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We update our previous calculation of J=ψ photoproduction near threshold [Y. Hatta and D. L. Yang,
Phys. Rev. D 98, 074003 (2018)] by incorporating the recent developments in theory and the new
experimental data from Ali et al. [the GlueX Collaboration] at Jefferson Laboratory. We then propose to
study the near threshold production ofϒ and J=ψ in ultraperipheral pA collisions at RHIC. These processes
are sensitive to the gluon condensate in the proton which is related to the proton mass via the QCD trace
anomaly. Our result emphasizes the role of gluons in generating the proton mass.
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I. INTRODUCTION

Although it is a well-known fact that the proton has a
complex internal structure, much of the confining mecha-
nism that brings the quarks and gluons together to form the
proton remains a mystery. In particular, the mass of the
proton M ¼ 0.938 GeV cannot be explained by the naive
sum of current quark masses which only accounts for a tiny
fraction of the total mass. The remaining part must come
from the nonperturbative dynamics of quarks and gluons.
Among various contributions to the proton mass, the role
of the QCD trace anomaly has attracted a lot of attention
lately. Dedicated experiments to probe the trace anomaly
contribution are currently running at Jefferson Laboratory
(JLab) [1], and similar experiments are planned at the future
Electron-Ion Collider.
Specifically, JLab measures the photoproduction of J=ψ

in ep scattering. At low energy, very close to the threshold,
the cross section of this process is sensitive to the gluon
condensate hPjFμνFμνjPi in the proton [2] which is closely
related to the trace anomaly. However, extracting the value
of the condensate from the experimental data is highly
nontrivial and subject to large systematic uncertainties.
This is because QCD factorization for this process is
difficult to establish as it involves the twist-four operator
F2, and in practice one has to employ a nonperturbative
model to calculate the cross section. Yet, some models
allow for a more systematic treatment of the problem than
others. In a previous publication [3], two of the present

authors have proposed a holographic approach based on
gauge-string duality. In the limit of heavy-quark mass, it
has been shown that the cross section is directly related
to the so-called gravitational form factors of the proton.
Since these form factors can be analyzed by other means
(e.g., in lattice QCD simulations), a large part of uncer-
tainties associated with the nonperturbative proton matrix
elements can be absorbed into those of the form factors. In
[3], the theoretical result was fitted to the 40-year-old
experimental data from Cornell [4] and SLAC [5] which
were the only available data to compare at that time. The
quality of the fit was not satisfactory, especially with the
Cornell data which are closer to the threshold. It was not
clear whether this was due to the naivety of the model, or
perhaps because the old data were not quite accurate.
Very recently, the GlueX Collaboration at JLab has

reported new data for the threshold cross section which
significantly differ from the Cornell data [6]. Meanwhile,
there have been theory developments on the renormaliza-
tion of the trace anomaly [7,8] as well as the first lattice
calculation of the gluon “D-term” gravitational form factors
[9]. In view of these, we feel it is necessary to revise the
calculations and fits in [3]. This is what we shall do in the
first part of this paper.
In the second part, we propose a novel way to measure

the gluon condensate in experiments. This is the threshold
production of J=ψ and ϒ in ultraperipheral pA collisions
(UPCs) at RHIC. In UPCs, a heavy nucleus emits almost
real photons which interact with the proton electromag-
netically. The process thus closely mimics the photo-
production limit of ep scattering and serves as nontrivial
cross checks of the experimental results as well as the
consistency of the theoretical formalism. Moreover, RHIC
can study the ϒ production which is energetically not
possible at JLab. On the other hand, the high energy of
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RHIC obviously makes the study of threshold production
technically difficult. We however argue that this is feasible
once the forward upgrade of the STAR detector has been
completed [10].

II. NUCLEON MASS DECOMPOSITION

The approximate conformal symmetry of the QCD
Lagrangian is explicitly broken by the quantum effects.
One of the profound consequences of this fact is that the
mass of a hadron is directly related to the QCD trace
anomaly. For a single hadron state jPi with mass squared
M2 ¼ P2, the QCD energy momentum tensor has the
following expectation value:

hPjTαβjPi ¼ 2PαPβ; ð1Þ

hPjTα
αjPi ¼ hPj

�
βðgÞ
2g

FμνFμν þmð1þ γmðgÞÞψ̄ψ
�
jPi

¼ 2M2; ð2Þ

where βðgÞ is the beta function of QCD and γmðgÞ ¼
− 1

m
∂m
∂ ln μ is the mass anomalous dimension. The sum over

different flavors is implied in mψ̄ψ ¼ P
fmfψ̄fψf. It is

understood that the vacuum expectation value has been
subtracted in the matrix elements. Since hadrons are bound
states of quarks and gluons, it is interesting to ask if one
can learn more detailed information about the mass
structure of hadrons in terms of the quark and gluon
degrees of freedom. The partonic decomposition of hadron
masses, in particular, the proton mass, has attracted a lot of
attention lately both among the theory and experimental
communities. On the theory side, the original proposal in
[11] was to work in the rest frame of the hadron and
decompose, at the operator level, the time component of the
energy momentum tensor T00. This leads to the formula

M ¼ Mkin
q þMkin

g þMm þMa; ð3Þ

where Mkin
q=g represents the kinetic and potential energy of

quarks and gluons, Mm is from the quark mass term, and
Ma is the trace anomaly contribution. While the decom-
position (3) is gauge invariant, the choice of the component
T00 inevitably brings up the issue of frame dependence.
See [12] for a recent attempt to improve on this point.
In this paper, we propose another decomposition which

is manifestly frame independent. Instead of decomposing
M, one can decomposeM2 ¼ P2. The trace anomaly in (2)
consists of the quark and gluon parts

Tα
α ¼ ðTqÞαα þ ðTgÞαα; ð4Þ

where

Tαβ
q ¼ iψ̄γðαDβÞψ ; Tαβ

g ¼ −FαλFβ
λ þ

ηαβ

4
F2: ð5Þ

(The brackets denote symmetrization in indices.) We can
thus write

M2 ¼ M2
q þM2

g; M2
q;g ¼

1

2
hPjðTR

q;gÞααjPi: ð6Þ

This decomposition makes sense as long as the operators
ðTR

q;gÞαα are carefully defined. They have to be regularized
and renormalized in a certain regularization scheme, which
means that the decomposition (6) is scheme dependent.
(The sub- and superscript R stands for “renormalized.”)
While scheme dependence is always an issue no matter
how one decomposes [for example, it is also relevant
to (3)], the renormalization of ðTR

q Þαα and ðTR
g Þαα separately

has been investigated only recently in [7,8], and so far only
in dimensional regularization (DR) with the modified
minimal subtraction MS scheme. Let us briefly recapitulate
the main results of [7,8]. In DR, at the bare operator level,
the anomaly entirely comes from the gluon part of the
energy momentum tensor

hPjðTqÞααjPi ¼ hPjmψ̄ψ jPi; ð7Þ

hPjðTgÞααjPi ¼ hPj
�
mγmψ̄ψ þ β

2g
F2

�
jPi

¼ ð0.637αs þ � � �ÞhPjmψ̄ψ jPi
þ ð−0.3583αs þ � � �ÞhPjF2jPi; ð8Þ

where we explicitly show the numerical value of the first
term in the perturbative expansion of βðgÞ=2g and γmðgÞ for
Nc ¼ 3 and nf ¼ 3. Under renormalization, the coeffi-
cients of this expansion are reshuffled. This has been
worked out to two loops in [7] and then extended to three
loops in [8]. Here we quote the result of [8] for Nc ¼ 3,
nf ¼ 3,

hPjðTqRÞααjPi ¼ CqmhPjðmψ̄ψÞRjPi
þ CqFhPjðF2ÞRjPi þOðα4sÞ;

hPjðTgRÞααjPi ¼ CgmhPjðmψ̄ψÞRjPi
þ CgFhPjðF2ÞRjPi þOðα4sÞ; ð9Þ

where

Cqm ¼ 1þ 0.14147αs − 0.00823α2s − 0.06435α3s ;

CqF ¼ 0.07958αs þ 0.05887α2s þ 0.02160α3s ;

Cgm ¼ 0.49515αs þ 0.77659α2s þ 0.86549α3s ;

CgF ¼ −0.43768αs − 0.26151α2s − 0.18383α3s : ð10Þ
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In this formula, both the operators and the running coupling
αs are defined at some (perturbative) scale μ. Note that
mψ̄ψ ¼ ðmψ̄ψÞR in DR, and the renormalization of the
operator F2

R in this scheme is well understood in the
literature [13].
Once the nonperturbative matrix elements hPjF2

RjPi and
hPjðmψ̄ψÞRjPi are determined by some means, Eq. (6)
together with (9) achieves a manifestly frame-independent,
gauge-invariant decomposition of M2. In the next sections,
we shall discuss methods to experimentally constrain these
matrix elements. As a preliminary, here we show how the
matrix element of F2

R is related to the nucleon’s gravita-
tional form factors

hP0jðTR
q;gÞαβjPi ¼ ūðP0Þ

�
AR
q;gγ

ðαP̄βÞ þ BR
q;g

P̄ðαiσβÞλΔλ

2M

þ CR
q;g

ΔαΔβ − gαβΔ2

M
þ C̄R

q;gMηαβ
�
uðPÞ;

ð11Þ

where P̄μ ≡ PμþP0μ
2

and Δ≡ P0 − P. Dq;g ¼ 4Cq;g is often
called the D-term. All the form factors depend on Δ2, as
well as the renormalization scale μ. Taking the trace of (11),
we find

hP0jðTR
q;gÞααjPi ¼ ūðP0Þ

�
AR
q;gM þ BR

q;g

4M
Δ2 − 3CR

q;g
Δ2

M

þ 4C̄R
q;gM

�
uðPÞ: ð12Þ

Eliminating mψ̄ψ from (9) and using (12), one finds

hP0jF2
RjPi ¼ ūðP0Þ

�
ðKgAR

g þ KqAR
q ÞM

þ KgBR
g þ KqBR

q

4M
Δ2 − 3

Δ2

M
ðKgCR

g þ KqCR
q Þ

þ 4ðKgC̄R
g þ KqC̄R

q ÞM
�
uðPÞ; ð13Þ

where

Kg ¼
1

CgF − Cgm
Cqm

CqF
; Kq ¼ −

Cgm
Cqm

Kg: ð14Þ

Equation (13) is a useful formula which relates the non-
forward matrix element of the operator F2

R to the gravita-
tional form factors. The latter (excepting C̄q;g) have been
calculated in lattice QCD simulations.

We also comment on the parameter b introduced in [11]

b≡ hPjmð1þ γmÞðψ̄ψÞRjPi
2M2

; 1 − b ¼
hPj β

2g ðF2ÞRjPi
2M2

:

ð15Þ

Physically, b is the fraction of M2 which comes from the
current quark masses, analogous to the pion-nucleon sigma
term σ ∼ hPjmψ̄ψ jPi. It is scheme and scale dependent
so that one should more properly write b → bRðμÞ, though
we keep the notation b below for simplicity. Taking the
forward limit of (13) and using C̄q ¼ −C̄g, we find the
relation between b and the C̄q;g form factor at zero
momentum transfer

1 − b ¼ βðgÞ
2g

½ðAR
g ð0Þ þ 4C̄R

g ð0ÞÞðKg − KqÞ þ Kq�: ð16Þ

A recent nf ¼ 2þ 1 lattice calculation at the physical pion

mass has found hPjmðψ̄ψÞRjPi
2M2 ≈ 0.09 [14]. Since γm is

positive, b is larger than this. A simple estimate gives
b ∼ 0.12.

III. J=Ψ PRODUCTION NEAR
THRESHOLD AT JLAB

In this section, we update our previous calculation [3] of
threshold J=ψ production from holography. The reason is
threefold. First, we use the precise relation (13) between the
matrix elements of F2 and the gravitational form factors. In
[3], the bare relation (8) has been used. Second, a lattice
QCD calculation of the Cg-form factor is now available [9].
Third, very recently the Glue-X Collaboration at Jefferson
Lab has reported new experimental data on the J=ψ
photoproduction cross section near threshold [6]. In [3],
we have fitted our result to the 40-year-old experimental
data from Cornell and SLAC [4,5]. The new JLab data
seem to be appreciably different from the Cornell data very
close to the threshold.
Let us quickly review the discussion of [3]. The process

of interest is the exclusive production of J=ψ in ep →
e0γp → e0p0J=ψ near threshold. The intermediate photon
state is nearly on shell (photoproduction) with the threshold
energy Eγ ≈ 8.2 GeV in the proton rest frame. Since QCD
factorization has not yet been established for this process,
the previous works employed various nonperturbative
approaches [2,3,15–17]. In [3], two of the present authors
proposed a holographic approach in which the scattering
between the photon and the proton is described by the
graviton and dilaton exchanges in five-dimensional anti–de
Sitter space AdS5. The dilaton is dual to the operator F2 in
gauge theory, so the cross section depends on the non-
forward matrix element
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hP0jF2jPi; ð17Þ

whose forward limit P0 → P is related to the trace anomaly.
But this limit is kinematically forbidden, and one has to
perform an extrapolation t ¼ Δ2 → 0. References [2,15]
assumed vector dominance for J=ψ and related the non-
forward matrix element hγðqÞj…jJ=ψðkÞi to a forward
matrix element hJ=ψðkÞj…jJ=ψðkÞi. However, the validity
of vector dominance is unclear for J=ψ [18]. Moreover,
the momentum transfer near threshold is rather large: at the
threshold, jΔj ∼ 1.5 GeV, and this is comparable to the
charm quark mass which is treated as heavy. Instead, we
tend to agree with the observation in [16,17] that the
dependence on t ¼ Δ2 should be that of “two-gluon” form
factors, although the authors of [16,17] did not articulate
what exactly these form factors are. Reference [3] explicitly
showed that these are nothing but the gravitational form
factors (11) and used the bare relation between hF2i and Ag,
Bg, Cg, C̄g. Here we revise the calculation in [3] by using
the renormalized formula (13). Admittedly, this choice
(bare or renormalized) is somewhat arbitrary and cannot be
unambiguously settled in the framework of [3] which does
not rely on QCD factorization. Our choice is pragmatic and
mostly driven by the necessity to match the lattice QCD
results on form factors which are usually presented in the
MS scheme. We note, however, that the difference between
(13) and the one used in [3] is numerically not significant.
The cross section is computed as follows [3]. The

scattering amplitude for the reaction γðqÞpðPÞ →
pðP0ÞJ=ψðkÞ is given by

hPjϵ · JjP0ki ¼ XūðP0Þ½ΠμνΓμν þ YΠμ
μΓ�uðPÞ; ð18Þ

where

Πμνðq; kÞ≡ qðμkνÞϵ · ξþ ϵðμξνÞq · k

− qðμξνÞk · ϵ − kðμϵνÞq · ξ: ð19Þ
qμðkμÞ and ϵμðξμÞ correspond to the momentum and
polarization for γðJ=ψÞ. The first term corresponds to
the graviton exchange, and the second term is from the
dilaton exchange. We shall use the value Y ¼ −11=80 from
the model used in [3]. Explicitly [cf. (13)],

Γμν ¼ ðAR
g þ BR

g ÞγðμP̄νÞ −
P̄μP̄ν

M
BR
g

þ 1

3

�
ΔμΔν

Δ2
− ημν

��
AR
gM þ Δ2

4M
BR
g

�
; ð20Þ

Γ ¼ 1

4

�
ðKgAR

g þ KqAR
q ÞM þ KgBR

g þ KqBR
q

4M
Δ2

− 3
Δ2

M
ðKgCR

g þ KqCR
q Þ þ 4ðKgC̄R

g þ KqC̄R
q ÞM

�
:

ð21Þ

The differential cross section is given by

dσ
dt

¼ αEM
4ðW2 −M2Þ2

1

2

X
pol

1

2

X
spin

jhPjϵ · JjP0kij2; ð22Þ

where W2 ¼ ðPþ qÞ2 and αEM ¼ e2=ð4πÞ. Equation (22)
is proportional to an overall coefficient X2 which is the only
fitting parameter in our model.
We thus use the formula (13) with the following recent

lattice QCD results for AR
g ðt; μÞ and CR

g ðt; μÞ with nf ¼
2þ 1 at μ ¼ 2 GeV [9,19]

AR
g ðt; μÞ ¼

0.58
ð1 − t=m2

AÞ2
; CR

g ðt; μÞ ¼ −
7.2

4ð1 − t=m2
CÞ3

;

ð23Þ

with mA ¼ 1.13 GeV and mC ¼ 0.76 GeV.1 As in [3], we
set Bg to be zero because this form factor is known to be
very small numerically. As for C̄R

g , we use the formula (16)
and present the cross section as a function of the unknown
parameter b defined in (15). The value of the running
coupling is

αsðμ ¼ 2 GeVÞ ¼ 0.30187; ð24Þ

evaluated in the same scheme as in [8].
In Fig. 1, we compare our result with the latest

experimental data from the GlueX Collaboration [6].
The left panel is the energy dependence of the total cross
section σtot where old experimental data points from
Cornell [4] are also included. The right panel is the
differential cross section dσ=dt averaged over a narrow
energy interval 10 < Eγ < 11.8 GeV. The overall normali-
zation is determined from the fit to σtot, and the same
normalization is used in dσ=dt. In [3], it was not possible to
fit the Cornell data, so the authors tried to fit the SLAC data
which are slightly at higher energies (i.e., further away from
the threshold). However, the region of applicability of the
formalism in [3] is really limited to low energies where the
scattering amplitude is dominantly real. It is thus gratifying
to see that we can now give a reasonable description of the
new JLab data. As for dσ=dt, at Eγ ¼ 10.3 GeV our model
lies within the experimental error bars for both b ¼ 0 and
b ¼ 1. However, the difference between b ¼ 0 and b ¼ 1
can be merely distinguished only when −δt ≈ 0. When
Eγ > 10.6 GeV, our result overshoots the measured cross
section. In order to reach a better agreement (or disagree-
ment) between our theoretical result and the experimental
observation, it will be helpful to reduce the interval of

1Reference [9] also fitted the same lattice data in the dipole
form CR

g ðt; μÞ ¼ − 10
4ð1−t=mCÞ2 with mC ¼ 0.48 GeV. The two

choices lead to very similar results. We note that several argu-
ments suggest that the tripole form (23) is preferred [3,20,21].

YOSHITAKA HATTA, ABHA RAJAN, and DI-LUN YANG PHYS. REV. D 100, 014032 (2019)

014032-4



photon energy (say, 10 < Eγ < 10.6 GeV). More impor-
tantly, as already noted in [3], it is highly desirable to go to
even lower energies towards the threshold Eγ ¼ 8.2 GeV,
because then the difference between the red and blue curves
becomes more pronounced.
From the fitting of the total cross section shown in the

left panel, one also finds that the χ2 deviation monoton-
ically decreases when b is reduced within the expected
range 0 ≤ b ≤ 1. Consequently, the maximal anomaly
scenario b ¼ 0 [see (15)] yields the best fit. As a matter
of fact, if we allow for negative b values, although this is at
odds with the known sign of the nucleon sigma term, even
better fits can be obtained. In Fig. 2, we plot χ2 as a function
of b. There is a shallow minimum around b ∼ −1 and our
model is not quite discriminative in the region b≲ 0. What
we can clearly see, however, is that χ2 increases steeply
towards b → 1, so the region b ∼Oð1Þ is disfavored. This
suggests that the F2 term in the trace anomaly dominates
over the quark mass term.
Following (9) and (15), we obtain

M2
g

M2
¼

�
Cgmb

1þ γmðgÞ
þ 2gCgFð1 − bÞ

βðgÞ
�

¼ 0.19bþ 1.23ð1 − bÞ; ð25Þ

with the three-loop formulas for γmðgÞ and βðgÞ. When
b ≤ 0.22, one finds ðMR

g Þ2 ≥ M2 and thus ðMR
q Þ2 ≤ 0. Such

a scenario may be foreseen in (9) given hPjðF2ÞRjPi < 0.
We thus find that, quite interestingly, the quark part of the
trace contributes negatively to the nucleon mass (in the
present regularization scheme). This further emphasizes
the role of gluons as the origin of the nucleon mass.

IV. THRESHOLD J=ψ AND ϒ PRODUCTION IN
ULTRAPERIPHERAL COLLISIONS AT RHIC

In this section, we demonstrate that the threshold
production of J=ψ and ϒ can be studied also at RHIC.
At first sight, this may seem downright impossible since

the RHIC energy
ffiffiffi
s

p ¼ 200 GeV is too large to probe any
threshold effects. Moreover, RHIC is a collider of protons
and heavy nuclei, so superficially it has nothing to do with
the physics of photoproduction.
However, it is well known that a heavy nucleus behaves

as an abundant source of nearly on-shell photons, called
Weiszäcker-Williams photons, in ultraperipheral collisions.
A UPC is an event in which the impact parameter between
the proton and the nucleus is so large that they can interact
only via photons emitted from the nucleus. This process
can therefore mimic the photoproduction limit of ep
scattering. While the UPC event selection is not as clean
as in the case of deep inelastic scattering photoproduction,
the cross section is enhanced by Z2, the atomic number
squared of the nucleus which can be quite large > Oð103Þ.
Moreover, at RHIC one can study the threshold production
of ϒ (the bound state of bb̄) which cannot be done at JLab
because the JLab energy (12 GeV in the proton rest frame)
is below the ϒ production threshold.
In UPCs, the cross section pA → p0A0J=ψðkÞ or pA →

p0A0ϒðkÞ is related to the pγ cross section through the
standard formula

FIG. 1. (Left) Fits of the GlueX data [6] for the total cross section. The red curve corresponds to b ¼ 0 and the blue curve corresponds
to b ¼ 1. (Right) Comparisons between the GlueX data [6] and our model for differential cross sections, where δt ¼ t − tmin. Color
assignments are the same as the left panel, while the solid, dashed, and dot-dashed curves correspond to Eγ ¼ 10, 10.3, and 10.6 GeV,
respectively. The experimental data are taken for 10 < Eγ < 11.8 GeV.

FIG. 2. χ2 as a function of the parameter b.
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σpA ¼
Z

dω
dN
dω

σγp

¼
Z

d3k
2Ekð2πÞ3

d3P0

2EP0 ð2πÞ3
dN
dω

e2

4MK

× ð2πÞ4δð3ÞðP⃗þ q⃗ − P⃗0 − k⃗ÞjhPjϵ · JjP0kij2; ð26Þ

where ω ¼ EP0 þ Ek − EP is the photon energy and

dN
dω

¼2Z2αem
πω

�
ζK0ðζÞK1ðζÞ−

ζ2

2
ðK2

1ðζÞ−K2
0ðζÞ

�
; ð27Þ

is the photon flux. We defined ζ ¼ ω
RpþRA

γ andK ¼ W2−M2

2M ,

with W2 ¼ ðPþ qÞ2 being the pγ center of mass energy.
Rp=A denotes the radius of the proton and nucleus.
We consider pAu collisions at RHIC at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV and work in the pp center-of-mass frame so
that Z ¼ 79, γ ¼ ffiffiffiffiffiffiffiffi

sNN
p

=2M ≈ 100, Rp ≈ 1 fm, and

RA ≈ 8 fm. In this frame, Pμ ¼ ðEP; 0; 0; PÞ (EP ¼
ffiffiffiffiffiffi
sNN

p
2

)
and qμ ¼ ðω; 0; 0;−ωÞ.
The typical value of ω (from ζ ∼ 1) is ω ∼ 2 GeV which

gives W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ qÞ2

p
∼ 28 GeV. This is well above

the Upsilon production threshold W ∼ 10 GeV. Due to
the asymmetry between the photon and proton energies, the
produced quarkonium (ϒ or J=ψ) with mass MQ is
typically found in the very forward region of the incident
proton. Most of them are produced far away from the
threshold. We need to identify the region of phase space
corresponding to threshold production and zoom in on that
region.
Integrating over P⃗0 in (26), we get

σpA ¼ e2

64π2M

Z
d3k
Ek

dN
dω

1

EP0K
jhPjϵ · JjP0kij2; ð28Þ

where EP0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k⃗2

p
. In terms of the rapidity y ¼

1
2
ln Ekþk3

Ek−k3
of the quarkonium, we have d3k=Ek ¼ dyd2k⊥

so that

dσpA

dyd2k⊥
¼ e2

64π2M
dN
dω

1

EP0K
jhPjϵ · JjP0kij2; ð29Þ

or after averaging over the azimuthal angle,

dσpA

dydk2⊥
¼ πe2

64π2M
dN
dω

1

EP0K
jhPjϵ · JjP0kij2: ð30Þ

In this formula,

EP0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥ þ ðP − ω −M⊥

Q sinh yÞ2
q

;

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥ þ ðP − ω −M⊥

Q sinh yÞ2
q

þM⊥
Q cosh y − EP; ð31Þ

where M⊥
Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þM2

Q

q
. The second equation can be

solved for ω and the result is

ω ¼ 2M⊥
QðEP cosh y − P sinh yÞ −M2

Q

2ðEp þ P −M⊥
Qe

yÞ : ð32Þ

The threshold condition is

W2 ¼ M2 þ 2ωðEp þ PÞ > ðM þMQÞ2

→ ω >
MQð2M þMQÞ

2ðEP þ PÞ ≈
�
0.27 GeV ðϒÞ
0.039 GeV ðJ=ψÞ :

ð33Þ

Therefore, the physical region for the kinematical variables
ðy; k2⊥Þ is

2M⊥
QðEP cosh y − P sinh yÞ −M2

Q

2ðEp þ P −M⊥
Qe

yÞ −
MQð2M þMQÞ

2ðEP þ PÞ > 0:

ð34Þ

In the left panel of Fig. 3, we plot the left-hand side of (34)
for J=ψ, MQ ¼ Mψ ¼ 3.10 with M ¼ 0.94, EP ¼ 100,

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
P −M2

p
(all in units of GeV). The threshold region

is the lower-right corner around y≲ 4. The right panel is for
ϒ, MQ ¼ Mϒ ¼ 9.46.
In Fig. 4, left panel, we show the results of J=ψ

production at y ¼ 3.8. We use the same normalization
factor as was used to fit the GlueX data with b ¼ 0 in the
previous section. We immediately notice that the magnitude
of the cross section is quite large, thanks to the enhance-
ment factor Z2 ¼ 6241. The difference between b ¼ 1
and b ¼ 0 becomes quite significant as k⊥ → 0. In the

right panel, we plot the ratio dσpAR ≡ ð dσ̂pA
dydk2⊥

Þ
b¼0

=ð dσ̂pA
dydk2⊥

Þ
b¼1

at k⊥ ¼ 0.5 GeV as a function of the rapidity y. This plot
clearly shows that it is best to focus on the region y≲ 4.
In the case of ϒ, we do not know the normalization

factor, as X in (18) can depend on the quark mass.2

Therefore, we plot the normalized differential cross sec-
tions σ̂pA ≡ σpA=ðαEMX2Þ on the left panel of Fig. 5. In
addition, on the right panel, we plot the ratio of
ðdσ̂pAÞ=ðdydk2⊥Þ with b ¼ 0 to with b ¼ 1 at fixed k⊥.

2If one assumes that the cross section scales as σ ∼ 1=m2
q, one

has σϒ ∼ 0.1σψ , which is not a strong suppression in view of the
large Z2 factor.
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FIG. 4. (Left) The differential cross sections (nb GeV−2) for J=ψ production in UPC at y ¼ 3.8 with varying k⊥ (GeV), where red and

blue curves correspond to b ¼ 0 and b ¼ 1. (Right) The ratio of dσpAR ≡ ð dσ̂pA
dydk2⊥

Þ
b¼0

=ð dσ̂pA
dydk2⊥

Þ
b¼1

for J=ψ at k⊥ ¼ 0.5 GeV.

FIG. 5. (Left) The normalized differential cross sections for ϒ production in UPC at y ¼ 2.9 with varying k⊥ (GeV), where red and

blue curves correspond to b ¼ 0 and b ¼ 1. (Right) The ratio of dσ̂pAR ≡ ð dσ̂pA
dydk2⊥

Þ
b¼0

=ð dσ̂pA
dydk2⊥

Þ
b¼1

at k⊥ ¼ 0.5 GeV.

FIG. 3. Kinematically allowed region of J=ψ (left) and ϒ (right). The horizontal axis is y and the vertical axis is k⊥. The threshold
region is in the lower-right corner.
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It is found that the near threshold cross section is enhanced
with the maximal anomaly at small k⊥ and large rapidity.
Qualitatively, the J=ψ production in UPC shares the similar
properties as the case for ϒ.
We finally note that with the STAR forward upgrade

[10], which covers the pseudorapidity region 2.5 < η < 4,
the above measurement is feasible. Near the threshold,
the produced quarkonium typically has high longitudinal
momentum k3 ∼OðEpÞ. It can be measured through its
decay into a (massless) lepton pair. For a quarkonium with
k⊥ ¼ 0 and k3 ¼ K, the produced leptons have momentum
jk⊥j ¼ MQ=2 and k3 ¼ K=2 so that their pseudorapidity η
is equal to the rapidity y of the parent quarkonium.
Fortunately, the relevant values y≲ 2.9 and y≲ 4 for ϒ
and J=ψ , respectively, turn out to be perfectly within the
coverage of the new detectors.

V. CONCLUSIONS

In this paper, we first updated our previous fit of the J=ψ
photoproduction cross section in [3] in light of the new data
from the GlueX Collaboration [6]. The quality of the fit has
improved significantly, and we can now see a hint that the
parameter b in (15) is small. This suggests that the gluon
condensate ∼hPjF2jPi dominates over the quark conden-
sate hPjmψ̄ψ jPi in the QCD trace anomaly. In the alter-
native decomposition (6), it means that the quark part of
the trace contributes negatively to the nucleon mass. This
observation emphasizes more the role of gluons as the
origin of the nucleon mass. On the other hand, our model
is not discriminative enough to determine the value of b,
and actually, negative values of b are allowed. To fix this
problem, it would be very interesting to explore different
holographic models from the one considered in [3].
We then demonstrated that the threshold production can

be also studied in UPCs at RHIC in future. In addition to

being complementary to the JLab measurements, a big
advantage of RHIC is that one can study the threshold ϒ
production. The challenge is that one has to measure the
quarkonia at very forward rapidities. However, this seems
to be doable after the completion of planned forward
upgrade of the STAR detectors.
Finally, it is worthwhile to comment that, although our

main target in this paper has been the C̄g form factor, the
near threshold cross section is very sensitive to the gluon
D-term

DR
g ðt; μÞ ¼ 4CR

g ðt; μÞ; ð35Þ

which has attracted considerable interest recently [22,23] in
connection to the “pressure” or “radial force” inside the
nucleon. This is because of the explicit prefactorΔ2 in (13),
and Δ is large near threshold. For the present purpose,
the gluon D-term is an obstruction to precisely extract the
C̄g contribution. But turning the logic around, it may be
possible to use the present processes to constrain the
D-term which is poorly known experimentally. We leave
this to future works.
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