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During the past decades, numerous exotic states that cannot be explained by the conventional quark
model have been observed in experiments. Some of them can be understood as two-body hadronic
molecules, such as the famous Xð3872Þ, analogous to deuteron in nuclear physics. Along the same line, the
existence of the triton leaves an open question whether there is a bound state formed by three hadrons.
Since, for a given potential, a system with large reduced masses is easier to use to form a bound state, we
study the BBB� system with the one-pion exchange potential as an exploratory step by solving the three-
body Schrödinger equation. We predict that a trimeson molecular state for the BBB� system is probably
existent as long as the molecular states of its two-body subsystem BB� exist.
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I. INTRODUCTION

In the past few decades, numerous exotic states named
“XYZ” as well as charm-strange mesons beyond the
conventional quark model have been reported by many
experimental collaborations. For a review of these exotic
states, we recommend Refs. [1–16]. Some of them can be
understood in the hadronic molecular picture [12], which is
an analog of the deuteron as a loosely bound state of a
proton and a neutron. In their formation, the one-pion
exchange potential (OPEP) plays an important role, e.g., in
the formation of deuteron and the Xð3872Þ [17,18], due to
its long-range property. Analogously, the existence of the
triton arouses interest in the study of the three-hadron
system, especially after the large accumulation of exper-
imental data, which might give some hints about the
existence of this kind of bound states. In general, to solve
the three-body problem, one should solve the Faddeev
equations rigorously [19–31]. However, for a specific
system, one can do some approximation to simplify the
problem, such as the fixed center approximation (FCA) in
the study of the Xð2175Þ as a resonance of the ϕKK̄ system

[32] and the approximation on unitary chiral dynamics on
the πKK̄ and ππη systems [33]. The FCA has also been
widely applied to other systems, such as the KKK̄ [34]; the
DD̄�K and D̄D�K [35]; the J=ψKK̄ [36]; the NDK, K̄DN,
and NDD̄ [37]; the NK̄K [38]; and the BDD̄ and BDD
[39–41] systems. There are many other studies that employ
the FCA method discussed in Refs. [42–50]. The isobar
familism has also been applied to discuss three-body
systems, such as the strange dibaryon resonance in the
K̄NN − πσN system [51], the effect of the Δð1236Þ isobar
on the three nucleon bound states [52], and other systems
[41,53–55]. The dimer familism is another approximation
method for a three-body system where a composite field is
introduced to describe its two-body subsystem when
rescattering with a third particle, which has been applied
to the three-hadron systems [56–59]. Recently, a series of
studies [60–62] of a three-particle system in a finite volume
via the dimer field have been proposed to gain insights
about a three-body system in a discretized space such as
used in lattice QCD. It is worth mentioning that the system
BB�B� − B�B�B� has been studied recently in Ref. [63]
based on the colored interaction for its subsytems. By
solving exactly the Faddeev equations for the trimeson
system, the authors find a bound state about 90 MeV below
the three B mesons threshold. Similar discussions on the
ΩNN and ΩΩN systems can be found in Ref. [64].
As discussed above, the OPEP plays an important role in

binding the two-hadron system. From another point of view,
one can view it as a pion shared by the two constituents and
form a bound state. It can be regarded as a bond similar to the
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σ bond in hydrogenmolecules. There is another kind of bond
called the delocalized π bond universally existing in benzene
molecules, which is a pair of electrons shared by the six
carbon atoms. A simple extension is replacing the carbon
atoms by hadrons. We have studied the role of the delocal-
ized π bond in forming the three-body bound state for the
double heavy trimeson systems, i.e.,DD�K,DD̄�K, BB�K̄,
andBB̄�K̄ [65], based on the sufficient information of it sub-
two-body system and the Born-Oppenheimer approxima-
tion (BOA), which works well for a system with several
heavy and light particles [66]. The crucial idea is to use the
Born-Oppenheimer (BO) potential for considering the
influence of the light part on the dynamics of the heavy
part. Therefore, it is a fascinating idea whether the delocal-
ized π bond and the BOA could be applied to a three-heavy
system, such as theBBB� systemwith a large reducedmass.
The same three bottomed meson system has been studied

inRef. [58] by calculating the scattering amplitudes between
the Zbð10610Þ or the Zbð10650Þ and the bottomed meson.
The universal bound states of three bottomed mesons
from the Efimov effect has been ruled out. As in their
calculation, only the contact interaction is included that
might be the reasonwhy they do not find a bound state. After
including the long-range OPEP, the case might be different.
Thus we solve the three-body Schrödinger equation to
discuss the BBB� system by considering the OPEP.
Without an assumption about its two-body subsystem,
i.e., the molecular nature of the Zbð10610Þ or Zbð10650Þ,
we focus on the three-body bound state as a function of the
binding energy of its subsystem. Hopefully, the present
extensive investigations will be useful to deepen our under-
standing of a system made of three-heavy particles.
This paper is organized as follows. After the Introduc-

tion, the formalism and the inputs for the BBB� system are
presented in Sec. II. The dynamics of the two-body
subsystem and the corresponding BO potential are given
in Secs. III and IV, respectively. By constructing proper
interpolating wave functions for the BBB� in Sec. V, we
solve the three-body Schrödinger equation in Sec. VI.
Numerical results and discussions are given in the follow-
ing section. The summary is presented in the last section.
Some technicalities are relegated to Appendix.

II. FORMALISM AND THE INPUTS

The BOA has been successfully used in a few-body
system with several heavy and light particles [66,67]. For a
three-body system with one light and two heavy mesons,
such as theDD�K [65] system, the three-body Schrödinger
equation is divided into two subequations: one is the
motion of the light meson with two static sources, and
the other one is the equation for the two heavy mesons with
the BO potential [65], which reflects the influence of the
light meson on the dynamics of the two heavy mesons. If
the interaction between the light meson and the heavy
meson is attractive, it would make the two heavy mesons

come closer, thus facilitating the formation of a bound state
of the whole system. However, for a three-heavy meson
system, although the application of BOA is not straightfor-
ward, one can employ the underlying permutation sym-
metry, whichmeans the corresponding dynamics is invariant
under the interchange of any two constituents, for the system
and continue to use the BOA for the calculation.
The OPEP indicates that there is only one virtual pion

exchanged by any two constituents as shown in Fig. 1. One
can use a, b, and c to label the three mesons in the original
channel, i.e., B�

aBbBc. It changes into BaB�
bBc via one-pion

exchange (OPE) between a and b, and the channel BaB�
bBc

changes into BaBbB�
c through the OPE between b and c.

When the virtual pion arises between a and c, it returns to
the original channel B�

aBbBc. Within this scenario, the
virtual pion is not localized between any two constituents
but rather shared by the whole system. It is very similar
with the benzene molecule that has a pair of electrons
shared by the six carbon atoms, which is called delocalized
π bond in molecular physics. Since the three constituents
have the same probability to be the B and B� mesons, one

can write the system as Bð�Þ
a Bð�Þ

b Bð�Þ
c . Furthermore, the order

of the a, b, and c labels of the three mesons is artificial, as
the system is invariant under the interchange of a, b, and c.
This interchange symmetry will help to simplify our
calculations. The point is that one can count the influence
of each heavy meson on the dynamics of the other two
mesons one by one. In otherwords, we can divide the system
into three two-body subsystems ab, bc, and ac. In each
subsystem, one should add the BO potential from the
remaining one. The existence of a negative common
eigenvalue for the three subsystems may partly answer
whether there is a three-body bound state for the three-heavy
systems. For simplicity, we call this method the Born-
Oppenheimer potential method (BO potential method).
Before performing the calculation, we define the isospin

wave functions of the BBB� systems as jI2; I3; I3zi with I2
the isospin of the sub-BB� system. I3 and I3z represent the
total isospin of the three-body system and its z direction,
respectively. One thus obtains the isospin wave functions of
the BBB� system,

FIG. 1. Dynamical illustration of the BBB� system with a circle
describing the delocalized π bond inside. Since the three
constituents have the same probabilities to be the B and B�,
one can rewrite the system as Bð�Þ

a Bð�Þ
b Bð�Þ

c .
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����1; 32 ; 32
�

¼ jðBþB�þÞBþi;����1; 32 ;− 3

2

�
¼ jðB0B�0ÞB0i;����1; 32 ; 12

�
¼ 1ffiffiffi

3
p ½jðBþB�0ÞBþi þ jðB0B�þÞBþi

þ jðBþB�þÞB0i�;����1; 32 ;− 1

2

�
¼ 1ffiffiffi

3
p ½jðB0B�0ÞBþi þ jðBþB�0ÞB0i

þ jðB0B�þÞB0i�;����1; 12 ; 12
�

¼ 1ffiffiffi
6

p ½2jðBþB�þÞB0i − jðB0B�þÞBþi

− jðBþB�0ÞBþi�;����1; 12 ;− 1

2

�
¼ 1ffiffiffi

6
p ½jðB0B�þÞB0i þ jðBþB�0ÞB0i

− 2jðB0B�0ÞBþi�;����0; 12 ; 12
�

¼ 1ffiffiffi
2

p ½jðB0B�þÞBþi − jðBþB�0ÞBþi�;����0; 12 ;− 1

2

�
¼ 1ffiffiffi

2
p ½jðB0B�þÞB0i − jðBþB�0ÞB0i�:

Since BB� can couple with B�B� via OPE, the coupled
channel effect is not negligible. We only consider the next
close BB�B� channel in our calculation. If we distinguish
the specific locations of the constituents as a, b, and c, there
are six channels in total, i.e., B�

aBbBc, BaB�
bBc, BaBbB�

c,
B�
aB�

bBc, B�
aBbB�

c, and BaB�
bB

�
c.

The Lagrangians with SU(2) chiral symmetry (we only
consider OPE) and C-parity conservation read

LP¼−i
2g
fπ

M̄P�μ
b ∂μϕbaP

†
aþ i

2g
fπ

M̄Pb∂μϕbaP
�μ†
a

−
g
fπ

P�μ
b ∂αϕba∂βP�ν†

a ϵμναβþ
g
fπ

∂βP�μ
b ∂αϕbaP

�ν†
a ϵμναβ;

ð1Þ

fLP¼−i
2g
fπ

M̄fP†
a∂μϕab

fP�μ
b − i

2g
fπ

M̄ gP�μ†
a ∂μϕab

fPb

þ g
fπ

∂β gP�μ†
a ∂αϕab

fP�ν
b ϵμναβ−

g
fπ

gP�μ†
a ∂αϕab∂β fP�ν

b ϵμναβ;

ð2Þ

where the heavy flavor meson fields P and P� represent
P ¼ ðB−; B̄0Þ and P� ¼ ðB�−; B̄�0Þ, respectively. Its corre-
sponding heavy antimeson fields P̃ and P̃� represent P̃ ¼
ðBþ; B0Þ and P̃� ¼ ðB�þ; B�0Þ. ϕ is the pion matrix

ϕ ¼
0
@ π0ffiffi

2
p πþ

π− − π0ffiffi
2

p

1
A: ð3Þ

We use the pion decay constant fπ ¼ 132 MeV [68]. The
pionic coupling constant g ¼ 0.57 is extracted from the
width of D�þ by assuming heavy quark flavor symmetry
[69]. All the parameters and input data are listed in Table I.
Here, we neglect the isospin breaking effect and use the
masses of their charged particles.
Under SU(2) chiral symmetry, the OPE interaction is of

order Oðp0Þ for the three-body system. In this paper, we
only take into account the OPEP to the Oðp0Þ order. Thus,
there are four kinds of effective potentials. We use V1 to
denote the effective potential for the interaction
BB� → B�B. V2 and V 0

2 denote the process BB� → B�B�
and its reverse, respectively. V3 represents diagonal process
B�B� → B�B�. Since the interactions are physical, the
effective potentials should be unitary, which gives V 0

2 ¼
ðV2Þ†. ⃗rij is used to denote the relative displacement between
the ith and jth particles. Thus, the effective potentials of
the three-body system in the channel space jBBBi ≔
fB�

aBbBc; BaB�
bBc; BaBbB�

c; B�
aB�

bBc; B�
aBbB�

c; BaB�
bB

�
cg

take the following form:

VBBB� ¼

0
BBBBBBBBB@

0 V1ð⃗rabÞ V1ð⃗racÞ V2ð⃗rabÞ V2ð⃗racÞ 0

V1ð⃗rbaÞ 0 V1ð⃗rbcÞ V 0
2ð⃗rbaÞ 0 V2ð⃗rbcÞ

V1ð⃗rcaÞ V1ð⃗rcbÞ 0 0 V 0
2ð⃗racÞ V 0

2ð⃗rbcÞ
V2ð⃗rbaÞ V 0

2ð⃗rabÞ 0 V3ð⃗rabÞ V1ð⃗rbcÞ V1ð⃗racÞ
V2ð⃗rcaÞ 0 V 0

2ð⃗rcaÞ V1ð⃗rcbÞ V3ð⃗racÞ V1ð⃗rabÞ
0 V2ð⃗rcbÞ V 0

2ð⃗rcbÞ V1ð⃗rcaÞ V1ð⃗rbaÞ V3ð⃗rbcÞ

1
CCCCCCCCCA
: ð4Þ

Its graphical illustration is shown in Fig. 2.

TABLE I. The coupling constants and meson masses in our
calculation. The meson masses are taken from the PDG [69].

Mass [MeV] Coupling constants

mπ ¼ 139 g ¼ 0.57
MB ¼ 5279 fπ ¼ 132.00 MeV
MB� ¼ 5325
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III. THE BREAKUP STATE AND TWO-BODY
SUBSYSTEM

For the three bottomed meson system, suppose one of the
constituents is infinitely away from the remaining two
mesons. The system can be divided into a two-body
subsystem plus a free meson. A bound state solution of
the two-body subsystem indicates a breakup state for the
three-body system, i.e., a two-body bound state plus a free

meson. In the OPE model, as there is no direct interaction
between two B mesons, one could expect a breakup state
with the subsystem BB� with quantum number JP ¼ 1þ
and a free meson B. We can detach the subsystem BaB�

b
first and explore its binding solution. The Hamiltonian
of the subsystem in the channel space jBBBi ≔
fB�

aBbBc; BaB�
bBc; BaBbB�

c; B�
aB�

bBc; B�
aBbB�

c; BaB�
bB

�
cg

reads

Hab ¼

0
BBBBBBBBBB@

T� V1ð⃗rabÞ 0 V2ð⃗rabÞ 0 0

V1ð⃗rbaÞ T� 0 V 0
2ð⃗rbaÞ 0 0

0 0 T 0 0 0

V2ð⃗rbaÞ V 0
2ð⃗rabÞ 0 T�� þ V3ð⃗rabÞ þ δM 0 0

0 0 0 0 T� þ δM V1ð⃗rabÞ
0 0 0 0 V1ð⃗rbaÞ T� þ δM

1
CCCCCCCCCCA
; ð5Þ

where T�¼−ð1=2μ�Þ∇2
ab and T��¼−ð1=2μ��Þ∇2

ab are the
relative kinetic energies for theBB� andB�B� in their center-
of-mass frame, respectively, with μ�¼ðMBMB� Þ=ðMBþMB� Þ,
μ�� ¼ ðMB� Þ=2,and ∇2

ab¼ð1=rabÞðd2=dr2abÞrab−ðLab
�!2Þ=

ðr2abÞ. Here Lab
�!

is the angular momentum operator between
mesons a and b.We also have themass gap δM¼MB� −MB.
The effective potentials V1, V2, V 0

2, and V3 depend on the
isospin of the specific channels; thuswe rewrite theBB�wave
functions with fixed isospin

j1; 1i ¼ jBþB�þi;
j1;−1i ¼ jB0B�0i;

j1; 0i ¼ 1ffiffiffi
2

p ½jBþB�0i þ jB0B�þi�;

j0; 0i ¼ 1ffiffiffi
2

p ½jBþB�0i − jB0B�þi�:

FIG. 2. The leading order OPE diagrams for the transitions among the relevant three-body channels, i.e., B�
aBbBc, BaB�

bBc, BaBbB�
c,

B�
aB�

bBc, B�
aBbB�

c, and BaB�
bB

�
c. The solid and bold solid lines represent the B and B� meson fields, respectively. Dotted lines represent

pion fields.
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For the specific channels B�
aBb, BaB�

b, and B�
aB�

b, the
Schrödinger equation in the channel space fB�

aBb; BaB�
b;

B�
aB�

bg takes the form0
BB@

T� V1ð⃗rabÞ V2ð⃗rabÞ
V1ð⃗rbaÞ T� V 0

2ð⃗rbaÞ
V2ð⃗rbaÞ V 0

2ð⃗rabÞ T�� þ V3ð⃗rabÞ þ δM

1
CCA

×

0
BB@

1ffiffi
2

p ψ ð⃗rabÞ
1ffiffi
2

p ψ ð⃗rabÞ
ψ 0ð⃗rabÞ

1
CCA ¼ Eb

0
BB@

1ffiffi
2

p ψ ð⃗rabÞ
1ffiffi
2

p ψ ð⃗rabÞ
ψ 0ð⃗rabÞ

1
CCA:

Based on this, we can derive the scattering amplitude at
the tree level

hfjSjii ¼ δfi þ ð2πÞ4δ4ðpf − piÞiMfi

¼ δfi − 2πδðEf − EiÞiVfi; ð6Þ

where the T matrix is the interaction part of the S matrix
and theM is defined as the invariant matrix element. In the
second equation we have applied the first order of Born
series expansion on the Lippmann-Schwinger equation
with Vfi being the effective potential. The relation between
the scattering amplitude Mfi and the potential Vfi is

Vfi ¼ −
MfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

f2pf
0
Q

i2pi
0

q ≈ −
MfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

f2mf
Q

i2mi

q ; ð7Þ

where pfðiÞ and mfðiÞ denote the four-momentum and the
mass of the final (initial) state.
In the calculation, p1ðE1; p⃗Þ and p2ðE2;−p⃗Þ denote the

four-momenta of the initial state particles in the center-of-

mass system shown in Fig. 3, while p0
1ðE0

1; p⃗
0Þ and

p0
2ðE0

2;−p⃗0Þ denote the four-momenta of the final state

particles, respectively. q ¼ p0
1 − p1 ¼ ðE0

1 − E1; p⃗0 − p⃗Þ ¼
ðE2 − E0

2; q⃗Þ is the transferred four-momentum. For

convenience, we always use q⃗ ¼ p⃗0
1 − p⃗1 and ⃗k ¼

ðp⃗0
1 þ p⃗1Þ=2 instead of p⃗0 and p⃗ in the calculations.

The effective potential in coordinate space can be derived
by Fourier transformation

V ð⃗rÞ ¼ 1

ð2πÞ3
Z

d3q⃗eiq⃗·⃗rVðq⃗F2ðq⃗Þ:

To take into account in a rough way the substructure of each
vertex, a monopole form factor

FiðqÞ ¼
Λ2 −m2

π

Λ2 − q2i
¼ Λ2 −m2

π

Λ̃2
i þ q⃗2i

; ð8Þ

with mπ the pion mass and

Λ̃ð0Þ2 ¼ Λ2 − ðΔMð0ÞÞ2; ð9Þ

is used to suppress the contribution from UV energies.
Here, ΔM ¼ M�

B −MB and ΔM0 ¼ ðM�
B −MBÞ=2. As the

parameter Λ is related to nonperturbative QCD, it cannot
be well determined. Here we only explore its effect on
the binding energy of the BB� with the quantum number
JP¼1þ system. To solve the time-independent Schrödinger
equation in coordinate space, the potential Vðq⃗; ⃗kÞ in
momentum space can be transformed into that in coordinate
space as shown in Appendix.
The isosinglet and isotriplet BB� potentials VBB�→BB� ð⃗rÞ

in coordinate space are shown in Figs. 4(a) and 4(b),
respectively, with Λ ¼ 1440 MeV. The isosinglet potential
VBB�→BB� ð⃗rÞ is repulsive, which does not indicate a bound
solution. Nevertheless, the potential VBB�→B�B� ð⃗rÞ for the
isosinglet is attractive as shown in Fig. 5. So there is still
the possibility of a binding solution. On the contrary, the
isotriplet potential VBB�→BB� ð⃗rÞ is attractive, while its
potential VBB�→B�B� ð⃗rÞ is repulsive. These potentials in
coordinate space can be expressed as

VBB�→BB� ðr⃗Þ ¼ −Cπði; jÞ
g2

12πf2π

�
ϵ⃗ · ϵ⃗†

�
m̃2

πΛ̃YðΛ̃rÞ

− m̃3
πYðm̃πrÞ þ ðΛ2 −m2

πÞΛ̃
e−Λ̃r

2

�

þ STðϵ⃗†3; ϵ⃗2Þ
�
−m̃3

πZðm̃πrÞ þ Λ̃3ZðΛ̃rÞ

þ ðΛ2 −m2
πÞð1þ Λ̃rÞ Λ̃

2
YðΛ̃rÞ

�	
; ð10Þ

(a) (b) (c)

FIG. 3. The u-channel Feynman diagrams for describing both the BB� and the B�B� system interactions at tree level. The regular and
bold lines stand for the B and the B� fields, respectively. The dotted lines denote the pion fields.
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VBB�→B�B� ð⃗rÞ ¼ Cπði; jÞ
g2

12πf2π

�
ð⃗ϵ3 · i⃗ϵ†4 × ⃗ϵ2Þ

�
m̃02

πΛ̃0YðΛ̃0rÞ − m̃03
πYðm̃0

πrÞ þ ðΛ2 −m2
πÞΛ̃0 e

−Λ̃0r

2

�

þ ST ð⃗ϵ3; i⃗ϵ†4 × ⃗ϵ2Þ
�
−m̃03

πZðm̃0
πrÞ þ Λ̃03ZðΛ̃0rÞ þ ðΛ2 −m2

πÞð1þ Λ̃0rÞ Λ̃
0

2
YðΛ̃0rÞ

�	
; ð11Þ

VB�B�→B�B� ð⃗rÞ ¼ Cπði; jÞ
g2

12πf2π

�
ði⃗ϵ†3 × ⃗ϵ1 · i⃗ϵ

†
4 × ⃗ϵ2Þ

�
m2

πΛYðΛrÞ −m3
πYðmπrÞ þ ðΛ2 −m2

πÞΛ
e−Λr

2

�

þ STði⃗ϵ†3 × ⃗ϵ1; i⃗ϵ
†
4 × ⃗ϵ2Þ

�
−m3

πZðmπrÞ þ Λ3ZðΛrÞ þ ðΛ2 −m2
πÞð1þ ΛrÞΛ

2
YðΛrÞ

�	
; ð12Þ

with m̃ð0Þ2
π ¼ m2

π − ΔMð0Þ2. The tensor operator ŜT has the
form ŜT ¼ 3ð⃗r · ˆϵ⃗bÞð⃗r · ˆϵ⃗a†Þ − ˆϵ⃗b · ˆϵ⃗a

† with ϵ the polariza-
tion vector of B�. The Cπði; jÞ are channel dependent
coefficients, summarized in Table II. The c in Table II
represents the C parity of the corresponding channel.
Since the tensor operator ŜT leads to S-D wave mixing,

the contributions from the D wave should be taken into
account. Thus the wave function Ψð⃗rÞ has two parts

Ψð⃗rÞ ¼ ψSð⃗rÞ þ ψDð⃗rÞ; ð13Þ

(a) (b)

FIG. 5. The effective potentials for the Swave of the BB� system with quantum number JP ¼ 1þ, where (a) and (b) correspond to the
isospin I ¼ 0 and I ¼ 1 cases, respectively. The V1ss, V2ss, and V3ss are the effective potentials VBB�→BB� ð⃗rÞ, VBB�→B�B� ð⃗rÞ, and
VB�B�→B�B� ð⃗rÞ for the S wave, respectively. For illustration, the value 1440 MeV is used for the parameter Λ.

(a)

(b)

FIG. 4. The effective potentials VBB�→BB� ð⃗rÞ of the BB� system with quantum number JP ¼ 1þ, where (a) and (b) correspond to the
isospin I ¼ 0 and I ¼ 1 cases, respectively. The Vss and Vdd are the effective potentials for the S wave and D wave. The Vsd represents
the effective potential of S-D wave mixing. For illustration, the value 1440 MeV is used for the parameter Λ.

TABLE II. Channel dependent coefficients. Here, c denotes the
C parity of the two-body system.

Channel Isospin Cði; jÞ Channel Cði; jÞ
BB� I ¼ 1 1=2 BþB�þ 1=2

I ¼ 0 −3=2 BþB�0 −1=2
BB̄� I ¼ 1 c=2 B0B�þ −1=2

I ¼ 0 −3c=2 B0B�0 1=2
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with ψSð⃗rÞ and ψDð⃗rÞ the S wave and D wave functions,
respectively. In the matrix method, we use Laguerre
polynomials

χnlðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2λÞ2lþ3n!

Γð2lþ3þnÞ

s
rle−λrL2lþ2

n ð2λrÞ; n¼1;2;3;…;

ð14Þ
as a set of orthogonal basis with the normalization conditionZ

∞

0

χimðrÞχinðrÞr2dr ¼ δijδmn: ð15Þ

Thus the total wave function can be expanded as

ψ ð⃗rÞ ¼
Xn−1
i¼0

aiχi0ðrÞϕS þ
Xn−1
p¼0

bpχp2ðrÞϕD;

ψ 0ð⃗rÞ ¼
Xn−1
i¼0

a0iχi0ðrÞϕS þ
Xn−1
p¼0

b0pχp2ðrÞϕD;

whereϕS and ϕD are the angular parts of the spin and orbital
wave function for the Swave (3S1) andDwave (3D1) states,

respectively. að0Þi and bð0Þi are the corresponding expansion
coefficients of the S wave and D wave, respectively. After
solving the coupled-channel Schrödinger equation with the
S-D wave mixing, we obtain the binding energy Eb and its
corresponding wave function ΨðΛ; ⃗rabÞ for a given param-
eter Λ. Thus the wave function has the form

ΨðΛ; ⃗rabÞ ¼
1ffiffiffi
2

p ψðΛ; ⃗rabÞjBaB�
bi þ

1ffiffiffi
2

p ψðΛ; ⃗rabÞjB�
aBbi

þ ψ 0ðΛ; ⃗rabÞjB�B�i: ð16Þ

Here, the wave function ΨðΛ; ⃗rabÞ is normalized. If we
choose the value of the parameter Λ ¼ 1440 MeV, for
instance, one finds a loosely bound state for the isospin
triplet system with a binding energy of 5.08 MeV, when the
quantum number is JP ¼ 1þ. There is also a loosely bound
state for the isospin singlet system, when the quantum
number is JP ¼ 1þ. If the value of the parameter is chosen at
Λ ¼ 1107.7 MeV, the isospin singlet and triplet systems
have the same binding energy of 5.08MeV. The dependence

of the binding energy on the parameter Λ will be given in
Tables IV and V and discussed in Sec. VII.

IV. BORN-OPPENHEIMER POTENTIAL

As discussed in Sec. II, the BO potential reflects the
influence of one of the mesons on the dynamics of the other
two. For the BBB� (labeled as a, b, and c) system, one can
derive the BO potential from a for the bc system. The
procedure is divided into the following three steps:

(i) Considering that the particle b and c are static with
the separation rbc, one can separate the degree of
freedom (d.o.f.) of a from the three-body system.

(ii) We assume the distance rbc is a parameter. The
mesons b and c are static, and have one-pion
interactions with meson a, which can be viewed
as two static sources.

(iii) We explore the dynamics for the meson a in the limit
rbc → ∞ and subtract the binding energy for the
breakup state, which is trivial for the three-body
bound state.

Within this scheme, we divide the motion of the system into
two parts, one is the motion of the meson a relative to the
mesons b and c. The other one is the relative motion
between mesons b and c in the presence of the BO potential
from a.
As illustrated in Fig. 6, we use ⃗rbc to denote the relative

displacement between b and c. Further, ⃗rab and ⃗rac
represent the displacement of the meson a relative to the
mesons b and c, respectively. One can separate the effective
potentials for the meson a,

Va ¼

0
BBBBBBBBB@

0 V1ð⃗rabÞ V1ð⃗racÞ V2ð⃗rabÞ V2ð⃗racÞ 0

V1ð⃗rbaÞ 0 0 V 0
2ð⃗rbaÞ 0 0

V1ð⃗rcaÞ 0 0 0 V 0
2ð⃗racÞ 0

V2ð⃗rbaÞ V 0
2ð⃗rabÞ 0 V3ð⃗rabÞ 0 V1ð⃗racÞ

V2ð⃗rcaÞ 0 V 0
2ð⃗rcaÞ 0 V3ð⃗racÞ V1ð⃗rabÞ

0 0 0 V1ð⃗rcaÞ V1ð⃗rbaÞ 0

1
CCCCCCCCCA

ð17Þ

(a) (b)

FIG. 6. Illustration of the BO potential. (a) The calculation
procedure of the BO potential. (b) The role of the BO potential
from the meson a on the dynamics of the bc two-body system.
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from Eq. (4). The remaining part,

Vbc ¼

0
BBBBBBBBB@

0 0 0 0 0 0

0 0 V1ð⃗rbcÞ 0 0 V2ð⃗rbcÞ
0 V1ð⃗rcbÞ 0 0 0 V 0

2ð⃗rbcÞ
0 0 0 0 V1ð⃗rbcÞ 0

0 0 0 V1ð⃗rcbÞ 0 0

0 V2ð⃗rcbÞ V 0
2ð⃗rcbÞ 0 0 V3ð⃗rbcÞ

1
CCCCCCCCCA
; ð18Þ

in Eq. (4) is the potential between b and c. As discussed in the previous section, one can obtain the two-body binding
energy

E2 ¼



1ffiffiffi
2

p ψ ð⃗rabÞ;
1ffiffiffi
2

p ψ ð⃗rabÞ;ψ 0ð⃗rabÞ
�0BB@

T� V1ð⃗rabÞ V2ð⃗rabÞ
V1ð⃗rbaÞ T� V 0

2ð⃗rbaÞ
V2ð⃗rbaÞ V 0

2ð⃗rabÞ T�� þ V3ð⃗rabÞ

1
CCA
0
BB@

1ffiffi
2

p ψ ð⃗rabÞ
1ffiffi
2

p ψ ð⃗rabÞ
ψ 0ð⃗rabÞ

1
CCA

¼ ψ ð⃗rabÞT�ψ ð⃗rabÞ þ ψ 0ð⃗rabÞT��ψ 0ð⃗rabÞ þ ψ ð⃗rabÞVab
1 ψ ð⃗rabÞ þ 2

ffiffiffi
2

p
ψ ð⃗rabÞVab

2 ψ 0ð⃗rabÞ þ ψ 0ð⃗rabÞVab
3 ψ 0ð⃗rabÞ: ð19Þ

The ψ ð⃗rabÞ and ψ 0ð⃗rabÞ in the above equation are the eigenstate wave functions in Eq. (16).
In the OPE model, as the virtual pion can only be exchanged between two of the BBB� subsystems, the wave function of

a can be either 1ffiffi
2

p ψ ð⃗rabÞjB�
aBbBci þ 1ffiffi

2
p ψ ð⃗rabÞjBaB�

bBci þ ψ 0ð⃗rabÞjB�
aB�

bBci with pion exchanged between a and b or
1ffiffi
2

p ψ ð⃗racÞjB�
aBbBci þ 1ffiffi

2
p ψ ð⃗racÞjBaBbB�

ci þ ψ 0ð⃗racÞjB�
aBbB�

ci with pion exchanged between a and c. The final wave

function for the meson a should be the superposition of these two components

ψ ð⃗rab; ⃗racÞ ¼ C

��
1ffiffiffi
2

p ψ ð⃗rabÞ þ
1ffiffiffi
2

p ψ ð⃗racÞ
�
jB�

aBbBci þ
1ffiffiffi
2

p ψ ð⃗rabÞjBaB�
bBci

þ 1ffiffiffi
2

p ψ ð⃗racÞjBaBbB�
ci þ ψ 0ð⃗rabÞjB�

aB�
bBci þ ψ 0ð⃗racÞjB�

aBbB�
ci
	
: ð20Þ

For simplicity, we neglect the mass difference for BB� and B�B� in the kinetic operator, i.e., T�� ≈ T�. Then the
Hamiltonian of the meson a is

Ha ≈

0
BBBBBBBBBB@

T� V1ð⃗rabÞ V1ð⃗racÞ V2ð⃗rabÞ V2ð⃗racÞ 0

V1ð⃗rbaÞ T 0 V 0
2ð⃗rbaÞ 0 0

V1ð⃗rcaÞ 0 T 0 V 0
2ð⃗racÞ 0

V2ð⃗rbaÞ V 0
2ð⃗rabÞ 0 T� þ V3ð⃗rabÞ 0 V1ð⃗racÞ

V2ð⃗rcaÞ 0 V 0
2ð⃗rcaÞ 0 T� þ V3ð⃗racÞ V1ð⃗rabÞ

0 0 0 V1ð⃗rcaÞ V1ð⃗rbaÞ T�

1
CCCCCCCCCCA
: ð21Þ

Accordingly, one can obtain the energy eigenvalue of the meson a,

EaðΛ; ⃗rbcÞ ¼ hψ ð⃗rab; ⃗racÞjHajψ ð⃗rab; ⃗racÞi

¼ 1

1þ 1
2
hψ ð⃗rabÞjψ ð⃗racÞi

�
E2 þ

1

2
hψ ð⃗rabÞjT�jψ ð⃗racÞi þ hψ ð⃗rabÞjVba

1 jψ ð⃗racÞi þ
ffiffiffi
2

p
hψ 0ð⃗rabÞjVba

2 jψ ð⃗racÞi
�
;

where in the second step Eq. (19) and the symmetry between b and c are used. Since both the two-body energy eigenvalue
E2 and the wave functions ψb and ψc depend on the parameter Λ, Ea is also a function of Λ.
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We take the parameter Λ ¼ 1440 MeV as an example
and plot Ea for the isospin triplet of the BB� system in
Fig. 7(a). As shown in the figure, the energy of the meson a
has a minimum −17.65 MeV when rbc ¼ 0, which corre-
sponds to the limit that the mesons b and c are on top
of each other and the system is reduced to the bc-a quasi-
two-body system. When rbc → ∞, then Ea tends to the
two-body energy eigenvalue E2, i.e., −5.08 MeV. This
corresponds to the situation that the meson b is infinitely far
away from the meson c. Then the meson a can only form a
two-body bound state with either b or c. It is not a three-
body bound state anymore, but rather a two-body bound
state plus a free meson state. In fact, this is nothing but the
breakup state that we have discussed in the earlier sections.
We also plot Ea for the isospin triplet of the BB� system in
Fig. 8(a), taking the parameter Λ ¼ 1107.7 MeV. Similar
to the above, Ea tends to the two-body energy eigenvalue
−5.08 MeV. Therefore, we should subtract the limiting
value E2 when investigating the three-body bound state for
the BBB� system. We define the BO potential as

VBOðΛ; ⃗rbcÞ ¼ EaðΛ; ⃗rbcÞ − E2ðΛÞ: ð22Þ

In other words, the BO potential between b and c is the
energy eigenvalue of the meson a relative to that of the
breakup state.

V. THE CONFIGURATIONS OF THE
THREE-BODY SYSTEMS

In the OPE model, there is only one pion exchanged
between any two constituents in the BBB� system. The
constituents will change themselves from vector mesons
into pseudoscalar mesons or vice versa when they exchange
one pion. Each constituent has the same probability to
be a vector meson or a pseudoscalar meson. Thus, the
symbol * is shared among them. Since only one virtual pion
occurs in the BBB� molecule, the virtual pion can also be
shared by the three mesons. We can thus write the BBB�

as Bð�Þ
a Bð�Þ

b Bð�Þ
c .

The BO potential can describe the contribution for the
one meson on the dynamics of the two remaining mesons as
we have discussed in the last section. Assuming that the
mesons b and c are much heavier than the meson a, then we
can use the Born-Oppenheimer approximation to separate
the d.o.f. of a from the three-body system. In other words, it

(a) (b)

FIG. 7. The energy eigenvalue of the meson a and its corresponding BO potential for the isospin triplet of the BB� system. (a) The
energy eigenvalue of the meson a. When rbc → ∞, Ea tends to the two-body energy eigenvalue E2 ¼ EBB�

I¼1 , i.e., the energy eigenvalue
of the breakup state. The right panel gives the BO potential VBO. Here we chose the parameter Λ ¼ 1440 MeV.

(a) (b)

FIG. 8. The energy eigenvalue of the meson a and its corresponding BO potential for the isospin singlet of the BB� system. (a) The
energy eigenvalue of the meson a. When rbc → ∞, Ea tends to the two-body energy eigenvalue E2 ¼ EBB�

I¼0 , i.e., the energy eigenvalue
of the breakup state. The right panel gives the BO potential VBO. Here we chose the parameter Λ ¼ 1107.7 MeV.
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is a kind of an adiabatic approximation that we divide the
d.o.f. of the three-body system into a light one and a heavy
one. The motion of the light d.o.f. is the motion of meson a
relative to the three-body center of mass. The motion of
the heavy d.o.f. is the relative motion between meson b
and c. When exploring the dynamics for meson a, we can
assume mesons b and c are static with the distance rbc.
Then the three-body system can be simplified as a two-
body system consisting of mesons b and c but with an
additional BO potential generated by meson a. Overall,
only meson a can be separated from the system due to the
fact that this meson is much lighter than the other ones. A
separation in this way can be a good approximation for
this system. With the same procedure that we derived in
Eq. (20), we obtain the wave functions ψðr⃗ab; r⃗acÞ for
meson a. The remaining d.o.f. is the relative motion
between mesons b and c that can be described by a wave
function assumed as Φðr⃗beÞ, to be determined from the
Schrödinger equation. Then the total wave function of the
system has the form

ΨT ¼ Φð⃗rbcÞψ ð⃗rab; ⃗racÞ:

Nevertheless, the true system Bð�Þ
a Bð�Þ

b Bð�Þ
c is that the three

mesons have little mass difference. Every meson can be
considered to be a lighter one and separated from the
three-body system. Thus, the system has the three basic
simplification schemes. That is, we can divide the system

Bð�Þ
a Bð�Þ

b Bð�Þ
c into three kinds of two-body subsystems, i.e.,

Bð�Þ
a Bð�Þ

b with the BO potential created by meson c,

Bð�Þ
b Bð�Þ

c with the BO potential created by meson a, and

Bð�Þ
a Bð�Þ

c with the BO potential created by meson b as
shown in Fig. 9. These three simplification schemes can
be regarded as three kinds of basic configurations. The
eigenstates of the three-body system should be combina-
tions of them. As the simplest combination, one might
expect the three-body eigenstate should be the super-
position of the three kinds of basic configurations. We
use the ψa, ψb, ψc to denote these three configurations.

The configuration wave function ψa represents the con-

figuration where we omit the meson Bð�Þ
a and add the

corresponding BO potential instead. Similarly, ψb and ψc
denote the configurations with the BO potentials provided

by the mesons Bð�Þ
b and Bð�Þ

c , respectively.
Taking the configuration function ψa as an example, we

separate the motion of the Bð�Þ
a relative to the other mesons

Bð�Þ
b and Bð�Þ

c where their relative displacement rbc is
regarded as a parameter as shown in Fig. 9(a). The wave

function of the Bð�Þ
a has been discussed in the last

section and can be written as ψ ð⃗rab; ⃗racÞ. The remaining

d.o.f. is the relative motion between Bð�Þ
b and Bð�Þ

c , which
can be taken as Φð⃗rbcÞ. Thus we have the configuration
function ψa ¼ Φð⃗rbcÞψ ð⃗rab; ⃗racÞ. The other two wave
functions ψb and ψc can be obtained analogously, i.e.,
ψb ¼ Φð⃗racÞψ ð⃗rab; ⃗rbcÞ, ψc ¼ Φð⃗rabÞψ ð⃗rbc; ⃗racÞ, which
correspond to Figs. 9(b) and 9(c), respectively. If we
regard the three configuration functions as a set of basis
states, then the basis constitutes a configuration space
fψa;ψb;ψcg. The three-body eigenstate expressed as a
superposition of the three kinds of basic configurations can
be described as a state vector in this configuration space.
Thus, as an interpolating wave function, the three-body
wave functions can be written as

ΨT ¼ αΦð⃗rbcÞψ ð⃗rab; ⃗racÞ þ βΦð⃗racÞψ ð⃗rab; ⃗rbcÞ
þ γΦð⃗rabÞψ ð⃗rbc; ⃗racÞ

¼ αψa þ βψb þ γψc ¼

0
B@ α

β

γ

1
CA; ð23Þ

where Φð⃗rbcÞ, Φð⃗racÞ, and Φð⃗rabÞ are undetermined
functions that need to be solved. The α, β, and γ are the
expansion coefficients. According to Eq. (20), we rewrite
the three basic configuration functions in the channel space
fB�

aBbBc;BaB�
bBc;BaBbB�

c;B�
aB�

bBc;B�
aBbB�

c;BaB�
bB

�
cg as

(a) (b) (c)

FIG. 9. Three configurations of the BBB� system. (a), (b), and (c) The wave functions ψ=a, ψ=b, and ψ=c, respectively.
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ψa ¼ CΦð⃗rbcÞ

0
BBBBBBBBBBBB@

1ffiffi
2

p ½ψ ð⃗rabÞ þ ψ ð⃗racÞ�
1ffiffi
2

p ψ ð⃗rabÞ
1ffiffi
2

p ψ ð⃗racÞ
ψ 0ð⃗rabÞ
ψ 0ð⃗racÞ

0

1
CCCCCCCCCCCCA
;

ψb ¼ CΦð⃗racÞ

0
BBBBBBBBBBBB@

1ffiffi
2

p ψ ð⃗rabÞ
1ffiffi
2

p ½ψ ð⃗rabÞ þ ψ ð⃗rbcÞ�
1ffiffi
2

p ψ ð⃗rbcÞ
ψ 0ð⃗rabÞ

0

ψ 0ð⃗rbcÞ

1
CCCCCCCCCCCCA
;

ψc ¼ CΦð⃗rabÞ

0
BBBBBBBBBBBB@

1ffiffi
2

p ψ ð⃗racÞ
1ffiffi
2

p ψ ð⃗rbcÞ
1ffiffi
2

p ½ψ ð⃗rbcÞ þ ψ ð⃗racÞ�
0

ψ 0ð⃗racÞ
ψ 0ð⃗rbcÞ

1
CCCCCCCCCCCCA
; ð24Þ

which can be expanded as a set of Laguerre polynomials

ψa ¼
X
i

ϕið⃗rbcÞψ ð⃗rab; ⃗racÞ;

ψb ¼
X
i

ϕið⃗racÞψ ð⃗rab; ⃗rbcÞ;

ψc ¼
X
i

ϕið⃗rabÞψ ð⃗rbc; ⃗racÞ:

Here the subscript i is the order of Laguerre polynomials.
We define the ith order of the configuration functions as
ψ i
a ¼ ϕið⃗rbcÞψ ð⃗rab; ⃗racÞ, ψ i

b ¼ ϕið⃗racÞψ ð⃗rab; ⃗rbcÞ, and
ψ i
c ¼ ϕið⃗rabÞψ ð⃗rbc; ⃗racÞ. Further, C is a normalization

constant.
We expect the three-body bound state that we seek can

be expressed as a state vector in the configuration space
fψa;ψb;ψcg. However, the configuration functions in
Eq. (23) are not an orthogonal basis. Thus we orthonorm-
alize the fψa;ψb;ψcg into a new basis fψ̃a; ψ̃b; ψ̃cg. We
use ψ̃ i

a, ψ̃
i
b, and ψ̃ i

c to denote the ith order of the new
configuration functions ψ̃a, ψ̃b, and ψ̃c, respectively. Then
we have

ψ̃ i
a ¼

1

Ni

�
ðψ i

a þ ψ i
b þ ψ i

cÞ −
X
i

xijψ
j
a

�
;

ψ̃ i
b ¼

1

Ni

�
ðψ i

a þ ψ i
b þ ψ i

cÞ −
X
i

xijψ
j
b

�
;

ψ̃ i
c ¼

1

Ni

�
ðψ i

a þ ψ i
b þ ψ i

cÞ −
X
i

xijψ
j
c

�
;

where the xij is a parameter matrix that will be determined
later. The Ni are normalization coefficients. The parameter
matrix xij in the three configuration functions is the same

due to the interchange symmetry for the Bð�Þ
a Bð�Þ

b Bð�Þ
c

system.
Since the ith order configuration function ψ̃ i

a should be
orthogonal with any order of the other configuration
function ψ̃ j

a, one can get the orthogonalization condition

hψ̃ i
ajψ̃ j

bi ¼
�

1

Ni

�
ðψ i

a þ ψ i
b þ ψ i

cÞ −
X
i

xikψk
a

����� 1

Nj

×

�
ðψ j

a þ ψ j
b þ ψ j

cÞ −
X
i

xjlψ l
b

��
¼ 0;

which gives

xikhψk
ajψ l

bixlj − xikðδkj þ 2hψk
ajψ j

biÞ − xjlðδil þ 2hψ i
ajψ l

biÞ
þ 3δij þ 6hψ i

ajψ j
bi ¼ 0: ð25Þ

This equation will determine the parameter matrix xij.
Considering the normalization of the ith order configura-
tion function ψ̃ i

a,

hψ̃ i
ajψ̃ j

ai ¼
�

1

Ni

�
ðψ i

a þ ψ i
b þ ψ i

cÞ −
X
i

xikψk
a

����� 1

Nj

×

�
ðψ j

a þ ψ j
b þ ψ j

cÞ −
X
i

xjlψ l
a

��
¼ δij;

one can obtain the normalization equation for the Ni as

1

N�
i Nj

�
3δij þ 6hψ i

ajψ j
bi − 2xij

− 4
X
m

ximhψm
a jψ j

bi þ
X
n

xinxnj

�
¼ δij: ð26Þ

After solving the equations for xij and Ni, we obtain an
orthonormalized configuration basis. This basis constitutes
an orthonormalized configuration space. Then the eigen-

vector for the three-body system Bð�Þ
a Bð�Þ

b Bð�Þ
c can be written

as a vector in the configuration space fψ̃a; ψ̃b; ψ̃cg.
Therefore, we have
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ΨT ¼
X
i

α̃iψ̃
i
a þ

X
j

β̃jψ̃
j
b þ

X
k

γ̃kψ̃
k
c;

where the α̃i, β̃i, and γ̃i are the ith order expansion
coefficients.

VI. THREE-BODY SCHRÖDINGER EQUATION

As we have discussed in previous sections, if the three-
body binding energy is below the breakup threshold, the

three-body system will disintegrate into a two-body system
and a free meson. Since we only focus on the three-body
bound state, we could make an energy shift and remove the
energy eigenvalue E2 for the breakup state and define a
reduced Hamiltonian for the three-body system as

H ¼ H − E2:

The explicit form of H is

H ¼

0
BBBBBBBBBB@

T� þ T 0� V1ðr⃗abÞ V1ðr⃗acÞ V2ðr⃗abÞ V2ðr⃗acÞ 0

V1ðr⃗baÞ T� þ T 0� V1ðr⃗bcÞ V 0
2ðr⃗baÞ 0 V2ðr⃗bcÞ

V1ðr⃗caÞ V1ðr⃗cbÞ T þ T 0 0 V 0
2ðr⃗acÞ V 0

2ðr⃗bcÞ
V2ðr⃗baÞ V 0

2ðr⃗abÞ 0 T�� þ T 0�� þV3ðr⃗abÞ þ δM V1ðr⃗bcÞ V1ðr⃗acÞ
V2ðr⃗caÞ 0 V 0

2ðr⃗caÞ V1ðr⃗cbÞ T� þ T 0� þV3ðr⃗acÞ þ δM V1ðr⃗abÞ
0 V2ðr⃗cbÞ V 0

2ðr⃗cbÞ V1ðr⃗caÞ V1ðr⃗baÞ T� þ T 0� þV3ðr⃗bcÞ þ δM

1
CCCCCCCCCCA
;

ð27Þ

where T� ¼ −ð1=2μ�Þ∇2
ab, T ¼ −ð1=2μÞ∇2

ab, T�� ¼ −ð1=2μ��Þ∇2
ab, T 0� ¼ −ð1=2μ0�Þ∇2

ξ , T 0 ¼ −ð1=2μ0Þ∇2
ξ , and

T 0�� ¼ −ð1=2μ0��Þ∇2
ξ are the kinetic energy operators and the corresponding reduced masses are μ� ¼ ðMBMB�Þ=

ðMB þMB� Þ, μ ¼ MB=2, μ�� ¼ MB�=2, μ0� ¼ ððMB þMB� ÞMBÞ=ð2MB þMB�Þ, μ0 ¼ ð2MBMB�Þ=ð2MB þMB� Þ, and
μ0�� ¼ ð2MB�MBÞ=ð2MB� þMBÞ. Here ∇2

ab ¼ ð1=rabÞðd2=dr2abÞrab − ðL⃗2
ab=r2abÞ and ∇2

ξ ¼ ð1=ξÞðd2=dξ2Þξ − ðL⃗2
ξ=ξ2Þ

with ⃗ξ ¼ ⃗rab=2 − ⃗rbc. r⃗bc is the direction of the meson b relative to the meson c. L⃗ab is the angular momentum operator
between mesons a and b. L⃗ξ is the relative angular momentum operator between the two-body center of mass for the
mesons a and b and the meson c. The mass gap is δM ¼ MB� −MB.
The total Hamiltonian for the three-body system in the configuration space fψ̃a; ψ̃b; ψ̃cg can be written as

HT ¼

0
BB@

Haa Hab Hac

Hba Hbb Hbc

Hca Hcb Hcc

1
CCA ¼

0
BB@

Haa þ E2 Hab þ E2 Hac þ E2

Hba þ E2 Hbb þ E2 Hbc þ E2

Hca þ E2 Hcb þ E2 Hcc þ E2

1
CCA ¼

0
BB@

Haa Hab Hac

Hba Hbb Hbc

Hca Hcb Hcc

1
CCAþ E2

0
BB@

1 0 0

0 1 0

0 0 1

1
CCA;

ð28Þ

with H=m=n ¼ hψ̃=mjHjψ̃=mi ðm; n ¼ a; b; cÞ.
The total reduced Hamiltonian for the three-body system Bð�Þ

a Bð�Þ
b Bð�Þ

c in the configuration space fψ̃a; ψ̃b; ψ̃cg can be
expressed as

HT ¼

0
BB@

Haa Hab Hac

Hba Hbb Hbc

Hca Hcb Hcc

1
CCA; ð29Þ

with H=m=n ¼ hψ̃=mjHjψ̃=mi ðm; n ¼ a; b; cÞ. Thus we have

HT ¼ HT þ E2:
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The matrix element of the Haa can be written as

Hij
aa ¼ hψ̃ i

ajHjψ̃ j
ai ¼

�
1

Ni

�
ðψ i

a þ ψ i
b þ ψ i

cÞ −
X
i

ximψm
a

�
jHj 1

Nj

�
ðψ j

a þ ψ j
b þ ψ j

cÞ −
X
i

xjnψn
a

��

¼ 3
1

NiNj
hψ i

ajHjψ j
ai þ 6

1

NiNj
hψ i

bjHjψ j
ai − xim

1

NiNj
hψm

a jHjψ j
ai − xjn

1

NiNj
hψ i

ajHjψn
ai

− 2xim
1

NiNj
hψm

b jHjψ j
ai − 2xjn

1

NiNj
hψ i

bjHjψn
ai þ ximxjn

1

NiNj
hψm

a jHjψn
ai; ð30Þ

where, in the last step, the interchange symmetry in the Bð�Þ
a Bð�Þ

b Bð�Þ
c system is used. Similarly, we also have

Hij
ba ¼ hψ̃ i

bjHjψ̃ j
ai ¼

�
1

Ni

�
ðψ i

a þ ψ i
b þ ψ i

cÞ −
X
i

ximψm
b

�
jHj 1

Nj

�
ðψ j

a þ ψ j
b þ ψ j

cÞ −
X
i

xjnψn
a

��

¼ 3
1

NiNj
hψ i

ajHjψ j
ai þ 6

1

NiNj
hψ i

bjHjψ j
ai − xim

1

NiNj
hψm

a jHjψ j
ai − xjn

1

NiNj
hψ i

ajHjψn
ai

− 2xim
1

NiNj
hψm

b jHjψ j
ai − 2xjn

1

NiNj
hψ i

bjHjψn
ai þ ximxjn

1

NiNj
hψm

b jHjψn
ai: ð31Þ

There are two independent matrices

hψ i
ajHjψ j

ai ¼ jCj2
Z

d⃗rbcfðhψabjψabi þ hψabjψaciÞ½ϕi
bcðT 0 þ Vbc

BOÞϕj
bc� þ ð1þ hψ 0

abjψ 0
abiÞ½ϕi

bcðT 0� þ Vbc
BOÞϕj

bc�

þ ðhψabjψaci þ 2hψ 0
abjψ 0

aciÞ½ϕi
bcV

bc
1 ϕj

bc�g:

hψ i
bjHjψ j

ai ¼ jCj2
Z

d⃗rbc

�
1

2
hϕi

acψabjT 0 þ Vbc
BOjϕj

bcðψab þ ψacÞi þ
1

2
hϕi

acðψab þ ψbcÞjT 0� þ Vbc
BOjϕj

bcψabi

þ 1

2
hϕi

acψbcjT 0� þ Vbc
BOjϕj

bcψaci þ hϕi
acψ

0
abjT 0� þ Vbc

BOjϕj
bcψ

0
abi

þ 1

2
hϕi

acψbcjVcb
1 jϕj

bcψabi þ
1ffiffiffi
2

p hϕi
acψ

0
bcjVcb

2 jϕj
bcψabi þ hϕi

acψ
0
abjVcb

1 jϕj
bcψ

0
aci

þ 1

2
hϕi

acðψab þ ψbcÞjVbc
1 jϕj

bcψaci þ
1ffiffiffi
2

p hϕi
acψ

0
bcjVcb

2 jϕj
bcψaci

	
;

to be determined, where we have used the abbreviations
ϕi
ab, ϕi

bc, ϕi
ac, ψab, ψbc, and ψac for ϕð⃗rabÞi, ϕð⃗rbcÞi,

ϕð⃗racÞi, ψ ð⃗rabÞ, ψ ð⃗rbcÞ, and ψ ð⃗racÞ, respectively. The
expression for the Hca can easily be obtained by the
replacement c → b; b → c on the expression for the Hba.
Similarly, the expression for the Hcb is obtained by the
replacement c → b; b → a; a → c on the expression for the

Hba. In fact, interchange invariance for the Bð�Þ
a Bð�Þ

b Bð�Þ
c

system can simplify the calculation, i.e., Hca ¼ Hcb ¼
Hba and Haa ¼ Hbb ¼ Hcc.
Based on the above discussion, the three-body

Schrödinger equation can finally be written as

0
B@Haa Hab Hac

Hba Hbb Hbc

Hca Hcb Hcc

1
CA
0
B@ α̃

β̃

γ̃

1
CA ¼ E3

0
B@ α̃

β̃

γ̃

1
CA; ð32Þ

where the energy eigenvalue E3 is the reduced three-body
energy eigenvalue. The total energy eigenvalue relative to
the BBB� mass threshold is ET ¼ E3 þ E2. Solving the
three-body Schrödinger equation may partly answer
whether the three-body system has a loosely bound state.

VII. APPLICATION TO THE NNN SYSTEM

In order to verify the feasibility of the Born-
Oppenheimer potential method for the three-heavy system,
we apply it to the three nucleon system. Since there is
sufficient experimental data for this system, we can apply
the formalism introduced above to investigate its binding
energy and illustrate the feasibility of our formalism. As we
know, the triton and the helium-3 (3He) nucleus are the two
possible bound states of the NNN system; both of them
have the quantum numbers IðJPÞ ¼ 1

2
ð1
2
þÞ but have
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different isospin on its z direction. They have the same
structure and the binding energy if the isospin symmetry
breaking effect is neglected. The calculation on the three-
nucleon system is much more straightforward than the
BBB� system, as there are no other coupled channels. For
simplicity, we only write down the isospin wave functions
of the triton and helium-3 nuclei, which are����0; 12 ; 12

�
¼ 1ffiffiffi

2
p ½jðpnÞpi − jðnpÞpi�;����0; 12 ;− 1

2

�
¼ 1ffiffiffi

2
p ½jðpnÞni − jðnpÞni�:

The Lagrangian reads

LN ¼ gNN̄iγ5 ⃗τN · π⃗;

where the gN ¼ 14.70 is the coupling constants (we use
here the pseudoscalar coupling, which is fine to the order
we are working; see, e.g., Ref. [70]). N ¼ ðψp;ψnÞ is the
nucleon doublet. Further, ⃗τ ¼ fτ1; τ2; τ3g are the Pauli
matrices, and π⃗ ¼ f 1ffiffi

2
p ðπþ þ π−Þ; iffiffi

2
p ðπþ þ π−Þ; π0g are

the π fields. With a procedure similar to the one discussed
in Secs. II–VI, we can investigate the properties of the
breakup state formed by a deuteron and a free nucleon as
well as the three-body bound states. As discussed in the
above sections, there is only one free parameter Λ in the
monopole form factor introduced in Sec. III, which reflects,
in a rough way, the internal structure of the interacting
hadrons. In other words, the size of the hadron is propor-
tional to 1=Λ, which is still unknown from the fundamental
theory. Thus the parameter Λ ¼ 899.60 MeV is fixed by
the binding energy E2 ¼ 2.23 MeV of deuteron in our

calculations. With the so determined parameter Λ, we can
obtain the BO potentials for the NNN system using the
formalism in Secs. II–VI, with just the replacement of the
effective potential VBB� by VNN in the calculations. This
potential reads

VNN→NN ð⃗rÞ ¼ −CNN
π ði; jÞ g2N

12M2
N

�
σ⃗1 · σ⃗2

�
m̃2

πΛ̃YðΛ̃rÞ

− m̃3
πYðm̃πrÞ þ ðΛ2 −m2

πÞΛ̃
e−Λ̃r

2

�

þ STðσ⃗1; σ⃗2Þ
�
−m̃3

πZðm̃πrÞ þ Λ̃3ZðΛ̃rÞ

þ ðΛ2 −m2
πÞð1þ Λ̃rÞ Λ̃

2
YðΛ̃rÞ

�	
;

where CNN
π ði; jÞ is the channel-dependent coefficient for

the two-nucleon system,MN is the mass of the nucleon, gN
is the pion-nucleon coupling constant, and σ1 and σ2 are the
spin Pauli matrices for the nucleon 1 and 2 in the scattering
process 1þ 2 → 3þ 4.
After solving the three-body Schrödinger equation, i.e.,

Eq. (32), one can obtain the dependence of the binding of
the three-nucleon system on the parameter Λ (Table III). As
shown in the table, there is a three-body bound state
with the reduced binding energy and the total three-body
bound energy in the range of 1.93-–20.51 MeV and 2.11–
31.20 MeV, respectively, when the parameter Λ varies from
830 MeV to 1040 MeV. The corresponding isospin
singlet two-body subsystem NN has the binding energy
in the range of 0.18–10.69 MeV. The root mean square of
the system decreases from 4.21 fm to 2.10 fm when the
parameter increases. Once the parameter Λ ¼ 899.60 MeV
is fixed by the deuteron binding energy, the reduced

TABLE III. Bound state solutions of the NNN system with isospin I3 ¼ 1=2. E2 is the energy eigenvalue of its subsystem. E3 is
the reduced three-body energy eigenvalue relative to the breakup state of the NNN system. ET is the total three-body energy
eigenvalue relative to the NNN threshold. VBOð0Þ is the minimum of the BO potential. rrms represents the root-mean-square radius of
any two N in the NNN system. The Swave andD wave represent the probabilities for S-wave andD-wave components in any two N in
the NNN system.

Λ [MeV] E2 [MeV] E3 [MeV] ET [MeV] VBOð0Þ [MeV] S wave [%] D wave [%] rrms [fm]

830.00 −0.18 −1.93 −2.11 −4.54 94.01 5.99 4.21
850.00 −0.67 −2.71 −3.38 −5.36 93.36 6.64 4.00
870.00 −1.23 −3.65 −4.88 −6.32 92.68 7.32 3.78
890.00 −1.88 −4.77 −6.66 −7.42 91.99 8.01 3.54
899.60 −2.23 −5.38 −7.62 −8.00 91.66 8.34 3.42
900.00 −2.25 −5.41 −7.66 −8.03 91.64 8.36 3.42
920.00 −3.05 −6.85 −9.90 −9.35 90.97 9.03 3.18
940.00 −3.98 −8.51 −12.49 −10.83 90.35 9.65 2.95
960.00 −5.03 −10.42 −15.45 −12.46 89.76 10.24 2.74
980.00 −6.21 −12.57 −18.78 −14.23 89.23 10.77 2.54
1000.00 −7.55 −14.97 −22.51 −16.14 88.73 11.27 2.37
1020.00 −9.04 −17.61 −26.65 −18.19 88.27 11.73 2.23
1040.00 −10.69 −20.51 −31.20 −20.37 87.84 12.16 2.10
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three-body binding energy and the total binding energy
relative to the three free nucleons are 5.38 MeV and
7.62 MeV, respectively. The latter is comparable with
the empirical binding energies of the triton (8.48 MeV)
and helium-3 (7.80 MeV) nuclei. Note again that there is no
numerical difference between the binding energies of triton
and helium-3 in the calculation, as the isospin breaking has
not been considered.
For a better illustration of the binding property, we plot

the dependence of the reduced three-body binding energy
on the two-body binding energy of its deuteron subsystem.
As shown in Fig. 10, the binding energy of the three-
nucleon system becomes larger when the binding energy of
its subsystem NN increases. There are two red points in the
figure, the left red point is the critical point which indicates
the lower limit of the required binding energy of the
deuteron to form a three-body bound state. It is very
interesting that even though the binding energy of its

subsystem is zero, there is a small binding energy of the
three-nucleon system, which is 1.71 MeV. This is remi-
niscent of a Borromean state, where a three-body system
may have a bound state despite the fact that none of its
subsystems forms a bound state. The other red point is our
numerical result of the binding energy of triton or helium-3.
It is a little below the experimental values since in our
calculations we use the Born-Oppenheimer potential
method to construct our interpolating wave functions,
which can be regarded as a version of the variational
principle. As we know, this always gives an upper limit of
the energy of a system.

VIII. NUMERICAL RESULTS ON
THE BBB� SYSTEM

The application of the Born-Oppenheimer potential
method to the three-nucleon system has verified its fea-
sibility to some extent. Now we return to the system mainly
discussed in this paper, i.e., the three B mesons system
BBB�. There is only one free parameter Λ in the monopole
form factor that is undetermined in our calculations. For the
deuteron case, the parameter Λ is within the range 0.8–
1.5 GeV. One would expect that the size of the heavier
bottom system is smaller than the size of the deuteron,
leading to a larger Λ. Thus, we vary the parameter Λ from
0.9 GeV to 1.6 GeV to study whether the BBB� system is
bound or not.
In order to show the properties of the two-body inter-

actions for the BB�, we first present the numerical results
for the breakup state in Tables IV and V. We plot the
effective potentials for the BB� in Figs. 4 and 5, where the
regularization parameter is fixed at 1440 MeV. In these
figures, (a) and (b) correspond to the isospin I ¼ 0 and
I ¼ 1 cases, respectively. After carefully solving the
coupled-channel Schrödinger equation with the treatment
of the S-D wave mixing, we find loosely bound states for
both cases.

FIG. 10. Dependence of the reduced three-body binding energy
on the binding energy of its two-body subsystem (the deuteron).
The left red point is the critical point which indicates the lower
limit of the required binding energy of the deuteron to form a
three-body bound state. The right one is our numerical result of
the binding energy of the triton or the helium-3 nucleus.

TABLE IV. Bound state solutions of the BB� system with the isospin I2 ¼ 1. Λ is the parameter in the form factor. E2 is the energy
eigenvalue. The binding energy is −E2. rrms is the root-mean-square radius. α and β are the probabilities for the components BB� and
B�B�, respectively.

BB� B�B� Proportion

Λ [MeV] E2 [MeV] S wave [%] D wave [%] S wave [%] D wave [%] rrms1 [fm] α [%] β [%]

1380 −2.11 99.13 0.87 99.21 0.79 1.51 91.91 8.09
1400 −2.94 99.12 0.88 99.36 0.64 1.30 90.22 9.78
1420 −3.93 99.14 0.86 99.49 0.51 1.15 88.47 11.53
1440 −5.08 99.16 0.84 99.59 0.41 1.03 86.69 13.31
1460 −6.40 99.19 0.81 99.68 0.33 0.94 84.91 15.09
1480 −7.88 99.22 0.78 99.74 0.26 0.86 83.14 16.86
1500 −9.54 99.25 0.75 99.80 0.20 0.80 81.40 18.60
1520 −11.38 99.29 0.71 99.84 0.16 0.75 79.70 20.30
1540 −13.39 99.32 0.68 99.88 0.12 0.71 78.07 21.93
1560 −15.59 99.36 0.64 99.91 0.09 0.67 76.50 23.50
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For the isospin triplet case, i.e., I2 ¼ 1, the dependence
of the binding energy of the two-body BB� system on the
regularization parameter Λ is shown in Table IV. The
energy threshold of the breakup state for the BBB� is just
the two-body energy eigenvalue of the BB� plus the mass of
the three static free meson. We use E2 to denote the energy
eigenvalue of the BB�. When the parameter Λ varies from
1380 MeV to 1560 MeV, there is a bound state solution
with the binding energy 2.11–15.59 MeV and the root-
mean-square radius 1.51–0.67 fm. The S-wave component
takes over 99.13%–99.36% comparing to the value 0.87%–
0.64% for the D wave. The BB� and B�B� channels have
probabilities 91.91%–76.50% and 8.09%–23.50%, respec-
tively. The proportions of the B�B� channel and D-wave
component are relatively small. However, as the value of
the regularization parameter Λ increases, the B and B�
interacting with the pion are more like point particles: the
proportion of the B�B� channel increases greatly, while the
D-wave component decreases. We plot the radial wave
functions of the S wave and D wave in Fig. 11(a) for the
system BB�, and obviously, the bound state we have found
is the ground state.

For the isospin singlet case, i.e., I2 ¼ 0, the dependence
of the binding energy of the two-body BB� system on the
regularization parameterΛ is shown in Table V. We also use
E2 to denote the energy eigenvalue of the BB�. When the
parameter varies from 1040 MeV to 1220 MeV, there is a
bound state solution with binding energy 1.88–14.78 MeV
and the root-mean-square radius 2.03–0.95 fm. The S-wave
component is 86.09%–77.21% compared to the value
13.91%–22.79% for the D wave. The BB� and B�B�
channels have probabilities 92.05%–75.09% and 7.95%–
24.91%, respectively. The proportions of the B�B� channel
and D-wave component are relatively small, which is
similar to the case of the isospin triplet. As the value of
the regularization parameter Λ increases, the proportion of
the B�B� channel increases greatly. Different from the case
of the isospin triplet the S-wave component decreases and
the D wave increases as Λ increases. As the parameter Λ
increases, all of the effective potentials become stronger.
The S-wave potential increases faster than the D-wave
potential for the isospin triplet case, while it is reversed for
the isospin singlet case. In order to check whether the

(a) (b)

FIG. 11. Plot of various wave functions. The blue lines represent the wave functions for any two constituents in the BBB�. The red
lines denote the wave functions for its subsystem BB�. (a) The isospin states j1; 3

2
;� 1

2
ð� 3

2
Þi and j1; 1

2
;� 1

2
i cases. (b) The isospin state

j0; 1
2
;� 1

2
i case. Here we chose the parameter Λ ¼ 1440 MeV in (a) and Λ ¼ 1107.7 MeV in (b) for a better comparison of all the cases,

since they have the same two-body binding energy of 5.08 MeV.

TABLE V. Bound state solutions of the BB� with the isospin I2 ¼ 0. Λ is the parameter in the form factor. E2 is the energy eigenvalue.
The binding energy is −E2. rrms is the root-mean-square radius. α and β are the probabilities for the components BB� and B�B�,
respectively.

BB� B�B� Proportion

Λ [MeV] E2 [MeV] S wave [%] D wave [%] S wave [%] D wave [%] rrms1 [fm] α [%] β [%]

1040 −1.88 86.09 13.91 68.84 31.16 2.03 92.05 7.95
1060 −2.63 84.59 15.41 69.41 30.59 1.79 90.18 9.82
1080 −3.54 83.26 16.74 69.90 30.10 1.60 88.22 11.78
1100 −4.62 82.07 17.93 70.33 29.67 1.45 86.22 13.78
1120 −5.87 81.01 18.99 70.69 29.31 1.33 84.22 15.78
1140 −7.29 80.07 19.93 70.99 29.01 1.23 82.25 17.75
1160 −8.89 79.23 20.77 71.25 28.75 1.14 80.34 19.66
1180 −10.67 78.49 21.51 71.46 28.54 1.07 78.50 21.50
1200 −12.63 77.81 22.19 71.63 28.37 1.01 76.75 23.25
1220 −14.78 77.21 22.79 71.77 28.23 0.95 75.09 24.91
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bound state we have found is the ground state, we also plot
the radial wave functions of the S wave and D wave in
Fig. 11(b) for the system BB�.
In Sec. II, we have listed the isospin wave functions of

the BBB�, which are expressed as jI2; I3; I3zi. After solving
the three-body Schrödinger equation via the method of
Sec. V, we find that all of these isospin eigenstates have
bound state solutions. As long as the two-body system BB�

has a loosely bound state, the three-body system BBB� is
most likely to have a loosely bound state, too. We have
collected the dependence of the three-body bound state
solutions on the two-body binding energy in Tables VI
and VII.
The bound state solutions for the state j1; 3

2
;� 1

2
ð� 3

2
Þi

are shown in Table VI. The three-body binding energy
relative to their breakup states is 5.67 MeV, when the
parameter Λ is chosen at 1440 MeV and the two-body
binding energy of their subsystems BB� is 5.08 MeV. To
search for the dependence on the binding energy of the two-
body system E2, we change the parameter Λ. It turns out
that if the value of E2 varies from −0.18 MeV to
−17.97 MeV, then the reduced three-body energy eigen-
value E3 decreases from −0.19 MeV to −18.99 MeV and
the total three-body energy eigenvalue ET decreases from
−0.38 MeV to −36.95 MeV. The structure of the three-
body bound state is a regular triangle with the root-mean-
square length of one side decreasing from 3.98 fm to
0.65 fm. In order to illustrate the strength of the BO
potential, we also collect its minimum VBOð0Þ in the table
within the range of −3.43– − 37.24 MeV as E2 increases.
As E2 increases, the effective attraction between B and B�
becomes stronger, the BO potential becomes deeper, so

then the three-body system becomes tighter and has a larger
binding energy. From the results in the table, we can also
see that the dominant wave between any two Bð�Þ in the
BBB� is S wave and the dominant channel is the BBB�
instead of the BB�B� channel. For comparison, we plot the
wave functions for any two Bð�Þ in the BBB� system and
that for the two-body BB� system in Fig. 11(a) with
Λ ¼ 1440 MeV. The shapes of these exhibit little differ-
ence. From another perspective, one more B meson has
little effect on the size of the system but greatly increases
the binding energy.
For the state j0; 1

2
;� 1

2
i, we also find a loosely bound

solution, which is shown in Table VII. The three-body
binding energy relative to their breakup states is 7.18 MeV,
when the parameter Λ is chosen at 1107.7 MeV and the
two-body binding energy of their subsystems BB� is
5.08 MeV. In order to show the dependence on the binding
energy of the two-body system E2, we also change the
parameter Λ. We find that if the value of E2 varies from
−0.19 MeV to −17.10 MeV, then the reduced three-body
energy eigenvalue E3 decreases from −0.32 MeV to
−20.96 MeV and the total three-body energy eigenvalue
ET decreases from −0.51 MeV to −38.06 MeV. The
structure of the three-body bound state is a regular triangle
with the root-mean-square length of one side decreasing
from 3.89 fm to 0.93 fm.As an illustration for the strength of
the BO potential, we also list its minimum VBOð0Þ in the
table within the range of −2.15– − 30.15 MeV as E2

increases. Similar to the I3 ¼ 3
2
case, the dominant wave

between any two Bð�Þ in the BBB� is S wave and the
dominant channel is theBBB� one. In order to show that one
more B meson has little effect on the size of the system,

TABLE VI. Bound state solutions of the BBB� with the isospin I3 ¼ 3=2. E2 is the energy eigenvalue of its subsystem BB� with the
isospin I2 ¼ 1. E3 is the reduced three-body energy eigenvalue relative to the breakup state of the BBB� system. ET is the total three-
body energy eigenvalue relative to the BBB� threshold. VBOð0Þ is the minimum of the BO potential. rrms represents the root-mean-
square radius of any two B in the BBB� system. The Swave andD wave represent the probabilities for S-wave andD-wave components
in any two B in the BBB�. The α and β denote the probabilities for the BBB� and BB�B� components, respectively.

E2 [MeV] E3 [MeV] ET [MeV] VBOð0Þ [MeV] S wave [%] D wave [%] rrms [fm] α [%] β [%]

−0.18 −0.19 −0.38 −3.43 99.76 0.24 3.98 97.50 2.50
−0.48 −0.45 −0.93 −4.88 99.68 0.32 3.34 96.39 3.61
−0.89 −0.85 −1.74 −6.62 99.59 0.41 2.67 95.02 4.98
−1.43 −1.42 −2.85 −8.56 99.49 0.51 2.11 93.78 6.22
−2.11 −2.20 −4.31 −10.65 99.41 0.59 1.71 91.91 8.09
−2.94 −3.17 −6.11 −12.87 99.34 0.66 1.43 90.22 9.78
−3.93 −4.33 −8.26 −15.21 99.29 0.71 1.24 88.47 11.53
−5.08 −5.67 −10.75 −17.65 99.25 0.75 1.09 86.69 13.31
−6.40 −7.18 −13.58 −20.19 99.22 0.78 0.98 84.91 15.09
−7.88 −8.83 −16.71 −22.83 99.20 0.80 0.90 83.14 16.86
−9.54 −10.61 −20.16 −25.55 99.18 0.82 0.83 81.40 18.60
−11.38 −12.51 −23.89 −28.36 99.17 0.83 0.77 79.70 20.30
−13.39 −14.62 −28.01 −31.24 99.16 0.84 0.72 78.07 21.93
−15.59 −16.75 −32.34 −34.20 99.15 0.85 0.68 76.50 23.50
−17.97 −18.99 −36.95 −37.24 99.14 0.86 0.65 75.01 24.99
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we also plot the wave functions for any two Bð�Þ in the
BBB� system and that for the two-body BB� system in
Fig. 11(b) with Λ ¼ 1107.7 MeV. Here we chose the
parameter Λ ¼ 1107.70 MeV for a better comparison with
the j1; 3

2
;� 1

2
ð� 3

2
Þi case, since both cases have the same two-

body binding energy 5.08 MeV.
The state j1; 1

2
;� 1

2
i also has a loosely bound solution.

However, in our calculation the states j1; 1
2
;� 1

2
i and

j1; 3
2
;� 1

2
ð� 3

2
Þi are degenerate. This is due to the fact that

in the OPE model only two-body interactions are consid-
ered, and the two-body interaction depends only on the
total isospin of the two interacting mesons. The states
j1; 1

2
;� 1

2
i and j1; 3

2
;� 1

2
ð� 3

2
Þi have the same two-body

interaction but may have different three-body interactions.
If we further consider the calculation to the next-to-next

leading order, this degeneracy may disappear. The calcu-
lation that contains three-body interactions via pion
exchange is quite complicated, which is left for further work.
The numerical results show that the three-body binding

energy jE3j increases as the two-body binding energy jE2j
increases. One may wonder whether there is a critical value
of the jE2j, below which the three-body system has no
bound state solution. After lots of calculations, it turns out
that all of the isospin eigenstates have no such critical
value. That is to say, no matter what a small value for the
two-body binding energy jE2j is, as long as the two-body
system BB� has a loosely bound state, the three-
body system BBB� probably has a loosely bound state.
To show this conclusion explicitly, we plot the dependence
of the three-body binding energy on the variety of two-
body binding energy in Fig. 12. The isospin eigenstate

TABLE VII. Bound state solutions of the BBB� with isospin I ¼ 1=2. E2 is the energy eigenvalue of its subsystem BB� with the
isospin I ¼ 0. E3 is the reduced three-body energy eigenvalue relative to the breakup state of the BBB� system. ET is the total three-body
energy eigenvalue relative to the BBB� threshold. VBOð0Þ is the minimum of the BO potential. rrms represents the root-mean-square
radius of any two B in the BBB� system. The Swave andD wave represent the probabilities for S-wave andD-wave components in any
two B in the BBB�. The α and β denote the probabilities for the BBB� and BB�B� components, respectively.

E2 [MeV] E3 [MeV] ET [MeV] VBOð0Þ [MeV] S wave [%] D wave [%] rrms [fm] α [%] β [%]

−0.19 −0.32 −0.51 −2.15 94.66 5.34 3.89 97.68 2.32
−0.44 −0.64 −1.08 −3.04 92.56 7.44 3.27 96.66 3.34
−0.80 −1.13 −1.93 −4.19 90.43 9.57 2.69 95.36 4.64
−1.27 −1.82 −3.09 −5.57 88.49 11.51 2.24 93.80 6.20
−1.88 −2.72 −4.60 −7.14 86.72 13.28 1.93 92.05 7.95
−2.63 −3.82 −6.45 −8.89 85.09 14.91 1.70 90.18 9.82
−3.54 −5.11 −8.65 −10.78 83.60 16.40 1.53 88.22 11.78
−4.62 −6.57 −11.20 −12.82 82.27 17.73 1.40 86.22 13.78
−5.04 −7.13 −12.17 −13.56 81.84 18.16 1.36 85.52 14.48
−7.29 −10.00 −17.29 −17.25 80.06 19.94 1.21 82.25 17.75
−8.89 −11.93 −20.83 −19.63 79.15 20.85 1.13 80.34 19.66
−10.67 −14.00 −24.68 −22.12 78.36 21.64 1.07 78.50 21.50
−12.63 −16.20 −28.84 −24.70 77.66 22.34 1.02 76.75 23.25
−14.78 −18.52 −33.30 −27.38 77.03 22.97 0.97 75.09 24.91
−17.10 −20.96 −38.06 −30.15 76.46 23.54 0.93 73.52 26.48

(a) (b)

FIG. 12. Dependence of the reduced three-body binding energy on the two-body binding energy of its subsystem BB�. The red point is
the critical point that indicates the lower limit of the required binding energy of the isotriplet BB� to form a three-body bound state.
(a) The isospin states j1; 3

2
;� 1

2
ð� 3

2
Þi and j1; 1

2
;� 1

2
i cases, while (b) corresponds to the isospin state j0; 1

2
;� 1

2
i case.
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j1; 3
2
;� 1

2
ð� 3

2
Þi and j1; 1

2
;� 1

2
i cases are shown in

Fig. 12(a), where EBBB�
I¼3=2 and EBB�

I¼1 denote the reduced
three-body binding energy and two-body binding energy,
respectively. When the two-body binding energy EBB�

I¼1

approaches 0 MeV, the reduced three-body binding energy
EBBB�
I¼3=2 approaches a small value of about 0.06 MeV.

Similarly, we also plot the dependence curve for the
j0; 1

2
;� 1

2
i case in Fig. 12(b), where EBBB�

I¼1=2 and E
BB�
I¼0 denote

the reduced three-body binding energy and two-body
binding energy in this case, respectively. As shown in
the figure, the reduced three-body binding energy EBBB�

I¼1=2

also has a small value of about 0.12 MeV, when the two-
body binding energy EBB�

I¼0 approaches zero.

IX. SUMMARY AND DISCUSSION

In the present paper, we have performed an extensive
study on the possibility of theBBB� system to form trimeson
molecules. Based on the Born-Oppenheimer potential
method as well as the OPE scheme, we derived the three-
body Schrödinger equation for the system BBB�. Since the
regularization parameterΛ is difficult to be pinned down,we
choose the parameter in the range of 0.9–1.6 GeVand show
various bound state solutions of the BBB� system. After
careful treatments of the S-Dwave mixing and the coupled-
channel BB�B� effects, we found that all of the isospin
eigenstates expressed by the jI2; I3; I3zi have bound state
solutions. For instance, in the states j1; 3

2
;� 1

2
ð� 3

2
Þi and

j1; 1
2
;� 1

2
i, the three-body binding energy relative to their

breakup states is 5.67MeV, when the parameterΛ is chosen
at 1440 MeV and the two-body binding energy of their
subsystems BB� is 5.08 MeV. In the state j0; 1

2
;� 1

2
i, the

three-body binding energy relative to their breakup states is
7.18 MeV, when the parameter Λ is chosen at 1107.7 MeV
and the two-body binding energy of their subsystemsBB� is
also 5.08MeV. After careful calculations, we find no critical
value for the two-body binding energy, which indicates the
lower limit of the required binding energy of their subsystem
BB� to form a three-body bound state. That is to say, no
matter how small the two-body binding energy is, as long as
the two-body subsystem BB� has a loosely bound state, the
three-body system BBB� is most likely to have a loosely
bound state, too.
The BO potential method we have used in this paper is

an adiabatic approximation that divides the d.o.f. of the
motion for the three-body system into a light one and a
heavy one. Then we simplify the three-body system into a
two-body system not only with heavy d.o.f. but also with an
additional BO potential generated by the relative light
meson. Since the system Bð�Þ

a Bð�Þ
b Bð�Þ

c has little mass
difference on its constituents, the motion of every con-
stituent can be regarded as a light d.o.f. Therefore,
the eigenstates of the three-body system should be
the combinations of all of the possible cases. As the

simplest combination, one might expect the three-body
eigenstate to be a superposition of all of the possible cases.
In other words, the three-body bound state solutions we
have listed in the last section are approximate solutions.
It may be that the strict solutions will be more complicated
combinations. To answer this question requires further
study.
Our calculations are based on the OPE scheme, which

is leading order in the chiral power counting (neglecting
contact interactions). Since only one virtual pion occurs
in the BBB� molecule, the virtual pion is also shared
by the three mesons. Therefore, the three constituents
in the BBB� system share one virtual pion that corre-
sponds to a delocalized pion bond. It is attractive and
strong enough to make them form a three-body molecu-
lar state.
To summarize briefly, with the delicate efforts of the

long-range one-pion exchange, the S-D wave mixing, and
the coupled-channel effects, we have investigated the
existence of the loosely bound trimeson molecules BBB�
and find that it is very easy to form a trimeson molecular
state as long as its two-body subsystem BB� has a
molecular state. Hopefully, the present extensive inves-
tigations will be useful for understanding the few-body
hadronic systems and the future well-developed experi-
ments on hadron collisions will provide us with a platform
to seek out the trimeson molecules.
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APPENDIX: SOME HELPFUL FUNCTIONS AND
FOURIER TRANSFORMATIONS

The functions Yðm̃πrÞ and Zðm̃πrÞ in Eqs. (10)–(12) are
defined as

Yðm̃πrÞ ¼
expðm̃πrÞ

m̃πr
;

Zðm̃πrÞ ¼


1þ 3

m̃πr
þ 3

ðm̃πrÞ2
�
Yðm̃πrÞ;

where

m̃2
π ¼ m2

π − ðΔMÞ2:
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Fourier transformation formulas read

4π



Λ2 −m2

π

Λ̃2 þ q⃗2

�
2 1

q⃗2 þ m̃2
π
→ m̃πYðm̃πrÞ − Λ̃YðΛ̃rÞ − ðΛ2 −m2

πÞ
e−Λ̃r

2Λ̃
;

4π



Λ2 −m2

π

Λ̃2 þ q⃗2

�
2 q⃗2

q⃗2 þ m̃2
π
→ m̃2

π½Λ̃YðΛ̃rÞ − m̃πYðm̃πrÞ� þ ðΛ2 −m2
πÞΛ̃

e−Λ̃r

2
;

4π



Λ2 −m2

π

Λ̃2 þ q⃗2

�
2 ðϵ⃗1 · q⃗Þðϵ⃗2 · q⃗Þ

q⃗2 þ m̃2
π

→
1

3
ϵ⃗1 · ϵ⃗2

�
m̃2

πΛ̃YðΛ̃rÞ − m̃3
πYðm̃πrÞ þ ðΛ2 −m2

πÞΛ̃
e−Λ̃r

2

�

þ 1

3
ST

�
−m̃π

3Zðm̃πrÞ þ Λ̃3ZðΛ̃rÞ þ ðΛ2 −m2
πÞð1þ Λ̃rÞ Λ̃

2
YðΛ̃rÞ

�
;

where ŜT ¼ 3ð⃗r · ˆϵ⃗bÞð⃗r · ˆϵ⃗a†Þ − ˆϵ⃗b · ˆϵ⃗a
†.

The polarization vector is the S-D wave space that has the following substitution:

ϵ⃗b · ϵ⃗a† →



1 0

0 1

�
;

ST →



0 −

ffiffiffi
2

p

−
ffiffiffi
2

p
1

�
;

i⃗ϵ†3 × ⃗ϵ1 · i⃗ϵ
†
4 × ⃗ϵ2 →


−1 0

0 −1

�
;

STði⃗ϵ†3 × ⃗ϵ1; i⃗ϵ
†
4 × ⃗ϵ2Þ →



0

ffiffiffi
2

pffiffiffi
2

p
−1

�
;

⃗ϵ3 · i⃗ϵ
†
4 × ⃗ϵ2 →


 ffiffiffi
2

p
0

0
ffiffiffi
2

p
�
;

ST ð⃗ϵ3; i⃗ϵ†4 × ⃗ϵ2Þ →


0 1

1 − 1ffiffi
2

p

�
:
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