
 

Two-loop evolution equation for the B-meson distribution amplitude
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We derive the two-loop evolution equation of the B-meson light-cone distribution amplitude which is the
last missing element for the next-to-next-to-leading logarithmic resummation of QCD corrections to B
decays in QCD factorization. We argue that the evolution kernel to all orders in perturbation theory can be
written as a logarithm of the generator of special conformal transformations times the cusp anomalous
dimension, up to a scheme-dependent overall constant. Up to this constant term, the evolution kernel to a
given order in perturbation theory can be obtained from the calculation of special conformal anomaly at one
order less.
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The B-meson light-cone distribution amplitude (LCDA)
[1] is the crucial nonperturbative quantity in the description
of charmless hadronic B-decays and studies of direct CP
violation in the framework of QCD factorization [2–4] and
the “perturbative QCD” (pQCD) factorization [5–7]. It is
also the central element in B-decay form factor calculations
using various techniques. In particular the leptonic radiative
decay B → lνlγ is generally viewed as the theoretically
cleanest process from where the information on the B-
meson LCDA can eventually be extracted with the least
uncertainties, see [8–12] for the recent developments. The
related studies constitute a large fraction of the Belle II
physics program [13]. Having in mind very high statistical
accuracy of the expected data it is imperative to make the
theory description as precise as possible.
As it is common in field theories, extraction of the

asymptotic behavior—here the heavy quark limit—
produces divergences that have to be renormalized, so that
the B-meson LCDA is scale and scheme dependent. The
corresponding one-loop evolution equation was derived in
Ref. [14]. This equation has an interesting structure related
to the symmetry of the problem under special conformal
transformations (inversion with respect to the heavy quark
position, infinitesimal translation along its four-velocity
vector and the second inversion [15]). This symmetry
allows one to obtain the analytic expression [16,17] for
the eigenfunctions and the anomalous dimensions.

In this work we argue that the structure found in
Ref. [17] holds to all orders in perturbation theory: The
evolution kernelHðaÞ, a ¼ αs=ð4πÞ (precise definition will
be given below) can be written as a logarithm of the
generator of special conformal transformation KðaÞ times
the cusp anomalous dimension ΓcuspðaÞ, up to an overall
additive constant

HðaÞ ¼ ΓcuspðaÞ lnðiKðaÞμ̃eγEÞ þ ΓþðaÞ: ð1Þ

Here and below μ̃ ¼ μMSeγE. Apart from an elegant
interpretation of the solutions—eigenfunctions of the B-
meson LCDA evolution equation are eigenmodes of special
conformal transformations—utility of this representation is
that the nontrivial part of the evolution equation at any
given order in perturbation theory can be obtained by
the calculation of special conformal anomaly (quantum
deformation of K) at one order less. We have verified
this result by explicit calculation to the two-loop accuracy.
The resulting two-loop evolution equation (29) is directly
relevant for phenomenology and allows one, e.g., to per-
form a complete next-to-next-to-leading-logarithmic
(NNLL) resummation of heavy quark mass logarithms in
the B → lνlγ decay.
We start with a summary of the one-loop results. The

B-meson LCDA is defined [1] as a matrix element of the
renormalized light-ray operator,

OðzÞ ¼ q̄ðznÞ=nγ5hvð0Þ; ð2Þ

built of a heavy quark field hvð0Þ in effective theory
(HQET) and a light antiquark q̄ðznÞ, between the vacuum
and B-meson state
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h0jOðzÞjB̄ðvÞi ¼ iFðμÞΦþðz; μÞ

¼ iFðμÞ
Z

∞

0

dωe−iωzϕþðω; μÞ: ð3Þ

Here vμ is the heavy quark velocity, nμ is a lightlike vector,
n2 ¼ 0, and we assume that n · v ¼ 1. The Wilson line
connecting the fields is tacitly implied. The operator in
Eq. (2) is assumed to be renormalized in the MS scheme,

μ ¼ μMS is the factorization scale and FðμÞ is the HQET
B-meson decay constant. The corresponding anomalous
dimension is [18]

γFðaÞ ¼ −3aCF þ a2CF

�
CF

�
5

2
−
8π2

3

�

þ CA

�
1þ 2π2

3

�
−
5

2
β0

�
: ð4Þ

For most of this work it will be convenient to stay in
position space. The scale dependence of Φþðz; μÞ is
governed by the renormalization group (RG) equation
for the nonlocal operator OðzÞ which has the form

�
μ
∂
∂μþ βðaÞ ∂

∂aþHðaÞ
�
OðzÞ ¼ 0; ð5Þ

where βðaÞ is the QCD-beta function, a ¼ αs=4π
and HðaÞ ¼ aHð1Þ þ a2Hð2Þ þ � � � is an integral operator
(evolution kernel). The leading termHð1Þ was calculated by
Lange and Neubert [14]. Their result converted to position
space takes the form [15,19]

Hð1ÞOðzÞ ¼ 4CF

�
½lnðiμ̃zÞ − 1=4�OðzÞ

þ
Z

1

0

du
ū
u
½OðzÞ −OðūzÞ�

�
; ð6Þ

where ū ¼ 1 − u.
It turns out that this expression (apart from the constant

term −1=4) can be found without calculation and is
determined by the symmetry of the problem. We remind
that the QCD Lagrangian is conformally invariant at the
classical level, and as a consequence one-loop evolution
kernels for composite operators built from light quarks
commute with the generators of conformal transformations.
It is, therefore, possible to write these kernels as functions
of the quadratic Casimir operator of the collinear subgroup
[19]. For the heavy-light operators considered here the
conformal symmetry is lost because the effective heavy-
quark field hv is essentially a nonlocal object—it can be
replaced by the Wilson line going from zero to infinity
along the velocity vector vμ [20]—and it does not transform
covariantly under the Poincaré group. A special conformal
transformation in the direction vμ is an exception as it

leaves the v-ordered Wilson line (and the lightlike one)
invariant. Thus one should expect that

½K;Hð1Þ� ¼ 0; ð7Þ

where K ¼ vμKμ, and Kμ is the generator of special
conformal transformations. The dilatation invariance of
the evolution kernel is also lost because of the term ∼ ln iμz
that is due to the cusp in the Wilson line between the
lightlike (in the direction of nμ) and timelike (in the
direction of vμ) segments. The coefficient in front of
ln iμz is called cusp anomalous dimension [21] and is
known at NNLO [22],

ΓcuspðaÞ ¼ aΓð1Þ
cusp þ a2Γð2Þ

cusp þ � � �

¼ 4CFaþ 4

3
CFa2½ð4 − π2ÞCA þ 5β0� þ � � � : ð8Þ

To one-loop accuracy one obtains therefore

½D;Hð1Þ� ¼ Γð1Þ
cusp ¼ 4CF: ð9Þ

Equation (7) implies that the operators Hð1Þ and K can be
diagonalized simultaneously, Since the problem has one
degree of freedom, this means that the evolution kernel can
be written as a function of K,Hð1Þ ¼ fðKÞ. This function is
obtained by Eq. (9) and the canonical commutation relation
½D;K� ¼ K which implies that, for arbitrary power m,
½D;Km� ¼ mKm. Thus

½D; fðKÞ� ¼ K
∂
∂K fðKÞ ¼ Γð1Þ

cusp; ð10Þ

so that fðxÞ ¼ Γð1Þ
cusp ln xþ const. The integration constant

remains undetermined and has to be calculated explicitly.
One obtains [17]

Hð1Þ ¼ Γð1Þ
cusp lnðiμ̃eγEKÞ − 5CF: ð11Þ

Note that the derivation only uses the commutation
relations for the generators.
The dilatation and conformal symmetry generators in

position space are simple first-order differential operators,

DOðzÞ ¼ ðz∂z þ 3=2ÞOðzÞ;
KOðzÞ ¼ ðz2∂z þ 2zÞOðzÞ; ð12Þ

which coincide (up to the replacement 1 ↦ 3=2 in D) with
the generators S0 and Sþ of the collinear subgroup,
respectively [15,23]. Using these expressions one can
verify [17] that the representation in Eq. (11) is indeed
equivalent to Eq. (6) obtained by explicit calculation.
Moreover, eigenfunctions of K are easy to find:
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QsðzÞ ¼ −
1

z2
eis=z; iKQsðzÞ ¼ sQsðzÞ; ð13Þ

where s ≥ 0 to ensure analyticity in the lower half-plane
[19]. They provide the basis of the eigenfunctions for the
(one-loop) evolution kernel,

Hð1ÞQs ¼ ½Γð1Þ
cusp lnðμ̃eγEsÞ − 5CF�Qs: ð14Þ

Thus one can write the LCDA as an integral [17]

Φþðz; μÞ ¼
Z

∞

0

dssηþðs; μÞQsðzÞ; ð15Þ

where functions ηþðs; μÞ are multiplicatively renormaliz-
able. The corresponding momentum-space expression is in
terms of Bessel functions [17]. The representation (15) is
equivalent to the one found in Ref. [16].
In this work we argue that the similar representation

of the evolution kernel, Eq. (1), holds to all orders in
perturbation theory, where all three elements, ΓcuspðaÞ,
ΓþðaÞ, and the generator of special conformal transforma-
tions KðaÞ, include higher-order corrections.
The starting observation is that the RG kernels in the MS

scheme do not depend on ϵ ¼ ð4 − dÞ=2 by construction.
They are, therefore, the same for QCD in d ¼ 4 and in
d ¼ 4 − 2ϵ dimensions at the critical point a ¼ a� where
βða�Þ ¼ 0 and the theory enjoys exact scale and conformal
invariance [24]. This “hidden symmetry” of QCD evolution
equations was identified and applied before to the study of
the leading twist operators to three-loop accuracy [25,26].
Generators of symmetry transformations acting on

composite operators in an interacting theory are, generally,
modified by quantum corrections [25,27,28],

Dða�Þ ¼ D − ϵþHða�Þ;
Kða�Þ ¼ K − ϵzþ zΔða�Þ; ð16Þ

where D, K are the corresponding canonical expres-
sions (12) and ϵ ¼ ϵða�Þ ¼ −β0a� þOða2�Þ. Note that
the generator of dilatations Dða�Þ can be written in terms
of the RG kernel, whereas the generator of special
conformal transformations Kða�Þ cannot be found from
general considerations and contains a correction term Δ. It
can be calculated in perturbation theory Δða�Þ ¼ a�Δð1Þ þ
a2�Δð2Þ þ � � � using conformal Ward identities, see
Refs. [25,29,30] for a detailed discussion.
The modified generators obey, by definition, the same

canonical commutation relation,

½Dða�Þ;Kða�Þ� ¼ Kða�Þ; ð17Þ

whereas Eqs. (7) and (9) are generalized to

½Kða�Þ;Hða�Þ� ¼ 0; ð18aÞ

½Dða�Þ;Hða�Þ� ¼ ½D;Hða�Þ� ¼ Γcuspða�Þ: ð18bÞ

The second relation follows from the known result [21]
that the lnðiμzÞ term can appear in Hða�Þ only linearly (to
all orders in perturbation theory) and its coefficient is the
cusp anomalous dimension. Note that in contrast to H the
correction term Δ in the generator of special conformal
transformation does not contain ∼ ln μz contributions:
Using Eqs. (16)–(18) one can show that ½z∂z;Δ� ¼ 0.
This means that Δ can be written as a function of ðz∂zÞ
and rules out the possibility of logarithmic contributions.
The representation for H in Eq. (1) follows from the
commutation relations (18) in the same way as the one-loop
expression (11) follows from (7) and (9).
Aiming at the two-loop accuracy for the evolution

kernel one needs, obviously, a one-loop correction to K.
A straightforward calculation (cf., [25]) gives

Δð1ÞOðzÞ ¼ CF

�
3OðzÞ þ 2

Z
1

0

duwðuÞ½OðzÞ −OðūzÞ�
�
;

wðuÞ ¼ 2ū=uþ ln u: ð19Þ

We have checked that the same result can be obtained
starting from the one-loop correction to the generator of
special conformal transformations for the light-quark sys-
tem [25,27,30] and applying the “light-to-heavy” reduction
procedure suggested in Ref. [31]. Thus in fact a new
calculation is not needed.
For practical applications, an explicit expression for the

kernel as an integral operator, similar to the one-loop result
in Eq. (6), can be more useful. To find this expression one
can use the following ansatz:

Hð2Þ ¼ Γð2Þ
cuspH1 þ Γð1Þ

cuspδH þ const;

δHOðzÞ ¼
Z

1

0

du
ū
u
hðuÞ½OðzÞ −OðūzÞ�; ð20Þ

where H1 is the one-loop kernel (6) stripped of the 4CF
factor, so that ½D;H1� ¼ 1, ½K;H1� ¼ 0, ½D; δH� ¼ 0.
In this way Eq. (18) is fulfilled identically and the function
hðuÞ can be found from Eq. (18a). To this end it is
convenient to write K ¼ zðDþ 1=2 − ϵþ ΔÞ and to the
required accuracy replace ϵ ↦ −β0a�. Working out the
commutators and using that

½Δð1Þ; H1� ¼ ½Δð1Þ; ln z�; ½z;H1� ¼ −z
1

z∂z þ 2
; ð21Þ

one obtains after some algebra

½δH; z� ¼ zTf½Δð1Þ; ln z� − Tðβ0 þ Δð1ÞÞg; ð22Þ
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where the operator T is defined as

TOðzÞ ¼ 1

z∂z þ 2
OðzÞ ¼

Z
1

0

duūOðūzÞ: ð23Þ

The remaining commutators are

½Δð1Þ; ln z�OðzÞ ¼ −2CF

Z
1

0

du lnðūÞwðuÞOðūzÞ;

½δH; z�OðzÞ ¼ z
Z

1

0

duūhðuÞOðūzÞ: ð24Þ

Using these expressions and (19) in (22), we obtain

hðuÞ ¼ ln ū

�
β0 þ 2CF

�
ln ū −

1þ ū
ū

ln u −
3

2

��
: ð25Þ

Collecting all terms one gets

HðaÞOðzÞ ¼ ΓcuspðaÞ
�
lnðiμ̃zÞOðzÞ þ

Z
1

0

du
ū
u
½1þ ahðuÞ�

× ½OðzÞ−OðūzÞ�
�
þ γþðaÞOðzÞ: ð26Þ

The constant γþðaÞ requires explicit calculation (see
below). We obtain

γþðaÞ ¼ −aCF þ a2CF

�
4CF

�
21

8
þ π2

3
− 6ζ3

�

þ CA

�
83

9
−
2π2

3
− 6ζ3

�
þ β0

�
35

18
−
π2

6

��
: ð27Þ

The anomalous dimension ΓþðaÞ appearing in Eq. (1) is
given by

ΓþðaÞ ¼ γþðaÞ − ΓcuspðaÞ½1 − aϰ þOða2Þ�;

ϰ ¼
Z

1

0

du
ū
u
hðuÞ ¼ CF

�
π2

6
− 3

�
þ β0

�
1 −

π2

6

�
:

ð28Þ

The result can also be cast in the form of an equation for
the scale dependence of the coefficients in the expansion
(15) of the LCDA in the eigenfunctions (13) of the one-loop
evolution equation,

�
μ
∂
∂μþ βðaÞ ∂

∂aþ ΓcuspðaÞ lnðμ̃eγEsÞ þ γηðaÞ
�
ηþðs; μÞ

¼ 4CFa2
Z

1

0

du
ū
u
hðuÞηþðūs; μÞ; ð29Þ

where the kernel hðuÞ is given in Eq. (25) and γηðaÞ ¼
ΓþðaÞ − γFðaÞ [see Eqs. (4), (27), and (28)].

In order to derive the expression for γþðaÞ in Eq. (27),
and also for independent verification of Eq. (26) obtained
from symmetry considerations, we have calculated the two-
loop kernel Hð2Þ explicitly. The contributing Feynman
diagrams can be split into three classes: “light vertex,”
describing the interaction of the light antiquark with the
light-like Wilson line, “heavy vertex,” the same but for the
heavy quark, and “exchange” diagrams, involving inter-
action between the heavy quark and the light antiquark. The
answers for the two-loop light vertex diagrams can be
found in Appendix C of Ref. [25]. The sum of heavy vertex

diagrams has the form Γð2Þ
cusp lnðiμ̃zÞ þ const, and the con-

stant term is the one of interest. The calculation of exchange
diagrams is considerably simplified thanks to the one-loop
exchange diagram being finite [1]. It turns out that the two-
loop heavy-light exchange diagrams can be obtained from
the expressions for their light-light counterparts collected in
Appendix C of Ref. [25] by throwing out all terms where
the heavy quark is moved from the origin in position
space. The results for separate diagrams will be presented
elsewhere.
The size of the two-loop correction is illustrated in Fig. 1

for the simplest one-parameter exponential model of the

LCDA at the reference scale μMS
0 ¼ 1 GeV [1],

ϕþðω; μ0Þ ¼
ω

ω2
0

e−ω=ω0 : ð30Þ

For this plot we take ω0 ¼ 300 MeV. We show the LCDA

at the reference scale and after evolution to μMS ¼ 2 GeV.
To this end we solve the evolution equation (29) numeri-
cally, using in one case two-loop Γcusp and one-loop γη, and

0.0
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0.2

0.3

0.4

0 1 2 3 4 5 6

0.95

1.00

1.05

N
N

L
L

/N
L

L

FIG. 1. The B-meson LCDA (30) at the reference scale μMS
0 ¼

1 GeV (red dots) and after the evolution to μMS ¼ 2 GeV with
the NLL (blue dashes) and NNLL (red solid) accuracy.
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in another case three-loop Γcusp, two-loop γη and the mixing
termOða2Þ on the rhs of (29). We refer to these truncations
as the next-to-leading-logarithmic (NLL) and the next-to-
next-to-leading logarithmic (NNLL) resummation, respec-
tively. In both cases we use three-loop QCD coupling.
We see that the NNLL correction is in general small,

which is consistent with the observation in Ref. [11] that
dependence of the B → lνlγ form factors on the hard-
collinear factorization scale is rather weak. The correction
is negative at small momenta, and positive at large
momenta. This is also true for more general models
considered in [11] although the size of the correction at
small momenta can be larger if the lower-energy LCDA
does not have the linear behavior at ω → 0 expected in
perturbation theory.
For the leading-power contribution in QCD factoriza-

tion, the precise functional form of the LCDA is not
important as the result can be expressed in terms of the
logarithmic moments [11],

σ̂n ¼
Z

∞

0

dω
λB
ω
lnn

λBe−γE

ω
ϕþðωÞ ð31Þ

with σ̂0 ¼ 1 defining λB. To the NNLL accuracy only the
values of λB, σ̂1 and σ̂2 are needed. For the simple model in

Eq. (30) λBðμ0Þ ¼ ω0, σ̂1ðμ0Þ ¼ 0. After the evolution to
2 GeV one obtains, for three typical parameter values:

ω0, MeV λNLL
B =ω0 λNNLL

B =ω0 σ̂NLL
1 σ̂NNLL

1

200 1.29 1.31 0.011 −0.042
300 1.22 1.24 −0.043 −0.116
400 1.18 1.18 −0.082 −0.172

More detailed numerical studies should be done in con-
nection with concrete physics applications.
To summarize, we have studied higher-order corrections

to the scale dependence of the B-meson LCDA. We reveal
the general structure of the evolution kernel and its relation
to conformal symmetry of the QCD Lagrangian, and
confirm this structure by explicit two-loop calculation.
The resulting evolution equation (29) is the last missing
ingredient that allows one to perform QCD factorization in
charmless B decays to the NNLL accuracy.
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