SUSY
algebra.
The on-shell action is obtained as

Son−shell ¼
Z

d4x

�
j∂μAj2 þ jmAþ gA2j2 þ iψσμ∂μψ̄

þ 1

2
ψψðmþ 2gAÞ þ 1

2
ψ̄ ψ̄ðmþ 2gAÞ�

�
; ð4Þ

integrating the auxiliary field F of the off-shell one (1).
The action (4) is invariant under the on-shell SUSY
transformation,

δ0ξAðxÞ ¼ ξψðxÞ;
δ0ξA

�ðxÞ ¼ ξ̄ ψ̄ðxÞ;
δ0ξψðxÞ ¼ iσμξ̄∂μAðxÞ − ξðmA� þ g�A�2ÞðxÞ;
δ0ξψ̄ðxÞ ¼ iσ̄μξ∂μA�ðxÞ − ξ̄ðmAþ gA2ÞðxÞ: ð5Þ

Note that (5) are the first four transformations of (2)
replacing F → iðmA� þ g�A�2Þ and F� → iðmAþ gA2Þ.
The off-shell SUSY theory is also easily defined using

the superfield formalism. Suppose that θα and θ̄ _α are two
global Grassmann parameters. Superfield is then defined
by a function F ðx; θ; θ̄Þ whose SUSY transformation is
given by

δξF ðx; θ; θ̄Þ ¼ 1ffiffiffi
2

p ðξQþ ξ̄ Q̄ÞF ðx; θ; θ̄Þ; ð6Þ

where Qα and Q̄ _α are differential operators,

Qα ¼
∂
∂θα − iðσμÞα _αθ̄ _α∂μ; ð7Þ

Q̄ _α ¼ −
∂
∂θ̄ _α

þ iθαðσμÞα _α∂μ: ð8Þ

For later use, we introduce other differential operators,

Dα ¼
∂
∂θα þ iðσμÞα _αθ̄ _α∂μ; ð9Þ

D̄ _α ¼ −
∂
∂θ̄ _α

− iθαðσμÞα _α∂μ; ð10Þ

which are covariant under SUSY transformation (6)
because

fQα; Q̄ _αg ¼ −fDα; D̄ _αg ¼ 2iðσμÞα _α∂μ; ð11Þ

and the other commutation relations are 0.
The Wess-Zumino model is given by chiral and anti-

chiral superfields Φðx; θ; θ̄Þ and Φ̄ðx; θ; θ̄Þ, which satisfy
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D̄ _αΦ ¼ DαΦ̄ ¼ 0: ð12Þ

The θ and θ̄ expansion of the chiral superfields can easily
be written in terms of yμ ¼ xμ þ iθσμθ̄ and ȳμ ¼ xμ −
iθσμθ̄ because, for instance, D̄ _α ¼ − ∂

∂θ̄ _α in the y coordinate.
We thus have

Φðy; θÞ ¼ AðyÞ þ
ffiffiffi
2

p
θψðyÞ þ iθθFðyÞ;

Φ̄ðȳ; θ̄Þ ¼ A�ðȳÞ þ
ffiffiffi
2

p
θ̄ ψ̄ðȳÞ þ iθ̄ θ̄F�ðȳÞ: ð13Þ

The off-shell SUSY transformation for the component
fields (2) are reproduced from the definition (6) with the
expansion (13).
The off-shell action (1) can also be expressed as

S ¼ −
Z

d4xfΦ̄Φjθθθ̄ θ̄ þWðΦÞjθθ þW�ðΦ̄Þjθ̄ θ̄g; ð14Þ

where

WðΦÞ ¼ 1

2
mΦ2 þ 1

3
gΦ3: ð15Þ

From the construction presented above, it is obvious that
the superfield action (14) is invariant under the off-shell
SUSY transformation (6).

III. WESS-ZUMINO FLOW

We construct a supersymmetric flow equation in the
Wess-Zumino model. The flow equation is derived in two
ways; one is based on the off-shell component fields as
shown in Sec. III B and the other is based on the superfield
formalism as seen in Sec. III C. We find that they give the
same result.

A. 4 + 1-dimensional supersymmetry and
supersymmetric flow

We introduce a flow time tð≥ 0Þ and consider the time-
dependent bosonic fields ϕðt; xÞ, ϕ̄ðt; xÞ, Gðt; xÞ, Ḡðt; xÞ ∈
C and spinors χðt; xÞ; χ̄ðt; xÞ. The component fields of the
Wess-Zumino model are replaced by those fields as
follows:

AðxÞ → ϕðt; xÞ
A�ðxÞ → ϕ̄ðt; xÞ
ψðxÞ → χðt; xÞ
ψ̄ðxÞ → χ̄ðt; xÞ
FðxÞ → Gðt; xÞ
F�ðxÞ → Ḡðt; xÞ; ð16Þ

with boundary conditions,

ðϕðt; xÞ; χðt; xÞ; Gðt; xÞÞjt¼0 ¼ ðAðxÞ;ψðxÞ; FðxÞÞ;
ðϕ̄ðt; xÞ; χ̄ðt; xÞ; Ḡðt; xÞÞjt¼0 ¼ ðA�ðxÞ; ψ̄ðxÞ; F�ðxÞÞ: ð17Þ

Note that ϕ̄ and Ḡ are no longer the complex conjugates of
ϕ and G, respectively, for nonzero flow time.
For the flowed fields, 4þ 1-dimensional SUSY trans-

formation can be defined by replacing the fields of (2)
according to (16),

δξϕ ¼ ξχ;

δξϕ̄ ¼ ξ̄ χ̄;

δξχ ¼ iσμξ̄∂μϕþ iξG;

δξχ̄ ¼ iσ̄μξ∂μϕ̄þ iξ̄ Ḡ;

δξG ¼ ξ̄σ̄μ∂μχ;

δξḠ ¼ ξσμ∂μχ̄; ð18Þ

where ξ and ξ̄ are t-independent parameters.
It is shown that a supersymmetric flow equation is

given by

∂tϕ ¼ □ϕþ imḠþ g�ð2iϕ̄ Ḡ−χ̄ χ̄Þ; ð19Þ

∂tϕ̄ ¼ □ϕ̄þ imGþ gð2iϕG − χχÞ; ð20Þ

∂tχ ¼ □χ þ iσμ∂μðmχ̄ þ 2g�ϕ̄ χ̄Þ; ð21Þ

∂tχ̄ ¼ □χ̄ þ iσ̄μ∂μðmχ þ 2gϕχÞ; ð22Þ

∂tG ¼ □G − i□ðmϕ̄þ g�ϕ̄2Þ; ð23Þ

∂tḠ ¼ □Ḡ − i□ðmϕþ gϕ2Þ; ð24Þ

where □ ¼Pμ∂μ∂μ.
The Wess-Zumino flow tells us that each component

field does not flow independently but mixes with other
fields to keep SUSY. The flowed fields G and Ḡ are no
longer auxiliary fields because derivative terms are in (23)
and (24). It is possible to show that

½∂t; δξ� ¼ 0; ð25Þ

which means that SUSY is kept at nonzero flow time. As
we see in the next two sections, (25) can also be easily
confirmed from the construction of the Wess-Zumino flow
equation.

B. Derivation of the Wess-Zumino flow in
component fields

We begin with considering a derivative of S with respect
to AðxÞ. Since δS=δAðxÞ has □A�ðxÞ, a gradient flow for
ϕðt; xÞ as a diffusion equation ∂tϕ ≃□ϕ should be
defined by
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∂tϕðt; xÞ ¼ −
δS

δA�ðxÞ
����
fields→flowed fields

; ð26Þ

where Xjfields→flowed fields means that the field variables in X
are replaced according to (16). The first flow equation (19)
is obtained from (26). Similarly, (20) is derived from a
gradient flow equation as (26) by replacing ∂tϕ and δA� by
∂tϕ̄ and δA, respectively.
Suppose that (25) holds for ϕ. Then the lhs of (19)

becomes

δξ∂tϕðt; xÞ ¼ ∂tδξϕðt; xÞ ¼ ξ∂tχðt; xÞ; ð27Þ

while the SUSY transformation of the rhs of (19) is

δξðrhs ofð19ÞÞ ¼ ξð□χ þ iσμ∂μðmχ̄ þ 2g�ϕ̄ χ̄ÞÞ: ð28Þ

Since (27) coincides with (28), we obtain (21). We can also
find (22) assuming (25) for ϕ̄ as well.
The flow equations for G and Ḡ are derived in the same

manner. If (25) holds for χ and χ̄, we immediately find (23)
and (24) by performing the SUSY transformation of the
flow equations for χ and χ̄.
Once the flow equations are given for the scalar fields,

we found that those for the other fields can be constructed
by repeating the SUSY transformation (18). Since we then
assumed (25) for ϕ; ϕ̄; χ and χ̄, it is obvious that the
obtained flows satisfy (25) for them. So all we have to do is
check whether (25) holds for G and Ḡ or not.
It is enough to consider two cases: (a) δξ for ξ̄ ¼ 0 (and

ξ ≠ 0) and (b) δξ for ξ ¼ 0 (and ξ̄ ≠ 0) since a general δξ is
the summation of (a) and (b). We now have δξϕ̄ ¼ δξG ¼ 0

for ξ̄ ¼ 0. So it can be immediately shown that ½∂t; δξ�G ¼ 0

for ξ̄ ¼ 0. Moreover, one can show that

½∂t; δξ�ηG − ½∂t; δη�ξG ¼ 0; ð29Þ

from theSUSY transformation of χ using ½∂t; δξ� ¼ 0 forϕ; χ
and ½∂t; ½δξ; δη�� ¼ 0. From (29), we also confirm that
½∂t; δξ�G ¼ 0 for ξ ¼ 0. We thus obtain ½∂t; δξ�G ¼ 0 for a
general δξ. Repeating the same argument, (25) is also true
for Ḡ.

C. Derivation of Wess-Zumino flow in superfield
formalism

The flowed superfields are given by replacing

ΦðzÞ → Ψðt; zÞ; Φ̄ðzÞ → Ψ̄ðt; zÞ; ð30Þ

with z ¼ ðx; θ; θ̄Þ. Suppose that

Ψðt; zÞjt¼0 ¼ ΦðzÞ; Ψ̄ðt; zÞjt¼0 ¼ Φ̄ðzÞ ð31Þ

as an initial condition and the SUSY transformation of
Ψðt; zÞ and Ψ̄ðt; zÞ is defined by (6).
The gradient flow should be given such that Φðt; zÞ and

Φ̄ðt; zÞ are chiral and antichiral superfields satisfying (12).
The field variation of the chiral superfield is defined as

δ

δΦ̄ðȳ; θÞ Φ̄ðȳ0; θ0Þ ¼ δ4ðȳ − ȳ0Þδ2ðθ − θ0Þ: ð32Þ

It can be shown that

δS

δΦ̄ðx; θ; θ̄Þ ¼ 1

4
DDΦðx; θ; θ̄Þ − ∂W�ðΦ̄ðx; θ; θ̄ÞÞ

∂Φ̄ðx; θ; θ̄Þ : ð33Þ

Although it is natural to use δS=δΦ̄ for a gradient flow for
Φ, such a derivative does not satisfy the supersymmetric
chiral condition (12) for Φ.
It is possible to keep the condition (12) multiplying

δS=δΦ̄ by D̄ D̄. Thus a proper flow equation is

∂tΨðt; zÞ ¼
1

4
D̄ D̄

δS
δΦ̄ðzÞ

����
ΦðzÞ;Φ̄ðzÞ→Ψðt;zÞ;Ψ̄ðt;zÞ

; ð34Þ

and similarly

∂tΨ̄ðt; zÞ ¼
1

4
DD

δS
δΦðzÞ

����
ΦðzÞ;Φ̄ðzÞ→Ψðt;zÞ;Ψ̄ðt;zÞ

: ð35Þ

Since D̄ D̄DD ¼ 16□, we have

∂tΨ ¼ □Ψ −
1

4
D̄ D̄W0�ðΨ̄Þ;

∂tΨ̄ ¼ □Ψ̄ −
1

4
DDW0ðΨÞ; ð36Þ

where W0ðxÞ ¼ ∂WðxÞ=∂x. The supersymmetric chiral
condition (12) is actually kept for any nonzero flow time
because, noticing D3 ¼ D̄3 ¼ 0 and ½D; ∂t� ¼ ½D̄; ∂t� ¼ 0,

∂tðD̄ _αΨðt; xÞÞ ¼ ∂tðDαΨ̄ðt; xÞÞ ¼ 0; ð37Þ

with D̄ _αΨðt ¼ 0; xÞ ¼ DαΨ̄ðt ¼ 0; xÞ ¼ 0.
The definitions of the gradient flow (34) and (35) are

consistent with the SUSY transformation given by (6)
because ½Q; ∂t� ¼ ½Q̄; ∂t� ¼ 0. So the commutation relation
(25) is manifestly satisfied.
Since the flowed superfields obey the supersymmetric

chiral condition (12), they can also be expanded as

Ψðt; y; θÞ ¼ ϕðt; yÞ þ
ffiffiffi
2

p
θχðt; yÞ þ iθθGðt; yÞ;

Ψ̄ðt; ȳ; θ̄Þ ¼ ϕ̄ðt; ȳÞ þ
ffiffiffi
2

p
θ̄ χ̄ðt; ȳÞ þ iθ̄ θ̄ Ḡðt; ȳÞ: ð38Þ

Substituting these expansions into (36), we find that the
same flow equations as (19)–(24) are obtained.

KADOH, KIKUCHI, and UKITA PHYS. REV. D 100, 014501 (2019)

014501-4



D. The on-shell flow

The relation (25) is shown to be satisfied for the off-shell
supersymmetric gradient flow. We mention an on-shell case
in which the auxiliary field is integrated out.
We consider an on-shell flow by replacing G and Ḡ of

(19)–(22) as

G ¼ iðmϕ̄þ g�ϕ̄2Þ; Ḡ ¼ iðmϕþ gϕ2Þ; ð39Þ

which are the equations of motion of F and F� at t ¼ 0.
Here we do not consider the flow equation of G and Ḡ.
An on-shell SUSY transformation δ0ξ for the flowed fields
is given by (19) with the replacement (22).
The commutation relation between the flow derivative

and the on-shell SUSY transformation does not vanish in
general but is proportional to δS=δh for h ¼ ψ ; A; ψ̄ ; A�.
For instance,

½∂t; δ0ξ�ϕ ¼ W00�ðϕ̄ÞξδS
δψ

����
fields→flowed fields

: ð40Þ

One can easily show that the commutators for other fields
do not also vanish but satisfy the similar relations.

IV. FORMAL SOLUTION OF WESS-ZUMINO
FLOW

The flowed chiral and antichiral superfields are directly
coupled even in the linear part of the Wess-Zumino flow,

∂t

�Ψ0

Ψ̄0

�
¼
�

□ − m
4
D̄ D̄

− m
4
DD □

��Ψ0

Ψ̄0

�
; ð41Þ

where the suffix 0 means they are solutions to the linear part
of the flow equation.
To solve the formal solution of the Wess-Zumino

flow, let us move on to a basis that diagonalizes the matrix
of (41) as

�Πþ
Π−

�
¼ 1ffiffiffi

2
p
 i

4
DDffiffiffiffiffiffi
−□

p 1

− i
4

DDffiffiffiffiffiffi
−□

p 1

!�Ψ
Ψ̄

�
: ð42Þ

Then the Wess-Zumino flow equation is given in terms of
Πþ and Π−,

∂tΠ� ¼
�
□� im

ffiffiffiffiffiffiffiffi
−□

p 	
Π� þ R�; ð43Þ

where

R� ¼ � ig�
ffiffiffiffiffiffiffiffi
−□

p
ffiffiffi
2

p Ψ̄2 −
g

4
ffiffiffi
2

p DDΨ2: ð44Þ

Note that the initial conditions for Π� are derived from
those of Ψ and Ψ̄ via (42).
A formal solution of (43) is given by

Π�ðt; xÞ ¼
Z

d4y

�
K�

t ðx − yÞΠ�ð0; yÞ

þ
Z

t

0

dsK�
t−sðx − yÞR�ðs; yÞ

�
; ð45Þ

where θ, θ̄ are abbreviated for Π�ðt; x; θ; θ̄Þ and
R�ðt; x; θ; θ̄Þ. Here K�

t ðxÞ is a heat kernel defined by

K�
t ðxÞ ¼

Z
d4p
ð2πÞ4 e

ipxe−tðp2∓im
ffiffiffiffi
p2

p
Þ: ð46Þ

Note that (46) coincides with the normal one for m ¼ 0,
and it still works as a damping factor for m ≠ 0. We can
actually show that (45) satisfies (43) because K�

t ðxÞ
provides a solution to the free part of (43).
We can also give the formal of (36) as

ΨtðpÞ ¼ CtðpÞΦðpÞ − StðpÞ
D̄ D̄

4
ffiffiffiffiffi
p2

p Φ̄ðpÞ

−
Z

t

0

ds

�
g�Ct−sðpÞ

D̄ D̄
4

ðΨ̄s⋆Ψ̄sÞðpÞ þ gSt−sðpÞ

×
ffiffiffiffiffi
p2

q
ðΨs⋆ΨsÞðpÞ

�
;

Ψ̄tðpÞ ¼ CtðpÞΦ̄ðpÞ − StðpÞ
DD

4
ffiffiffiffiffi
p2

p ΦðpÞ

−
Z

t

0

ds

�
gCt−sðpÞ

DD
4

ðΨs⋆ΨsÞðpÞ þ g�St−sðpÞ

×
ffiffiffiffiffi
p2

q
ðΨ̄s⋆Ψ̄sÞðpÞ

�
; ð47Þ

where we again abbreviate θ, θ̄ of Ψtðp; θ; θ̄Þ and
Φðp; θ; θ̄Þ. HereD and D̄ are the momentum representation
of (10), and CtðpÞ and StðpÞ are defined by

CtðpÞ≡ e−tp
2

cos
�
tm

ffiffiffiffiffi
p2

q 	
; ð48Þ

StðpÞ≡ e−tp
2

sin
�
tm

ffiffiffiffiffi
p2

q 	
; ð49Þ

which come from (46) in the momentum space as
K�

t ðpÞ ¼ CtðpÞ � iStðpÞ. The star symbol means the
convolution integral in the momentum space,

ðA⋆BÞðpÞ≡
Z

d4q
ð2πÞ4 AðqÞBðp − qÞ; ð50Þ

for any functionsA andB. Note that ðA⋆BÞðpÞ ¼ ðB⋆AÞðpÞ.
We finally find the formal solutions for the component

fields inserting (13) and (38) into (47),
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ϕtðpÞ ¼ CtðpÞAðpÞ þ
iffiffiffiffiffi
p2

p StðpÞF�ðpÞ − g
ffiffiffiffiffi
p2

q Z
t

0

dsSt−sðpÞðϕs⋆ϕsÞðpÞ

þ g�
Z

t

0

dsCt−sðpÞf2iðϕ̄s⋆ḠsÞðpÞ − ðχ̄s⋆χ̄sÞðpÞg; ð51Þ

ϕ̄tðpÞ ¼ CtðpÞA�ðpÞ þ iffiffiffiffiffi
p2

p StðpÞFðpÞ − g�
ffiffiffiffiffi
p2

q Z
t

0

dsSt−sðpÞðϕ̄s⋆ϕ̄sÞðpÞ

þ g
Z

t

0

dsCt−sðpÞf2iðϕs⋆GsÞðpÞ − ðχs⋆χsÞðpÞg; ð52Þ

χtðpÞ ¼ CtðpÞψðpÞ −
σμpμffiffiffiffiffi
p2

p StðpÞψ̄ðpÞ − 2g�σμpμ

Z
t

0

dsCt−sðpÞðϕ̄s⋆χ̄sÞðpÞ

− 2g
ffiffiffiffiffi
p2

q Z
t

0

dsSt−sðpÞðϕs⋆χsÞðpÞ; ð53Þ

χ̄tðpÞ ¼ CtðpÞψ̄ðpÞ −
σ̄μpμffiffiffiffiffi
p2

p StðpÞψðpÞ − 2gσ̄μpμ

Z
t

0

dsCt−sðpÞðϕs⋆χsÞðpÞ

− 2g�
ffiffiffiffiffi
p2

q Z
t

0

dsSt−sðpÞðϕ̄s⋆χ̄sÞðpÞ; ð54Þ

GtðpÞ ¼ CtðpÞFðpÞ þ i
ffiffiffiffiffi
p2

q
StðpÞA�ðpÞ þ ig�p2

Z
t

0

dsCt−sðpÞðϕ̄s⋆ϕ̄sÞðpÞ

− g
ffiffiffiffiffi
p2

q Z
t

0

dsSt−sðpÞf2ðϕs⋆GsÞðpÞ þ iðχs⋆χsÞðpÞg; ð55Þ

ḠtðpÞ ¼ CtðpÞF�ðpÞ þ i
ffiffiffiffiffi
p2

q
StðpÞAðpÞ þ igp2

Z
t

0

dsCt−sðpÞðϕs⋆ϕsÞðpÞ

− g�
ffiffiffiffiffi
p2

q Z
t

0

dsSt−sðpÞf2ðϕ̄s⋆ḠsÞðpÞ þ iðχ̄s⋆χ̄sÞðpÞg: ð56Þ

Note that the terms with 1=
ffiffiffiffiffi
p2

p
are well-defined because

they appear with StðpÞ and 1=
ffiffiffiffiffi
p2

p
StðpÞjp¼0 ¼ 0.

One of the interesting points is that the solutions have a
damping oscillation with the flow time for nonzero mass,
Ct and St. This behavior is different from the solution of
the Yang-Mills flow whose damping factor is e−tp

2

. In the
case of m ¼ 0, we have much simpler solutions because
CtðpÞ ¼ e−tp

2

and StðpÞ ¼ 0.

V. SUMMARY

We have constructed a supersymmetric gradient flow
equation in the four-dimensional Wess-Zumino model. The
Wess-Zumino flow equation is given in two ways. One is
based on the off-shell component fields in which the flow
for the scalar field is given by the gradient of the action.
The flow equations for the other fields are derived from it
by repeating the SUSY transformation. The other way is
based on the superfield formalism. The gradient flow for
the chiral superfield is determined from the gradient of

the action with respect to the superfield with keeping the
supersymmetric chiral condition. We found that the result-
ant equations are the same.
The obtained flow is supersymmetric in a sense that the

flow time derivative and the SUSY transformation commute
with each other for nonzero flow time. On the other hand, the
commutator does not vanish for the on-shell flow.The flowed
components fields G and Ḡ are not auxiliary but dynamical
fields because the derivative terms are provided by their
flows. We have obtained the formal solution of the Wess-
Zumino flow equation and find that it behaves as a damping
oscillation with respect to the flow time for nonzero mass,
which is different from the Yang-Mills flow.
Since we have constructed the SUSY flow for the Wess-

Zumino model, we achieved the first step toward the further
understanding of the mechanism that leads to the UV
finiteness of SUSY gradient flows. It is interesting whether
the Wess-Zumino flow shows the UV finiteness at one loop
order or not. In order to show that, further studies are now in
progress.
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APPENDIX: CONVENTION

The Lorentz index μ runs μ ¼ 0, 1, 2, 3. All boundary
fields are defined onR4. The fermions ψα and ψ̄

_β transform
as spinors of SOð4Þ ≃ SUð2ÞL × SUð2ÞR. The spinor
indices α, β take the values 1,2. We basically follow
[43] as the convention of spinors, but we perform the
Wick rotation t → −it from [43]. Then the auxiliary field F
is also replaced as F → iF. Useful identities of a Euclidean
(Wick rotated) version of [43] are summarized in [41].
The antisymmetric tensors ϵαβ; ϵαβ; ϵ _α _β; ϵ

_α _β are defined
as ϵ21 ¼ ϵ12 ¼ ϵ_2 _1 ¼ ϵ_1 _2 ¼ 1. Spinors with upper and
lower indices are defined as

ψα ¼ ϵαβψβ; ψ̄ _α ¼ ϵ _α _βψ̄
_β: ðA1Þ

Then Lorentz scalars made of two spinors are given by

ψχ ≡ ψαχα; ψ̄ χ̄ ≡ ψ̄ _αχ̄
_α: ðA2Þ

Note that ψ̄ _α is not a complex conjugate of ψα in
Euclidean space.
The four-dimensional sigma matrices ðσμÞα _β and ðσ̄μÞ _αβ

are defined by

σ0 ¼ σ̄0 ¼ −i1; σi ¼ −σ̄i ¼ σi; ðA3Þ

where σi for i ¼ 1, 2, 3 are the standard Pauli matrices. We
often abbreviate the spinor index such as (A2) throughout
this paper. For instance, ψσμψ̄ in the action (1) means

ψαðσμÞα_βψ̄ _β. The index structure of σμ and σ̄μ can be

specified as ðσμÞα _β and ðσ̄μÞ _αβ. They are related to each
other as

ðσ̄μÞ _αα ¼ ϵ _α _βϵαβðσμÞβ _β: ðA4Þ

See [41] for the other useful formulas after the Wick
rotation.
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